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2.7. Recapitulation

We have argued that the derived category of coherent sheaves
form a good model of branes and their bound states:

We found coherent sheaves associated with a stack of branes
supported on subvarieties inside C3.
Non-reduced schemes have a physical interpretation in terms
of turning on an expectation value for the Higgs field.
Complexes of sheaves can be interpreted as bound states of
branes with a tachyonic field of non-trivial profile.
Quasi-isomorphisms then encode the processes of tachyon
condensation.

Morphisms Homn(A,B) in the brane category correspond to
massless string modes.

Homn(A,B) can be computed as morphisms Hom(Ã, B̃)
between projective resolutions of our branes in the homotopy
category (chain maps modulo chain homotopies).



2.8. Supersymmetric quantum mechanics

We are now going to adapt the above tools to derive framed
quivers with potential describing the low-energy dynamics of
D0-branes bound to a fixed configuration of non-compactly
supported branes.

The low-energy dynamics of D0-branes is captured by a
sypersymmetric gauged quantum mechanics with potential.

Such a quantum mechanics is specified by

a gauge group G specifying fields forming a vector multiplet,
a representation M of the group G specifying fields forming a
chiral multiplet,
a holomorphic functions on M invariant under G called
superpotential W .

See e.g. [Ohta-Sasai (2014)] for details.

Today, we are now going to derive this data from calculations
in the derived category of coherent sheaves, see e.g. [Sharpe

(2003), Aspinwall-Katz (2004), Butson-MR (in progress)].



2.9. The gauge node

The pair (G ,M) coming from branes on a toric Calabi-Yau
threefold can be encoded in terms of a framed quiver diagram.

The gauge group G is going to be generally a product of
U(ni ) factors, each associated to a generator of the
subcategory of compactly-supported branes.

Since all the compactly supported branes in our C3 example
are D0-branes, we have a single node with label n specifying
the number of such D0-branes.

Diagrammatically, we associate a circular node with each
U(ni ) factor and attach an integer n to it.



2.10. The framing node

We associate a square (framing) node to each elementary
non-compactly supported brane and attach an integer kj to it
determining the number of branes in the given stack.



2.11. Arrows

The representation M is encoded by arrows in the quiver
diagram joining different nodes.

Each arrow is in correspondence with a factor in M = ⊕αMα:

Each factor Mα is associated with a map Cni → Cnj with ni
being the integer attached to the tail node and nj the integer
attached to the terminal node of the arrow.

A generator g ∈ U(ni ) of the gauge group G acts on all Mα

associated with arrows ending at the corresponding node by
multiplication from the left and on all Mα associated to
arrows starting at the corresponding node by multiplication by
g−1 from the right.

Physically, (G ,M) determine fields of the quiver QM we want
to construct. In turn, such fields should arise from massless
strings stretched between our branes computed be
Hom(A,B). We are thus going to identify the arrows with
generators of Hom(A,B).



In order to arrive at the desired quivers, we need to:

Restrict to morphisms Hom1(A,B) of ghost-number one since
only these contribute to physical modes.
Shifts complexes associated D0-branes by one. As explained
above, construction of a bound states requires the degree of
one of the two branes to be shifted. We thus need to
introduce a shifts of complexes associated D0-brane:



2.12. D0-D0 strings

Let us now write down generators of Hom1(D0[1],D0[1]). We
have for example generator b1 given by

O−1
0
0


��

x1

x2

x3


// O3

0 0 0
0 0 1
0 1 0


��

 0 −x3 −x2

−x3 0 x1

x3 x1 0


// O3

(1, 0, 0)

��

(x1 x2 x3)
// O

O // O3 // O3 // O

and analogously for b2, b3.



This leads to the quiver:



2.13. D0-D6 strings

O

1

��

O // O3 // O3 // O



2.14. D0-D4 strings

O 0
0
−1


��

// O

1

��

O // O3 // O3 // O

O

1

��

// O3

(0 0 1)

��

// O3 // O

O // O



2.15. D0-D2 strings

O0
0
1


��

// O21 0
0 1
0 0


��

// O

1

��

O // O3 // O3 // O

O(
1
0

)
��

// O3

(−1 0 0)

��

// O3 // O

O // O2 // O

O(
0
1

)
��

// O3

(0 1 0)

��

// O3 // O

O // O2 // O



2.16. String modes

For completeness, let us also write down dimensions of all
Homn(A,B):

dim Homn n = 0 n = 1 n = 2 n = 3

D0[1]-D0[1] 1 3 3 1

D0[1]-D6 1
D6-D0[1] 1

D0[1]-D4 1 1
D4-D0[1] 1 1

D0[1]-D2 1 2 1
D2-D0[1] 1 2 1



2.17. Potential

Let xi for i ∈ arrows be generators of Hom1(A,B) between
various elementary branes in a given background. Any element
in Hom1(A,B) can be then written as a linear combination

Ψ =
∑

ik∈arrows
Xkxi

where Xk : Cni → Cnj for ni , nj ranks associated with the tail
and the head of the arrow i . In the string-field-theory
litarature, this linear combination is called the string field.

