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a b s t r a c t

Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for
developing environmental quality criteria/standards for use in assessment of hazard or risks. However,
because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more
than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25
metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of
alternative methods. This study found significant relationships between EDs and physicochemical pa-
rameters for twenty-five metals/metalloids. Elements were divided into three classes and then three
individual empirical models were developed based on the most relevant parameters for each class. These
parameters included log-bn, DE0 and Xm

2 r, respectively (R2 ¼ 0.988, 0.839, 0.871, P < 0.01). Those models
can satisfactorily predict EDs for another 25 metals/metalloids. Here, these alternative models for
deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assess-
ments for metals are presented.

© 2017 Published by Elsevier Ltd.
1. Introduction

Contamination of various components of the environment by
elements, including some metals or metalloids can be serious and
exposure to those elements can affect the health of humans. For
centuries, several metals have been known to be toxic to humans
(Friberg et al., 1979), especially in urban areas and locations where
minerals are being mined, smelted or otherwise extracted or used
in industrial processes. Because bioassays with model animals and
acceptable human epidemiological studies are often costly and
lengthy the information that can be used to derive standards is
sparse. Thus, accurately assessing the risks of exposures to metals/
e by Dr. Jorg Rinklebe.
an Road, Chaoyang District,

).
metalloids in the environment on health of humans and the
formulation of relevant pollution control plans and policy is chal-
lenging. There was an outstanding need for better data fromwhich
to develop acceptable standards for protection of health of humans
and in particular better methods for assessing the significance of
relevant concentrations of metals/metalloids to be developed
(Preston, 1973; Wu et al., 2010).

Effect doses (EDs) are commonly used as the scientific founda-
tion for assessment of risks to health of humans and efficient
management of those risks. ED is the threshold dose for a mea-
surement endpoint of toxicity, derived in an animal bioassay or an
acceptable human epidemiological study. The most commonly
used toxic endpoints for EDs are no-observed-adverse-effect level
(NOAEL), lowest-observed-adverse-effect level (LOAEL) and the
benchmark dose (BMD) (U.S.EPA, 2002). In general, values for
NOAEL and LOAEL are derived from data obtained during toxico-
logical experiments. The BMD is calculated based on all dose-
response data within an adverse effect compared to background

mailto:wufengchang@vip.skleg.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2017.09.065&domain=pdf
www.sciencedirect.com/science/journal/02697491
http://www.elsevier.com/locate/envpol
https://doi.org/10.1016/j.envpol.2017.09.065
https://doi.org/10.1016/j.envpol.2017.09.065
https://doi.org/10.1016/j.envpol.2017.09.065


Y. Wang et al. / Environmental Pollution 232 (2018) 458e466 459
(U.S.EPA, 1995). These endpoints can include effects of individual
elements on animals during laboratory studies and clinical or
epidemiological studies of health of humans and also determining
environmental quality criteria/standards and assessing risks to
health of humans (Wu et al., 2010; U.S.EPA, 2002).

However, due to the lack of data on toxic potencies of metals,
EDs for protecting human health have been recommended by the
USEPA for only twenty-five metals or metalloids, while EDs for
more than 50 other metals have not yet been given by regulatory
jurisdictions. The implications of this are several. First, tests using
standardized methods are needed to obtain data for model animals
that can be used to derive EDs and conduct assessments of risks to
humans (Demchuk et al., 2008). This information is not available for
many species, such as rare or endangered species, which are often
key species to be protected. Second, for some nonessential transi-
tion metals it is difficult to accurately determine forms and thus
bioavailability in complex biological systems. Third, most of the
lanthanide and actinide metals are not suitable for clinical tests
because they are usually rare and have greater toxic potencies.
Radioactive elements do not conform to the original purposes of
environmental protection and thus because the critical mode of
toxic action is different, they are considered separately. Therefore,
because prediction of potential adverse effects of metals or met-
alloids on the health of humans depends on availability of EDs,
effective predictive models are desirable.

Developing better predictive models is the future of integrated
strategies of toxicology (Hartung, 2009). The Agency for Toxic
Substances and Disease Registry (ATSDR) has begun to develop and
apply advanced computational models to enhance traditional
toxicological methods and obtain EDs or toxicity for more chem-
icals (Demchuk et al., 2008). Most studies have developed toxic
potencies for organic chemicals such as PCDEs and persistent
organic pollutants (POPs) (Domingo, 2006; Gramatica and Papa,
2007), while there is less research on inorganic chemicals, such
as metals. Chemical informatics, such as quantitative structure ac-
tivity relationships (QSARs), have been used to predict toxicity or
sublethal effects (Zhu et al., 2009). QSARs are widely established in
pharmacology and toxicology for organic molecules, while analo-
gous quantitative ion character-activity relationships (QICARs)
have been proposed to predict toxic potencies, for effects of metal
ions on ecosystems and humans (Newman and McCloskey, 1996;
Newman et al., 1998; Walker et al., 2003). Currently, QSAR
methods, incorporated into ATSDR documents (Demchuk et al.,
2011), have been used to robustly predict various toxicity end-
points such as NOAEL and LOAEL of organic compounds.

Metals or metalloids with similar electronic structures can have
similar physicochemical properties, which, in turn can determine
mechanisms of toxicity (Shaw, 1961). Critical mechanisms of tox-
icities for metals are often associated with their electronic struc-
tures and key physicochemical properties, crystal lattice, binding
affinity with biological macromolecular ligands (Ochiai, 1995).
Hence, more than twenty physicochemical parameters of metal
ions have been proposed to predict biological activities. These
include a range of parameters that relate to size and charge den-
sities of atoms or their crystal lattice structures in bulk or in asso-
ciations with other atoms. Specifically, these parameters that are
either first or second principles, include softness, hydrolysis, ioni-
zation, coordination, and geometric characteristics of metal ions
(Walker et al., 2003). It has been demonstrated that effects of
metals on the health of humans depend on their properties and
how they are related to functions (Zhu et al., 2009; Toropova et al.,
2014; Rupp et al., 2010). There was a crucial study that applied
QICAR models to predict disease in humans that exhibited similar
properties (Meng et al., 2013). In fact, a close relationship was
observed between toxicity of metals to humans and physical and
chemical properties of metal ions (Meng et al., 2013). However,
QSARs to predict dose-response relationships for metals or metal-
loids are still rarely used in assessments of risks to health of
humans (Wang et al., 2012). Thus, it is rare and would be significant
if EDs or toxicity of metals or metalloids to humans could be pre-
dicted by use of QICARs. The purpose of this study was to investi-
gate relationships between EDs of metals or metalloids
recommended by USEPA and their physicochemical properties by
use of QICARs and statistical analysis. A further goal was to use
these relationships to develop several predictive models based on
complex behavior of metals or metalloids.

