1. Wang, L., Yang. K., Wang, Q. and Xiao, W. (2022) Genetic analysis of DNA-damage tolerance pathways in Arabidopsis. Plant Cell Rep. (In press) DOI: 10.1007/s00299-022-02942-2. [Text]
  2. Lin, A., Chumala, P., Du, Y., Ma, C., Wei, T., Xu, X., Luo, Y., Katselis, G.S. and Xiao, W. (2022) Transcriptional activation of budding yeast DDI2/3 through chemical modifications of Fzf1. Cell Biol. Toxicol. (In press) DOI: 1007/s10565-022-09745-x. [Text]
  3. lv, , Han, S., Wang, L., Xia, J., Li, P., Hu, R., Wang, J., Gao, L., Chen, Y., Wang, Y., Du, J., Bao, F., Hu, Y., Xu, X., Xiao, W. and He, Y. (2022) TEB/POLQplays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res. 50: 6820-6836. [Text]
  4. Yang, K. and Xiao, W. (2022) Functions and mechanisms of the Ubc13-UEV complex and Lysine 63-linked polyubiquitination in plants. J. Exp. Bot. 73: 5372-5387. [Text]
  5. Li, X., Zhao, R., Li, S., Wang, Y., Wang, X., Yang, W., Yang, M., Xiao, W., Yang, S., Lin, X., Zheng, X., Ma, X., Zhao, L., Xiao, W. and Cao, L. (2022) Global reprogramming of xylose metabolism in Saccharomyces cerevisiae efficiently produces ethanol from lignocellulose hydrolysates. Crop. Produc. 179: 114666. [Text]
  6. Xin, Y., Wang, J., Wu, Y., Li, Q., Dong, M., Liu, C., He, Q., Wang, R., Wang, D., Jiang, S., Xiao, W., Tian, Y. and Zhang, W. (2022) Identification of Nanog as a novel inhibitor of Rad51. Cell Death & Disease 13: 193. [Text]
  7. Sun, Y., Kong, M., Li, X., Li, Q., Xue, Q., Hou, J., Jia, Z., Lei, Z., Xiao, W., Shi, S. and Cao, L. (2022) Metabolic and evolutionary engineering of diploid yeast for the production of first- and second-generation ethanol. Bioeng. Biotechnol. 9: 835928. [Text]
  8. Zeng, C. and Xiao, W. (2022) Molecular cloning and functional characterization of UBC13 and MMS2 from Candida albicans. Gene 816: 146163. [Text]
  9. Bi, T., Niu, X., Qin, C. and Xiao, W. (2021) Genetic and physical interactions between Polη and Rev1 in response to UV-induced DNA damage in mammalian cells. Rep. 11: 21364. [Text]
  10. Niu, T., Wu, Z. and Xiao, W. (2021) Uev1A promotes breast cancer cell migration by up-regulating CT45A expression via the AKT pathway. BMC Cancer 21: 1012. [Text]
  11. Kong, M., Li, X., Li, T., Zhao, X., Jin, M., Zhou, X., Gu, H., Mrsa, V., Xiao, W. and Cao, L. (2021) Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates. Bioresource Technol. 337: 125487. [Text]
  12. Liu, L., Jin, Huang, M., Zhu, Y., Yuan, W., Kang, Y., Kong, M., Alim S., Jia, Z., Xu, Z., Xiao, W. and Cao, L. (2021) Engineered polyploid yeast strains enable efficient xylose utilization and ethanol production in corn hydrolysates. Front. Bioeng. Biotechnol. 9: 655272. [Text]
  13. Zhu, Y., Zhang, J., Zhu, L., Jia, Z., Li, Q., Xiao, W. and Cao, L. (2021) Minimize the xylitol production in Saccharomyces cerevisiae by balancing the xylose redox metabolic pathway. Front. Bioeng. Biotechnol. 9: 639595. [Text]
  14. Wang, Z. and Xiao, W. (2020) Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage. Genet. 66: 1019-1028. [Text]
  15. Fan, L., Bi, T., Wang, L. and Xiao, W. (2020) DNA-damage tolerance through PCNA ubiquitination and sumoylation. Bioch J. 477: 2655-2677. [Text]
  16. Bai, Z., Wei, M., Li, Z. and Xiao, W. (2020) Drosophila Uev1a is dually required for Ben-dependent DNA-damage response and fly mobility. Cell. Signal. 74: 109719. [Text]
  17. Wu, Z., Andersen, P.L., Moraes, T., McKenna, S.A., Zhang, Y., Zhang, W., Ellison, M.J. and Xiao, W. (2020) Uev1A amino terminus stimulates poly-ubiquitin chain assembly and is required for NF-кB activation. Cell. Signal. 74: 109712. [Text]
  18. Zhu, L., Li, P., Sun, T., Kong, M., Li, X., Ali, S., Liu, W., Fan, S., Qiao, J., Li, S., Peng, L., He, B., Jin, M., Xiao, W. and Cao, L. (2020) Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresource Technol. 313: 123724. [Text]
  19. Lin, A., Du, Y. and Xiao, W. (2020) Yeast chromatin remodeling complexes and their roles in transcription. Curr. Genet. 66: 657-670. [Text]
  20. Yang, D., Sun, Y., Chen, J., Zhang, Y., Fan, S., Huang, M., Xie, X., Cai, Y., Shang, Y., Gui, T., Sun, L., Hu, J., Dong, J., Yeap, L.-S., Wang, X., Xiao, W. and Meng, F. (2020) REV7 is required for processing AID initiated DNA lesions in activated B cells. Nat. Commun. 11: 2812. [Text]
  21. Guo, H., Wang, L., Hu, R., He, Y. and Xiao, W. (2020) Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. Plant Sci. 297: 110518. [Text]
  22. Wang, F., Li, P., Shao, Y., Li, Y., Zhang, K., Li, M., Wang, R., Zheng, S., Wang, Y., Song, S., Liu, F., Xiao, W. and Li, X. (2020) Site-specific proteolytic cleavage prevents ubiquitination and degradation of human REV3L, the catalytic subunit of DNA polymerase ζ. Nucleic Acids Res. 48: 3619-3637. [Text]
  23. Wang, Q., Liu, M., Zang, Y. and Xiao, W. (2020) The C-terminal extension of Arabidopsis Uev1A/B with putative prenylation site plays critical roles in protein interaction, subcellular distribution and membrane association. Plant Sci291: 110324. [Text]
