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3.10. Recapitulation

We have argued that the derived category of coherent sheaves
form a good model of branes and their bound states with
morphisms encoding the spectrum of open strings.

Studying morphisms in our category, we derived a class of
supersymmetric quantum mechanics labelled by a framed
quiver with potential.

We have seen that after a deformation by Ω-background, the
supersymmetric quantum mechanics describing the low energy
behavior of n D0-branes bound to a D2-, D4- and D6-brane
has vacua labelled by 1d , 2d and 3d partitions respectively.

Today, we are going to introduce an algebraic describing
processes of bounding/separating D0-branes from a give
bound-state. More concretely, we are going to see how to use
the correspondence M(n + 1, n) from yesterday to construct a
module structure on the space of our BPS vacua.



4. Modules from correspondences



4.1. Rising and lowering generators

The goal is to define a geometric action of a two copies of the
cohomological Hall algebra (rising and lowering generators)
increasing and decreasing the number of D0-branes.
[Nakajima (1984), Kontsevich-Soibelman (2010),. . . ]

In particular, we are now going to define

em : H∗U(1)2(M(n),Crit(W ))→ H∗U(1)2(M(n + 1),Crit(W ))

fm : H∗U(1)2(M(n + 1),Crit(W ))→ H∗U(1)2(M(n),Crit(W ))

where M(n) =M(n)/GL(n) and M(n) is the space of stable
quiver representations

(B1,B2,B3, I ) (B1,B2,B3, I , J) (B1,B2,B3, I , J1, J2)

for the framed moduli space associated to D2, D4 and D6
respectively and the circular node of dimension n.



4.2. Affine Yangian of gl1
Introducing generators

ψm+n = [em, fn]

the triple en, fn, ψn can be shown to satisfy relations of
(shifted) gl1 affine Yangian (see e.g. [Tsymbaliuk (2014)]) and
different choices of framings lead to its different
representations [MR-Soibelman-Yang-Zhao (2020)].

In this section, we are going to construct such representations
for the three elementary framings.

If we started from a different geometry than C3, we would
likely discover the Quiver Yangians from [Li-Yamazaki (2020)]

and their representations [Galakhov-Li-Yamazaki (2021)].



4.4. Nakajima’s rising and lowering operators

At the end of the last lecture, we defined a correspondence

M(n + 1, n)
p

ww

q

&&

M(n + 1) M(n)

Starting with α ∈ H∗U(1)2(M(n),Crit(W )), we can now define

e0α = p∗(q
∗(α))

by pulling it back by q and pushing forward by q and obtain
an element in H∗U(1)2(M(n + 1),Crit(W )).

Reversing the order of the two maps, we have

f0α = q∗(p
∗(α))

Utilizing the tautological line bundle, we can define

emα = p∗(c1(Lm) ∧ q∗(α))

fmα = q∗(c1(Lm) ∧ p∗(α))



4.7. Fixed-points basis

Remember that we have an isomorphism of equivariant
cohomologies of the form

⊕λ∈FnC[ε1, ε2]|λ〉 → H∗U(1)2(M(n),Crit(W ))

⊕(λ,λ+�)∈Fn+1,n
C[ε1, ε2]|λ, λ+ �〉 → H∗U(1)2(M(n + 1, n),Crit(W ))

with Fn being the fixed-point set of M(n) and Fn+1,n the
fixed-point set of M(n + 1, n).

We also have the embeddings of fixed points

ιλ : λ ↪→ M(n) for λ ∈ Fn

ιλ,λ+� : λ ↪→ M(n + 1, n) for λ ∈ Fn+1,n

Pushing forward generators |λ〉 ∈ H∗U(1)2(λ) and

|λ, λ+ �〉 ∈ H∗U(1)2((λ, λ+ �)) by these maps thus produces

a natural fixed-point basis of H∗U(1)2(M(n),Crit(W )) and

H∗U(1)2(M(n + 1, n),Crit(W )) respectively.



