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2.16. Recapitulation

We have argued that the derived category of coherent sheaves
is a good model of branes and their bound states (see also
beautiful lectures of Tudor).
Morphisms in the brane category are in correspondence with 2
massless string modes and can be encoded in a quiver 7 '
diagram. & 4 8
The Ao structure capturing string interactions gives rise to"?

. -~ — —_—
the potential W=y BtL B, B¢ IB,L
The quiver diagram with potential in turn encodes a
supersymmetric quantum mechanics describing the low-energy
dynamics of the system of branes A — DO.
We are now going to look at the space of supersymmetric
vacua of such a quiver quantum mechanics.



3. Supersymmetric vacua



3.1. Moduli of vacua

m Forgetting the potential, the Q-backgroud, and the gauge
group, the moduli space of vacua of our quantum mechanics
would be computed in terms of de Rham cohomology of M.
[Witten 1982]

m If we turn on the gauge group, the moduli space of vacua
should be in correspondence with the de Rham cohomology of
the quotient M/GL(n) supplemented by the stability condition
that requires (at least in our situation) the whole space C"
associated to the circular node to be generated by an action
of B;on I's, i.e.

i 1
c" =Y ClBy, Bo, Bill; (=]
]

m For the purpose of our discussion, we label by M(n) the stable
locus of M with a given choice of the framing and with the
circular node of rank n. We then write M(n) = M(n)/GL(n).



3.2. Deformations of the differential

m If the potential W is non-trivial, th dl'rrerentlal rec.ewc: a
correction proportional to dWA. C? = W/\+ Z)’,,{

m The main problem is non-compactness o
can introduce a deformatlon of the theory assoaated to flavor
symmetries u "of the system (Q-background) that localizes
the theory to flxed points of this symmetry.

m Physically, this can be done by introducing a vector multiplet
associated to such a symmetry and turn on a non-zero
vacuum expectation value for its scalars. FARANETFR S

co. o TR. NL/T
m The differential gets modified by|> ", fiitx..|See e.gX' G%fz.(/g
[Ohta-Sasai 2014].
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m The resulting cohomology theory is known as de Rham model

of equivariant critical cohomology. See e.g. the appendix of =¥

[MR-Soibelman-Yang-Zhao 1982].



3.3. Example of equivariant cohomology

Just to gain some expecience, let me analyze a simple
example of the equivariant cohomology

We are going to compute the equivariant cohomology of C
with the U(1) action given by e'“z with (z,2) € C the
complex coordinates.

The differential is thus of the form

B OTCTED),

Multiplication by dz and dZ increases the degree of a form by

one. decreases it by one. If we assign e degree two,
the differential @ is of degree one.

When acting on a general form, the differential Q@ does not
square to zero, e.g.

sz = QRdz = €z

but restricting to U(1) invariant forms, Q is nilpotent and its
cohomology makes sense.



m At degree zero, we have

f(|z]*)
0|22

Qf(|z|?) = (Zdz + zdZ)

requiring f to be constant leading to one-dimensional
cohomology.

m A general form at degree one is of the form

f(|z|*)zdz + g(|z|*)zdz

The kernel condition requires vanishing of

<8f(|z|2)‘z’2 _ 3g(\2|2)12‘2 +f(|2]?) - g(’z\2)> dzdz

0|22 0|z
+e (F(|21%)]z” — g(|2?)|2)

that implies (|z|2) = g(|z|?) but all such elements can be
generated by the action of @ on degree-zero terms.



3.4. Borel localization theorem

m We could proceed with higher degrees and identify

Hyy(C) = Cle]
m Note that the cohomology has a single factor of C[e] and C
has a single fixed point. This is not a coincidence!

m Acording to the Borel localization theorem, if X is a manifold
with a U(1)™ action and a finite set of fixed points p; € F,
the embedding ¢ : F — X induces an isomorphism

(Hl*J(l)’”(X) )ﬁ Haym(F) @9 Clex,. .., €m]p;
jeF

m Turning on the potential W, the Borel localization theorem
holds as well, but we need to restrict to fixed points lying in
the critical locus of the potential. —

m The push-forward map ¢, then gives a fixed-point basis{b*p; )of
Hl*J(l)m(X) and we just need to find the fixed-point set.