The potential (as a function of Xk) is generally given by an
A∞ structure µm of the brane category together with a trace
map (related to Serre duality)

∫
in terms of

W =
∞∑
k=2

1

k + 1

∫
µ2(Ψ, µm(Ψ, . . . ,Ψ))



Strings can mutually join and split, leading to an associative
product (often called the star product µ2(α1, α2) = α1 ? α2 in
the string-field-theory literature)

? : Hom∗(A1,A2)⊗ Hom∗(A2,A3)→ Hom∗(A,C )

More generally, there also exist higher products

Hom∗(A1,A2)⊗ · · · ⊗ Hom∗(An,An+1)︸ ︷︷ ︸
n

→ Hom∗(A1,An+1)

forming an A∞-structure.

Luckily, these are trivial for C3 and the potential is simply

W =

∫
Ψ ?Ψ ?Ψ

with ? given by the composition of morphisms.



Note also the symmetry of the first table above

dim Homn(D0,A) = dim Hom3−n(A,D0)

This is a consequence of the Serre duality stating that there
exists a natural pairing

Homn(D0,A)× Hom3−n(A,D0)→ C

This pairing can be written as∫
α ? β

where
∫

is known as a trace map.



Let us identify a concrete form of the trace map in our
situation.

First, note that Hom3(D0[1],D0[1]) is generated by a single
element

O

1
��

// O3 // O3 // O

O // O3 // O3 // O

The trace map simply identifies the multiplicative constant
with the image in C.

In the higher-rank situation, we can compose such a map with
the standard trace over Xi .



2.18. Contribution of D0-D0 strings



2.19. Contribution of D0-D4 strings



2.20. Turning on Higgs field

We would like to now comment on how to turn on the
expectation value for the Higgs field on non-compact branes.

Into the quiver, one can obviously include the modes of the
non-dynamical fields coming from strings stretched between
non-compact branes.

This is going to lead to a modification of the potential:

Turning on a constant value for such a Higgs field (that has
to be nilpotent to preserve equivariance) leads to a
modification of equations of motion.



2.21. Flavor symmetries

Let us now look at U(1) flavor symmetries for which we will
introduce the Ω-background.

Obviously, we can act by GL(k) on the vector space associated
to each framing node. Turning on the equivariance for its
Cartan subgroup U(1)k ⊂ GL(k) plays an important role in
understanding the framing by multiple branes and we will
briefly comment on this point at the very end of our journey.

Instead, note that the potential is invariant under

Bi → e iεiBi , J → e iaJ

for a being a linear combination of εi with integral coefficients
depending on the choice of the framing brane if we restrict to
the subtorus U(1)2 ⊂ U(1)3 given by ε1 + ε2 + ε3 = 0.



This action on Bi can be traced back to the symmetry of the
system that rotates the three coordinate planes in C3.

Let us write by Cn1ε1+n2ε2+n3ε3 for integers ni the
represenation of U(1)3 given by

Cn1ε1+n2ε2+n3ε3 → e i(n1ε1+n2ε2+n3ε3)Cn1ε1+n2ε2+n3ε3

We can then lift the projective resolution of the D0-brane into
the equivariant complex

O

−x1

x2

−x3


−−−−−→ O × Cε1 ⊕ Cε2 ⊕ Cε3

 0 −x3 −x2

−x3 0 x1

x2 x 0


−−−−−−−−−−−−−→

O ⊗ Cε2+ε3 ⊕ Cε1+ε3 ⊕ Cε1+ε2

(x1 x2 x3)
−−−−−−−−→ O ⊗ Cε1+ε2+ε3



Lifting everything into the equivariant map, we see that Bi

must transform as Cεi ⊗ Cn2



Remember that the trace map
∫

was given in terms of a linear
map Hom3(D0[1],D0[1])→ C sending a fixed generator to
one. Lifting to an equivariant map, this generator is of weight
e i(ε1+ε2+ε3). The condition ε1 + ε2 + ε3 = 0 can be thus traced
back to the requirement of the invariance of the trace map.

Let me also mention a slightly different perspective. If we
were to deal with D6-branes, we would identify
Hom∗(D6,D6) = H∗,0

∂̄
(OX ) with the trace map being the 6d

holomorphic Chern-Simons functional∫
X
α ∧ Ω

where Ω is the Calabi-Yau volume form. In our case,
Ω = dx1 ∧ dx2 ∧ dx3 and we can see that its invariance
requires ε1 + ε2 + ε3 = 0.