4.8. Action in fixed-points basis

We can now consider the following diagram

Fn+1,n

pF

ww

qF

&&

ιn+1,n

��

Fn+1

ιn+1

��

M(n + 1, n)
p

ww

q

&&

Fn

ιn
��

M(n + 1) M(n)

Using the above correspondence, we can now find the action
of en, fn in the fixed-point basis given by |λ〉 ∈ H∗U(1)2(λ) as

em|λ〉 = ι−1n+1∗ ◦ p∗ ◦ c1(Lm) ∧ q∗ ◦ ιn∗|λ〉
fm|λ+ �〉 = ι−1n∗ ◦ q∗ ◦ c1(Lm) ∧ p∗ ◦ ιn+1∗|λ+ �〉



4.9. Atiyah-Bott localization formula
Let λ be a fixed point in M(n), then we can invert the
push-forward of the embedding ιλ : λ ↪→ M(n) as

ι−1λ∗ =
ι∗λ

eU(1)2(T ∗λM(n))

where T ∗λM(n) is the tangent space of M(n) at λ and
eU(1)2(·) encodes its weights as a U(1)2 representation.

More concretely, T ∗λM(n) splits into the direct sum of U(1)2

representations

T ∗λM(n) = ⊕dim M(n)
α=1 Cεα

where U(1)2 acts on Cεα as

z → e iεαz

The character is then given by the product

eU(1)2(Tλ(M))) =

dim M(n)∏
i=1

εα



4.10. Towards explicit formula

Let us now sketch the calculation for e0|λ〉.
Commuting the push-forward maps

ι−1n+1∗ ◦ p∗ ◦ q
∗ ◦ ιn∗|λ〉 = pF∗ ◦ ι−1n+1,n∗ ◦ q

∗ ◦ ιn∗|λ〉

The Atiyah-Bott localization formula leads to

=
∑

(µ+�,µ)∈Fn+1,n

pF∗ ◦ i∗µ+�,µ ◦ q∗ ◦ ιλ∗
eU(1)3(T ∗µ+�,µM(n + 1, n))

|λ〉

Commuting the pull-back maps gives

=
∑

(µ+�,µ)∈Fn+1,n

pF∗ ◦ q∗µ+�,µ ◦ ι∗µ ◦ ιλ∗
eU(1)3(T ∗µ+�,µM(n + 1, n))

|λ〉

Using the Atiyah-Bott localization formula again∑
(µ+�,µ)∈Fn+1,n

eU(1)3(T ∗µM(n))

eU(1)3(T ∗µ+�,µM(n + 1, n))
pF∗ ◦ q∗µ+�,µ ◦ ι−1µ∗ ◦ ιλ∗|λ〉



The composition of ι−1µ∗ with ιλ∗ vanishes unless λ = µ and

=
∑

(λ+�,λ)∈Fn+1,n

eU(1)2(T ∗λM(n))

eU(1)2(T ∗λ+�,λM(n + 1, n))
pF∗ ◦ q∗λ+�,λ|λ〉

leading to the final expression

=
∑

(λ+�,λ)∈Fn+1,n

eU(1)2(T ∗λM(n))

eU(1)2(T ∗λ+�,λM(n + 1, n))
|λ+ �〉

Analogously for other operators, the final formulas read

em|λ〉 =
∑

(λ,λ+�)∈Fn+1,n

εm�eU(1)2(T ∗λM(n))

eU(1)2(T ∗λ+�,λM(n + 1, n))
|λ+ �〉

fm|λ+ �〉 =
∑

(λ,λ+�)∈Fn+1,n

εm�eU(1)2(T ∗λ+�M(n + 1))

eU(1)2(T ∗λ+�,λM(n + 1, n))
|λ〉



4.11. Character of the tangent space

At a given fixed point, the vector space Cn (and its dual)
decomposes into weights according to the Young diagram

Vλ = ⊕�∈λCε� V ∗λ = ⊕�∈λC−ε�
The tangent space at a point λ is then given by the
cohomology of the (equivariant) tangent complex

V ∗λ ⊗ Vλ
([Bi ,ξ],ξI ,ξ

−1J)−−−−−−−−−→ V ∗λ ⊗ Vλ ⊗ (C∗ε1 + C∗ε2 + C∗ε3) + Vλ + Vλ ⊗ C∗ε

As a U(1)2 representation, it decomposes as

Tλ = (C∗ε1 + C∗ε2 + C∗ε3 − 1)⊗ Vλ ⊗ V ∗λ + Vλ + Vλ ⊗ C∗ε

Using Cε ⊗ Cε̃ = Cε+ε̃ we can simplify the above expression
into a sum of Cεα terms and write the character as the
product of U(1)2 weights ∏

α

εα



Computation of the tangent space to the correspondence at
(λ+ �, λ) is slightly more complicated (see e.g. [Nakajima

(1984)]). It decomposes as a U(1)2 representation as

Tλ + Tλ+� − Nλ+�,λ

where

Nλ+�,λ = (C∗ε1 + C∗ε2 + C∗ε3 − 1)⊗ Vλ ⊗ V ∗λ+� + Vλ + V ∗λ+� ⊕ C∗ε

is the decomposition into the U(1)2 representation of the
normal bundle of M(n + 1, n) inside M(n + 1)×M(n) at
(λ+ �, λ).