  24. Zang, Y., Gong, Y., Wang, Q., Guo, H. and Xiao, W. (2020) Arabidopsis OTU1, a linkage-specific deubiquitinase, is required for ER-associated protein degradation. Plant J. 101: 141-155. [Text]
  25. Wu, Z., Niu, T. and Xiao, W. (2019) Uev1A promotes breast cancer cell survival and chemoresistance through the AKT-FOXO1-BIM pathway. Cancer Cell Intl. 19: 331. [Text]
  26. Zhang, C., Xue, Q., Hou, J., Mohsin, A., Zhang, M., Guo, M., Zhu, Y., Bao, J., Wang, J., Xiao, W. and Cao, L. (2019) In-depth two-stage transcriptional reprogramming and evolutionary engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose with acetate. J. Agri. Food Chem. 67: 12002-12012. [Text]
  27. Niu, X., Chen, W., Bi, T., Lu M., Qin, Z. and Xiao, W. (2019) Rev1 plays central roles in mammalian DNA-damage tolerance in response to UV irradiation. FEBS J. 286: 2711-2725. [Text]
  28. Li, J., Jia, Y., Lin, A., Hanna, M., Chelico, L., Xiao, W. and Moore, S. (2019) Structure of yeast Ddi2, a highly inducible detoxifying metalloenzyme from S. cerevisiae. J. Biol. Chem. 294: 10674-10685. [Text]
  29. Wang, L., Wen, R., Wang, J., Xiang, D., Wang, Q., Zang, Y., Wang, Z., Huang, S., Li, X., Datla, R., Fobert, P.R., Wang, H., Wei, Y. and Xiao, W. (2019) Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low temperature stress. New Phytologist 221: 919-934. [Text]
  30. Lin, A., Zeng, C., Wang, Q., Zhang, W., Li, M., Hanna, M. and Xiao, W. (2018) Utilization of a strongly-inducible DDI2 promoter to control gene expression in Saccharomyces cerevisiae. Front. Microbiol. 9: 2736. [Text]
  31. Zhang, X., Wang, J., Zhang, W., Hou, J., Xiao, W. and Cao, L. (2018) Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 102: 7207-7217. [Text]
  32. Fan, Q., Xu, X., Zhao, X., Wang, Q., Xiao, W., Guo, Y. and Fu, Y.V. (2018) Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in Saccharomyces cerevisiae. Curr. Genet. 64: 889-899. [Text]
  33. Rout, M.K., Lee, B.L., Lin, A., Xiao, W. and Spyracopoulos, L. (2018) Active site gate dynamics modulate the catalytic activity of the ubiquitination enzyme E2-25K. Sci. Rep. 8: 7002. [Text]
  34. Wu, Z., Neufeld, H., Torlakovic, E. and Xiao, W. (2018) Uev1A-Ubc13 promotes colorectal cancer metastasis through regulating CXCL1 expression via NF-кB activation. Oncotarget 9: 15952-15967. [Text]
  35. Li, Z., Wang, Y., Li, Y., Zhang, Y., Zhang, Z., Ren, X., Yin, W., Wang, G., Zhu, B., Xiao, W. and Zhang, W. (2018) Ube2s stabilizes β-Catenin through K11-linked polyubiquitination to promote mesendoderm specification and colorectal cancer development. Cell Death & Disease 9: 456. [Text]
  36. Li, F., Ball, L.G., Fan, L., Hanna, M. and Xiao, W. (2018) Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr. Genet. 64: 459-468. [Text]
  37. Bai, Z., Li, Z. and Xiao, W. (2018) Drosophila Bendless catalyzes K63-linked polyubiquitination and is involved in the response to DNA damage. Mutat. Res. Fund. Mol. Mech Mutagen. 808: 39-47. [Text]
  38. Zhao, H., Wang, Q., Liu, C., Shang, Y., Wen, F., Wang, F., Liu, W., Xiao, W. and Li, W. (2018) A role for respiration in regulating meiosis initiation in Saccharomyces cerevisiae. Genetics 208: 1181-1194. [Text]
  39. Tan, S., Zhang, P., Xiao, W., Feng, B., Chen, L., Li, S., Li, P., Zhao, W. Qi, X. and Yin, L. (2018) TMD1 domain and CRAC motif determine the association and dissociation of MxIRT1 with detergent-resistant membranes. Traffic 19: 122-137. [Text]
  40. Qin, Z., Jiang, W., Wang, G., Sun, Y. and Xiao, W. (2018) Linear ubiquitin chain induces apoptosis and inhibits tumor growth. Apoptosis 23: 16-26. [Text]
  41. Zhang, Y., Li, Y., Yang, X., Wang, J., Wang, R., Qian, X., Zhang, W. and Xiao, W. (2018) Uev1A-Ubc13 catalyzes K63-linked ubiquitination of RHBDF2 to promote TACE maturation. Cell. Signal. 42: 155-164. [Text]
  42. Niu, C., Wang, D., Liu, X., Liu, H., Liu, X., Feng, E., Pan, C., Wang, R., Xiao, W., Liu, X., Liu, X., Zhu, L. and Wang, H. (2017) An H-NS family protein, Sfh, regulates acid resistance by inhibition of glutamate decarboxylase expression in Shigella flexneri 2457T. Front. Microbiol. 8: 1923. [Text]
  43. Zhang, W., Zhuang, Y., Zhang, Y., Yang, X., Zhang, H., Wang, G., Yin, W., Wang, R., Zhang, Z. and Xiao, W. (2017) Uev1A facilitates osteosarcoma differentiation by promoting Smurf1-mediated Smad1 ubiquitination and degradation. Cell Death & Diseases 8: e2974. [Text]
  44. Wang, Q., Zang, Y., Zhou, X. and Xiao, W. (2017) Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions. BMC Plant Biol. 17: 126. [Text]
  45. Bhat, A., Qin, Z., Wang, G., Chen, W. and Xiao, W. (2017) Rev7, the regulatory subunit of Polζ, undergoes UV-induced and Cul4-dependent degradation. FEBS J. 284: 1790-1803. (Cover and Editor’s Choice for issue 12, and is included in a special annual highlights virtual issue). [Text]
  46. Wang, Q., Xue, H., Li, S., Chen, Y., Tian, X., Xu, X., Xiao, W. and Fu, Y. (2017) A method for labeling proteins with tags at the native genomic loci in budding yeast. PLoS One 12: e6176184. [Text]
