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a b s t r a c t

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is considered a re-emerging environmental pollutant,
and exposure to environmentally relevant concentrations has been shown to cause individual devel-
opmental toxicity in zebrafish and the water flea (Daphnia magna). However, multigenerational effects
during exposure to TDCIPP and after subsequent recovery were unknown. In the present study, in-
dividuals of a model aquatic organism, the ciliated protozoan, T. thermophila were exposed to
environmentally-relevant concentrations of TDCIPP (0, 300 or 3000 ng/L) for 60 days (e.g., theoretically
372 generations) followed by a 60-day period of recovery, during which T. thermophila were not exposed
to TDCIPP. During exposure and after exposure, effects at the molecular, histological, individual and
population levels were examined. Multigenerational exposure to 300 or 3000 ng TDCIPP/L for 60 days
significantly decreased numbers of individuals, sizes of individuals, expressed as length and width of
bodies, number of cilia, and depth and diameter of basal bodies of cilia, and up-regulated expressions of
genes related to assembly and maintenance of cilia. Complete or partial recoveries of theoretical sizes of
populations as well as sizes of individuals and expressions of genes were observed during the 60-day
recovery period. Effects on number of cilia and depth and diameter of basal body of cilia were not
reversible and could still be observed long after cease of TDCIPP exposure. Collectedly, and shown for the
first time, multigenerational effects to T. thermophila were caused by exposure to environmentally
relevant concentrations of TDCIPP. Also, there were multi-generational effects at the population level that
were not caused by carry-over exposure to TDCIPP. The “permanent” alterations and their potential
significance are discussed.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Organophosphate esters (OPEs), and particularly OP triesters,
are high production volume chemicals that have been in use since
the 1970s (van der Veen and de Boer, 2012). OP triesters are used as
flame retardants (FRs), plasticizers and as performance additives to
engine oils, and found in hydraulic oils plastics, foams, textiles, floor
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polishes, waxes and furniture. In recent years production and use of
some OP triesters have been increasing and coincident with the
regulation and phase-out of some brominated FR substances such
as polybrominated diphenyl ethers (PBDEs) (van der Veen and de
Boer, 2012). Production volumes for the OPEs, tris(1,3-dichloro-2-
propyl) phosphate (TDCIPP), triphenyl phosphate (TPHP), and
tris(2-chloroisopropyl) phosphate (TCIPP), in the United States
increased from less than 14,000 metric tonnes per year in the mid-
1980s, to 5000e25,000 metric tonnes in 2006, and to approxi-
mately 38,000 metric tonnes per year in 2012 (Schreder et al.,
2016).

OPEs are not chemically bonded to the related products and thus
they are more likely to be released to the environment (van der
Veen and de Boer, 2012). It has been reported that OPEs are
frequently measured in various environmental media and biota
(Sundkvist et al., 2010; Carignan et al., 2013; Meeker et al., 2013).
Recently, TDCIPP has been identified as one of the primary OPEs,
and frequently detected in indoor air, dust, natural waters, and
tissues of wildlife and human (van der Veen and de Boer, 2012). For
example, in effluents from sewage treatment plants in Sweden,
TDCIPP has been reported to occur at concentrations as great as
3 mg/L (Marklund et al., 2005). In natural waters, TDCIPP has been
detected at sub-ppb (<mg/L) concentrations and the maximum
concentration ever reported is 377 ng TDCIPP/L in seawaters along
the coast of China near the cities of Qingdao and Xiamen (Hu et al.,
2014). Furthermore, TDCIPP has also been detected in yellow perch
(Percafluviatilis) from Djupasj€on Lake in Sweden, at concentrations
as great as 140 ng/g lipid weight (Sundkvist et al., 2010). In China,
up to 251 ng TDCIPP/g lipid weight was detected in catfish (Clar-
iusfuscus) and grass carp (Cyprinusidellus) from the Pearl River (Ma
et al., 2013).