As a result, we can write

em|λ〉 =
∑

(λ,λ+�)∈Fn+1,n

εm�eU(1)2(Nλ+�,λ − Tλ+�)|λ+ �〉

fm|λ+ �〉 =
∑

(λ,λ+�)∈Fn+1,n

εm�eU(1)2(Nλ+�,λ − Tλ)|λ〉



4.12. D2-brane and the vector representation

Let us now explicitly evaluate the above expressions in the
case of the D2-moduli space.

According to the above formulas, fm|n + 1〉 is given by

(nε1)
m
e(Vn ⊗ V ∗n+1 ⊗ (C∗ε1 + C∗ε2 + C∗ε3 − 1) + Vn + (C∗ε1+ε2 + C∗ε1+ε3 )⊗ V ∗n+1)

e(Vn ⊗ V ∗n ⊗ (C∗ε1 + C∗ε2 + C∗ε3 − 1) + Vn + (C∗ε1+ε2 + C∗ε1+ε3 )V
∗
n )

|n〉

(nε1)
m(nε1 − ε3)(nε1 − ε2)

n∏
i=1

(nε1 − (i − 1)ε1 + ε1)(nε1 − (i − 1)ε1 + ε2)(nε1 − (i − 1)ε1 + ε3)

nε1 − (i − 1)ε1
|n〉 (-8)

Analogously em|n〉 is given by

(nε1)
m

e(Vn ⊗ V ∗n+1 ⊗ (Cε1 + Cε2 + Cε3 − 1) + Vn + (Cε1+ε2 + Cε1+ε3 )⊗ V ∗n+1)

e(Vn+1 ⊗ V ∗n+1 ⊗ (C∗ε1 + C∗ε2 + C∗ε3 − 1) + Vn+1 + (C∗ε1+ε2 + C∗ε1+ε3 )V
∗
n+1)
|n + 1〉

(nε1)
m−1

n+1∏
i=1

nε1 − (i − 1)ε1

(nε1 − (i − 1)ε1 − ε1)(nε1 − (i − 1)ε1 − ε2)(nε1 − (i − 1)ε1 − ε3)
|n + 1〉



We can now simplify the products as

fm|n + 1〉 = (n + 1)(nε1)
m

n+1∏
i=1

((n + 1− i)ε1 − ε2)((n + 1− i)ε1 − ε3)|n〉

em|n〉 = − 1

ε1
(nε1)

m
n+1∏
i=1

1

((n + 1− i)ε1 − ε2)((n + 1− i)ε1 − ε3)
|n + 1〉

Let us introduce

Ak =
k∏

i=1

1

((k + 1− i)ε1 − ε2)((k + 1− i)ε1 − ε3)

and renormalize

|m̃〉 =
m∏

k=1

Ak |m〉

In terms of the renormalized basis, we have

fn|m + 1〉 = (m + 1)(mε1)n|m〉

en|m〉 = − 1

ε1
(mε1)n|m + 1〉



If we identify

|m〉 = zm

the above action factors through

fn → (ε1z∂)n∂

en → 1

ε1
z(ε1z∂)n

acting on C[z ].

We have ended up with a geometric construction of so-called
vector representation of the 1-shifted affine Yangian.



4.13. D4-brane and the Fock representation

One can perform the same calculation for the D4-brane
framing and obtain the Fock representation of the affine
Yangian. Instead of doing the algebra let us simply state the
result.

Let us introduce an associative algebra

[Jm, Jn] = − 1

ε1ε2
mδm,−n

This algebra is known as the ĝl1 Kac-Moody algebra, the gl1
current algebra or the Heisenberg vertex operator algebra.