  47. Niu, C., Yang, J., Liu, H., Cui, Y., Xu, H., Wang, R., Liu, X., Feng, E., Wang, D., Pan, C., Xiao, W., Liu, X., Zhu, L. and Wang, H. (2017) Role of the virulence plasmid in acid resistance of Shigella flexneri. Sci. Rep. 7: 46465. [Text]
  48. Qin, Z., Bai, Z., Sun, Y., Niu, X. and Xiao, W. (2016) PCNA-Ub polyubiquitination inhibits cell proliferation and induces cell-cycle checkpoints. Cell Cycle 15: 3390-3401. [Text]
  49. Fan, L. and Xiao, W. (2016) The Pol30-K196 residue plays a critical role in budding yeast DNA postreplication repair through interaction with Rad18. DNA Repair 47: 42-48. [Text]
  50. Guo, H., Wen, R., Wang, Q., Datla, R. and Xiao, W. (2016) Three Brachypodium distachyon Uev1s promote Ubc13-mediated Lys63-linked polyubiquitination and confer different functions. Front. Plant Sci. 7: 1551. [Text]
  51. Yuan, S., Zhang, Z., Zheng, C., Zhao, Z., Wang, Y., Feng, L., Niu, G., Wang, C., Wang, J., Feng, H., Bao, F., Hu, Y., Cao, Y., Ma, L., Wang, H., Kong, D., Xiao, W., Lin, H. and He, Y. (2016) Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proc. Natl. Acad. Sci. USA 113: 7661-7666. [Text]
  52. Tan, S., Liu, F., Pan, X., Zang, Y., Jin, F., Zu, W., Q, X., Xiao, W. and Yin, L. (2016) CSN6, a subunit of the COP9 signalosome, is involved in early response to iron deficiency in Oryza sativa. Sci. Rep. 6: 25485. [Text]
  53. Xu, X., Lin, A., Zhou, C., Blackwell, S., Zhang, Y., Wang, Z., Feng, Q., Guan, R., Hanna, M.D., Chen, Z. and Xiao, W(2016) Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1. Nucleic Acids Res. 44: 5231-5245. [Text]
  54. Wang, J., Zhang, Y., Hou, J., Qian, X., Zhang, H., Zhang, Z., Li, M., Wang, R., Liao, K., Wang, Y., Li, Z., Zhong, D., Wan, P., Dong, L., Liu, F., Wang, X., Wan, Y., Xiao, W. and Zhang, W. (2016) Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ. 23: 393-404. [Text]
  55. Zhang, C., Li, Z., Zhang, X., Yuan, L., Dai, H. and Xiao, W. (2016) Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses. Yeast 33: 5-19. [Text]
  56. Guo, H., Wen, R., Liu, Z., Datla, R. and Xiao, W. (2016) Molecular cloning and functional characterization of two Brachypodium distachyon UBC13 genes whose products promote K63-linked polyubiquitination. Front. Plant Sci. 6: 1222. [Text]
  57. Bhat, A., Wu, Z., Maher, V.M., McCormick, J.J. and Xiao, W. (2015) Rev7/Mad2B plays a critical role in the assembly of a functional mitotic spindle. Cell Cycle 14: 3929-3938. [Text]
  58. Li, J., Biss, M., Fu, Y., Xu, X., Moore, S. and Xiao, W. (2015) Two duplicated genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced by cyanamide. J. Biol. Chem. 290: 12664-12675. [Text]
  59. Xu, X., Blackwell, S., Lin, A., Li, F., Qin, Z. and Xiao, W. (2015) Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Mutat. Res. - Rev. 764: 43-50. [Text]
  60. Li, S., Zhang, X., Zhang, X.Y., Xiao, W. Berry, J.O., Li, P., Jin, S., Tan, S. Zhang, P., Zhao, W.Z. and Yin, L. (2015) Expression of Malus xiaojinensis IRT1 (MxIRT1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron. Yeast 32: 499-517. [Text]
  61. Xue, C., Liang, K., Liu, Z., Wen, R. and Xiao, W. (2015) Similarities and differences between Arabidopsis PCNA1 and PCNA2 in complementing the yeast DNA damage tolerance defect. DNA Repair 28: 28-36. [Text]
  62. Li, S., Pan, X., Berry, J.O., Wang, Y., Naren, Ma, S., Tan, S., Xiao, W., Zhao, W., Sheng, X. and Yin, L. (2015) OsSEC24, a functional SEC24-like protein in rice, improves tolerance to iron deficiency and high pH by enhancing H+ secretion mediated by PM-H+-ATPase. Plant Sci. 233: 61-71. [Text]
  63. Rout, M.K., Hodge, C.D., Markin, C.J., Xu, X., Glover, J.N.M., Xiao, W. and Spyracopoulos, L. (2014) Stochastic gate dynamics regulate the catalytic activity of ubiquitination enzymes. J. Am. Chem. Soc. 136: 17446-17458. [Text]
  64. Ball, L.G., Hanna, M.D., Lambrecht, A.D., Mitchell, B., Ziola, B., Cobb, J.A. and Xiao, W. (2014) The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair. PLoS One. 9: e109292. [Text]
  65. Wen, R., Wang, S., Xiang, D., Venglat, P., Shi, X., Zang, Y., Datla, R., Xiao, W. and Wang, H. (2014) UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. Plant J.  80: 424-436. [Text]
  66. Wu, Z., Shen, S., Zhang, Z., Zhang, W. and Xiao, W. (2014) Ubiquitin-conjugating enzyme complex Uev1A-Ubc13 promotes breast cancer metastasis through nuclear factor-κB mediated matrix metalloproteinase-1 gene regulation. Breast Cancer Res. 16: R75. [Text]
  67. Cao, L., Tang, X., Zhang, X., Zhang, J., Tian, X., Wang, J., Xiong, M. and Xiao, W. (2014) Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab. Eng. 24: 150-159. [Text]
  68. Ball, L.G., Xu, X., Blackwell, S., Hanna, M.D., Lambrecht, A.D. and Xiao, W. (2014) The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair 16: 74-83. [Text]
  69. Xu, X., Ball, L., Chen, W., Tian, X., Lambrecht, A., Hanna, M. and Xiao, W. (2013) The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLoS One 8: e81371. [Text]
