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3.10. Recapitulation

m We have argued that the derived category of coherent sheaves
form a good model of branes and their bound states with
morphisms encoding the spectrum of open strings.

m Studying morphisms in our category, we derived a class of
supersymmetric quantum mechanics labelled by a framed
quiver with potential.

m We have seen that after a deformation by Q-background, the
supersymmetric quantum mechanics describing the low energy
behavior of n DO-branes bound to a D2-, D4- and D6-brane
has vacua labelled by 1d, 2d and 3d partitions respectively.

m Today, we are going to introduce an algebraic describing
processes of bounding/separating DO-branes from a give
bound-state. More concretely, we are going to see how to use
the correspondence M(n+ 1, n) from yesterday to construct a
module structure on the space of our BPS vacua.



4. Modules from correspondences



4.1. Rising and lowering generators

m The goal is to define a geometric action of a two copies of the
cohomological Hall algebra (rising and lowering generators)
increasing and decreasing the number of DO-branes.

[Nakajima (1984), Kontsevich-Soibelman (2010),...]

m In particular, we are now going to define

em : Hyyay2(M(n), Crit(W)) — Hpjy12(M(n + 1), Crit(W))
fm - Hyaye(M(n + 1), Crit(W)) — H{y12(M(n), Crit(W))

where M(n) = M(n)/GL(n) and M(n) is the space of stable
quiver representations

(BlaB2aB3aI) (Bl7B2>B37I7J) (81782>B37I7J17J2)

for the framed moduli space associated to D2, D4 and D6
respectively and the circular node of dimension n.



4.2. Affine Yangian of gl;

m Introducing generators

Vmin = [€m, fa]

the triple ep, f,, 1, can be shown to satisfy relations of
(shifted) gl; affine Yangian (see e.g. [Tsymbaliuk (2014)]) and
different choices of framings lead to its different
representations [MR-Soibelman-Yang-Zhao (2020)].

m In this section, we are going to construct such representations
for the three elementary framings.

m If we started from a different geometry than C3, we would

likely discover the Quiver Yangians from [Li-Yamazaki (2020)]
and their representations [Galakhov-Li-Yamazaki (2021)].



4.4. Nakajima’s rising and lowering operators

m At the end of the last lecture, we defined a correspondence

M(n+1) M(n)

m Starting with a € Hl*J(l)z(l\/l(n), Crit(W)), we can now define

e = p.(q"(a))
by pulling it back by g and pushing forward by g and obtain

an element in Hl*J(l)Q(I\/I(n + 1), Crit(W)).

m Reversing the order of the two maps, we have

foor = qu(p(e))

m Utilizing the tautological line bundle, we can define

ema = pu(a(L™) A q* (@)

—

fmee = qu(a(L™) A p*(a))



4.7. Fixed-points basis

m Remember that we have an isomorphism of equivariant
cohomologies of the fgrm

© H* (A)
acr,Cler, e2]|A) = Hyye(M(n), Crit(W))

@(AA—i—D)anH,nC[el?62]‘>‘7)‘+D) — HE(I)Q(M(H—Fl,n),Crit(W))

with F, being the fixed-point set of M(n) and Fp41,, the

fixed-point set of M(n + 1,n).

m We also have the embeddings of fixed points

tx A= M(n)for X € F,
a0 0 A= M(n+1,n)for A€ Fpi1n

m Pushing forward generators |\) € Hl*J(l)Q()‘) and

AN A+0) € Hz(l)Q(()\, A+ 0)) by these maps thus produces
a natural fixed-point basis of Hl*J(l)z(I\/l(n), Crit(W)) and
Hl*J(l)z(I\/l(n + 1, n), Crit(W)) respectively.