3.6. D2-brane and 1d partitions

m Let us identify the fixed-point set for the D2-brane moduli.
[Galakhov-Li-Yamazaki (2021), MR-Soibelman-Yang-Zhao (in

progress)] A 9,
m Starting with the D2-brane superpotential LJ:%@D
A T

W="Tr [B]_[B2, 83] i’z
%3

we have the following equations of motion

[B1, B3] ZD‘K [Ba, B3] = P, [B1,B2] =0
Bil =0, By =0, 5Bi—JiBy—=0

m It is straightforward to show that these conditions together
with the stability condition require J; = J, = 0. This also
implies that B; mutually commuté ——

/ .
m We can then set By = B, = 0 since

B,C" = BiC|By, By, B3]l = C[By, B, B3] By =0



m We have thus identified the critical locus of W with a pair
(Bs, 1) subject to the stability condition

C" =C[B]!
modulo gauge transformation

g: (B 1)~ (gBig™ ', gl)

m To gain some experience with finding fixed points, let us start
with the analysis for n = 1. The value of / is non-vanishing
due to stability. It can be thus set to 1 by the gauge
transformation. The fixed-point condition then requires

1B = gBig7! = B;

leading to By = 0. The only fixed point can be thus identified
with the gauge orbit of (B1,/) = (0,1)



m Moving to n = 2, | being non-zero due to the stability
condition and the gauge transformation allows us to fix

1
- (o)
m The residual gauge transformation allows to fix
[0
a (0
By, = =
! <ﬁ 1?) 025‘ ( 0 x
m Let us now impose the fixed point condition

- 0 _ X O
e'1By = e (g V>=gB1g b= [‘K b/>

for g that now allows only rescaling of 3. This leads to
a = = 0. Since # # 0 due to the stability, we can fix

En=((1 ) ()




The condition of (Bj, /) being at a fixed point requires an
existence of g such that asti g4 = 1

. o
e/elBlnglg—l m=72" %: (O e;g‘

Let us choose a basis for C" that diagonalizes g. If ais a
basis vectors with eigenvalue e/(metme+me) e have
e

—
g&f gBlg\-ga L ei((n1+1)61+n2€2+n363)Bla

and Bja is another basis vector with eigenvalue
ei((m+1)er+mextnses)

Since | does not transfer under the U(1)3 action, we get
I =gl

and / is itself one of the eigenvectors.

This produces a basis of C" given by eigenvectors B /. In this
basis, By is obviously a nilponent matrix.



m For example for n = 4:

(Blvl):
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m Finally, let us~sualize the weight decomposition
row of n boxes. xample, in our case gfT= 4,

LTI

m |t will be convenient to draw the d?ognjosmon of the vector




3.7. D4-brane and 2d partitions

We can proceed in a very same way in the case of the
D4-brane framing. See e.g. lecture notes [Nakajima (1996)] for
a C? perspective or [MR-Soibelman-Yang-Zhao (2019)] for a C3
perspective.

The system of equations following from the variation of the
potential is now )

B,Bs] = 1J
[BiBsl——B-B35=70
By — Bl —0

T

From stability condition, we can see that B3 = 0 reducing the
system to the famous ADHM moduli.

One can also show that the equations together with the
stability condition require J = 0 and we are left with the
system (B, By, ) satisfying the stability condition, Bi, B>
mutually commuting and modulo

B; — gBig™ !, | — gl




m (Bi1, By, 1) being a fixed point requires an existence of g such
that

1B = gBig?