  70. Tian, X., Xu, X. and Xiao, W. (2013) Novel method for genomic promoter shuffling using recyclable cassettes. Appl. Environ. Microbiol. 79: 7042-7047. [Text]
  71. Qin, Z., Lu, M., Xu, X., Hanna, M., Shiomi, N. and Xiao, W. (2013) DNA-damage tolerance mediated by PCNA•Ub fusions in human cells is dependent on Rev1 but not Polη. Nucleic Acids Res. 41: 7356-7369. [Text]
  72. Bhat, A., Andersen, P.L., Qin, Z. and Xiao, W. (2013) The Rev3 subunit of Polζ is required for maintaining fragile site stability in human cells. Nucleic Acids Res. 41: 2328-2339. [Text]
  73. Wei, T., Zhang, C., Xu, X., Hanna, M., Zhang, X., Wang, Y., Dai, H. and Xiao, W. (2013) Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals. Biosensors and Bioelectronics. 44: 138-145. [Text]
  74. Li, L., Wang, J., Hou, J., Wu, Z., Zhuang, Y., Lu, M., Zhang, Y., Zhou, X., Li, Z., Xiao, W. and Zhang, W. (2012) Cdk1 interplays with Oct4 to repress differentiation of embryonic stem cells into trophectoderm. FEBS Lett. 586: 4100-4107. [Text]
  75. Zang, Y., Wang, Q., Xue, C., Li, M., Wen, R. and Xiao, W.  (2012) Rice UBC13, a candidate housekeeping gene, is required for K63-linked polyubiquitination and tolerance to DNA damage. Rice 5: 24. [Text]
  76. Wen, R., Li, J., Xu, X., Cui, Z. and Xiao, W. (2012) Zebrafish Mms2 promotes K63-linked polyubiquitination and is involved in p53-mediated DNA-damage response. DNA Repair 11: 157-166. [Text]
  77. Biss, M. and Xiao, W. (2012) Selective tumor killing based on specific DNA-damage response deficiencies. Cancer Biol. & Ther. 13: 239-246. [Text]
  78. Xiang, D., Yang, H., Venglat, P., Cao, Y., Wen, R., Ren, M., Stone, S., Wang, E., Wang, H., Xiao, W., Weijers, D., Berleth, T., Laux, T., Selvaraj, G., Datla, R. (2011) POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis. Plant Cell 23: 4348-4367. [Text]
  79. Li, J., Bhat, A. and Xiao, W. (2011) Regulation of nucleotide excision repair through ubiquitination. Acta Bioch. Biophys. Sinica 43: 919-929. [Text]
  80. Andersen, P.L., Xu, F., Ziola, B., McGregor, W.G. and Xiao, W. (2011) Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol. Biol. Cell. 22: 2373-2383. [Text]
  81. Wang, S., Wen, R., Shi, X., Lambrecht, A., Wang. H. and Xiao, W. (2011) RAD5A and REV3 constitute two alternative mechanisms of DNA damage tolerance in Arabidopsis. DNA Repair 10: 620-628. [Text]
  82. Zhang, W., Qin, Z., Zhang, X. and Xiao, W. (2011) Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett. 585: 2786-2794. [Text]
  83. Xu, X., Eilers, M., Xiao, W., Du, L., Burkle, A., Wiesmuller, L. and Wang, Z. (2011) The first Sino-German Symposium on DNA Repair & Human Diseases. DNA Repair 10: 349-354. [Text]
  84. Zhang, M., Zhang, C., Li, J., Hanna, M., Zhang, X., Dai, H. and Xiao, W. (2011) Inactivation of YAP1 enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system to a broad range of DNA-damaging agents. Toxicol. Sci. 120: 310-321. [Text]
  85. Zhang, W., Zhang, X., Liu, H., Chen, J., Ren Y., Huang, D., Zou, X. and Xiao, W. (2011) Cdk1 is required for the self-renewal of mouse embryonic stem cells. J. Cell Bioch. 112: 942-948. (Cover and featured article) [Text]
  86. Markin, C.J., Saltibus, L., Kean, M., McKay, R., Xiao, W. and Spyracopoulos, L. (2010) Catalytic proficiency of ubiquitin conjugation enzymes: balancing pKa suppression, entropy, and electrostatics. J. Am. Chem. Soc. 132: 17775-17786. [Text]
  87. Li, J., Wen, R., Andersen, P., Liang, Y., Li, Q., Xiao, W. and Cui, Z. (2010) Zebrafish Ubc13 is required for Lys63-linked polyubiquitination and DNA damage tolerance. Mol. Cell. Biochem. 343: 173-182. [Text]
  88. Power, C., Marfleet, T.W., Qualtiere, L., Xiao, W. and Bretscher, P. (2010) Development of Th1 imprints to rBCG expressing a foreign protein: implications for vaccination against HIV-1 and diverse influenza strains. J. Biomed. Biotechnol. 2010: 591348. [Text]
  89. Pastushok, L., Hanna, M. and Xiao, W. (2010) Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities. Nucleic Acids Res. 38: 5047-5058. [Text]
  90. Markin, C.J., Xiao, W. and Spyracopoulos, L. (2010) Mechanism for recognition of polyubiquitin chains: balancing affinity through interplay between multivalent binding and dynamics.  J. Am. Chem. Soc. 132: 11247-11258. [Text]
  91. Zhang, M., Hanna, M., Li, J., Butcher, S., Dai, H. and Xiao, W. (2010) Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes. Toxicol. Sci. 113: 401-411. [Text]
  92. Ball, L.G., Zhang, K., Cobb, J.A., Boone, C. and Xiao, W. (2009) The yeast Shu complex couples error-free PRR to homologous recombination. Mol. Microbiol. 73: 89-102. [Text]
  93. Ball, L. and Xiao, W. (2009) Ataxia telangiectasia and its overlap with Nijmegen breakage syndrome and Ataxia-like disorders. In: Ahmad, S. (ed.) Molecular Mechanisms of Ataxia Telangiectasia. Chapter 10, pp.91-100. Landes Biosciences Publication, Texas. [Text]
  94. Pelzer, L., Pastushok, L., Moraes, T., Glover, J.N.M., Ellison, M.J., Ziola, B. and Xiao, W. (2009) Biological significance of structural differences between two highly conserved Ubc variants. Biochem. Biophy. Res. Comm. 378: 563-568. [Text]