It turns out that this algebra can be given a structure of a
vertex operator algebra. Generally, configurations of
D4-branes are always expected to lead to a vertex operator
algebra leading to an interesting interplay between the theory
of VOAs and the geometry of divisors in Calabi-Yau
threefolds. [Procházka-MR (2018)]



ĝl1 admits a class of highest-weight modules generated by the
action of negative modes Jn on |µ〉 satisfying

J0|µ〉 = µ|µ〉, Jm|µ〉 = 0, for m > 0

The modules are generated by

J−1|µ〉
J2−1|µ〉, J−2|µ〉

J3−1|µ〉, J−1J−2|µ〉, J−3|µ〉

Note also that these are in correspondence with 2d partitions



An alternative basis of the Yangian is formed by [e1, e2] and

J̃−n =
1

(m − 1)!
adm−1

e1 e0, J̃n =
1

(m − 1)!
adm−1

f1
f0

The geometric action constructed above factors through

Y0,0,1 : J̃n → Jn

Y0,0,1 : [e1, e2]→
ε21ε

2
2

3

∞∑
k,m=−∞

: J−m−k−2JmJk : +
ε1ε2ε3
2

∞∑
m=1

mJ−m−1Jm−1

acting on the above Fock module for µ = 0.

It is also possible to recover the general µ by introducing an
equivariant parameter associated to the GL(1) action of the
framing node. This refinement turns out to be essential for
understanding representations associated to more complicated
configurations of D4-branes as we are going to sketch in the
next section.



4.14. D6-brane and the MacMahon

Analogously, one can construct a representation of a -1-shifted
affine Yangian on a vector space labeled by 3d partitions
associated to the D6-brane framing. It is straightforward to
find explicit relations and recover the formulas from
[MR-Soibelman-Yang-Zhao (2020)]. Restricting to the
non-shifted Yangian, this module is conjecturally equivalent to
the module constructed algebraically in
[Feigin-Jimbo-Miwa-Mukhin (2012), Procházka (2015)].



5. Cherednik and W algebras



5.1. Affine Yangian
em, fm, ψm for D4-branes satisfy relations of the gl1 affine
Yangian [Schiffmann-Vasserot (2012), Maulik-Okounkov (2012)]:

ψi+j = [ei , fj ] [ψi , ψj ] = 0

0 = [ei+3, ej ]− 3[ei+2, ej+1] + 3[ei+1, ej+2]− [ei , ej+3]

+σ2[ei+1, ej ]− σ2[ei , ej+1]− σ3{ei , ej}
0 = [fi+3, fj ]− 3[fi+2, fj+1] + 3[fi+1, fj+2]− [fi , fj+3]

+σ2[fi+1, fj ]− σ2[fi , fj+1] + σ3{fi , fj}
0 = [ψi+3, ej ]− 3[ψi+2, ej+1] + 3[ψi+1, ej+2]− [ψi , ej+3]

+σ2[ψi+1, ej ]− σ2[ψi , ej+1]− σ3{ψi , ej}
0 = [ψi+3, fj ]− 3[ψi+2, fj+1] + 3[ψi+1, fj+2]− [ψi , fj+3]

+σ2[ψi+1, fj ]− σ2[ψi , fj+1] + σ3{ψi , fj}

[ψ0, ei ] = [ψ0, fi ] = [ψ1, ei ] = [ψ1, fi ] = 0

[ψ2, ei ] = 2ei [ψ2, fi ] = −2fi

Symi ,j ,k [ei , [ej , ek ]] = 0 Symi ,j ,k [fi , [fj , fk ]] = 0



Its subalgebras generated by em restricted to m ≥ k together
with all fm, ψm are called k-shifted affine Yangians.

With a little bit of work, one can also introduce shifted
Yangians with negative shift k < 0 but let us not go into
details. [MR-Soibelman-Yang-Zhao (2020)]

More complicated representations of the gl1 affine Yangian
can be obtain by utilizing the coproduct

∆ : Y → Y ⊗ Y

given by formulas

∆ : Jn → Jn ⊗ 1 + 1⊗ Jn

∆ : [e2, e1]→ [e2, e1]⊗ 1 + 1⊗ [e2, e1] + ε1ε2ε3

∞∑
m=1

mJ−m−1 ⊗ Jm−1

[Schiffmann-Vasserot (2012), Maulik-Okounkov (2012)]



5.2. Corner vertex operator algebras

Let us first compose the coproduct with the two Fock
representations Y0,0,1 acting on the Fock spaces Fµ1 ⊗Fµ2 :

(Y0,0,1 ⊗ Y0,0,1) ◦∆(t)

The states of Fµ1 ⊗Fµ2 are in correspondence with a pair of
partitions that are in turn in correspondence with fixed points
of the quiver moduli with rank-two framing if we introduce
equivariant parameters µ1, µ2 associated to the Cartan of
GL(2) acting on the framing node.