2By = ghg !

m Let us pick a basis of C" that diagonalizes g. If a is an
eigenvecotor of g with eigenvalue e/(metme+me) then B a
is an eigenvector with eigenvalue e/((ttertmetnses) 5n
B.a is an eigenvector with eigenvalue ef(met(mtl)etnses)

m Furthermore, since the whole C” can be generated by an
action of By, By on | and these two mutually commute, we
can see that the space C" decomposes according to the u(1)3
weights into subspaces specified by the Young diagram.



m For example

| | B R

’ —
would be associated to the decomposition (l / Z‘/J'
(
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m It is easy to check that this corresponds to the gaugéorbit of

(817 B2> l) =

0
1
0
0

00O 0 00O 1

0 0O 0 00O 0
1 00]°I0O O O O]"}O
00O 1 000 0



3.8. Db6-brane and 3d partitions 7,/ BL 3]}

m In the case of D6-brane framing, we do not have any arrows
going to the framing vertex and B;'s mutually commute.

m Decomposition of the vector space C” into the eigenspace of
g leads to the identification of fixed pomts with 3d partitions.

2 | = |
A L
g

m For e>7mple the 3d particio

corresponds to the gauge orbit of (B, By, B3, I) equal to

0 00O 0 00O 0 00O 1
1 000 0 00O 0 00O 0
0 00Ol OO0OO)'|0OOOTO0O]"]|O
0 00O 0 00O 1 000 0




3.9. The correspondence

m A crucial role in the construction is played by a
correspondence M(n+ 1, n) between M(m+ 1) and M(n), i.e

a closed subset M(n+1.n) in M(n) x M(n+1).
m A point in M(n+ 1) x M(n) given by

((B{”, O IONTO) J(1)> , <B§2), B, 5P 12, J(z))>

is in M(n+ 1, n) if there exists £ : C™! — C" satisfying

Y =8¢, g =@ 0= P

[Nakajima (1994), Kontsevich-Soibelman (2010)]

m The stability implies that £ is a surjective map and S = Ker &
is a one-dimensional subspace of Ker J() that is invariant

(1)

under the action of B;




m We can thus identify M(n+ 1, n) with an element of

M(n+ 1) together with a choice of a Bi(l) invariant
one-dimensional subspace S C Ker J().

m Using this description, we can quotient M(
obvious action of GL(n + 1) and write

£ 1x 0 ) =4thp']

n+1 n)

M(n+1)

where p is the obvious map forgetting? 3
the subspace S and g is a quotient of M(n + 1) by S

m Note also that S = Ker £ gives rise to a line bundle L on the
correspondence called the tautological line bundle.

LD = P*i(f)_’\‘f*b‘P

pE—



3.9. Fixed points of M(n+1,n)

As we have seen above, fixed points of M(n+ 1) are in
correspondence with partitions of various dimensions
containing n + 1 boxes.

In order to specify a point on M(n+ 1, n), we need to further
identify a subspace of C"*! that is fixed under the action of
Bi(l) and lies in the kernel of J().

Since J) =0 in all three of our moduli spaces, we only
require the subspace to be fixed under B,-(l). But restricting to
the fixed points and picking a basis of C"*! that diagonalizes
g, the basis vectors are in correspondence with boxes in the
partition labeling the fixed point.

Matrices B,-(l) act by moving the box in the j'th direction. We
can thus see that the only one-dimensional subspaces of C"+1

preserved by the action of B,-(l) are those associated to the

corners of the partition.



‘ZL‘ "D,‘ ) wh C, (Lh}

The fim%eled by a pair of

partitions with n+ 1 and n boxes mutually related by an
addition/removal of one box.

For example, the fixed points of M(3,2) for the D4-brane
moduli are given by pairs \

EE), (H@E), (%L LD, /%, )

The maps p and g project onto the first/second component
and give a fixed point of M(3) and M(2) respectively.

The weights of the added/removed box are respectively
2€, €1, €2, 2€7. (—:ﬁ ﬁ