  95. Fu, Y., Pastushok, L. and Xiao, W. (2008) DNA damage-induced gene expression in Saccharomyces cerevisiae. FEMS Microbol. Rev. 32: 908-926. [Text]
  96. Huen, M.S.Y., Yuan, J., Yamamoto, M., Akira, S., Ashley, C., Xiao, W. and Chen, J. (2008) Noncanonical E2 variant-independent function of UBC13 in promoting checkpoint protein assembly. Mol. Cell. Biol. 19: 6104-6112. [Text]
  97. Anderson, H.J., Vonarx, E.J., Pastushok, L., Nakagawa, M., Katafuchi, A., Gruz, P., Di Rubbo, A., Grice, D.M., Osmond, M.J., Sakamoto, A., Nohmi, T., Xiao, W. and Kunz, B.A. (2008) Arabidopsis thaliana Y-family DNA polymerase η catalyses translesion synthesis and interacts functionally with PCNA2. Plant J. 55: 895-908. [Text]
  98. Fu, Y., Zhu, Y. Zhang, K., Yeung, M., Durocher, D. and Xiao, W. (2008) Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133: 601-611. [Text]
  99. Zhang, M., Liang, Y., Zhang, X., Xu, Y., Dai, H. and Xiao, W. (2008) Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol. Sci. 103: 68-76. [Text]
  100. Rostek, C., Turner, E., Robbins, M., Rightnar, S., Xiao, W., Obenaus, A. and Harkness, T.A.A. (2008) Involvement of homologous recombination repair after proton-induced DNA damage. Mutagenesis 23: 119-129. [Text]
  101. Brun, J., Chiu, R.K., Lockhart, K., Xiao, W., Wouters, B.G. and Gray, D.A. (2008) hMMS2 serves a redundant role in human PCNA polyubiquitination. BMC Mol. Biol. 9: 24. [Text]
  102. Wen, R., Torres-Acosta, J.A., Pastushok, L., Lai, X., Pelzer, L., Wang, H. and Xiao, W. (2008) Arabidopsis UEV1D promotes lysine-63-linked polyubiquitination and is involved in DNA damage response. Plant Cell 20: 213-227. [Text]
  103. Andersen, P.L., Xu, F. and Xiao, W. (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18: 162-173. [Text]
  104. Dworaczek, H. and Xiao, W. (2007) Xeroderma pigmentosum: a glimpse into nucleotide excision repair, genetic instability, and cancer. Crit. Rev. Oncogen. 13: 159-177. (Cover and featured article) [Text]
  105. Kunz, B.A. and Xiao, W. (2007) DNA damage tolerance in plants via translesion synthesis. Genes, Genomes, Genomics 1: 89-99. [Text]
  106. Pastushok, L., Spyracopoulos, L. and Xiao, W. (2007) Two Mms2 residues cooperatively interact with ubiquitin and are critical for Lys63 polyubiquitination in vitro and in vivo. FEBS Lett. 581: 5343-5348. [Text]
  107. Hanna, M., Ball, L.G., Tong, A.H., Boone, C. and Xiao, W. (2007) Pol32 is required for Polζ-dependent translesion synthesis and prevents double-strand breaks at the replication fork. Mutat. Res. 625: 164-176. [Text]
  108. Mercier, P., Lewis, M.J., Hau, D.D., Saltibus, L.F., Xiao, W. and Spyracopoulos, L. (2007) Structure, interactions, and dynamics of the RING domain from human TRAF6. Protein Sci. 16: 602-614. [Text]
  109. Barbour, L., Ball, L.G., Zhang, K. and Xiao, W. (2006) DNA damage checkpoints are involved in postreplication repair. Genetics 174: 1789-1800. [Text]
  110. Syed, N.A., Andersen, P.L., Warrington, R.C. and Xiao, W. (2006) Uev1A, a ubiquitin conjugating enzyme variant, inhibits stress-induced apoptosis through NF-κB activation. Apoptosis 11: 2147-2157. [Text]
  111. Hau, D.D., Lewis, M.J., Saltibus, L.F., Pastushok, L., Xiao, W. and Spyracopoulos, L. (2006) Structure and interactions of the ubiquitin-conjugating enzyme variant human Uev1a: implications for enzymatic synthesis of polyubiquitin chains. Biochemistry 45: 9866-9877. [Text]
  112. Wen, R., Newton, L., Li, G., Wang, H. and Xiao, W. (2006) Arabidopsis thaliana UBC13: implication of error-free DNA damage tolerance and Lys63-linked polyubiquitylation in plants. Plant Mol. Biol. 61: 241-253. [Text]
  113. Fu, Y. and Xiao, W. (2006) Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiaeribonucleotide reductase genes. Nucleic Acids Res. 34: 1876-1883. [Text]
  114. Lewis, M.J., Saltibus, L.F., Hau, D.D., Xiao, W. and Spyracopoulos, L. (2006) Structural basis for non-covalent interaction between ubiquitin and the ubiquitin conjugating enzyme variant human Mms2. J. Biomol. NMR 34: 89-100. (Cover article) [Text]
  115. Barbour, L. and Xiao, W. (2006) Mating type regulation of cellular tolerance to DNA damage is specific to the DNA postreplication repair and mutagenesis pathway. Mol. Microbiol. 59: 637-650. [Text]
  116. Andersen, P., Zhou, H., Pastushok, L., Moraes, T., McKenna, S., Ziola, B., Ellison, M.J., Dixit, V.M. and Xiao, W. (2005) Distinct regulation of Ubc13 functions by two Uev proteins Mms2 and Uev1A. J. Cell Biol. 170: 745-755. [Text]
  117. Ball, L.G. and Xiao, W. (2005) Molecular basis of ataxia telangiestasia and related diseases. Acta Pharmacologica Sinica 26: 897-907. [Text]
  118. Pastushok, L., Moraes, T.F., Ellison, M.J. and Xiao, W. (2005) A single Mms2 "key" residue insertion into a Ubc13 pocket determines the interface specificity of a human Lys63 ubiquitin conjugation complex. J. Biol. Chem. 280: 17891-17900. [Text]