To demonstrate this structural property-based approach, the
present study collected data for all twenty-fivemetals or metalloids
for which EDs have been recommended by USEPA and established
three empirical, quantitative, linear free energy models based on
the inherent physical and chemical properties of metals. After
rigorous tests of internal stability and external predictive abilities,
the three models were used to predict three classes of EDs for
another 25 metals in the fourth, fifth and sixth periods of the pe-
riodic table, including the Lanthanide and Actinide Series. Predicted
values were compared with toxicity data from the literature, so as
the robustness of the predictive model were examined.

2. Materials and methods

2.1. EDs data sets

Data selected were all appropriate EDs (mg$kg�1$day�1) of
twenty five metals or metalloids from USEPA databases of Inte-
grated Risk Information System (IRIS) (http://www.epa.gov/IRIS/),
ATSDR (http://www.atsdr.cdc.gov/) and Provisional Peer-Reviewed
Toxicity Value (PPRTV) (http://hhpprtv.ornl.gov/quickview/pprtv_
compare.php) (Table 1). Data were assessed for usability based on
several criteria: (1) data on toxic potencies to cause adverse effects
in humans were preferred; (2) if data for observations on humans
or information on harmful effects observed in exposed populations
of humans were not available, data on toxicity to animal models
were chosen as supplementary information; (3) the toxicity data
from humans including epidemiological data could be used for
evaluations of dose - effect relationships as well as selection of
appropriate measurement and assessment endpoints; (4) when
thresholds for effects on health are derived from use of an animal
bioassay, such as mice, rats, dogs, rabbits, pigs and other animals or
an acceptable human epidemiological study or clinical research
appropriate application factors need to be applied. Thus, the
inference process for equivalent doses of toxic effects from animal
to human was avoided. The twenty-five metals or metalloids
collected include silver (Ag), aluminum (Al), arsenic (As(III)),
barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium
(Cr(III) and Cr(VI)), copper (Cu), iron (Fe(III)), mercury (Hg), lithium
(Li), lutetium (Lu), manganese (Mn), molybdenum (Mo), nickel (Ni),
antimony (Sb), selenium (Se), tin(Sn), strontium (Sr), thallium (Tl),
uranium (U), vanadium (V), zinc (Zn) and zirconium (Zr). For higher
valency ions, such as Cr(VI) and V, EDs derived by USEPA used
K2CrO4 (MacKenzie et al., 1958) and sodiummetavanadate (NaVO3)
(Boscolo et al., 1994) in their experiments, which might occur as
oxyanions in the water. But in the present study free metal ions
rather than its oxyanions were considered. In order to establish a
validated model, 25 metals or metalloids were split into a training
set of nineteen metals and a validation set containing six metals
(Table 1). The splitting criteria were as follows: (1) select metals for
which values of thirty one physical and chemical parameters were
available into the training set; (2) place a different group of ele-
ments into the validation set; (3) the metals of the training and
validation sets came from three sources (IRIS, PPRTV, ATSDR)as
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Table 1
Effect doses (EDs) of 25 metals or metalloids. T and V represent the metal divided into the training set and validation set, respectively.

Atomic number Metals or metalloids Databases Effect Doses
(mg$kg�1$day�1)

Endpoints Sets

3 Li PPRTV 2.1 LOAEL T
4 Be ATSDR 0.6 NOAEL T
13 Al IRIS 0.043 LOAEL T
24 Cr(VI) IRIS 2.5 NOAEL T
25 Mn IRIS 0.14 NOAEL T
26 Fe(III) PPRTV 1 LOAEL T
27 Co PPRTV 1 LOAEL T
28 Ni IRIS 5 NOAEL T
29 Cu ATSDR 0.03 NOAEL T
30 Zn IRIS 0.91 LOAEL T
33 As(III) IRIS 0.0008 NOAEL T
34 Se IRIS 0.015 NOAEL T
38 Sr IRIS 190 NOAEL T
47 Ag IRIS 0.014 LOAEL T
48 Cd IRIS 0.005 NOAEL T
51 Sb IRIS 0.35 LOAEL T
56 Ba IRIS 63 BMD T
80 Hg IRIS 0.392 LOAEL T
81 Tl PPRTV 0.04 NOAEL T
24 Cr(III) IRIS 1468 NOAEL T
23 V PPRTV 0.22 NOAEL V
40 Zr PPRTV 0.79 LOAEL V
42 Mo(VI) IRIS 0.14 LOAEL V
50 Sn ATSDR MRL 0.025 NOAEL V
71 Lu PPRTV 504 NOAEL V
92 U IRIS 2.8 LOAEL V
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much as possible.

2.2. Physicochemical properties data sets and preliminary
correlation analysis

Based on results of several previous studies (McCloskey et al.,
1996; Pyykk€o and Atsumi, 2009; Dean, 1990; Wolterbeek and
Verburg, 2001; G.I.o. Geochemistry, 1981; Haynes, 2013;
Schwerdtfeger, 2014), thirty-one parameters were selected to
characterize various physical and chemical properties of metal ions,
including parameters of the basic geometry characteristics, elec-
trical charges, partition coefficients, thermodynamic, hardness and
redox capacities of metal ions (Table S1). Some of these parameters
such as Z/r, Z/r2 and Z2/rwere recalculated to fit the current model.
Because the variables used to describe environmental concentra-
tions are often log-normally distributed raw datawere transformed
to the natural logarithm and standardized before use in analyses
(Qian, 2011). Pair wise correlations between 31 parameters and EDs
of target metals recommended by the USEPA (Table S2) were
investigated by use of Pearson correlation analysis.

