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Abstract. The exciting and rapidly-growing field of topological materials

has brought with it unexpected new connections between physics and pure
mathematics. Algebraic topology in particular has played a significant role

in classifying topological materials. In this brief note, I report on joint work

with J. Maciejko and offer a brief look at another emerging chapter in this
story in which algebraic geometry and number theory anticipate new forms of

quantum matter associated to hyperbolic lattices.

The purpose of this brief note is to report on some recent interactions between
complex algebraic geometry, number theory, and the burgeoning field of quantum
matter1. The propagation of waves in periodic media under a potential respecting
the symmetry of the medium is governed by Bloch’s theorem [1]. A direct result is
that the admissible momenta of the wave are captured by a topological space called
the Brillouin zone. When the underlying medium is R2 with the standard Euclidean
inner product, and when the periodicity is given by a parallelogram or hexagon
lattice Λ, the Brillouin zone is a torus. Multiple interpretations are available for this
torus. Most immediately, it is the space of U(1)-representations of the translation
group of the lattice. Equivalently, it is the space of U(1)-representations of the
fundamental group of R2/Λ. Note here that R2/Λ is itself a torus, but this is
not the same as the Brillouin zone. The quotient is the configuration space, or
position space, of the wave while the Brillouin zone is obtained from it as the so-
called reciprocal space via a Fourier transform. By applying the Riemann-Hilbert
correspondence to the Brillouin zone as a space of U(1)-representations, one can
interpret it as a space of smooth data, namely flat unitary line bundles on the torus.
From here, one can furthermore apply the Narasimhan-Seshadri correspondence [6]
and interpret the Brillouin zone as a space of holomorphic data: holomorphic line
bundles on the elliptic curve E = R2/Λ. In this latter interpretation, the Brillouin
zone becomes the Jacobian of E, which is the moduli space of holomorphic line
bundles on E.

1This report is the summary of an invited talk that I delivered on August 12, 2021 at the

Nankai Symposium on Mathematical Dialogues, held at the Chern Institute of Mathematics in

celebration of the 110th anniversary of Prof. S.-S. Chern and the 90th birthday of Sir R. Penrose.
I express my gratitude to the orgnaizers, Profs. Yang-Hui He, Cheng-Ming Bai, and Mo-Lin Ge,

for the kind invitation and to Jiakang Bao, Ed Hirst, Hong-Qin Li, and Suvajit Majumder for all
of their support in organizing this conference. For posterity, I would like to add that, due to the

Covid-19 pandemic, the conference was held in a hybrid in-person / virtual format, and I was one

of many virtual speakers and attendees. The conference was extremely lively and conversational,
capturing exactly the spirit of an in-person conference. I commend the organizers for crafting

what has been one of the finest virtual events I have had the privilege of attending.
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While the considerations above apply to propagation in any periodic medium,
it has been particularly fruitful to apply Bloch’s theorem in condensed matter to
electrical conductivity and resistivity. Here, the wave phenomenon is the motion of
electrons in a highly crystalline material that, in two dimensions, can be modelled
by the lattice Λ above. Here, the symmetric potential is incorporated into the
Hamiltonian operator of Schrödinger’s equation (with the correct periodic boundary
conditions), which are the natural equations of motion for the electrons. From
this point of view, the picture becomes one of quantum condensed matter. By
studying the eigenvalues of the Hamiltonian as functions over the Brillouin zone,
we initiate the celebrated electronic band theory: namely, the topology of the
spectral surface of the Hamiltonian can be used to classify the material as an
insulator or (semi)metal. This also anticipates the so-called topological materials,
which have robust, topologically-protected conductivity properties. The 2016 Nobel
Prize in Physics was awarded in recognition of both the theoretical prediction and
the experimental realization of such materials.