  119. Pastushok, L. and Xiao, W. (2004) DNA Postreplication repair modulated by ubiquitination and sumoylation. Adv. Protein Chem. 69: 279-306. [Text]
  120. Zhu, Y and Xiao, W. (2004) Pdr3 is required for DNA damage induction of MAG1 and DDI1 via a bi-directional promoter element. Nucleic Acids Res. 32: 5066-5075. [Text]
  121. Wooff, J., Pastushok, L., Hanna, M., Yu, F. and Xiao, W. (2004) The TRAF6 RING finger domain mediates physical interaction with Ubc13. FEBS Lett. 566: 229-233. [Text]
  122. Zhou, H., Wertz, I., O'Rourke, K., Ultsch, M., Seshagiri, S., Eby, M., Xiao, W. and Dixit, V.M. (2004) Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427: 167-171. [Text]
  123. Hanna, M.D., Meadows, K.L., Chow, B.L., Jinks-Robertson, S., Doetsch, P.W. and Xiao, W. (2004) Involvement of two endonuclease III homologs in the base excision repair for the processing of DNA alkylation damage in Saccharomyces cerevisiae. DNA Repair 3: 51-59 [Text]
  124. Barbour, L. and Xiao, W. (2003) Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat. Res. 532: 137-155. [Text]
  125. Fu, Y. and Xiao, W. (2003) Functional domains required for the Saccharomyces cerevisiae Mus81-Mms4 endonuclease complex formation and nuclear localization. DNA Repair 2: 1435-1447 [Text]
  126. Bawa, S. and Xiao, W. (2003) A single amino acid substitution in Msh5 results in DNA alkylation tolerance. Gene 315: 177-182. [Text]
  127. Jia, X. and Xiao, W. (2003) Compromised DNA repair enhances sensitivity of the RNR3-lacZ genotoxic testing system. Toxicol. Sci. 75: 82-88. [Text]
  128. McKenna, S., Hu, J., Moraes, T., Xiao, W., Ellison, M.J. and Spyracopoulos, L. (2003) Energetics and specificity of interactions within Ub.UEV.Ubc13 human ubiquitin conjugation complexes. Biochemistry 42: 7922-7930. [Text]
  129. McKenna, S., Moraes, T., Pastushok, L., Ptak, C., Xiao, W., Spyracopoulos, L. and Ellison, M.J. (2003) An NMR based model of the ubiquitin-bound human ubiquitin conjugation complex Mms2/Ubc13: The structural basis for lysine 63 chain catalysis. J. Biol. Chem. 278: 13151-13158. [Text]
  130. Brown, M., Zhu, Y., Hemmingsen, S, and Xiao, W. (2002) Structural and functional conservation of error-free postreplication repair in Schizosaccharomyces pombe. DNA Repair 1: 869-880. [Text]
  131. Jia, X., Zhu, Y. and Xiao, W. (2002) A stable and sensitive genotoxic testing system based on DNA damage induced gene expression in Saccharomyces cerevisiae. Mutat. Res. 519: 83-92. [Text]
  132. Li, Z., Xiao, W., McCormick, J.J. and Maher, V.M. (2002) Identification of a protein essential for a major pathway used by human cells to avoid UV-induced DNA damage. Proc. Natl. Acad. Sci. USA 99: 4459-4464. [Text]
  133. Ashley, C., Pastushok, L., McKenna, S., Ellison, M.J. and Xiao, W. (2002) Roles of mouse UBC13 in DNA postreplication repair and Lys63-linked ubiquitination. Gene 285: 183-191. [Text]
  134. Broomfield, S. and Xiao, W. (2002) Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free postreplication repair but not for damage induced mutagenesis. Nucleic Acids Res. 30: 732-739. [Text]
  135. Hryciw, T., Tang, M., Fontanie, T. and Xiao, W. (2002) MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol. Genet. Genomics 266: 848-857. [Text]
  136. Villalobo, E., Morin, L., Moch, C., Lescasse, R., Hanna, M., Xiao, W. and Baroin-Tourancheau, A. (2002) A homolog of CROC-1 in a ciliated protist (Sterkiella histriomuscorum) testifies to the ancient origin of the ubiquitin-conjugating enzyme variant family. Mol. Biol. Evol. 19: 39-48. [Text]
  137. Xiao, W., Chow, B.L., Hanna, M. and Doetsch, P.W. (2001) Deletion of the MAG1 glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Mutat. Res. 487: 137-147. [Text]
  138. McKenna, S., Spyracopoulos, L., Moraes, T., Pastushok, L., Ptak, C., Xiao, W. and Ellison, M.J. (2001) Non-covalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated poly-ubiquitination. J. Biol. Chem. 276: 40120-40126. [Text]
  139. Zhu, Y. and Xiao, W. (2001) Two alternative cell cycle checkpoint pathways differentially control DNA damage induction of the yeast MAG1 and DDI1 expression. Mol. Genet. Genomics 266: 436-444. [Text]
  140. Moraes, T.F., Edwards, R.A., McKenna, S., Pastushok, L., Xiao, W., Glover, J.N.M. and Ellison, M.J. (2001) Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13. Nat. Struct. Biol. 8: 669-673.  (Cover article) [Text]
  141. Broomfield, S., Hryciw, T. and Xiao, W. (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486: 167-184. [Text]
  142. Dai, H., Zhao, R., Haug, B., Hemmingsen, S.M. and Xiao, W. (2001) Isolation by phage display and characterization of a single-chain antibody specific for O6-methyldeoxyguanosine. Chinese Sci. Bulletin 46: 1024-1029. [Text]
  143. Franko, J., Ashley, C. and Xiao, W. (2001) Molecular cloning and functional characterization of two murine cDNAs encoding Ubc-like proteins involved in DNA repair and mutagenesis. Biochem. Biophys. Acta. 1519: 70-77. [Text]
