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The moduli space of semistable Higgs bundles on a fixed algebraic curve is an
infinite-dimensional hyperkähler quotient that has been investigated from various
points of view. These include: (1) its topology, (2) its integrable system, (3) its
geometry (captured by the natural hyperkähler metric), and (4) its mirror sym-
metry. Nakajima quiver varieties are finite-dimensional hyperkähler quotients that
share much in common with Higgs bundle moduli spaces. Hyperpolygon spaces, in
particular, come closest to bridging the gap between Nakajima quiver varieties and
Higgs bundles. Themes 1 and 2 above are studied for hyperpolygons in [2]. We
report on 3 and 4 in joint work with H. Weiß and L. Schaposnik, respectively1.

For us, a hyperpolygon is a representation of the star-shaped quiver:
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The quiver has n+ 1 ≥ 4 vertices in total. A representation of a solid (ingoing)
arrow is a linear map xi ∈ Hom(C,C2). Once xi is chosen, a representation of a
dashed (outgoing) arrow involving the same nodes is a linear map

yi ∈ T ∗
xi

Hom(C,C2) ∼= Hom(C,C2)∗ ∼= Hom(C2,C).

We denote a representation by [x|y], where x is an n-tuple of column vectors xi in
C2 and y is an n-tuple of row vectors yi in (C2)∗. We now choose a sufficiently
generic vector α ∈ Rn with positive entries and define the hyperpolygon equations:

n∑
i=1

(xix
∗
i − y∗i yi)0 = 0, |xi|2 − |yi|2 = αi, for each i ∈ {1, . . . , n},

n∑
i=1

(xiyi)0 = 0, yixi = 0, for each i ∈ {1, . . . , n},

where the subscript 0 is an instruction to remove the trace, and norms |xi| and
|yi| are the standard Euclidean ones. The left-hand sides of these equations can

1This is the report / extended abstract for a talk given on May 13, 2019 at Workshop 1920:

Geometry and Physics of Higgs Bundles at the Mathematisches Forschungsinstitut Oberwolfach
(MFO). I thank MFO for its hospitality and Lara Anderson, Tamás Hausel, Rafe Mazzeo, and

Laura Schaposnik for organizing a stimulating workshop.

1



2 STEVEN RAYAN

be interpreted as moment maps. The first n + 1 equations are (rescaled) moment
maps for the action of G = (SU(2)×U(1)n)/± 1 on the representation data (with
the action encoded by the quiver) and the latter n+ 1 equations are moment maps
for the corresponding GC-action. We define hyperpolygon space Xn(α) to be the
solution set of the hyperpolygon equations modulo G. The name “hyperpolygon”
is motivated by the fact that, when we restrict to the level set y = 0, we obtain a
space parametrizing equivalence classes of polygons in R3.

The quotient Xn(α) is a smooth quasiprojective variety of dimension 2(n−3) and
its hyperkähler metric is complete whenever α is sufficiently generic [12, 8, 4, 2].
As with the moduli space of Higgs bundles, the space Xn(α) comes equipped with a
Hamiltonian U(1)-action that acts through the rotation [x|y] 7→ [x| exp(iθ)y] [8, 2].
Regarding cohomology, in [2] we show that a class of Nakajima quiver varieties that
includes Xn(α) has the hyperkähler Kirwan surjectivity property.2

Now, choose an affine coordinate z on the complex projective line P1 and a
divisor D =

∑n
i=1 zi of pairwise distinct points zi 6=∞. The map

Φ(z) =

n∑
i=1

(xiyi)0
z − zi

dz

defines from [x|y] a parabolic Higgs field for the trivial bundle E = P1 × C2. The
map respects stability (for sufficiently generic α) and notions of equivalence, and
so we obtain an embedding of moduli spaces [2]. The target moduli space is that
of β-semistable strongly parabolic Higgs bundles of rank 2 and degree 0 on P1

punctured along D, for some choice of parabolic weights β at the punctures (cf.
[4]). The embedding map is not surjective, as only parabolic Higgs bundles with
the trivial underlying bundle are obtained. The map is also not hyperkähler, as
the Nakajima hyperkähler metric on Xn(α) is complete while the Higgs bundle one
pulled back to Xn(α) is not.

Geometry. A sequence of hyperpolygons [xk|yk] that escapes to infinity under
the L2-norm µ([x|y]) =

∑n
i=1 |yi|2 will satisfy a rescaled version of the hyperpolygon

equations with each αi replaced by αi/
√
µ([xk|yk]). The limit will thus satisfy the

equations with αi = 0. We call these objects limiting hyperpolygons, which are
analogous to the limiting Higgs bundles of [10]. The limiting hyperpolygons are
parametrized, up to G-isomorphism, by the singular hyperkähler variety Xn(0).
This can be regarded as the “tangent cone at infinity” to Xn(α) with α generic.
For n = 4, i.e. the affine D4 quiver, the tangent cone X4(0) is classically known to be
C2/Γ, where Γ = Q8 is a quaternion subgroup of order 8 in SU(2). This fits neatly
into the classification of ALE gravitational instantons, which can be regarded as a
geometrization of the McKay correspondence. Here, a moduli space of gravitational
instantons is determined by their geometry at infinity, given by the tangent cone.
This is essentially the result of [9]. The geometry at infinity is a Du Val / Kleinian
singularity produced by the action on C2 of a finite group Γ < SU(2). This group
in turn determines an (affine) ADE Dynkin type, via McKay. Taking us back from
the Dynkin quiver to a gravitational instanton in the original moduli space is the
Nakajima quiver variety construction [12].

For n = 5, we are no longer in a Dynkin type and the quotient is now an 8-
manifold. However, we do know there is a stratification of X5(0) by “edge collapse”,
as pairs (xi, yi) are allowed to tend to 0 now. Hence, there are 5 lower-dimensional

2This has been extended recently to all Nakajima quiver varieties in [11].
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strata corresponding to embeddings of X4(0). Using this information, can we realize
X5(0) as C4/Γ for some finite subgroup Γ < SL(4,C)? How about for general n?
A positive answer to these questions will establish the decay rate of Nakajima’s
hyperkähler metric to the Euclidean metric as being quasi-ALE, in the sense of [6].
This is joint work in progress with H. Weiß.

Mirror Symmetry. Because Xn(α) is a smooth, noncompact Calabi-Yau man-
ifold for generic α, and because the Calabi-Yau structure arises from a hyperkähler
structure, we can ask about the existence of different types of triple branes, as mo-
tivated by [7]. For example, a (B,A,A) brane is one that is a complex submanifold
with regards to the I complex structure and Lagrangian with regards to the ωJ

and ωK symplectic forms. We note that constructions of triple branes in Nakajima
quiver varieties appear in [5, 3]. As expected, they arise generally from holomorphic
and anti-holomorphic involutions on the [x|y] data that descend to the quotient,
consistent with the picture for Higgs bundles in, for instance, [1]. For Xn(α), we
aim to characterize these branes explicitly as subvarieties containing hyperpolygons
of special type (e.g. polygons with no y data). At the same time, we want to under-
stand how mirror symmetry interacts with various kinds of hyperpolygon branes.
This is joint work in progress with L. Schaposnik.
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