2.3. Cluster analysis

Based on different categories of objects, cluster analyses were
divided into R-type and Q-type. The subject of R-type cluster
analysis is variables (indexes), while the subject of Q-type is sam-
ples (Gao, 2001). R-type cluster analysis can be used to obtain good-
or poor-relationships between variables and combinations of var-
iables, and based on the resulting classifications a few key variables
were selected for use in further analyses such as Q-type cluster
analysis and regression analysis. R-type cluster analysis was carried
out based on measures of similarity between EDs of metals or
metalloids and thirty-one physicochemical properties. Q-type
cluster analysis can be used to classify samples in order to find the
metals that have similar “features”. In the present study, R-type
cluster analysis was used to cluster thirty-one physicochemical
parameters of metal ions, to find the most relevant relationships
between ED values and physicochemical properties. Twenty-five
ED values of metals were classified by the obtained physicochem-
ical parameters by use of Q-type cluster analysis. To ensure
different dimensions or different ranges of data could be compared
on the same scale, parameters were standardized by subtracting
the mean with resultant values divided by the standard deviation
(Eq. (1)). After converting, the mean of each parameter is 0 and the
standard deviation is 1, and transformed parameters are
dimensionless.

x*ij ¼
xij � xj

sj
(1)

where x*ijis the standardized value of jth physicochemical property
for the ith metal, xijis the original value of jth physicochemical
property for the ith metal, xjis the mean of jth physicochemical
property for all 25 metals, sj is the standard deviation of jth phys-
icochemical property for all 25 metals.

2.4. Development of predictive relationships

Empirical quantitative models were developed between pa-
rameters selected based on cluster analysis and Pearson correlation
analysis and EDs of three classes in the training set by use of linear
regression. Selected parameters and EDs were used as independent
and dependent variables, respectively. The most relevant parame-
ters were selected based on coefficients of determination (R2), re-
sidual standard error (RSE), the value of F-test statistic using
analysis of the linear regression fit and the level of Type I error (P)
set to a < 0.05. These parameters were also used as measures of the
goodness-of-fit of QICAR models. The model with minimum RSE
and maximum R2 values was deemed the best model.

2.5. Internal validation

Predictive potentials ofmodels were evaluated by use of internal
and external validation, and then used to predict EDs of other
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metals (Puzyn et al., 2011). K-fold cross-validation and Y-random-
ization were performed as internal validation to confirm stability
and significance of the QSARmodels, which could avoid over-fitting
and chance correlation. The cross-validated correlation coefficient
(Q2

cv), which was calculated between the predicted ED valuesbyi and
the observed ED valuesyi, and cross-validated root mean square
error of prediction (RMSECV) were used to evaluate internal pre-
dictive power of the model (Kiralj and Ferreira, 2009). Y-randomi-
zation is a common method to ensure robustness of the model, the
purpose of which is to test the correlation by chance between
dependent and independent variables (Rücker et al., 2007). Twenty
five random ‘models’, which did not have physical meanings, were
built by use of the same independent variable and then it was
correlated with the dependent variable randomly shuffled every
time. The appropriate QSAR model should generally have a small
correlation coefficient of Y-randomization (R2yrand) and a small
correlation coefficient of k-fold cross-validation for Y-randomiza-
tion (R2yrand). If models obtained by Y-randomization all have large
R2yrandand R2yrandvalues, it means that the current modelingmethods
could not get an acceptable QICAR model for this given data set
(Rücker et al., 2007).

2.6. External validation

To confirm predictive ability of models, external validation was
conducted by use of validation set. The externally validated deter-
mination coefficient (Q2

ext) and the root square error of prediction
(RSEext) were used as the measures of predictive ability for external
validation of models (Tropsha et al., 2003) (Eqs. (2) and (3)).

Q2
ext ¼ 1

Pm
j¼1

�
yVj � byVj

�2
Pm

j¼1

�
yVj � yT

�2 (2)

RSEext

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1

�
yVj � byVj

�2
m

vuut
(3)

Where yVj is the observed ED value for the jth metal in the
validation set, byVj is the predicted ED value for the jth metal in the
validation set, yT is the mean of the observed ED values in the
training set, and m is the number of metals in the validation set.

2.7. Discriminant analysis

Discriminant analysis (DA) is a statistical method to judge
classes to which samples belong, which is based on the relationship
between a categorical variable and a set of interrelated variables
(McLachlan, 2004). More precisely, the values are G1, G2, …, Gk,
where k is the number of distinct classes. Sample X is known to
come from k distinct classes but which is not known. DA is used to
classify samples or parameters based on the existence of classes
known as an a priori rule, and then the priori rule is used to classify
unknown samples to classes. In addition, the Fisher discrimination
method was used to classify the validation set and then predict
classes to which metals belonged. The basic idea of the Fisher DA
method is a projection. To overcome the “dimension curse” caused
by higher dimensions, points from the higher dimensional space
are projected onto a lower dimensional space, so that the data
points become more intensive. Then samples of unknown class
were classified based on the discriminant function then back-
generation estimation was used to calculate the error rate of the
discriminant function based on training samples (Johnson et al.,
1992). Using results of Q-type cluster analysis as rules for
classification of each metal, then the error rate was calculated to
indicate accuracy of results of the DA.

