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1. Motivation



1.1. Geometric engineering

Our starting point is the ten-dimensional type IIA string
theory together with its D0-, D2-, D4-, D6- and D8-branes.

Studying string theory on M4 ×M6 and sending the volume of
M6 to zero, the system should have an effective description in
terms of a theory on M4.

Supersymmetric (BPS) particles and line operators can be
engineered from D0-branes sitting at a point, D2-branes
wrapping a two-cycle, D4-branes wrapping a four-cycle or
D6-branes wrapping the whole M6.



1.2. Twisted theory in Ω-background

As a toy model, we are going to look at the simplest example
of M6 = C3 compactified on Ω-background.

C3 admits an action of a three torus U(1)3 rotating the three
coordinate lines C inside C3. We can introduce a deformation
of the theory parametrized by ε1, ε2, ε3 associated to each
generator of U(1)3.

Such Ω-deformation localizes the theory to the fixed-point
locus and effectively compactifies the theory to M4.

Our discussion naturally extends to more complicated toric
Calabi-Yau three-folds but we are going to restrict only to the
example of C3.



1.3. Branes in Ω-background

Ω-background forces the support of D-branes to be along
subvarieties fixed by the U(1)3 action:

Branes R4 Cε1 Cε2 Cε3
D0 R 0 0 0

D2 R × 0 0
D2 R 0 × 0
D2 R 0 0 ×
D4 R 0 × ×
D4 R × 0 ×
D4 R × × 0

D6 R × × ×

Branes with compact support are going to be treated as light,
dynamical objects (BPS particles) after compactification.

Branes with non-compact support are going to be treated as
heavy and non-dynamical leading to BPS line operators.



1.4. BPS algebra

More precisely, the spectrum of BPS particles are in
correspondence with supersymmetric vacua of the quantum
mechanics describing the low-energy behavior of D0-branes.

BPS particles associated to compactly supported branes can
mutually scatter:

n1D0 n2D0

(n1 + n2)D0 n2D0

(n1 + n2)D0

n1D0

Scattering of such particles is captured by a BPS algebra. In
our case of C3, the BPS algebra is known as the affine
Yangian of gl1.



1.5. Representations of BPS algebra

Let us now fix a configuration of the non-compact branes
(e.g. a stack of N D4-branes along Cε1 × Cε2) with n D0
bound to it.

Processes of bounding/removing D0-branes should lead to a
representation of the BPS algebra:

A → n2D0

A → (n1 + n2)D0

n1D0

n1D0

A → (n1 + n2)D0

A → n2D0

This leads to a conjecture that the gl1 affine Yangian should
admit a module for any configuration of
noncompactly-supported branes.



1.6. Brane configuration → Quiver QM

The low-energy dynamics of a system of branes is described
by a quantum field theory living on their support.

The low-energy dynamics of D0-branes bound to
higher-dimensional branes is thus described by a quantum
mechanics along R.

The field content (in our situation specified by a framed
quiver diagram) together with the potential specifying such a
quantum mechanics is usually determined by an analysis of
the string spectra in a prescribed background of D-branes.

Instead, we are going determine the relevant data by an
analysis of the system within the context of derived category
of coherent sheaves modeling our brane systems.



1.7. Quiver QM → BPS states

The quiver quantum mechanics admits a continuum moduli of
vacua. To compactify this moduli space, we can deform the
system by introducing the Ω-background associated to the
U(1)3 action above.

We are going to identify the space of vacua of such a
deformed theory with the equivariant critical cohomology of
the moduli space of quiver representations.

Working equivariantly allows us to identify the cohomology
with fixed points of the the corresponding moduli space,
restricted to the critical locus of the potential.

Counting such fixed points is going to lead to a rich
combinatorics of melted crystals.



1.8. BPS states → Yangian module

Let M(n) be the space of vacua associated to n D0 branes
bound to a fixed configuration of non-compact branes.

There exists a correspondence M(n+ 1, n) ⊂ M(n+ 1)×M(n)
with a map p to M(n) and a map q to M(n + 1).

Starting with an element in the equivariant critical
cohomology H∗(M(n)), pulling it back by p∗ and pushing
forward by q∗, we are going to construct an action of rising
operators of the desired BPS algebra.

Analogously, pulling back by q∗ and pushing forward by p∗
gives rise to the action of lowering generators of the algebra.

Different choices of non-compact branes then lead to modules
of very different nature. As we are going to see, they give rise
to Cherednik algebras (for D2-branes), corner vertex operator
algebras (for D4-branes) and the MacMahon representation
(for D6-branes).