Published data suggest that exposure to TDCIPP causes various
toxicities depending on organisms tested, such as endocrine
disruption (Kojima et al., 2013; Liu et al., 2013; Zhang et al., 2014;
Wang et al., 2015a), neural toxicity (Dishaw et al., 2011, 2014; Ta
et al., 2014; Wang et al., 2015b, 2015c), hepatoxicology (Crump
et al., 2012; Farhat et al., 2013, 2014a, 2014b; Liu et al., 2016) and
developmental and reproductive toxicity (Liu et al., 2012; Liu et al.,
2013; McGee et al., 2012; Farhat et al., 2013; Fu et al., 2013; Wang
et al., 2015a). For example, acute exposure to TDCIPP affects em-
bryonic development by delaying remethylation of the zygotic
genome and embryonic epiboly and results in significantly greater
mortality in embryos of zebrafish (McGee et al., 2012; Fu et al.,
2013). Exposure to TDCIPP decreased lengths of head and bill,
masses and size of gallbladder in embryos of chicken (Farhat et al.,
2013, 2014a, 2014b). Using the model aquatic organism and ciliated
protozoa T. thermophila, it has been found that acute exposure to
TDCIPP decreases biomass by reducing number of cells, size of cells
and quantity of cilia (Li et al., 2015b). Furthermore, two studies have
reported that chronic exposure to relatively small concentrations of
TDCIPP resulted in bioconcentration of the chemical, which resul-
ted in adverse effects on reproduction and developmental of F0
zebrafish (Wang et al., 2015b, 2015c); TDCIPP was also detected in
F1 eggs following parental exposure, causing developmental
neurotoxicity in F1 larvae of zebrafish (Wang et al., 2015b). Recently,
effects of TDCIPP on development have been evaluated in zebrafish
and the water flea (Crustacea; Daphnia magna) exposed to envi-
ronmentally relevant concentrations (Li et al., 2015a; Zhu et al.,
2015). Exposure of zebrafish to environmentally relevant concen-
trations of TDCIPP for 120 days significantly down-regulated ex-
pressions of genes included in the growth hormone/insulin-like
growth factor (GH/IGF) axis, and resulted in female-biased inhibi-
tion of growth (Zhu et al., 2015). Treatment with 65 or 550 ng
TDCIPP/L for 28 days resulted in lesser length of F0 and first gen-
eration (F1) Daphnia magna, and down-regulation of genes involved
in synthesis of proteins and metabolism and endocytosis pathways
might be responsible for the observed developmental inhibition (Li
et al., 2015a).

While natural populations can be exposed to toxicants over
several generations, evaluation of multigenerational effects has
seldom been done. In this study, T. thermophilawas used as a model
to investigate multigenerational effects of exposure to environ-
mentally relevant concentrations of TDCIPP at the individual and
population levels. Effects during and after subsequent recovery
were evaluated. T. thermophila was selected because it has a short
generation time (around several hours depending on culture con-
dition and seeding density), which allows several hundreds of
generations to be produced within several weeks.

2. Materials and methods

2.1. Chemicals and reagents

Chemicals and reagents were purchased from the following
sources: TDCIPP was from TCI Tokyo Chemical Industry Co., Ltd.
(Tokyo, Japan) and a stock solution was prepared in dimethyl
sulfoxide (DMSO); TRIzol reagent was from Invitrogen (NJ, USA);
PrimerScript™ RT reagent Kit (Perfect Real Time) and SYBR® Green
Premix Ex Taq™ k (TilRNaseH plus) were from Takara (Liaoning,
China); Penicillin G, streptomycin sulfate and amphotericin B were
from Sigma (MO, USA); Proteosepeptone was from BactoDifco
(USA); Yeast extract was from Oxioid Ltd. (Basingstoke Hampshire,
England); D (þ) glucose was from Biosharp (USA); Ethyl-
endiaminetetraacetic acid monosodium ferric salt (Fe-EDTA) was
from Aladdin (Shanghai, China).