2.8. Evaluation of the domain of QICAR applicability

Predictive power of models, domain of QICAR applicability was
evaluated by use of William plots (Jaworska et al., 2005). The
leverage value hijfor each jth metal of ith class was calculated from
the physicochemical properties matrix (X) (Eq. (4)).

hij ¼ xTij
�
XTX

�
xij (4)

Where:xij is a row vector of a particular physicochemical
property for jth metal. If the value of hijis greater than the warning
h*i value (Eq. (5)), it indicates that the predicted ED value of this
metal is located outside the optimum prediction space (Puzyn et al.,
2011).

h*ij ¼
3ðpi þ 1Þ

ni
(5)

Where:pi is the number of variables used in the ith class QICAR
model, and niis the number of metals in the ith class training set
(Gramatica, 2007).

3. Results and discussion

3.1. General relationships between EDs and physicochemical
properties

To eliminate redundancies and develop canonical models to
predict EDs, pair-wise, linear regressions were used to investigate
relationships between thirty-one descriptors of physicochemical
properties (Table S1). Five structural parameters, including
maximum complex stability constants (log-bn), covalent index
(Xm

2 r), electrochemical potential (DE0), electronegativity (Xm) and
polarizability (Pr) were found to have reasonable correlations with
EDs of nineteen metals or metalloids for which EDs were available
(Table S2). EDs of those 19metals or metalloids recommended by
USEPA that were included in the training set were classified by use
of these five inherent physical and chemical properties of metals
(Fig. S1).

The parameters, log-bn, Xm and Xm
2 r were statistically but

weakly and negatively correlated with log-EDs (R2 ¼ 0.383,
P ¼ 0.004; R2 ¼ 0.336, P ¼ 0.007; R2 ¼ 0.315, P ¼ 0.01). Previously,
log-bn has been used to describe thermodynamic stability of cat-
ions combined with the organic ligand EDTA, CN- or SCN (Walker
et al., 2012), which represents covalent binding and complexing
capacity of metal ions. It was found that log-bn was negatively
correlated with log-EC50 and this relationship was used to predict
WQC of heavy metals for protecting aquatic organisms, which was
consistent with the results of this study (Wu et al., 2013). Xm is an
indicator that explains abilities of metal ions to attract electrons
(Pauling, 1932). More active and stronger attractions of electrons by
metal ions are associated with greater toxic potencies. Xm

2 r
comprehensively describes the relative information on covalent
character of metal-ligand binding (Nieboer and Richardson, 1980)
and quantifies the importance of covalent interactions relative to
ionic interactions (Newman and McCloskey, 1996). Metals with
larger values for Xm

2 r are more easily combined with functional
groups that contain N or S, which relates to greater toxicity in
humans. Toxicities of metal ions are directly proportional to their
ionic radii. Similarly, log-bn and Xm

2 r were negatively correlated
with predicted toxic potency, which was related to binding affin-
ities and covalent interactions of metal-ligand complexes. Values of



Fig. 1. Class-specific graphs of the ‘best’ empirical quantitative models. The green, red
and blue colors represent metals or metalloids from the training set Class A, Class B
and Class C, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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log-bn and Xm
2 r for more toxic metals, such as Hg, Ag and Tl, were

greater than 18.0 and 3.5, while those for metals with lesser toxic
potency, such as Sr and Ba, were less than 12 and 1.2, respectively.

On the other hand, Pr and DE0 were found to be positively
correlated with log-EDs. That is, ions of metals with stronger
ionization energies have lesser toxic potencies to aquatic organisms
(R2 ¼ 0.373, P ¼ 0.004; R2 ¼ 0.19, P ¼ 0.055). Polarizability (Pr)
describes interactions of the electron cloud of atoms or molecules
with external fields, and is usually associated with ionization en-
ergies of atoms or ions (Politzer et al., 2002). Electrochemical po-
tential (DE0), represents the absolute difference in electrochemical
potential between the state of an ion and its first stable reduced
state (Parr et al., 1978), which indicates that the more intense the
electron clouds of metal ions, the greater the response to external
fields and the stronger the ability of hydrolysis and ionization for
metal ions, all of which is associated with lesser toxic potencies to
humans (McCloskey et al., 1996). In addition, the softness param-
eter sp, which measures ability of a metal ion to donate its valence
electrons (Pearson, 1963), was positively correlated with log-EDs.
Consistently, sp was positively correlated with toxicity of cations
for many species such as rat (Jones and Vaughn, 1978) and mouse
(Williams and Turner,1981). In conclusion, log-bn, Xm

2 r, DE0, Xm and
Pr were statistically, significantly associated with EDs in the
training set, which was an improvement on recent QICARs studies.
However, by observing values of coefficients of determination (R2),
the results demonstrated that none of the quantitative models
presented herein were capable of directly predicting EDs of all
metals or metalloids.

3.2. Empirical quantitative models for three types of metals/
metalloids

In general, it is difficult to predict potencies of a range of metals
or metalloids by use of any single physicochemical parameter (Can
and Jianlong, 2007). Therefore, the present study assumed that
different EDs of metals or metalloids might be associated with
different physical and chemical properties. With this assumption,
Q-type cluster analysis, based on log-bn, Xm

2 r, DE0, Xm and Pr as
independent variables, was conducted (Fig. S2). Also, in order to
derive a single ED value for each metal or metalloid, because Cr(VI)
was more toxic to human health and Cr(III) was measured in
insoluble salts the ED of Cr(VI) was selected to represent Cr, and the
ED of Cr(III) was deleted from the data set before modeling
(U.S.EPA,1998). After Q-type cluster analysis, three classes of metals
were defined: (Class A) Li, Sr, Ba and Be; (Class B) Mn, Zn, Fe(III), Al,
Cr(VI), Co, Ni and Sb; (Class C) Cu, Tl, Cd, Hg, Se, Ag and As(III). The
classifications presented herein are consistent with those of pre-
vious studies, which indicated that Class A ions have the greatest
affinity for oxygen, whereas Class C have the greatest affinity for
sulfur; Class B are the transition period between Class A and Class C
(Ahrland et al., 1958; Lithner, 1989).

