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UC Berkeley

Second PIMS Summer School on Algebraic Geometry in
High-Energy Physics, August 23-27, 2021



2.16. Recapitulation

We have argued that the derived category of coherent sheaves
is a good model of branes and their bound states (see also
beautiful lectures of Tudor).

Morphisms in the brane category are in correspondence with
massless string modes and can be encoded in a quiver
diagram.

The A∞ structure capturing string interactions gives rise to
the potential W .

The quiver diagram with potential in turn encodes a
supersymmetric quantum mechanics describing the low-energy
dynamics of the system of branes A→ D0.

We are now going to look at the space of supersymmetric
vacua of such a quiver quantum mechanics.



3. Supersymmetric vacua



3.1. Moduli of vacua

Forgetting the potential, the Ω-backgroud, and the gauge
group, the moduli space of vacua of our quantum mechanics
would be computed in terms of de Rham cohomology of M.
[Witten 1982]

If we turn on the gauge group, the moduli space of vacua
should be in correspondence with the de Rham cohomology of
the quotient M/GL(n) supplemented by the stability condition
that requires (at least in our situation) the whole space Cn

associated to the circular node to be generated by an action
of Bi on I ’s, i.e.

Cn =
∑
j

C[B1,B2,B3]Ij

For the purpose of our discussion, we label byM(n) the stable
locus of M with a given choice of the framing and with the
circular node of rank n. We then write M(n) =M(n)/GL(n).



3.2. Deformations of the differential

If the potential W is non-trivial, the differential receives a
correction proportional to dW∧.

The main problem is non-compactness of M(n). Luckily, we
can introduce a deformation of the theory associated to flavor
symmetries U(n) of the system (Ω-background) that localizes
the theory to fixed points of this symmetry.

Physically, this can be done by introducing a vector multiplet
associated to such a symmetry and turn on a non-zero
vacuum expectation value for its scalars.

The differential gets modified by
∑

i µi ιXi
. See e.g.

[Ohta-Sasai 2014].

The resulting cohomology theory is known as de Rham model
of equivariant critical cohomology. See e.g. the appendix of
[MR-Soibelman-Yang-Zhao 1982].



3.3. Example of equivariant cohomology

Just to gain some expecience, let me analyze a simple
example of the equivariant cohomology

We are going to compute the equivariant cohomology of C
with the U(1) action given by e iεz with (z , z̄) ∈ C the
complex coordinates.

The differential is thus of the form

Q = dz∂ + dz̄ ∂̄ + ειz ∂
∂z
−z̄ ∂

∂z̄

Multiplication by dz and dz̄ increases the degree of a form by
one. ιz ∂

∂z
−z̄ ∂

∂z̄
decreases it by one. If we assign ε degree two,

the differential Q is of degree one.

When acting on a general form, the differential Q does not
square to zero, e.g.

Q2z = Qdz = εz

but restricting to U(1) invariant forms, Q is nilpotent and its
cohomology makes sense.



At degree zero, we have

Qf (|z |2) = (z̄dz + zdz̄)
∂f (|z |2)

∂|z |2

requiring f to be constant leading to one-dimensional
cohomology.

A general form at degree one is of the form

f (|z |2)zdz̄ + g(|z |2)z̄dz

The kernel condition requires vanishing of(
∂f (|z |2)

∂|z |2
|z |2 − ∂g(|z |2)

∂|z |2
|z |2 + f (|z |2)− g(|z |2)

)
dzdz̄

+ε
(
f (|z |2)|z |2 − g(|z |2)|z |2

)
that implies f (|z |2) = g(|z |2) but all such elements can be
generated by the action of Q on degree-zero terms.



3.4. Borel localization theorem

We could proceed with higher degrees and identify

H∗U(1)(C) = C[ε]

Note that the cohomology has a single factor of C[ε] and C
has a single fixed point. This is not a coincidence!

Acording to the Borel localization theorem, if X is a manifold
with a U(1)m action and a finite set of fixed points pi ∈ F ,
the embedding ι : F ↪→ X induces an isomorphism

H∗U(1)m(X )→ H∗U(1)m(F ) =
⊕
i∈F

C[ε1, . . . , εm]pi

Turning on the potential W , the Borel localization theorem
holds as well, but we need to restrict to fixed points lying in
the critical locus of the potential.