2.2. Culturing of T. Thermophila and growth curves

T. Thermophila SB210 was purchased from Tetrahymena Stock
Centre, Cornell University, New York, USA, and was cultured in
super proteose peptone (SPP) medium (pH 7.0) at 30 �C with
shaking at 135 rpm as described before (Li et al., 2015b). SPP me-
dium included 2% proteose peptone, 0.1% yeast extract, 0.2% D (þ)
glucose, 0.003% Fe-EDTA, 100 units/mL penicillin G, 100 mg/L
streptomycin sulfate and 0.025 mg/L amphotericin B. In order to
obtain appropriate seeding density for the subsequent multigen-
erational experiment, growth curves were produced. Cells that
grew to mid-logarithmic phase were inoculated into new SPP
media in triangular flasks, and a total of six seeding densities were
included. Cells were cultured at 30 �C with shaking at 135 rpm, and
during culture period cell densities were determined using hae-
mocytometer as a previous description (Li et al., 2015b).

2.3. Protocols for multigenerational experiment

Based on preliminary growth curves, a seeding density of
2 � 104 cells/mL was selected for use in the multigenerational
experiment, which consisted of two phases: 60-day exposure and
60-day recovery. An exposure period of 60 days was selected since
T. thermophila has a short generation time, which allows several
hundreds of generations to be produced within the exposure and
recovery periods. Briefly, cells were seeded at a density of
2 � 104 cells/mL and exposed to 0, 300 or 3000 ng/L TDCIPP for
24 h. After that, cell density in the control and exposure groups was
determined, and the cells inoculated into new control media or
exposure media containing the corresponding concentration of
TDCIPP at a density of 2 � 104 cells/mL and the exposure was
continued for another 24 h. This process was repeated until the end
of exposure duration of 60-day. Both control and exposure groups
received 0.1% DMSO, which did not cause multigenerational
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toxicity of T. thermophila since, after seeding for 24 h, the densities
of T. thermophila from growth curve with seeding density of
2 � 104 cells/mL and control group were comparative in this study.
After exposure, recovery was studied by transferring cells to me-
dium in the absence of TDCIPP. Inoculation protocol was the same
as that used during the exposure to TDCIPP. Briefly, cell density in
the pre-control group was determined and cells were inoculated
into fresh medium without DMSO at a density of 2 � 104 cells/mL.
For pre-exposure groups, the same density of cells to the pre-
control group was inoculated into fresh medium without TDCIPP
and DMSO, and the recovery was continued for another 24 h. This
process was repeated until the end of recovery duration of 60-day.
Cells were collected after 30-, 60-, 90- or 120-day exposure or re-
covery to examine effects on body size, cilia quantity, cilia ultra-
structure and gene expression. During the period of exposure and
recovery, densities of cells before inoculation were determined
every 24 h for calculation of theoretical populations (Equation (1)).

Pn ¼ Dn� Vn�
Yn�1

k¼0

Dk
2� 104

(1)

where P is theoretical population; D is the density of T. Thermophila;
V is the volume of medium; n is the day when theoretical popu-
lation is calculated (n � 1).
2.4. Quantification of TDCIPP in culture medium or cells

TDCIPP in culture mediumwas extracted by use of liquid-liquid
extraction (LLE). In brief, an aliquot of 0.6 mL of medium was
transferred into a disposable, glass culture tube (16 � 125 mm). A
volume of 20 mL of internal standard (50 ng/mL in methanol), d15-
TDCIPP, was spiked into the sample and mixed well by use of a
vortex mixer. Then, an aliquot of 2 mL of hexane was added to the
tube, and mixed with vortex for approximate 1 min. The vortexed
mixture was then placed into an ultrasonic-cleaner (1.9 L, 35 kHz,
140 W from VWR, Mississauga, Canada), and ultrasonicated for
10 min at room temperature. Then, the mixture was centrifuged for
5 min to separate the two layers of aqueous medium and hexane
solvent, and the upper hexane layer was carefully transferred to a
new disposable culture tube. The ultrasonic extraction process
(with hexane) was repeated two more times, and the collected
hexane layer extracts were combined. Then, the solvent in the
combined extract were evaporated under a steam of nitrogen to
dryness, and 200 mL MeOH was added into the tube. The tube was
mixed by vortex mixing for 10 s, and transferred into a LC vial for
instrument analysis.