4.8. Action in fixed-points basis

m We can now consider the following diagram

%D)

nln
egm) e

m&

m Using the above correspondence, we can now find the action
of ep, fp in the fixed-point basis given by |\) € HU(l)Q()‘) as
em‘)‘> L;—i]:hc
fnl A + 00)

opxoct(L™)Ag*ounsN)
-1
- Ln*

0 v 0 (L") AP 0 tmsre A+ 0)




4.9. Atiyah-Bott localization formula

m Let A\ be a fixed point in M(n), then we can invert the
push-forward of the embedding ¢ : A < M(n) as
ol A
M Ceyyp(Ty M(n)
where TyM(n) is the tangent space of M(n) at A and
eur)2(+) encodes its weights as a U(1)? representation.

m More concretely, T;M(n) splits into the direct sum of U(1)?
representations

TiM(n) = £21 ",
where U(1)? acts on C., as
z - elfaz
m The character is then given by the product

JCn ) dim M(n)

euqay (TA(A4))) = [1 )



4.10. Towards explicit formula

m Let us now sketch the calculation for ep|A).

—_—

m Commuting the push-forward maps

&3
L;—i—l* opsoq-o Ln*|>\> =  PFx O og*o Ln*|>\>

The Atiyah-Bott localization formula leads to é

PFx @O q* o Lx

Commuting the pull-back maps gives

. Z PFx © q;+|] m @ > |)\>

U(1)3( 40, “M(n + 1, n))

(u+0,0)EFnt1,n

Using the Atiyah-Bott localization formula again

> euq:(7, M(n)) ol q A)
eo@p(Tia, M(n + 1,m)) P ° Gnbu ®

(M+D7M)EFH+1,"




m The composition of ¢

u*l with ¢

)\« vanishes unless A =y and

(n+1,n )‘>
__/ A >\+D N
leading to the final expression . {_ ;
= Z eU(1)2(T;f/\/I(n))
(AMON)€EF 11,0 fu@)? ( A+0, )\M(n—{— 1 n))

IA+0)
m Analogously for other operators, the final formulas read

e T*M
em|>\> _ @ U(1)2 )

A+ 0O)
(AA+D)EFn 1.0 (1)2( A0, /\M( n+1,n)
fnlA+0) = 3 6D‘E'U(l)2 A+D T
AAO)EFn 10 ey (ThioaM

+1J

[m]

=



4.11. Character of the tangent space

m At a given fixed point, the vector space C" (and its dual)
decomposes into weights according to the Young diagram
- G+t
6‘(

V) = @oexCey Vy = ®oeaC_q 6
él

m The tangent space at a point A is then given by the
cohomology of the (equivariant) tangent complex __—

k, 1T 1

P

D
I “—
X ® (CH +C% 4 )+ Va + VA& CF

m As a U(1)? representatio

Th=(CL,+C,+C, -1V Vi+W+WeC

m Using C. ® C; = C.¢ we can simplify the above expression
into a sum of C,, terms and write the character as the
product of U(1)? weights

e

«Q



m Computation of the tangent space to the correspondence at
(A + 0, A) is slightly more complicated (see e.g. [Nakajima
(1984)]). It decomposes as a U(1)? representation as

Ty + Thyo — Nagoa

@,/\ =(CL+CL+CL -1V Vig+ W+ Vina T

is the decomposition into the U(1)? representation of the
normal bundle of M(n+ 1, n) |n5|de M(n+1) x M(n) at
(A +0O,N).

m As a result, we can write

emlA) = fevay (Natox — Tharo)A +0)

flA+0) = Uu)z(@@”
[} = = =




4.12. D2-brane and the vector representation

m Let us now explicitly evaluate the above expressions in the
case of the D2-moduli space.
m Ac ord|

bove formulas, fp, |n+ 1) is given by ERed]

m Analogously ep|n) is given by
(nex)™

[m)
e(vn ®Vr +1 ® (Cél + (C62 + (Ce3

ot «;qﬂ—w&m;)-@-m

|n+1
n F— )E]_

1}(_(/1')6’1_— €1)(ner — (i — 1)e1 — e2)(nex

i~ Da _‘69|n+1)
=] F

D¢



m We can now simplify the pr.

fmln+1) = (n+1)(ne1) H((n +1—-i)ea—e)((n+1—1i)e —e)\n)

1
H ((n +1- I')El — 62)(([1 +1-— i)€1 — 63)

i=1

+1)

|
—_
>
M
A
~

1
J) enlm o

m Let us introduce
k

1

A= 1_11 (k+1—i)er — e)((k +1—i)er — e3)

and renormalize

) = T Axlm)
k=1

m In terms of the renormalized




m If we identify

h

Lo Iwe> = (620)°9 2™
= (mer) (€,x9)" 2"
=(mel)len) 27
jm) = 2"

the above action factors through

= (mtl) (&) In)
Vb S (az0)d

Len — az(elz({))"
acting on C|z].

m We have ended up with a geometric construction of so-called
vector representation of the 1-shifted affine Yangian.