  144. Barbour, L., Zhu, Y. and Xiao, W. (2000) Improving synthetic lethal screens by regulating the yeast centromere sequence. Genome 43: 910-917. [Text]
  145. Xiao, W., Chow, B.L., Broomfield, S. and Hanna, M. (2000) The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155: 1633-1641. [Text]
  146. Brusky, J., Zhu, Y. and Xiao, W. (2000) UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr. Genet. 37: 168-174. [Text]
  147. Chamankhah, M., Fontanie, T. and Xiao, W. (2000) The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155: 569-576. [Text]
  148. Xiao, W., Fontanie, T., Bawa, S. and Kohalmi, L. (1999) REV3 is required for spontaneous but not methylation damage-induced mutagenesis of Saccharomyces cerevisiae cells lacking O6-methylguanine DNA methyltransferase. Mutat Res. 431: 155-165. [Text]
  149. Bawa S. and Xiao, W. (1999) Methionine reduces spontaneous and alkylation-induced mutagenesis in Saccharomyces cerevisiae cells deficient in O6-methylguanine-DNA methyltransferase. Mutat Res. 430: 99-107. [Text]
  150. Xiao, W., Chow, B.L., Fontanie, T., Ma, L., Bacchetti, S., Hryciw, T. and Broomfield, S. (1999) Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae. Mutat. Res. 435: 1-11. [Text]
  151. Chamankhah, M. and Xiao, W. (1999) Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 27: 2072-2079. [Text]
  152. Chamankhah, M., Wei, Y.-F. and Xiao, W. (1998) Isolation of hMRE11B:failure to complement yeast mre11 defects due to species-specific protein interactions. Gene 225: 107-116. [Text]
  153. Chamankhah, M. and Xiao, W. (1998) Molecular cloning and genetic characterization of the Saccharomyces cerevisiae NGS1/MRE11. Curr. Genet. 34: 368-374. [Text]
  154. Zhu, Y. and Xiao, W. (1998) Differential regulation of two closely clustered yeast genes, MAG1 and DDI1, by cell-cycle checkpoints. Nucleic Acids Res. 26: 5402-5408. [Text]
  155. Kunz, B.A., Henson, E.S., Karthikeyan, R., Kuschak, T., McQueen, S.A., Scott, C.A. and Xiao, W. (1998) Defects in base excisioin repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine. Envir. Mol. Mutag. 32: 173-178. [Text]
  156. Ma, L., Broomfield, S., Lavery, C., Lin, S., Xiao, W. and Bacchetti, S. (1998) Up-regulation of CIR1/CROC-1 expression upon cell immortalization and in tumour-derived human cell lines. Oncogene 17: 1321-1326. [Text]
  157. Xiao, W., Lin, S.L., Broomfield, S., Chow, B.L. and Wei, Y.F. (1998) The products of the yeast MMS2 and two human homologs (hMMS2 and CROC-1) define a structurally and functionally conserved Ubc-like protein family. Nucleic Acids Res. 26: 3908-3914 [Text]
  158. Xiao, W., Lechler, T., Chow, B.L., Fontanie, T., Agustus, M., Carter, K.C. and Wei, Y.-F. (1998) Identification, chromosomal mapping and tissue-specific espression of hREV3 encoding a putative human DNA polymerase ζ. Carcinogenesis 19: 945-949. [Text]
  159. Xiao, W., Chow, B.L. and Milo, C.N. (1998) Mms4, a putative transcriptional (co)activator, protects Saccharomyces cerevisiae cells from endogenous and environmental DNA damage. Mol. Gen. Genet. 257: 614-623. [Text]
  160. Xiao, W. and Chow, B.L. (1998) Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage. Curr. Genet. 33: 92-99. [Text]
  161. Broomfield, S., Chow, B.L. and Xiao, W. (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. USA 95: 5678-2683. [Text]
  162. Bawa, S. and Xiao, W. (1997) A mutation in the MSH5 gene results in alkylation tolerance. Cancer Res. 57: 2715-2720. [Text]
  163. Liu, Y., Dai, H. and Xiao, W. (1997) UASMAG1, a yeast cis-acting element that regulates the expression of MAG1, is located within the protein coding region of DDI1. Mol. Gen. Genet. 255: 533-542. [Text]
  164. Liu, Y. and Xiao, W. (1997) Bidirectional regulation of two DNA-damage-inducible genes, MAG1 and DDI1, from Saccharomyces cerevisiae. Mol. Microbiol. 23: 777-789. [Text]
  165. Xiao, W., Chow, B.L. and Rathgeber, L. (1996) The repair of DNA methylation damage in Saccharomyces cerevisiae. Curr. Genet. 30: 461-468. [Text]
  166. Xiao, W. and Rank, G.H. (1996) The 2μm plasmid of laboratory yeast strains is a type-1/type-2 hybrid. Yeast 12: 809-813. [Text]
  167. Xiao, W., Nowak, M., Laferte, S. and Fontanie, T. (1996) Mutagenicity and toxicity of the DNA alkylation carcinogens 1,2-dimethylhydrazine and azoxymethane in Escherichia coli and Salmonella typhimurium. Mutagenesis 11: 241-245. [Text]
  168. Xiao, W., Rathgeber, L., Fontanie, T. and Bawa, S. (1995) DNA mismatch repair mutants do not increase N-methyl-N'-nitro-N-nitrosoguanidine tolerance in O6-methylguanine DNA methyltransferase-deficient yeast cells. Carcinogenesis 16: 1933-1939. [Text]
  169. Xiao, W. and Fontanie, T. (1995) Expression of the human MGMT O6-methylguanine DNA methyltransferase gene in a yeast alkylation-sensitive mutant: its effects on both exogenous and endogenous DNA alkylation damage. Mutat. Res. 336: 133-142. [Text]
  170. Xiao, W., Fontanie, T. and Tang, M. (1994) UBP5 encodes a putative yeast ubiquitin-specific protease that is related to the human Tre-2 oncogene product. Yeast 10: 1497-1502. [Text]