Class-specific empirical quantitativemodels for the three classes
of metals, which were the best fitted with log-bn, DE0 and Xm

2 r,
respectively were developed (Fig. 1). Log-bn was significantly and
positively correlated (R2¼ 0.988, F¼ 166.1, P¼ 0.0059, RSE¼ 0.365)
with log-EDs for Class A; DE0 was significantly and negatively
correlated (R2 ¼ 0.839, F¼ 31.29, P¼ 0.0014, RSE¼ 0.667) with log-
EDs for Class B; Xm

2 r was significantly and positively correlated
(R2 ¼ 0.871, F ¼ 33.83, P ¼ 0.0021, RSE ¼ 0.749) with log-EDs for
Class C (Table 2). log-bn represents maximum binding capacity of
complexation between metals and EDTA, CN� or SCN� (Wu et al.,
2013). In particular, log-bn as an indicator of binding affinities be-
tween metals and sulfur-containing groups was useful for pre-
dicting toxic potencies of alkali metals, which was useful for
discriminating among EDs in Class A. Standard reduction-oxidation
potential (DE0) is an indicator of the absolute difference in elec-
trochemical potential between the state of an ion being in its first
stable reduced state, which could represent abilities of transition
metals to hydrolyze and ionize (Wolterbeek and Verburg, 2001).
The covalent index, Xm

2 r, indicates the degree of covalent in-
teractions in metal-ligand complexes relative to ionic interactions
(Nieboer and McBryde, 1973). Results of a previous study showed
that Xm

2 r could be used to predict bioaccumulation of heavy metals
(Veltman et al., 2008), which indicates that it is suitable to establish
an empirical quantitative model with Class C since metals in that
class tend to bioaccumulate.
3.3. Rigorous validation of internal stability and external predictive
abilities

Only after an empirical quantitative model has been validated
internally and externally is it suitable to be used to make pre-
dictions (Gramatica, 2007). OECD has proposed five principles for
development of QSAR models. Models should have: (1) a defined
endpoint; (2) an unambiguous algorithm; (3) a defined domain of
applicability; (4) appropriate measures of goodness-ofefit,
robustness and predictability; (5) a mechanistic interpretation, if
possible (Gramatica, 2007; OECD, 2007). Thus, validation and
verification steps were used and statistical measures of goodness-
of-fit, robustness and measures of predictive ability of models
were used to test accuracy of three developed empirical quantita-
tive models. To avoid over-fitting and potential for chance corre-
lations, k-fold cross-validation and Y-randomization were used as
statistical measures of robustness. Three cross-validated correla-
tion coefficients, Q2

cv, of the final selected models were 0.9455,
0.7310 and 0.7418, respectively. The root mean square errors for
cross-validation (RMSECV), for the three models were7:36� 10�4,
0.207 and7:77� 10�2, respectively. To avoid autocorrelations be-
tween dependent and independent variables, Y-randomizationwas
used to confirm the RMSECV measure of robustness. A total of 25
“random” models were built by use of the same independent var-
iable and correlated with a dependent variable randomly selected
for each iteration. Models obtained by Y-randomization all had
small values for R2yrandand Q2

yrand(Fig. S3), which means that the
current methods of modeling were sufficient to obtain acceptable



Table 2
Regressionmodels, where Degrees of freedom is the number of values in the regression that are free to vary in order tomeasure the complexity of themodel, R2 is coefficient of
correlation, RSE is residual standard error and P is the level of statistical significance. The bold represent the “best” regressionmodels of Class A, Class B and Class C, respectively.

Properties Class N Degrees of Freedom Intercept Slope P R2 Adj R2 RSE F

Log-bn A 4 2 ¡0.79 0.34 0.0060 0.988 0.982 0.158 166.10
B 8 6 0.96 �0.09 0.4399 0.102 �0.047 0.684 0.68
C 7 5 �5.29 0.18 0.4486 0.119 �0.057 0.851 0.68

Xm
2 r A 4 2 �0.34 1.42 0.7807 0.048 �0.428 1.417 0.10

B 8 6 �0.55 0.17 0.6987 0.027 �0.136 0.712 0.16
C 7 5 ¡7.13 1.65 0.0021 0.871 0.846 0.325 33.83

DE0 A 4 2 �2.51 1.33 0.3785 0.386 0.079 1.138 1.26
B 8 6 0.64 ¡1.22 0.0014 0.839 0.812 0.289 31.29
C 7 5 �2.02 0.47 0.7402 0.024 �0.171 0.896 0.12

Xm A 4 2 4.14 �2.82 0.2449 0.570 0.355 0.952 2.65
B 8 6 �2.96 1.56 0.3156 0.167 0.028 0.659 1.20
C 7 5 �0.80 �0.49 0.6905 0.034 �0.159 0.891 0.18

Pr A 4 2 �0.56 0.07 0.2162 0.614 0.421 0.902 3.19
B 8 6 �0.66 0.06 0.6898 0.028 �0.134 0.711 0.18
C 7 5 �2.59 0.14 0.5957 0.060 �0.128 0.879 0.32

Fig. 2. Plot of observed log Effect dose (ED) versus predicted ED by use of empirical
quantitative models. The green, red, and blue triangles represent values predicted for
the metals or metalloids from the training set Class A, Class B and Class C, respectively;
circles represent data calculated for metals from the validation sets. The distance of
each symbol from the green line corresponds to its deviation from the related
experimental value. The black solid line represents perfect agreement between
observed and predicted values; the red dotted line represents an order of magnitude
between observed and predicted values; the purple dotted line represents one and a
half orders of magnitude between observed and predicted values. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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empirical quantitative models for this data set and confirms that
the probabilities that the models were not obtained by chance
correlations was small. External validation by comparisons of pre-
dictions of a representative set of data for which empirical values of
ED were available were the only way to ensure predictive ability of
the three empirical quantitative models (Dearden et al., 2009;
Benigni and Bossa, 2008). A training set was classified based on
the Fisher discriminant analysis (DA) and linear discriminant
functions were obtained (Eqs. (6)e(8)). When back-generation was
estimated the rate of errors in classification was zero.