Details on the treatment of samples of cells and parameters for
instrumental conditions can found in previously published reports
(Su et al., 2014; Chu and Letcher, 2015). In brief, collected samples of
cells were carefully transferred into disposable, glass culture tubes,
which were further added with a volume of 4 mL of 50/50 (v/v)
dichloromethane/hexane extraction solvent, 20 mL of d15-TDCIPP
internal standard (50 ng/mL), 0.2 g sodium chloride (NaCl) and 1.2 g
anhydrous magnesium sulfate (MgSO4), respectively. The mixture
in tube was further vortexed for approximate 1 min, ultrasonicated
in the ultrasonic-cleaner for 10 min at room temperature, and
centrifuged for 5 min. The upper solvent layer was transferred to a
new tube. The sample of cells was extracted following a same ul-
trasonic extraction process for other two more times. The collected
extraction solvents were gently evaporated under a steam of ni-
trogen to dryness, and 1 mL MeOH was added to the tube. The re-
dissolved extract was further cleaned-up with a 300 mg aliquant of
PSA bonded silica, and ready for instrumental analysis. Quantifi-
cation of TDCIPP in extracts was performed by use of a Waters
XEVO-TQ-S ultra-high performance liquid chromatography-
tandem mass spectrometer (UPLC-MS/MS) with an atmospheric
pressure chemical ionization source (APCI) (Waters Limited, Mil-
ford, MA, USA) operated in positivemode, as detailed elsewhere (Su
et al., 2014; Chu and Letcher, 2015).

During quantification of TDCIPP in medium or samples of cells,
therewere unavoidable background contaminationwith an average
of 0.11 ± 0.02 ng TDCIPP/medium sample or 0.18 ± 0.03 ng TDCIPP/
cell sample. In the present study, reported concentrations are cor-
rected by subtraction of background concentrations. Method limits
of detection (MLODs) for TDCIPP were defined as three times the
standard derivation of measurements in all controls, and thus were
0.06 ng/medium sample and 0.09 ng/cell sample. Based on its in-
ternal standard, d15-TDCIPP, mean recoveries of TDCIPP were
81±10% for allmediumsamples and 87±26% for all samples of cells.

2.5. Transmission electron microscopy (TEM) imaging

TEM imaging was performed in Wuhan Regional Centre of Life
Science Instrument, Institute of Hydrobiology, Chinese Academy of
Sciences, Wuhan, China, by use of previously described methods (Li
et al., 2015b). Briefly, cells were collected and fixed in 2.5% glutar-
aldehyde. After that, cells were scraped, pelleted, dehydrated,
infiltrated and embedded, and then ultrathin sections were ob-
tained and stained. Hitachi HT7700 TEM was used for imaging of
cilia ultrastructure.

2.6. Quantitative real-time polymerase chain reaction (RT-qPCR)

RT-qPCR was performed using previously described methods
and met requirements for minimum information for publication of
quantitative real-time PCR experiment (MIQE) guidelines (Bustin
et al., 2009). Briefly, total RNA was isolated using TRIzol reagent
following themanufacturer's instructions, and purities of RNAwere
determined by measuring 260/280 nm ratios and then concentra-
tions of RNA were measured using an Epoch Microplate Spectro-
photometer (Bio Tek Instruments, Inc., Winooski, VT, USA). Reverse
transcription and RT-qPCR were performed using PrimerScript™
RT reagent (Perfect Real Time) and SYBR® Green Premix Ex Taq™ k
(TilRNaseH plus) kits. Sequences of genes were obtained from
Tetrahymena Functional Genomics Database (http://tfgd.ihb.ac.cn/)
and primers were designed using Primer 3 software (http://frodo.
wi.mit.edu) (see Table S1). Expressions of ten genes, which are
responsible for assembly and maintenance of cilia (Seixas et al.,
2003, 2010; Avasthi and Marshall, 2012; Lechtreck, 2015), were
examined. Expressions of three genes (chlamydial polymorphic
outer membrane protein repeat containing protein, ubiquitin
carboxyl-terminal hydrolase family protein and Cysteine proteinase
3 precursor were not changed upon exposure to TDCIPP so they
were used as housekeeping genes to normalize for variations
among quantifications. Thermal cycling was set at 95 �C for 15 s,
followed by 40 cycles of 95 �C for 15 s and 60 �C for 1 min. Relative
gene expression to control was calculated by the 2 eDDCT method.
Three biological replicates were included in each concentration.