  171. Rank, G.H., Xiao, W. and Pelcher, L.E. (1994) Transpogenes: the transposition-like integration of short sequence DNA into the yeast plasmid creates the STB locus and plasmid-size polymorphism. Gene 147: 55-61. [Text]
  172. Xiao, W., Penugonde, V. and Rank, G.H. (1994) The MAG1-3-methyladenine DNA glycosylase gene is closely linked to the SPT15 TATA-binding TFIID gene on chromosome V-R in Saccharomyces cerevisiae. Yeast 10: 687-691. [Text]
  173. Rank, G.H., Xiao, W. and Arndt, G.M. (1994) Evidence for Darwinian selection of the 2μm plasmid STB locus in Saccharomyces cerevisiae. Genome 37: 12-18. [Text]
  174. Xiao, W., Singh, K.K., Chen, B., Samson, L. (1993) A common element involved in transcriptional regulation of two DNA alkylation repair genes (MAG and MGT1) of Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 7213-7221. [Text]
  175. Xiao, W. and Samson, L. (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc. Natl. Acad. Sci. USA 90: 2117-2121. [Text]
  176. Xiao, W. and Rank, G.H. (1993) Polymorphism of 2μm plasmids in industrial strains of Saccharomyces cerevisiae. Appl. Microbiol. & Biotechnol. 39: 80-86. [Text]
  177. Xiao, W. and Samson, L. (1992) The Saccharomyces cerevisiae MGT1 DNA repair methyltransferase gene: its promoter and entire coding sequence, regulation and in vivo biological functions. Nucleic Acids Res. 20: 3599-3606. [Text]
  178. Xiao, W., Derfler, B., Chen, J. and Samson, L. (1991) Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene. EMBO J. 10: 2179-2186. [Text]
  179. Rank, G.H. and Xiao, W. (1991) Alteration of industrial food and beverage yeasts by recombinant DNA technology. Ann. New York Acad. Sci. 646: 155-171.
  180. Rank, G.H., Casey, G.P., Xiao, W. and Pringle, A.T. (1991) Polymorphism within the nuclear and 2μm genomes of Saccharomyces cerevisiae. Curr. Genet. 20: 189-194. [Text]
  181. Xiao, W., Pelcher, L.E. and Rank, G.H. (1991) Sequence diversity of yeast 2μm RAF gene and its coevolution with STB and REP1. Gene 101: 75-80. [Text]
  182. Xiao, W., Pelcher, L.E. and Rank, G.H. (1991) DNA sequence divergence and functional conservation at the STB locus of yeast 2μm circle variants. J. Bacteriol. 171: 1181-1186. []
  183. Xiao, W., Pelcher, L.E. and Rank, G.H. (1991) Evidence for cis- and trans-acting element coevolution of the 2μm circle genome in Saccharomyces cerevisiae. J. Mol. Evol. 32: 145-152. [Text]
  184. Xiao, W., and Rank, G.H. (1990) Curing industrial Saccharomyces yeasts of parasitic 2μm plasmid. J. Am. Soc. Brew. Chem. 48: 107-110.
  185. Xiao, W. and Rank, G.H. (1990) Branched chain amino acid regulation of the ILV2 locus in Saccharomyces cerevisiae. Genome 33: 596-603. [Text]
  186. Xiao, W. and Rank, G.H. (1990) Cloning of industrial Saccharomyces 2μm plasmid variants by in vivo site-specific recombination. Plasmid 23: 67-70. [Text]
  187. Xiao, W. and Rank, G.H. (1990) An improved method for yeast 2μm plasmid curing. Gene 88: 241-245. [Text]
  188. Xiao, W. and Rank, G.H. (1989) The construction of recombinant industrial yeasts free of bacterial sequences by direct gene replacement into a nonessential region of the genome. Gene 76: 99-107. [Text]
  189. Rank, G.H., Arndt, G. and Xiao, W. (1989) FLP-FRT mediated intra-chromosomal recombination on a tandemly duplicated YEp integrant at the ILV2 locus of chromosome XIII in S. cerevisiae. Curr Genet. 15: 107-112. [Text]
  190. Xiao, W. and Rank, G.H. (1988) The yeast ILV2 gene is under general amino acid control. Genome 30: 984-986. [Text]
  191. Rank, G.H., Casey, G. and Xiao, W. (1988) Gene transfer in industrial Saccharomyces yeasts. Food Biotechnol. 2: 1-41.
  192. Xiao, W. (1988) Stability of cloned Brassica napus chloroplast DNA fragments in the cyanobacterium Anacystis nidulans R2. Mol. Gen. Genet. 214: 307-312.
  193. Casey, G.P., Xiao, W. and Rank, G.H. (1988) Construction of α-galactosidase-positive strains of industrial baker's (Saccharomyces cerevisiae) yeasts. J. Am. Soc. Brew. Chem. 46: 67-71.
  194. Casey, G.P., Xiao, W. and Rank, G.H. (1988) Application of pulsed field chromosome electrophoresis in the study of chromosome XIII and the electrophoretic karyotype of industrial strains of Saccharomyces yeasts. J. Inst. Brew. 94: 239-243.
  195. Rank, G.H., Xiao, W., Kolenovsky, A. and Arndt, G. (1988) FLP recombinase induction of the breakage-fusion-bridge cycle and gene conversion in Saccharomyces cerevisiae. Curr. Genet. 13: 273-281.
  196. Casey, G.P., Xiao, W. and Rank, G.H. (1988) A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMR1 encoded resistance to the herbicide sulfometuron methyl. J. Inst. Brew. 94: 93-97.
  197. Xiao, W., Saxena, P.K., King, J. and Rank, G.H. (1987) A transient duplication of the acetolactate synthase gene in a cell culture of Datura innoxia. Theor. Appl. Genet. 74: 417-422.
  198. Xiao, W., Reith, M., Erickson, L.R., Williams, J.P. and Straus, N.A. (1986) Mapping the chloroplast genome of triazine resistant canola. Theor. Appl. Genet. 71: 716-723.