4.13. D4-brane and the Fock representation

m One can perform the same calculation for the D4-brane
framing and obtain the Fock representation of the affine
Yangian. Instead of doing the algebra let us simply state the
result.

m Let us introduce an associative algebra

1
[Ums In] = ———mdpm —n

€1€2

m This algebra is known as the gAll Kac-Moody algebra, the gl;
current algebra or the Heisenberg vertex operator algebra.

m It turns out that this algebra can be given a structure of a
vertex operator algebra. Generally, configurations of
D4-branes are always expected to lead to a vertex operator
algebra leading to an interesting interplay between the theory
of VOAs and the geometry of divisors in Calabi-Yau
threefolds. [Prochdzka-MR (2018)]



| 3{1 admits a class of highest-weight modules generated by the
action of negative modes J, on |u) satisfying

Jol) = plp)s Iy =0, for m>0

m The modules are generated by

J-1|p)
Pilp),  Joalp)
Jil‘:u>7 J—lJ—2|M>7 J—3|M>

m Note also that these are in correspondence with 2d partitions

L]
d m




m An alternative basis of the Yangian is formed by [e;, €] and

. 1 - 1
Jn 7d’”10, Jn = ———5adp 11
Toee, 9, U 0. fe, ce )

[ The geometric action constructed above factors through

Yo,0,1 S A
=n
B — €162€3
€163
Yoo1 : [e, @] = —= 3 E S mek—2dmdk T+ > E mJ_m_1Jm1
— k,m=—o0 m=1

acting on the above Fock module for y = 0.

m It is also possible to recover the general y by introducing an
equivariant parameter associated to the GL(1) action of the
framing node. This refinement turns out to be essential for
understanding representations associated to more complicated
configurations of D4-branes as we are going to sketch in the
next section.



4.14. D6-brane and the MacMahon

m Analogously, one can construct a representation of a -1-shifted
affine Yangian on a vector space labeled by 3d partitions
associated to the D6-brane framing. It is straightforward to
find explicit relations and recover the formulas from
[MR-Soibelman-Yang-Zhao (2020)]. Restricting to the
non-shifted Yangian, this module is conjecturally equivalent to
the module constructed algebraically in
[Feigin-Jimbo-Miwa-Mukhin (2012), Prochazka (2015)].



5. Cherednik and )V algebras



5.1. Affine Yangian

W €, fm, ¥m for D4-branes satisfy relations of the gl; affine
Yangian [Schiffmann-Vasserot (2012), Maulik-Okounkov (2012)]:

vigj = leifil [ ¢]=0

0 = [ei+3, 6] — 3[eit2, ej11] + 3[eit1, €j12] — [e, €j43]
to2leiv1, ] — o2lei, 1] — o3{ei, ¢}

0 = [fiys, fi] = 3[firo, fia] + 3[fis1, fi2] — [fi fi13]
+oalfit1, ] — oalfi, 1] + o3{fi, fi}

0 = [Yiy3, e —3[Yiro, €r1] + 3[Wiy1, ej12] — [Vi, €j43]
+o2[viv1, €] — o2V, €11] — o3{¥i, &}

0 = [Wiys, ] = 3[Wiva, fia]l + 3[Yiv1, fival — [, f43]
+0o2[vit1, ] — o2[i, fiva] + o3{ti, i}

[V0, &i] = [to, fi] = [¢1, ] = [¢1,f]] =0
[V2, 6] =26i  [1h2, fi] = —2f;

Symi,j,k[eia e, ex]] =0 Symi,j,k[fiv [fi, fll =0



m Its subalgebras generated by e, restricted to m > k together
with all f,, 1, are called k-shifted affine Yangians.

m With a little bit of work, one can also introduce shifted
Yangians with negative shift k < 0 but let us not go into
details. [MR-Soibelman-Yang-Zhao (2020)]

m More complicated representations of the gl; affine Yangian
can be obtain by utilizing the coproduct