For the purposes of most condensed matter and solid-state physics discourse, the
interpretation of the Brillouin zone as a space of U(1)-representations or “phase
factors” is entirely sufficient. The interpretations in our first paragraph above re-
garding flat bundles and holomorphic bundles, respectively, make no appearance
in any quantum condensed matter theory literature — or more broadly any lit-
erature about periodic waves — that we are aware of. Thinking in these terms,
however, allows us to generalize the theory of periodic quantum condensed matter
to new geometries, thereby anticipating new forms of quantum matter. This is the
foundation of what we term hyperbolic band theory, developed in [4].

Persisting in two dimensions, we replace the kinetic part of the Hamiltonian with
the Laplace-Beltrami operator for the Poincaré metric. In other words, we replace
the standard complex plane C ∼= R2 with the hyperbolic plane H. The potential
part is chosen to be a suitable function that is invariant with respect to the action of
a (co-compact, strictly hyperbolic) Fuchsian group Γ, which defines a tessellation
of H — a periodic, crystalline geometry but with a generally noncommutative
translation group now. We may also generalize the periodic boundary conditions
appropriately. With this in hand, we show via direct construction [4] that there
exist wave solutions ψ that satisfy a generalized equivariance property:

ψ ◦ γ = χ(γ)ψ,

where γ ∈ Γ and χ : Γ → U(1) is a representation. In other words, there exist
wavefunctions that are weight-0 factors of automorphy. It is not so surprising
that these staples of number theory should appear here as, on the one hand, they
naturally generalize the quasi-periodicity of Euclidean Bloch waves and, on the
other hand, a natural source of Γ-periodic potentials is given by generalizations of
the types of infinite series (e.g. Eisenstein series) that typically occur in the theory
of modular forms.

This program replaces the Brillouin zone with the space of representations of
a higher-genus position space, namely X = H/Γ. Specifically, when X has genus
g ≥ 2 (which can be achieved, for instance, when Γ is the translation group of a 4g-
gonal tessellation), the Brillouin zone is a 2g-dimensional real, compact torus. The
Fourier duality between position and momentum is now less obvious, especially
considering the dimensional difference between the position surface and the mo-
mentum torus. By interpreting the Brillouin zone as the Jacobian of the Riemann
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surface X (which takes advantage of the natural complex structure on X coming
from the quotient), we can appeal to the Abel-Jacobi map as a natural map from
the symmetric product of X with itself g-many times to the Jacobian. Albeit non-
canonical and only birational in a global sense, the map is almost everywhere a
complex analytic isomorphism. In this way, complex algebraic geometry provides
a wave-particle duality that completes the theory.

A natural question concerns our ability to calculate the band structure and
make predictions in specific examples. One such example is explored at length
in our article [4] for the Bolza surface, a genus-2 Riemann surface arising from a
highly-symmetric octogonal tessellation, which we equip with both the zero po-
tential (the “empty lattice”) and with a generalized Eisenstein series. Here, nu-
merical calculations verify expectations around degeneracies and branching of the
spectrum. Another query concerns the classification of hyperbolic lattices in this
context — in other words, their crystallography — for which a partial catalogue
in two dimensions is attempted in [2]. A question concerning the extent to which
Bloch’s theorem holds for two-dimensional hyperbolic lattices, rather than simply
the existence of some automorphic wavefunctions, is also natural. This is resolved
in [5], which notably appeals to higher-rank representations of Γ and hence, by
Narasimhan-Seshadri, to the moduli space of stable holomorphic bundles of arbi-
trary rank on X. Finally, one may ask a very compelling question about if and
how hyperbolic matter might be experimentally realized. This actually predates
our mathematical and theoretical investigations by a very short interval in time: in
[3], success in constructing artificial photonic hyperbolic circuits is described. The
authors lament the lack of a hyperbolic band theory, which [4] now provides.

We encourage interested readers to interact with the various articles listed above,
which are by no means exhaustive as further articles emerge in this new subject
of hyperbolic quantum matter. On the one hand, such matter may lead to novel
models of topoelectric circuits and qubits for quantum computing, to name just one
potential disruptive application. At a foundational level, the study of it is leading to
new interactions between mathematics and physics by breathing algebraic geometry
and number theory into condensed matter theory, subjects that have interacted only
marginally if at all with this branch of physics.
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