The push-forward map ι∗ then gives a fixed-point basis ι∗pi of
H∗U(1)m(X ) and we just need to find the fixed-point set.



3.6. D2-brane and 1d partitions

Let us identify the fixed-point set for the D2-brane moduli.
[Galakhov-Li-Yamazaki (2021), MR-Soibelman-Yang-Zhao (in

progress)]

Starting with the D2-brane superpotential

W = Tr [B1[B2,B3] + I (J2B1 − J1B2)]

we have the following equations of motion

[B1,B3] = IJ1, [B2,B3] = IJ2, [B1,B2] = 0

B1I = 0, B2I = 0, J2B1 − J1B2 = 0

It is straightforward to show that these conditions together
with the stability condition require J1 = J2 = 0. This also
implies that Bi mutually commute.

We can then set B1 = B2 = 0 since

B1Cn = B1C[B1,B2,B3]I = C[B1,B2,B3]B1I = 0



We have thus identified the critical locus of W with a pair
(B3, I ) subject to the stability condition

Cn = C[B1]I

modulo gauge transformation

g : (B1, I )→ (gB1g
−1, gI )

To gain some experience with finding fixed points, let us start
with the analysis for n = 1. The value of I is non-vanishing
due to stability. It can be thus set to 1 by the gauge
transformation. The fixed-point condition then requires

e iε1B1 = gB1g
−1 = B1

leading to B1 = 0. The only fixed point can be thus identified
with the gauge orbit of (B1, I ) = (0, 1)



Moving to n = 2, I being non-zero due to the stability
condition and the gauge transformation allows us to fix

I =

(
1
0

)
The residual gauge transformation allows to fix

B1 =

(
α 0
β γ

)
Let us now impose the fixed point condition

e iε1B1 = eε1

(
α 0
β γ

)
= gB1g

−1

for g that now allows only rescaling of β. This leads to
α = γ = 0. Since β 6= 0 due to the stability, we can fix

(B1, I ) =

((
0 0
1 0

)
,

(
1
0

))



The condition of (B1, I ) being at a fixed point requires an
existence of g such that

e iε1B1 = gB1g
−1

Let us choose a basis for Cn that diagonalizes g . If a is a
basis vectors with eigenvalue e i(n1ε1+n2ε2+n3ε3), we have

gB1a = gB1g
−1ga = e i((n1+1)ε1+n2ε2+n3ε3)B1a

and B1a is another basis vector with eigenvalue
e i((n1+1)ε1+n2ε2+n3ε3).

Since I does not transfer under the U(1)3 action, we get

I = gI

and I is itself one of the eigenvectors.

This produces a basis of Cn given by eigenvectors Bn
1 I . In this

basis, B1 is obviously a nilponent matrix.



For example for n = 4:

(B1, I ) =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 ,


1
0
0
0




It will be convenient to draw the decomposition of the vector
space as an equivariant complex

C0
B1 // Cε1

B1 // C2ε1

B1 // C3ε1

Finally, let us visualize the weight decomposition of Cn as a
row of n boxes. For example, in our case of n = 4,



3.7. D4-brane and 2d partitions

We can proceed in a very same way in the case of the
D4-brane framing. See e.g. lecture notes [Nakajima (1996)] for
a C2 perspective or [MR-Soibelman-Yang-Zhao (2019)] for a C3

perspective.

The system of equations following from the variation of the
potential is now

[B1,B2] = IJ

[B1,B3] = [B2,B3] = 0

JB3 = B3I = 0

From stability condition, we can see that B3 = 0 reducing the
system to the famous ADHM moduli.

One can also show that the equations together with the
stability condition require J = 0 and we are left with the
system (B1,B2, I ) satisfying the stability condition, B1,B2

mutually commuting and modulo

Bi → gBig
−1, I → gI



(B1,B2, I ) being a fixed point requires an existence of g such
that

e iε1B1 = gB1g
−1

e iε2B2 = gB2g
−1

gI = I

Let us pick a basis of Cn that diagonalizes g . If a is an
eigenvecotor of g with eigenvalue e i(n1ε1+n2ε2+n3ε3), then B1a
is an eigenvector with eigenvalue e i((n1+1)ε1+n2ε2+n3ε3) and
B2a is an eigenvector with eigenvalue e i(n1ε1+(n2+1)ε2+n3ε3).

