Branes, Quivers and BPS algebras

Miroslav Rapčák

UC Berkeley

Second PIMS Summer School on Algebraic Geometry in High-Energy Physics, August 23-27, 2021

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

1. Motivation

1.1. Geometric engineering

- Our starting point is the ten-dimensional type IIA string theory together with its D0-, D2-, D4-, D6- and D8-branes.
- Studying string theory on $M_4 \times M_6$ and sending the volume of M_6 to zero, the system should have an effective description in terms of a theory on M_4 .
- Supersymmetric (BPS) particles and line operators can be engineered from D0-branes sitting at a point, D2-branes wrapping a two-cycle, D4-branes wrapping a four-cycle or D6-branes wrapping the whole M₆.

1.2. Twisted theory in Ω -background

- As a toy model, we are going to look at the simplest example of M₆ = C³ compactified on Ω-background.
- C³ admits an action of a three torus U(1)³ rotating the three coordinate lines C inside C³. We can introduce a deformation of the theory parametrized by e₁, e₂, e₃ associated to each generator of U(1)³.
- Such Ω-deformation localizes the theory to the fixed-point locus and effectively compactifies the theory to M₄.
- Our discussion naturally extends to more complicated toric Calabi-Yau three-folds but we are going to restrict only to the example of C³.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1.3. Branes in Ω -background

 Ω-background forces the support of D-branes to be along subvarieties fixed by the U(1)³ action:

Branes	\mathbb{R}^4	\mathbb{C}_{ϵ_1}	\mathbb{C}_{ϵ_2}	\mathbb{C}_{ϵ_3}
D0	\mathbb{R}	0	0	0
D2	\mathbb{R}	×	0	0
D2	\mathbb{R}	0	×	0
D2	\mathbb{R}	0	0	×
D4	\mathbb{R}	0	Х	Х
D4	\mathbb{R}	×	0	×
D4	\mathbb{R}	×	×	0
D6	\mathbb{R}	×	×	×

- Branes with compact support are going to be treated as light, dynamical objects (BPS particles) after compactification.
- Branes with non-compact support are going to be treated as heavy and non-dynamical leading to BPS line operators.

1.4. BPS algebra

- More precisely, the spectrum of BPS particles are in correspondence with supersymmetric vacua of the quantum mechanics describing the low-energy behavior of D0-branes.
- BPS particles associated to compactly supported branes can mutually scatter:

■ Scattering of such particles is captured by a BPS algebra. In our case of C³, the BPS algebra is known as the affine Yangian of gl₁.

1.5. Representations of BPS algebra

- Let us now fix a configuration of the non-compact branes (e.g. a stack of N D4-branes along C_{€1} × C_{€2}) with n D0 bound to it.
- Processes of bounding/removing D0-branes should lead to a representation of the BPS algebra:

 This leads to a conjecture that the gl₁ affine Yangian should admit a module for any configuration of noncompactly-supported branes.

1.6. Brane configuration \rightarrow Quiver QM

- The low-energy dynamics of a system of branes is described by a quantum field theory living on their support.
- The low-energy dynamics of D0-branes bound to higher-dimensional branes is thus described by a quantum mechanics along ℝ.
- The field content (in our situation specified by a framed quiver diagram) together with the potential specifying such a quantum mechanics is usually determined by an analysis of the string spectra in a prescribed background of D-branes.
- Instead, we are going determine the relevant data by an analysis of the system within the context of derived category of coherent sheaves modeling our brane systems.

1.7. Quiver QM \rightarrow BPS states

- The quiver quantum mechanics admits a continuum moduli of vacua. To compactify this moduli space, we can deform the system by introducing the Ω-background associated to the U(1)³ action above.
- We are going to identify the space of vacua of such a deformed theory with the equivariant critical cohomology of the moduli space of quiver representations.
- Working equivariantly allows us to identify the cohomology with fixed points of the the corresponding moduli space, restricted to the critical locus of the potential.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Counting such fixed points is going to lead to a rich combinatorics of melted crystals.

1.8. BPS states \rightarrow Yangian module

- Let M(n) be the space of vacua associated to n D0 branes bound to a fixed configuration of non-compact branes.
- There exists a correspondence $M(n+1, n) \subset M(n+1) \times M(n)$ with a map p to M(n) and a map q to M(n+1).
- Starting with an element in the equivariant critical cohomology H*(M(n)), pulling it back by p* and pushing forward by q*, we are going to construct an action of rising operators of the desired BPS algebra.
- Analogously, pulling back by q* and pushing forward by p* gives rise to the action of lowering generators of the algebra.
- Different choices of non-compact branes then lead to modules of very different nature. As we are going to see, they give rise to Cherednik algebras (for D2-branes), corner vertex operator algebras (for D4-branes) and the MacMahon representation (for D6-branes).