2.7. Statistical analyses

Statistical analyses were performed by Kyplot Demo 3.0 soft-
ware (Tokyo, Japan). Normality and homogeneity assumptions
were examined by the Kolmogorov-Smirnow test and Levene's
tests, respectively (P < 0.05). One-way analysis of variance (ANOVA)
followed by Tukey's multiple range test were used to determine
significant differences between the control and exposure/recovery
groups. Significant differences between the control and exposure/
recovery groups were determined by P < 0.05.

http://tfgd.ihb.ac.cn/
http://frodo.wi.mit.edu
http://frodo.wi.mit.edu
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3. Results

3.1. Growth curves

Six growth curves of T. thermophilawere produced in this study,
and for the two higher seeding densities (1.0 � 105 and
5 � 104 cells/mL), cell densities reached platform stage by 24 h
(Fig. 1). Therefore, a seeding density of 2 � 104 cells/mL was
selected for subsequent multigenerational experiments since
exposure and control media were renewed every 24 h during the
study. Additionally, according to the produced growth curve with
seeding density of 2 � 104 cells/mL, 6.2 generations of
T. thermophila would be produced within 24 h, which was calcu-
lated using formula of “G ¼ log(2)N24/N0, (G: generations; N24:
populations at 24 h; N0: populations at 0 h)”. Therefore, the 60-day
exposure experiment in this study means that T. thermophila were
exposed to TDCIPP for 372 generations.
3.2. Concentrations of TDCIPP in media and cells

Continuous monitoring of concentrations of TDCIPP was con-
ducted for both exposuremedia and cells collected during exposure
(Table 1). Concentrations of TDCIPP were only detectable in sam-
ples collected during exposure (i.e. 30 and 60 days) or very early
period of recovery (i.e. 61 day). Specifically, in the treatment
exposed to 300 ng/L, concentrations of TDCIPP were 226.60 ± 0.03
and 303.70 ± 0.03 ng/L in samples of media collected at 30 and 60
day, respectively. Concentrations of TDCIPP in cells collected at 30
and 60 day were 2.70 ± 0.67 and 4.12 ± 2.64 ng/g (wet weight of
cells), respectively. TDCIPP was not detectable in any medium or
cells collected at 61 or later.

In medium with a nominal concentration of 3000 ng TDCIPP/L,
measured concentrations of TDCIPP were 2688.89 ± 0.03 and
Fig. 1. Growth curves based on numbers of cells. Values are the mean ± SEM (n ¼ 6).

Table 1
Continuousmonitoring of concentrations (units: ng/L for media; ng/g for thewetweight fo
cell samples during the exposure and recovery peroid. Values represent mean ± SEM (n

Treatments Collected samples Exposure peroid

30 day

300 ng/L medium (ng/L) 226.60 ± 0.03
cell (ng/g) 2.70 ± 0.38

3000 ng/L medium (ng/L) 2688.89 ± 0.16
cell (ng/g) 18.20 ± 3.62

a “<MLOD” means “lower than method limit of detection”; MLODs were 0.06 ng/mL a
2376.56 ± 0.48 ng/L in medium collected at 30 and 60 day,
respectively. Amounts of TDCIPP in cells collected at 30 and 60 day
were 18.20 ± 6.26 and 29.56 ± 4.13 ng/g (wet weight of cells),
respectively. Small concentrations of TDCIPP were also detected in
medium (70.87 ± 0.04 ng/L) or cells (1.52 ± 0.01 ng/g) collected at
61 days, one day after nominal exposure to TDCIPP was stopped,
after which no TDCIPP was detected in media or cells.

3.3. Effects on theoretical populations

Exposure to 300 or 3000 ng/L TDCIPP caused a time- and dose-
dependent decrease in theoretical populations compared with the
control (Fig. S1A, see Supporting Information) with first significant
effects observed after 5-day exposure (Fig. 2). During the recovery
period, no significant effects on theoretical populations were
observed due to pre-exposure to different concentrations of TDCIPP
(Fig. S1B, see Supporting Information and Fig. 2).