2. Quivers from branes



2.1. Branes as coherent sheaves

The first step in our construction is a derivation of a quantum
mechanics (QM) describing a stack of D0-branes bound to
different systems of D2-, D4- and D6-branes.

The data specifying such a QM is going to consist of a framed
quiver with potential.

The most straightforward yet tedious derivation would rely on
analysis of the spectrum and interactions of strings ending on
involved branes. (See e.g. [Nekrasov-Prabhakar (2016)])

Instead, we are going to use the language of derived
categories of coherent sheaves as a model of our D-branes and
derive the quivers by studying morphisms in such a category.

In the rest of the lecture, we are going to argue that the
derived categories of coherent sheaves provide a good model
for branes. (See [Sharpe (2003)] for a nice review accessible to
physicists.)



2.2. Sheaves

A sheaf S on a space X is an assignment a module of sections
S(U) to each open set U together with a collection of
restriction maps ρU,V : S(U)→ S(V ) for any V ⊂ U. This
data must satisfy some compatibility conditions that I am not
going to spell out.

An example of a sheaf is the structure sheaf OX of a complex
variety X . The structure sheaf assigns the ring of holomorphic
functions on U to each open set U.

More generally, to any holomorphic bundle E → X of rank k ,
we can associate the ring of sections over U.

Such a sheaf is obviously a module for the structure sheaf and
the class of sheaves of this form are known as locally-free
sheaves. The structure sheave itself is a free sheaf.



Since a brane in string theory is specified by its support
together with a (Chan-Paton) bundle over it, it is natural to
identify locally-free sheaf with a stack of k D6-branes
wrapping X with k being the rank of our bundle.

In the simple case of C3, we associate to each open subset U
the ring of holomorphic functions on U. In particular, we
associate the coordinate ring

C[x1, x2, x3]

to the whole U = C3.



2.3. Coherent sheaves

Coherent sheaves form a class of sheaves that can be locally
defined by imposing a set of relations on a locally-free
sheaves, i.e. they can be locally identified with the cokernel of

f : Ol
X |U → Om

X |U

For a trivial map

f : 0→ C[x1, x2, x3]⊕k

the sheaf is formed by k copies of the structure sheaf and can
be identified with a stack of k D6-branes wrapping C3.



The skyscraper sheaf can be expressed as a cokernel of

C[x1, x2, x3]3
(x1,x2,x3)−−−−−→ C[x1, x2, x3]

i.e.

C[x1, x2, x3]/(x1, x2, x3)

Away from the origin, the cokernel is trivial since we can write

f = x1

(
f

x1

)
The corresponding sheaf is thus supported at the origin and it
is natural to associated it with the D0-brane.

To get a sheaf associated to the stack of n D0-branes, we can
simply take a direct sum of n such sheaves.



Analogously, for

C[x1, x2, x3]
x1−→ C[x1, x2, x3]

the cokernel

C[x1, x2, x3]/(x3)

can be associated with a D4-brane supported along x3 = 0. A
sheaf associated to a multiple of D4-branes is then just a
direct sum of k copies of this sheaf.

Similarly, the map

C[x1, x2, x3]2
(x1,x2)−−−−→ C[x1, x2, x3]

produces a sheaf associated to D2-branes along x1 = x2 = 0.

We found a coherent sheaf modeling a D-brane of any support
from the introduction.



2.4. Nilpotent Higgs vev

The world of coherent sheaves is much richer.

For example, one can easily see that the support of

C[x1, x2, x3]/(x23 )

is again along x3 = 0 as in the case of D4-branes but the
module structure is obviously different.

As a module for C[x1, x2], it is isomorphic to the direct sum of
two D4-brane sheaves but the action of x3 is now twisted.

We can think about such a sheaf in terms of a deformation of
a pair of D4-branes by turning on a nilpotent vacuum
expectation value for the Higgs field living on their support.



2.5. Derived category of coherent sheaves

How to describe brane bound states?

We need to extend the category of coherent sheaves to
complexes of sheaves

. . .
d0 // A1

d1 // A2
d2 // A3

d3 // . . .

with differential squaring to zero di+1 ◦ di = 0.

Intuitively, Ai are sheaves describing a system of branes and
anti-branes and differentials di specify the exact form of the
bound state.

Complexes describe the same configuration if they are related
by a quasi-isomorphisms.