Y1 ¼ 0:487ðx1 � x1Þ þ 0:357ðx2 � x2Þ � 0:983ðx3 � x3Þ
� 0:772ðx4 � x4Þ � 0:0653ðx5 � x5Þ (6)

Y2 ¼ 0:0132ðx1 � x1Þ þ 1:349ðx2 � x2Þ þ 1:767ðx3 � x3Þ
þ 1:286ðx4 � x4Þ þ 0:0279þ ðx5 � x5Þ (7)

Y ¼ 0:978Y1 þ 0:0221Y2 (8)

Where: x1; x2; x3; x4; x5were log-bn, Xm
2 r, DE0, Xm and Pr,

respectively.
Six metals in the validation set were separated into two classes,

A and B, according to posterior probabilities obtained by a linear,
discriminant function (Eqs. (6)e(8)). Lu, Sn and U were classified as
A-metals; Mo, V and Zr were classified as B-metals. Then using
Classes A and B, empirical quantitative models were developed to
predict log-ED values for these six metals. Nineteen predicted log-
ED values were compared with log-ED values recommended by the
USEPA (Fig. 2). Differences between ED values predicted by the
empirical quantitative models and the EDs suggested by USEPA for
the nineteenmetals werewithin an order of magnitude, except that
for Sn and Mo, which were outside this range but within one and a
half orders of magnitude. These results indicated that the empirical
quantitative models developed could be used to predict ED values
of metals or metalloids for which empirical data is lacking, at least
in preliminary assessments of hazard and risk. Also, the models
would be useful for prioritization of metals for further assessment
or study by collection of empirical data on toxic potencies via
various pathways of exposure. When William's plot was used to
evaluate optimal prediction spaces of the empirical quantitative
models (Hoaglin and Welsch, 1978), among metals investigated,
only the hat value for Mo exceed its
h*i (h

*
A ¼ 1:5; h*B ¼ 0:75; h*C ¼ 6=7) (Fig. S4). This result suggested

that predictions based on three empirical quantitative models were
excellent. For Mo, which was most poorly predicted, the predicted
ED value was 3.48 mg kg�1 day�1 while the ED value (LOAEL)
recommended by USEPAwas 0.14mg kg�1 day�1. The reason for the
difference was that the value of DE0 used in this study was for a
valence of þ6, but it is not known whether a valence of þ6 or þ4
was used to develop the water quality criteria (WQC) guideline
recommended by USEPA (IRIS) (Koval'skiy et al., 1961). Different
DE0 is especially important for multi-valency elements because
their oxidation status affects their mobility and toxicity in aquatic
environments (Antoniadis et al., 2017). Also, similar to Cr(VI) and
V(V), Mo(VI) might occur as oxyanions inwater, which would cause
different toxic properties from those of cations. Addition of organic
matter or purposefully aquatic environments might accelerate
metals reduction of highly toxic to low toxic, which greatly de-
creases availability (Antoniadis et al., 2017). However, it is
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important but more difficult to obtain toxic potencies of metal
species present in a sample than the total concentrations of metals
in samples. Results of previous studies have shown that ED values
(LOAEL) of Mo were 1.6 mg kg�1 day�1 (Fungwe et al., 1990) and
5 mg kg�1 day�1 (Asmangulian, 1965), which both obtained by
toxicity experiments. Therefore, the ED for Mo predicted by the
model reported here was probably sufficiently accurate.
3.4. Prediction of effect doses for other metals

EDs of other 25 metals or metalloids that are in periods two to
six of the periodic table, including the lanthanide series and the
actinide series, were predicted by use of the three empirical
quantitative models based on classification by use of DA (Fig. 3).
Class A contains groups IA, IIA and IIIB, which is consistent with
chemical behaviors of alkali metals, alkaline earth metals and IIIB
(including lanthanides and actinides). Class B contains groups IVB-
VIII, and IIIA, which are mainly transition metals. Class C contains
mainly stable platinum group metals or metalloids, such as palla-
dium (Pd), lead (Pb) and bismuth (Bi).

The results were similar to the results of Q-style cluster analysis
for the training set, which indicated that classifications obtained by
DA were credible and predicted values could be utilized. However,
gold (Au), which is a relatively stable metal, was assigned to class B.
Since the DE0 value of stable Au (III) used was 1.498, which in-
dicates that hydrolysis and ionization are different between Ag and
Cu, which are in the same group. This might be the reason Au was
classified as a Class B metal. The predicted value of ED for Au was
0.056 mg kg�1$day�1, which was approximately the same order of
magnitude as those for Cu, Ag and Hg, indicated that Au3þ has a
relatively great toxic potency.

Since non-cancer effects of metals or metalloids can be divided
into several groups according to their mechanisms of toxicity or
Fig. 3. Predicted effect doses (EDs). Periodic table of the elements show metals and metall
colors of font represent for the metals or metalloids of Classes A, B and C. The unit of predicte
toxic potency of metals or metalloids, ranging for pink (<1), yellow (1e5), and little blue (>
reader is referred to the web version of this article.)
metabolic capacities of organisms (Valko et al., 2005), the present
results indicated that ions of the first group including ions of the
elements including Co, Cu, Cr and Fe undergo redox-cycling re-
actions; the second group of metals including Cd, Ni and Hg pro-
duces the toxicity through depletion of glutathione and bonding to
sulfhydryl groups of proteins; the third group is involved with both
effects. The results of the present study would be additional in-
formation to reveal the mechanism governing the toxicity of metals
and metalloids.