3.4. Effects on body length and body width

Exposure to 300 or 3000 ng/L TDCIPP for 30 days significantly
decreased body length of T. thermophila by 12.5% and 17.0%,
respectively compared with the control, and a similar effect was
also observed after 60-day exposure. In recovery period, a signifi-
cantly decreased effect on body length was also observed due to
pre-exposure to TDCIPP, but the effect was slightly less compared
with that during the exposure to TDCIPP (Fig. 3A).

Body width of T. thermophilawas significantly less by 10.6% and
14.0% after exposure to 300 or 3000 ng/L TDCIPP for 30 days,
respectively compared with the control. Prolonged exposure (60
days) caused a similar effect. A slight increase in body width at 90
and 120 day was observed compared with that at 60 day, but effects
on body width were still statistically significant compared with the
control in recovery period (Fig. 3B).

3.5. Effects on number of cilia

Exposure to 300 or 3000 ng/L TDCIPP for 30 days significantly
decreased total number of cilia of T. thermophila by 7.9% and 12.1%,
respectively compared with the control, and exposure to the two
concentrations of TDCIPP for 60 days caused a similar effect. No
significant recovery effect on cilia number was observed at 90 and
120 day (Fig. 4).

3.6. Effects on depth and diameter of basal body of cilia

TEM was used to examine effects on ultrastructure of cilia
during exposure to TDCIPP and the recovery period. Exposure to
3000 ng/L TDCIPP for 60 days significantly decreased depth and
diameter of basal body of cilia by 7.1% and 4.5%, respectively
compared with the control, and similar effects were also observed
at 120-day recovery period (Fig. 5A and B). Representative images
were presented in Fig. 5C and D.
r cells) of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in cell culturemedium and
¼ 3).

Recovery peroid

60 day 61 day 63 day or later

303.70 ± 0.03 <MLODa <MLOD
4.12 ± 1.52 <MLOD <MLOD
2376.54 ± 0.48 70.87 ± 0.04 <MLOD
29.56 ± 2.38 1.52 ± 0.01 <MLOD

nd 0.09 ng/g for medium and cell samples, respectively.



Fig. 2. Time-dependent effects on theoretical populations of T. Thermophila during exposure to TDCIPP (A) and after subsequent recovery (B). Values are the mean ± SEM. Significant
differences from the control are indicated by *P < 0.05. Each concentration was replicated 6 times.
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3.7. Transcriptional responses of genes

Transcriptional responses of 10 genes were examined during
exposure to TDCIPP and after subsequent recovery. Exposure to
3000 ng/L TDCIPP for 60 days significantly up-regulated expres-
sions of all 10 genes tested, including three genes from intra-
flagellar transport protein (ift) family (ift52, ift81 andift172), and
seven genes from cpn60 chaperonin protein family (tcp-1)
(3700.m00089, 3706.m00106, 3715.m00106, 3731.m00045,
3698.m00091, 2.m02183 and 16.m00478). After 60-day recovery, the
expressions of three ifts (ift52, ift81, ift172) and two tcp-1s
(3700.m00089 and 16.m00478) were not changed compared with
the control, but a significant up-regulation in expressions of the
other tcp1 genes (3706.m00106, 3715.m00106, 3731.m00045,
3698.m00091 and 2.m02183) was observed (Fig. 6).
4. Discussion

One of the main objectives in the present study was to inves-
tigate whether multigenerational effects persisted after the
T. thermophila was transferred into fresh medium without TDCIPP.
This makes it critical to continuously monitor concentrations of
TDCIPP in exposure medium or cells to clarify whether the multi-
generational effects observed in the period of recovery were caused
by the remaining TDCIPP in the exposure system or cells. As ex-
pected, TDCIPP was not detectable in either exposuremedia or cells
within two days (after 63 day or later) of being transferred to
medium with a nominal concentration of 0.0 ng/L TDCIPP. Thus, it
can be concluded that observed adverse effects at 63 day or later
resulted from previous exposure for 60 days to TDCIPP.