A quasi-isomorphism is a map between complexes

. . .
d0 // A1

d1 //

f1
��

A2
d1 //

f2
��

A3
d2 //

f3
��

. . .

. . .
d ′0 // B1

d ′1 // B2
d ′2 // B3

d ′3 // . . .

satisfying f2 ◦ d1 = d ′1 ◦ f1 and inducing isomorphism on the
cohomology.

I will sometimes call the derived category of coherent sheaves
simply the brane category.

Let me give two examples of a quasi-isomorphism.



First, we have an obvious exact sequence

0 // C[x1, x2, x3]
x3 // C[x1, x2, x3]

d // C[x1,x2,x3]
(x3)

// 0

Let me bend the complex as

C[x1, x2, x3]
x3 //

��

C[x1, x2, x3]

d
��

0 // C[x1,x2,x3]
(x3)

d obviously induces an isomorphism on the cohomology.

Consequently, a D4-brane along x3 = 0 is quasi-isomorphic to

C[x1, x2, x3]
x3 // C[x1, x2, x3]

Physically, this statement can be interpreted as a D4-brane
arising from a tachyon condensation of a space-filling
brane-anti-brane pair with a non-trivial tachyonic profile given
by x3. Quasi-isomorphisms thus model tachyon condensation.



Let us instead consider

0 // Ker d // C[x1, x2, x3]
d // C[x1,x2,x3]

(x1,x2,x3)
// 0

where the kernel of d is simply generated by elements
vanishing at the origin

x1f1(x1, x2, x3) + x2f2(x1, x2, x3) + x3f3(x1, x2, x3)

Such a sheaf is obviously isomorphic to C[x1, x2, x3] at a
generic point but it caries a non-trivial modification at 0.

We can interpret this sheaf as describing a non-trivial bound
state a D6-brane with a D0-brane.

Bound states of this form together with their quiver
descriptions will be the main object of interest in our
discussion.



2.6. Morphisms in the brane category

Morphisms Hom(A,B) in our category capture the
information about the specturem of massless modes of a
string stretched between A and B.

The starting point in the calculation of Hom(A,B) is a
projective resolution of A,B, i.e. an exact sequence of the
form

. . .
d−4
// A−3

d−3
// A−2

d−2
// A−1

d−1
// A

with all Ai being projective.

In our situation, we will be able to find a resolution of all the
sheaves in terms of free sheaves C[x1, x2, x3]⊕n that are
automatically projective.



Let us now find projective resolutions of our elementary
sheaves.

The projective resolution of a D0-brane is given by

O

−x1x2
−x3


−−−−−→ O3

 0 −x3 −x2
−x3 0 x1
x2 x 0


−−−−−−−−−−−−−→ O3 (x1 x2 x3)

−−−−−−−−→ O → C[x1, x2, x3]

(x1, x2, x3)

The projective resolution of a D2-brane supported along
x1 = x2 = 0 is

O

(
−x2
x1

)
−−−−→ O2 (x1 x2)

−−−−−→ O → C[x1, x2, x3]

(x1, x2)

and analogously for D2-brane of other orientations.

The projective resolution of a D4-brane supported along
x3 = 0 is

O x3−→ O → C[x1, x2, x3]

(x3)

and analogously for D4 branes along x2 = 0 and x3 = 0.



Homn(A,B) can be now identified with the chain maps
between the two projective resolutions modulo chain
homotopies.

Let

. . .
d−4
// A−3

d−3
// A−2

d−2
// A−1

. . .
d ′−4
// B−3

d ′−3
// B−2

d ′−2
// B−1

be projective resolutions of A and B.

For a fixed n and any m < 0, let fn,m : Am → Bm+n be a set
of maps between the entries of the two complexes.

For example, n = 1 would correspond to a diagram

. . .
d−5
// A−4

d−4
//

f1,−4

��

A−3
d−3
//

f1,−3

��

A−2
d−2
//

f1,−2

��

A−1

. . .
d−4
// B−3

d−3
// B−2

d−2
// B−1



Let us now define a differential ∂ : fn,m → fn+1,m increasing
the first index of fn,m by formula

∂fn,m = dm+n ◦ fn,m − (−1)nfn,m+1 ◦ dm

Collection of fn,m for fixed n is called a chain map if it lies in
the kernel of this map (this is equivalent to all the squares
above commuting or anti-commuting).

Chain homotopies then correspond to the image of ∂.

The spectrum of strings Homn(A,B) can be thus identified
with the cohomology of ∂ acting on the collection of maps
fn,m for m < 0.

The integer n is called the ghost number.