2. Quivers from branes

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

2.1. Branes as coherent sheaves

- The first step in our construction is a derivation of a quantum mechanics (QM) describing a stack of D0-branes bound to different systems of D2-, D4- and D6-branes.
- The data specifying such a QM is going to consist of a framed quiver with potential.
- The most straightforward yet tedious derivation would rely on analysis of the spectrum and interactions of strings ending on involved branes. (See e.g. [Nekrasov-Prabhakar (2016)])
- Instead, we are going to use the language of derived categories of coherent sheaves as a model of our D-branes and derive the quivers by studying morphisms in such a category.
- In the rest of the lecture, we are going to argue that the derived categories of coherent sheaves provide a good model for branes. (See [Sharpe (2003)] for a nice review accessible to physicists.)

2.2. Sheaves

- A sheaf S on a space X is an assignment a module of sections S(U) to each open set U together with a collection of restriction maps p_{U,V} : S(U) → S(V) for any V ⊂ U. This data must satisfy some compatibility conditions that I am not going to spell out.
- An example of a sheaf is the structure sheaf \mathcal{O}_X of a complex variety X. The structure sheaf assigns the ring of holomorphic functions on U to each open set U.
- More generally, to any holomorphic bundle $E \rightarrow X$ of rank k, we can associate the ring of sections over U.
- Such a sheaf is obviously a module for the structure sheaf and the class of sheaves of this form are known as locally-free sheaves. The structure sheave itself is a free sheaf.

- Since a brane in string theory is specified by its support together with a (Chan-Paton) bundle over it, it is natural to identify locally-free sheaf with a stack of k D6-branes wrapping X with k being the rank of our bundle.
- In the simple case of C³, we associate to each open subset U the ring of holomorphic functions on U. In particular, we associate the coordinate ring

 $\mathbb{C}[x_1, x_2, x_3]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

to the whole $U = \mathbb{C}^3$.

2.3. Coherent sheaves

Coherent sheaves form a class of sheaves that can be locally defined by imposing a set of relations on a locally-free sheaves, i.e. they can be locally identified with the cokernel of

$$f: \mathcal{O}'_X|_U \to \mathcal{O}^m_X|_U$$

For a trivial map

$$f: \mathbf{0} \to \mathbb{C}[x_1, x_2, x_3]^{\oplus k}$$

the sheaf is formed by k copies of the structure sheaf and can be identified with a stack of k D6-branes wrapping \mathbb{C}^3 .

■ The skyscraper sheaf can be expressed as a cokernel of

$$\mathbb{C}[x_1, x_2, x_3]^3 \xrightarrow{(x_1, x_2, x_3)} \mathbb{C}[x_1, x_2, x_3]$$

i.e.

$$\mathbb{C}[x_1, x_2, x_3]/(x_1, x_2, x_3)$$

Away from the origin, the cokernel is trivial since we can write

$$f = x_1 \begin{pmatrix} f \\ x_1 \end{pmatrix} \mathcal{E}^{\times} \mathcal{E}^{\times} \mathcal{E}^{\times} \begin{pmatrix} f \\ f \\ y \end{pmatrix} \mathcal{E}^{\times} \mathcal{E$$

- The corresponding sheaf is thus supported at the origin and it is natural to associated it with the D0-brane.
- To get a sheaf associated to the stack of n D0-branes, we can simply take a direct sum of n such sheaves.

Analogously, for

$$\mathbb{C}[x_1, x_2, x_3] \xrightarrow{x_1} \mathbb{C}[x_1, x_2, x_3]$$

the cokernel

$$\mathbb{C}[x_1, x_2, x_3]/(x_3)$$

can be associated with a D4-brane supported along $x_3 = 0$. A sheaf associated to a multiple of D4-branes is then just a direct sum of k copies of this sheaf.

Similarly, the map

$$\mathbb{C}[x_1, x_2, x_3]^2 \xrightarrow{(x_1, x_2)} \mathbb{C}[x_1, x_2, x_3]$$

produces a sheaf associated to D2-branes along $x_1 = x_2 = 0$.

We found a coherent sheaf modeling a D-brane of any support from the introduction.

2.4. Nilpotent Higgs vev

- The world of coherent sheaves is much richer.
- For example, one can easily see that the support of γ^{l}

$$\mathbb{C}[x_1, x_2, x_3]/(x_3^2) \Rightarrow f(\kappa_{\mu} \chi) + q(\kappa_{\mu}, \chi) \chi$$

is again along $x_3 = 0$ as in the case of D4-branes but the module structure is obviously different.