The mean ED value for Class A metals (including training and
validation sets) was 14.5 mg kg�1$day�1, with a standard deviation
of 40.2, both of which are greater than values observed for the other
two classes. This might be because predicted ED values for Sr, Ba,
and Lu were as large as 169.44, 75.61, and 64.04 mg kg�1$day�1,
respectively. Since the chemical properties of metals within lan-
thanides or actinides were similar predicted EDs among lantha-
nides or actinides are similar, and ED values for metals in both of
these groups were all less than 1.0 mg kg�1$day�1. These predicted
toxic potencies were consistent with previously measured median
acute, lethal (LC50) concentrations observed during one-week ex-
posures of Hyalella azteca (Crustacea) collected from Lake Ontario
(Borgmann et al., 2005). Predicted EDs of lanthanidemetals beyond
europium (Eu) in the Periodic Table are similar to those of yttrium
(Y) because of the “Lanthanide contraction” (Wang and Schwarz,
1995). Mean EDs for Classes B and C were 0.52 and
0.83 mg kg�1$day�1, with standard deviations of 0.79 and 2.23,
respectively. This illustrated that metals or metalloids in Classes B
and C have greater toxicity to humans than those in Class A. Results
of a previous study (Hamilton et al., 1973) in which blood of more
than 200 healthy humans in the United Kingdom were collected
from 1968 to 1969 were consistent with those determined during
the present study. Concentrations of most metals in each of these
three classes were relatively small. For instance, concentrations of
oids classified into the three classes of effect doses, for which the green, red and blue
d values is defined as mg$kg�1$day�1. The color scale of ED values show the decreasing
5), respectively. (For interpretation of the references to colour in this figure legend, the
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erbium (Er), holmium (Ho) and samarium (Sm) were less than
0.009 mg g�1 and concentrations of lanthanum (La), bismuth (Bi)
and cerium (Ce) were less than 0.003 mg g�1 in blood of healthy
humans. Predicted values of other metals were largely consistent
with their toxic potencies. Based on classifications for metals ob-
tained during this study, future toxicity testing should focus on
collecting additional data for those classes for which data are sparse
instead of duplicating information for the classes for which data is
more complete.

Metals in class A were mainly s-block metals; metals in class B
were mainly transition metals; while metals in class C were mainly
stable group IB-IIB metals or metalloids. Based on Pearson's Prin-
ciple of Hard and Soft Acids and Bases (HSAB) and the properties of
metals including size, oxidation state, polarizability, electronega-
tivity and binding ligands (Pearson, 1963), metal ions can be
divided into soft ions (e.g., Cd, Hg, Ag and As(III)), hard ions (e.g., Li,
Na, Ca andMg) and borderline ions (e.g., Co, Ni, Cu and Zn). The new
classification divided metal ions into Class A, B and C, which
correspond to previous classifications of “hard ions”, “borderline
ions” and “soft ions”, respectively. According to HSAB, most soft
ions had great or intermediate toxic potencies, whereas borderline
ions had lesser toxic potencies and hard ions exhibited even lesser
toxic potencies. This might be the reason that three classes of
metals defined based on the observed data were identified in the
present study. In addition, results presented here have verified the
observation (Meng et al., 2013) that seventeen metals were indeed
divided into s-block metals and transition metals according to their
sub-layer structures and arrangements of their electron shells,
including arrangement of the electron shell and potentials for
oxidation and ionization of metals to classify metals that would
better represent characteristics of metals and toxic potencies of
metals.

3.5. Model evaluation

Herein, this study first time divided EDs of twenty-fivemetals or
metalloids into three classes and selected physicochemical pa-
rameters to construct relationships by use of cluster analysis and
then classified another 25 metals being predicted with the
discriminant analysis. The empirical quantitative models presented
also improved the contributions reviewed byWu andMu et al. (Wu
et al., 2013). First, the present study further extended the applica-
tion to ED values of 50 metals or metalloids to protect human
health. Second, thirty-one parameters selected were examined and
used to characterize the various physical and chemical properties of
metal ions. Finally, EDs of 50 metals or metalloids were predicted
by three different physicochemical properties, e.g. log-bn, DE0 and
Xm
2 r, which could represent various toxic potencies of different

metals or metalloids. Therefore, these quantitative and predictive
models are indeed a good attempt that on behalf of a future in-
ternational research development of toxicology. It could be useful
when data on EDs or toxicity of metals are lacking or incomplete.
Some working conditions should be taken into account to achieve
reasonable predicted EDs of metals or metalloids for the protection
of human health, these include (1) EDs data collected should follow
the criteria in Section 2.1; (2) a training set and a validation set were
needed and the splitting criteria should follow the criteria in Sec-
tion 2.1; (3) physicochemical properties should be efficient and
accurate; (4) models should be evaluated by use of appropriate
measures of goodness-ofefit, robustness and predictability.

Although different empirical quantitative models presented can
reasonably predict EDs of an additional 25 metals or metalloids for
which insufficient, empirical information on toxicity is available, it
was deemed necessary to improve seven areas as to obtain more
reasonable predictions in future studies. They include: (1) unified
different experiment designs in order to reduce errors; (2) sepa-
rating metal valence when modeling might improve the model
prediction accuracy; (3) need to consider the effect endpoint of
different animal experiments; (4) consider effects of various com-
pounds of metals and various anions associated with those metal
ions on their toxic potencies; (5) bioavailability and affinities of
metals and metalloids might be related to site-specific factors such
as pH, hardness and dissolved organic carbon; (6) Cation bases and
their binding conditions could be important factors affecting
toxicity of metals and metalloids that must be considered; (7)
further modifications for the model and development of suffi-
ciently accurate models. Nevertheless, this study is still an impor-
tant advancement for predicting toxic potencies of metals for
protection of human health. The predictive models provide new
approaches to predict health threshold and assess risks of metals to
the health of humans even though effective factors are complex.