A:Y—=YRY
given by formulas

A =01 +1®J,

A [eea]l = eea]@l+10 [0, e]+ e Y M1 ®Jn

- m=1

[Schiffmann-Vasserot (2012), Maulik-Okounkov (2012)]



5.2. Corner vertex operator algebras

m Let us first compose the coproduct with the two Fock
representations Yp o1 acting on the Fock spaces F,,; ® F,:

(Y0,01® Yoo1)oA(t) CM) E 8}

m The states of 7, ® F,,, are in correspondence with a pair of
partitions that are in turn in correspondence with fixed points
of the quiver moduli with rank-two framing if we introduce
equivariant parameters 1, 12 associated to the Cartan of
GL(2) acting on the framing node.

m This is exactly the representation one gets from
correspondences! [Schiffmann-Vasserot (2012), Maulik-Okounkov
(2012), Yang-Zhao (2016)]



m One can also show that the above map produces only a

subalgebra of the tensor product of gl; Kac-Moody algebras
know as the Virasoro algebra tensored with a singe copy of

the 5[1 Kac-Moody algebra generated by L,, J, such that

2
[Jm7-/n] = _76m,—n
€1€2
[Lm7 Jn] = _nJm+n
1 €1 €2 2
L, L] = (m=—n)lpn+= (743 (—+—= n(n —1)5,,,7,,,
6 €2 €1

m The highest weight state then satisfies

Jm’/'L17/’L2> = Lm‘/l«lvli2> = 07 for m >0

and is an eigenstate of Jy, Lo with eigenvalues depending on
M1, 12-



m For special values of 1, o, the above-constructed module is
not irreducible. For example, specializing p1, o such that
Jo|pa, p2) = Lolpa, n2) = 0, we can define an irreducible
module by further imposing

L o1lp1,p2) =0

m This module has a geometric construction coming from
turning on the Higgs vev on D4-branes!
[Chuang-Creutzig-Diaconescu-Soibelman (2019)]

Fs04= (3]



m One can proceed with a construction of more complicated
algebras associated to a generic configuration of D4-branes by
using the coproduct N; + Ny 4+ N3 — 1 times and then

composing with r,

N BN
Yio6® You5 @ Yooi T
>
leading to a class of corner vertex operator algebras
[Gaiotto-MR (2017)] acting on the tensor product of
Ni 4+ N + N3 Fock modules [Bershtein-Feigin-Merzon (2015),
Litvinov-Spodyneiko (2016), Prochazka-MR (2018)].

m These modules have a geometric construction coming from
intersecting D4-branes! [MR-Soibelman-Yang-Zhao (2018)]

m Turning on nilpotent Higgs vevs in general setting produces
"pit" representations [Bershtein-Feigin-Merzon (2015),
Gaiotto-MR (2017), Prochazka-MR (2017)] as shown in /
[Butson-MR (in progress)].



5.3. Cherednik algebras

m Let us finish with an exploration of a much-less-understood
construction associated to more general configurations of
D2-branes.

m Recall the elementary M2-brane representation A; g o:
1
fo=0, f=ez0? hHh=(20)20 e=—z, e =29
€1
m In the new basis, we have

1
Jy — E—z” [fo, fi] — €10?
1 —_—

P ——



m We can now use the coproduct and compose it with

A10,0 ® A1 0,0 to obtain
e s v 5o,

Jn = —(H+27)
€

— 1
(o]
[fo, fl] — 618% + 61822 + €1€0€3 Z m
- T =1
€2€3

2
— 61(9% + 61822 + ?m

—m—1 _m—1
y4 22

€1

m These expressions are known as a Dunkel representation of the
Cherednik algebra associated to gl(2). See e.g. the lecture
notes [Opdam (2000)].



m Similarly, one can use the coproduct Ny + Ny + N3 — 1 times
and compose the result with

BNy B N> ®N3
A100®Ag10®Agoa

and obtain

———

m
2 €2€3 2
€1 ;34 + o Z 7(2,. . +€
i=

i<j

that is a three-parametric generalization of the Cherednik
algebra (and Calogero-Moser system) [MR-Gaiotto (2020)].

[} = =