- As a module for C[x₁, x₂], it is isomorphic to the direct sum of two D4-brane sheaves but the action of x₃ is now twisted.
- We can think about such a sheaf in terms of a deformation of a pair of D4-branes by turning on a nilpotent vacuum expectation value for the Higgs field living on their support.

2.5. Derived category of coherent sheaves

- How to describe brane bound states?
- We need to extend the category of coherent sheaves to complexes of sheaves

$$\ldots \xrightarrow{d_0} A_1 \xrightarrow{d_1} A_2 \xrightarrow{d_2} A_3 \xrightarrow{d_3} \ldots$$

with differential squaring to zero $d_{i+1} \circ d_i = 0$.

- Intuitively, A_i are sheaves describing a system of branes and anti-branes and differentials d_i specify the exact form of the bound state.
- Complexes describe the same configuration if they are related by a quasi-isomorphisms.

A quasi-isomorphism is a map between complexes

satisfying $f_2 \circ d_1 = d_1' \circ f_1$ and inducing isomorphism on the cohomology.

I will sometimes call the derived category of coherent sheaves simply the brane category.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

• Let me give two examples of a quasi-isomorphism.

- *d* obviously induces an isomorphism on the cohomology.
- Consequently, a D4-brane along $x_3 = 0$ is quasi-isomorphic to $\mathcal{D} \subset [x_1, x_2, x_3] \xrightarrow{(x_3)} \mathbb{C}[x_1, x_2, x_3]$
- Physically, this statement can be interpreted as a D4-brane arising from a tachyon condensation of a space-filling brane-anti-brane pair with a non-trivial tachyonic profile given by x₃. Quasi-isomorphisms thus model tachyon condensation.

• Let us instead consider
$$\mathcal{D}\mathcal{A}$$
 $\mathcal{D}\mathcal{A}$
 $0 \longrightarrow \text{Ker } d \longrightarrow \mathbb{C}[x_1, x_2, x_3] \xrightarrow{d} \frac{\mathbb{C}[x_1, x_2, x_3]}{(x_1, x_2, x_3)} \longrightarrow 0$

where the kernel of d is simply generated by elements vanishing at the origin

$$x_1f_1(x_1, x_2, x_3) + x_2f_2(x_1, x_2, x_3) + x_3f_3(x_1, x_2, x_3)$$

- Such a sheaf is obviously isomorphic to C[x₁, x₂, x₃] at a generic point but it caries a non-trivial modification at 0.
- We can interpret this sheaf as describing a non-trivial bound state a D6-brane with a D0-brane.
- Bound states of this form together with their quiver descriptions will be the main object of interest in our discussion.

2.6. Morphisms in the brane category

- Morphisms Hom(A, B) in our category capture the information about the specturem of massless modes of a string stretched between A and B.
- The starting point in the calculation of Hom(*A*, *B*) is a projective resolution of *A*, *B*, i.e. an exact sequence of the form

$$\dots \xrightarrow{d_{-4}} A_{-3} \xrightarrow{d_{-3}} A_{-2} \xrightarrow{d_{-2}} A_{-1} \xrightarrow{d_{-1}} A$$

with all A_i being projective.

In our situation, we will be able to find a resolution of all the sheaves in terms of free sheaves C[x₁, x₂, x₃]^{⊕n} that are automatically projective.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Homⁿ(A, B) can be now identified with the chain maps between the two projective resolutions modulo chain homotopies.
- Let

be projective resolutions of A and B.

- For a fixed *n* and any m < 0, let $f_{\underline{m}(m)}: A_{\underline{m}} \to B_{\underline{m+n}}$ be a set of maps between the entries of the two complexes.
- For example, n = 1 would correspond to a diagram

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ ク へ ()・

• Let us now define a differential $\partial : f_{n,m} \to f_{n+1,m}$ increasing the first index of $f_{n,m}$ by formula

$$\partial f_{n,m} = d_{m+n} \circ f_{n,m} - (-1)^n f_{n,m+1} \circ d_m$$

- Collection of f_{n,m} for fixed n is called a chain map if it lies in the kernel of this map (this is equivalent to all the squares above commuting or anti-commuting).
- Chain homotopies then correspond to the image of ∂ .
- The spectrum of strings Homⁿ(A, B) can be thus identified with the cohomology of ∂ acting on the collection of maps f_{n,m} for m < 0.</p>

- コント 4 日 > ト 4 日 > ト 4 日 > - シックク

■ The integer *n* is called the ghost number.