4. Conclusion

Models that do not depend on empirical information obtained
in the present study appear to be useful for deriving ED values of
metals for which few empirical toxicity data are available. More
importantly, the results of the present study demonstrated corre-
lations between physicochemical properties and EDs for three
types of metals or metalloids and predicted ED values for another
25 metals in the fourth, fifth, sixth periods of the periodic table,
including the Lanthanide and Actinide Series. Our findings require
further confirmation, but they are deemed crucial and practical
because ED values could only obtain primarily from experiments
with animals or acceptable clinical or epidemiological studies of
human health before, both of which are sometimes impossible to
carry out experiments. Modeling approaches utilized in the present
study would provide a beneficial supplement to existing method-
ologies for developing preliminary screening-level EDs of metals or
metalloids, for which little scientific data exist to develop dose-
response relationships for non-cancer effects, to establish stan-
dards and assess risks for human health.
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Supplemental Tables 

Table S1. Properties affecting toxicity employed in empirical quantitative models. 

Abbreviation Description Property affecting toxicity 

AN Atomic number Ion mass 
AW Atomic weight Ion mass 
AR Atomic radius Ion length scale 
r Pauling ionic radius Ion length scale 
Z Ionic charge Oxidation state 

ΔIP Change in ionization potential from ion to 
its first reduced state Energy required for oxidation 

σp Softness coefficient Softness 

log(βn) Logarithm of the maximum complex 
stability constants 

Derived from the maximum 
strength of complexes formed 
between metals and EDTA, CN-, 
or SCN- 

ΔE0 Electrochemical potential Tendency of an ion to be oxidized 
log|KOH| Logarithm of the first hydrolysis constant Ability to produce hydroxyl ions 

Xm Electronegativity 
Ability to attract electrons or 
electron density towards itself in 
a covalent bond 

AR/AW Electron density Ion mass and length scale 
AN/ΔIP Atomic ionization potential Oxidation energy 
MP Melting point Physical properties 
BP Boiling point Physical properties 
P Enthalpy of formation of Gaseous Atoms Energy required for oxidation 
Pr Polarizability Oxidation energy 
IP Ionization potential Energy required for oxidation 
D Density Physical properties 
R-vdw VDW radius Ion length scale 
CR Covalent radius Ion length scale 
Cp-g heat capacity Cp Energy required for oxidation 
Cp-m heat capacity Cp Energy required for oxidation 

Xm-kM/P Electronegativity 
Ability to attract electrons or 
electron density towards itself in 
a covalent bond 

Xm
2r Covalent index 

Covalent versus electrostatic 
interactions during metal-ligand 
binding 

Z/rx Polarization force parameter Stability of ionic bonds 



S4 

Z/r Polarization force parameter Stability of ionic bonds 
Z/r2 Polarization force parameter Stability of ionic bonds 
Z2/r Polarization force parameter Stability of ionic bonds 
Z/AR Polarization force parameter Stability of ionic bonds 
Z/AR2 Polarization force parameter Stability of ionic bonds 



S5 

Table S2. Pearson's correlation of 31 ion characteristics and the ED values by USEPA. 

Property p Corr R2 
Log-βn 0.004**  -0.619  0.383  
Polarizability 0.004**  0.610  0.373  
Xm 0.007**  -0.580  0.336  
Xm

2r 0.010**  -0.561  0.315  
ΔE0 0.055*  0.436  0.190  
CR 0.059*  0.429  0.184  
R-vdw 0.059*  0.429  0.184  
σp 0.067*  0.418  0.174  
AR 0.079*  0.402  0.161  
MP 0.080*  0.401  0.161  
BP 0.117  0.362  

 
AW 0.383  -0.206  

 
Z/AR2 0.521  -0.153  

 
D 0.534  -0.148  

 
Z/rx 0.543  0.145  

 
AN 0.544  -0.144  

 
P 0.574  0.134  

 
AR/AW 0.597  0.126  

 
Z/AR 0.617  -0.119  

 
Cp-g 0.649  0.109  

 
Xm-kM/P 0.661  0.104  

 
r 0.765  0.071  

 
△IP 0.802  0.060  

 
Z 0.863  -0.041  

 
Z/r 0.881  -0.036  

 
Z/r2 0.913  -0.026  

 
Cp-m 0.931  0.021  

 
IP 0.935  0.020  

 
|logKOH| 0.981  0.006  

 
Z2/r 0.981  0.006  

 
AN/△IP 0.993  -0.002    

** means p<0.05. 
* means 0.05<p<0.1. 
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Supplemental Figures 

 
 

Fig. S1. R-type cluster analysis. The red coloring represents the physicochemical properties 

that have close relationships with log-ED. 
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Fig. S2. Q-type cluster analysis. The green, red, and blue coloring represent the metals or 

metalloids from the training set Class A, Class B, and Class C, respectively. 
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Fig. S3. The results of the Y-randomization test. The green, red, and blue circles represent for 

the metals or metalloids of Class A, Class B, and Class C from the QSAR models, 

respectively. The green, red, and blue forks represent for the metals or metalloids of Class A, 

Class B, and Class C from the random models, respectively. 
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Fig. S4. The Williams plot. The green, red, and blue rhombuses represent leverage values for 

the metals or metalloids from the training set Class A, Class B, and Class C, respectively; the 

green, red, and blue circles represent leverage values for the metals or metalloids from the 

validation set Class A, Class B, and Class C, respectively. The green, red, and blue dotted 

lines represent * *, ,A Bh h and *
Ch , which indicates the optimum prediction space of the 

predicted ED values for Class A, Class B, and Class C, respectively. The black dotted lines 

represent plus and minus triple standardized residuals. 

  


	990
	Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids
	1. Introduction
	2. Materials and methods
	2.1. EDs data sets
	2.2. Physicochemical properties data sets and preliminary correlation analysis
	2.3. Cluster analysis
	2.4. Development of predictive relationships
	2.5. Internal validation
	2.6. External validation
	2.7. Discriminant analysis
	2.8. Evaluation of the domain of QICAR applicability

	3. Results and discussion
	3.1. General relationships between EDs and physicochemical properties
	3.2. Empirical quantitative models for three types of metals/metalloids
	3.3. Rigorous validation of internal stability and external predictive abilities
	3.4. Prediction of effect doses for other metals
	3.5. Model evaluation

	4. Conclusion
	Acknowledgements
	Appendix A. Supplementary data
	References


	990supp