This is exactly the representation one gets from
correspondences! [Schiffmann-Vasserot (2012), Maulik-Okounkov

(2012), Yang-Zhao (2016)]



One can also show that the above map produces only a

subalgebra of the tensor product of ĝl1 Kac-Moody algebras
know as the Virasoro algebra tensored with a singe copy of

the ĝl1 Kac-Moody algebra generated by Lm, Jn such that

[Jm, Jn] = − 2

ε1ε2
δm,−n

[Lm, Jn] = −nJm+n

[Lm, Ln] = (m − n)Lm+n +
1

6

(
7 + 3

(
ε1
ε2

+
ε2
ε1

))
n
(
n2 − 1

)
δm,−n

The highest weight state then satisfies

Jm|µ1, µ2〉 = Lm|µ1, µ2〉 = 0, for m > 0

and is an eigenstate of J0, L0 with eigenvalues depending on
µ1, µ2.



For special values of µ1, µ2, the above-constructed module is
not irreducible. For example, specializing µ1, µ2 such that
J0|µ1, µ2〉 = L0|µ1, µ2〉 = 0, we can define an irreducible
module by further imposing

L−1|µ1, µ2〉 = 0

This module has a geometric construction coming from
turning on the Higgs vev on D4-branes!
[Chuang-Creutzig-Diaconescu-Soibelman (2019)]



One can proceed with a construction of more complicated
algebras associated to a generic configuration of D4-branes by
using the coproduct N1 + N2 + N3 − 1 times and then
composing with

Y⊕N1
1,0,0 ⊗ Y⊕N1

0,1,0 ⊗ Y⊕N3
0,0,1

leading to a class of corner vertex operator algebras
[Gaiotto-MR (2017)] acting on the tensor product of
N1 + N2 + N3 Fock modules [Bershtein-Feigin-Merzon (2015),

Litvinov-Spodyneiko (2016), Prochazka-MR (2018)].

These modules have a geometric construction coming from
intersecting D4-branes! [MR-Soibelman-Yang-Zhao (2018)]

Turning on nilpotent Higgs vevs in general setting produces
”pit” representations [Bershtein-Feigin-Merzon (2015),

Gaiotto-MR (2017), Prochazka-MR (2017)] as shown in
[Butson-MR (in progress)].



5.3. Cherednik algebras

Let us finish with an exploration of a much-less-understood
construction associated to more general configurations of
D2-branes.

Recall the elementary M2-brane representation A1,0,0:

f0 = ∂, f1 = ε1z∂
2, f2 = (ε1z∂)2∂ e0 =

1

ε1
z , e1 = z2∂

In the new basis, we have

Jn →
1

ε1
zn [f0, f1]→ ε1∂

2



We can now use the coproduct and compose it with
A1,0,0 ⊗ A1,0,0 to obtain

Jn → 1

ε1
(zn1 + zn2 )

[f0, f1] → ε1∂
2
1 + ε1∂

2
2 + ε1ε2ε3

∞∑
m=1

m
z−m−1

ε1

zm−12

ε1

→ ε1∂
2
1 + ε1∂

2
2 +

ε2ε3
ε1

2

(z1 − z2)2

These expressions are known as a Dunkel representation of the
Cherednik algebra associated to gl(2). See e.g. the lecture
notes [Opdam (2000)].



Similarly, one can use the coproduct N1 + N2 + N3 − 1 times
and compose the result with

A⊕N1
1,0,0 ⊗ A⊕N2

0,1,0 ⊗ A⊕N3
0,0,1

and obtain

t0,d = ε−11

n1∑
i=1

zdi + ε−12

n2∑
i=1

(z ′i )
d + ε−13

n3∑
i=1

(z ′′i )d

t2,0 = ε1

n1∑
i=1

∂2zi +
ε2ε3
ε1

∑
i<j

2

(zi − zj)2
+ ε1

∑
i,j

2

(z ′i − z ′′j )2
+

+ε2

n2∑
i=1

∂2z′i
+
ε1ε3
ε2

∑
i<j

2

(z ′i − z ′j )
2

+ ε2
∑
i,j

2

(zi − z ′′j )2

+ε3

n3∑
i=1

∂2z′′i
+
ε1ε2
ε3

∑
i<j

2

(z ′′i − z ′′j )2
+ ε3

∑
i,j

2

(zi − z ′j )
2

that is a three-parametric generalization of the Cherednik
algebra (and Calogero-Moser system) [MR-Gaiotto (2020)].