Furthermore, since the whole Cn can be generated by an
action of B1,B2 on I and these two mutually commute, we
can see that the space Cn decomposes according to the U(1)3

weights into subspaces specified by the Young diagram.



For example

would be associated to the decomposition

0
B1 // 0

B1 // 0
B1 // 0

Cε2

B1 //

B2

OO

0
B1 //

B2

OO

0
B1 //

B2

OO

0

B2

OO

C0
B1 //

B2

OO

Cε1

B1 //

B2

OO

C2ε1

B1 //

B2

OO

0

B2

OO

It is easy to check that this corresponds to the gauge orbit of

(B1,B2, I ) =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ,


1
0
0
0






3.8. D6-brane and 3d partitions

In the case of D6-brane framing, we do not have any arrows
going to the framing vertex and Bi ’s mutually commute.

Decomposition of the vector space Cn into the eigenspace of
g leads to the identification of fixed points with 3d partitions.

For example, the 3d particion depicted in

corresponds to the gauge orbit of (B1,B2,B3, I ) equal to


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ,


1
0
0
0






3.9. The correspondence

A crucial role in the construction is played by a
correspondence M(n + 1, n) between M(m + 1) and M(n), i.e.
a closed subset M(n + 1, n) in M(n)×M(n + 1).

A point in M(n + 1)×M(n) given by((
B

(1)
1 ,B

(1)
2 ,B

(1)
3 , I (1), J(1)

)
,
(
B

(2)
1 ,B

(2)
2 ,B

(2)
3 , I (2), J(2)

))
is in M(n + 1, n) if there exists ξ : Cn+1 → Cn satisfying

ξB
(1)
i = B

(2)
i ξ, ξI (1) = I (2), J

(1)
i = J

(2)
i ξ

[Nakajima (1994), Kontsevich-Soibelman (2010)]

The stability implies that ξ is a surjective map and S = Ker ξ
is a one-dimensional subspace of Ker J(1) that is invariant

under the action of B
(1)
i .



We can thus identify M(n + 1, n) with an element of

M(n + 1) together with a choice of a B
(1)
i invariant

one-dimensional subspace S ⊂ Ker J(1).

Using this description, we can quotient M(n + 1, n) by the
obvious action of GL(n + 1) and write

M(n + 1, n)
p

ww

q

&&

M(n + 1) M(n)

where p is the obvious map forgetting the information about
the subspace S and q is a quotient of M(n + 1) by S .

Note also that S = Ker ξ gives rise to a line bundle L on the
correspondence called the tautological line bundle.



3.9. Fixed points of M(n + 1, n)

As we have seen above, fixed points of M(n + 1) are in
correspondence with partitions of various dimensions
containing n + 1 boxes.

In order to specify a point on M(n + 1, n), we need to further
identify a subspace of Cn+1 that is fixed under the action of

B
(1)
i and lies in the kernel of J(1).

Since J(1) = 0 in all three of our moduli spaces, we only

require the subspace to be fixed under B
(1)
i . But restricting to

the fixed points and picking a basis of Cn+1 that diagonalizes
g , the basis vectors are in correspondence with boxes in the
partition labeling the fixed point.

Matrices B
(1)
i act by moving the box in the i ’th direction. We

can thus see that the only one-dimensional subspaces of Cn+1

preserved by the action of B
(1)
i are those associated to the

corners of the partition.



The fixed points of M(n + 1, n) are thus labeled by a pair of
partitions with n + 1 and n boxes mutually related by an
addition/removal of one box.

For example, the fixed points of M(3, 2) for the D4-brane
moduli are given by pairs

( , ), ( , ), ( , ), ( , )

The maps p and q project onto the first/second component
and give a fixed point of M(3) and M(2) respectively.

The weights of the added/removed box are respectively
2ε2, ε1, ε2, 2ε1.