Multigenerational exposure to environmentally relevant con-
centrations of TDCIPP significantly decreased populations of
T. thermophila, but the population recovered once TDCIPP was no
longer in the media. Previous studies demonstrated that acute
exposure to relatively great concentrations of TDCIPP caused mul-
tiple toxicities (Jarema et al., 2015; Liu et al., 2016), but no infor-
mation was available about multigenerational effects of
environmentally relevant concentrations of TDCIPP. It has been
recognized that exposure to chemicals can cause multigenerational
effects through genomic and epigenetic effects. Thus, to expand on
the ecological relevance of risk assessments information on
multigenerational effects was deemed necessary. Although a pre-
vious study demonstrated that exposure to relatively high con-
centrations of TDCIPP (0.01, 0.1 or 1 mM) for 5 days significantly



Fig. 3. Effects on body length (A) and body width (B) after TDCIPP exposure and re-
covery. Values are the mean ± SEM (n ¼ 30). Significant differences from the control or
between exposure and recovery are indicated by *P < 0.05.

Fig. 4. Effects on total number of cilia in after exposure to TDCIPP and then the 60-day
recovery. Values are the mean ± SEM (n ¼ 30). Significant differences from the control
or between exposure and recovery are indicated by *P < 0.05.
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decreased biomass of T. thermophila, exposure concentrations used
in that study were greater than environmental concentrations (Li
et al., 2015b) and thus could not provide reliable information for
assessment of potential effects of TDCIPP. In the present study, a
theoretical 372-generation exposure and 372-generation recovery
experiment was performed using T. thermophila as a model, or-
ganism to study effects of multigenerational exposures to envi-
ronmentally relevant concentrations of TDCIPP. While populations
of T. thermophila were reduced due to exposure to TDCIPP, those
effects were reversed once cells were inoculated into new media
without TDCIPP.

Multigenerational exposure to environmentally relevant con-
centrations of TDCIPP resulted in smaller sizes of individual
T. thermophila, although this effect was not reversed after the 60-
day recovery period during which time there was no exposure to
TDCIPP. Inhibition of growth of individuals by TDCIPP has been
reported in chicken and zebrafish embryos exposed to relatively
great concentrations and in Daphnia magna and zebrafish larvae
exposed to environmentally relevant concentrations (McGee et al.,
2012; Farhat et al., 2013, 2014a, 2014b; Fu et al., 2013; Li et al.,
2015a; Zhu et al., 2015). Relatively great concentrations of TDCIPP
(0.01, 0.1 or 1 mM) for 5 days significantly decreased body size of
T. thermophile (Li et al., 2015b). In this study, multigenerational
exposure to environmentally-relevant concentrations of TDCIPP
significantly decreased body size of T. thermophile. Therefore, re-
sults of the present study were consistent with those of previous
studies. However, results of the study, results of which are reported
here, went further and reported that prolonged exposure (372
generations) of T. thermophila to environmentally relevant con-
centrations of TDCIPP caused similar developmental toxicity
(reduced individual size) and the toxic effects were partially
reversible during a subsequent 372 generations.

TDCIPP decreased number of cilia, changed ultrastructure of
cilia, and up-regulated expressions of genes related to assembly
and maintenance of cilia, and most of these effects were not
reversed during the 60 day recovery during which T. thermophila
were not exposed to TDCIPP. The present study suggested that cilia
might be one of toxic targets for TDCIPP exposure in T. thermophila
since numbers of cilia were less after exposure to the least con-
centration compared with other parameters tested such as relative
biomass (Li et al., 2015b). Also, effects of TDCIPP on cilia evaluated
after multigenerational exposure to environmentally-relevant
concentrations were consistent with previous findings. Cilia are
conserved eukaryotic organelles with important sensory and
motile functions (Mitchell, 2007), and thus defects of cilia caused
by TDCIPP might decrease capability of T. thermophila to sense risks
and reduce its speed of escaping when facing predators. In ciliates,
each cilium is stabilized by a conventional basal body, and assembly
andmaintenance of cilia is dependent on bidirectional trafficking of
protein complexes between basal body and cilia tip (Avasthi and
Marshall, 2012; Taschner et al., 2012; Lechtreck, 2015; Bayless
et al., 2016). Therefore, in the present study, ultrastructure of the
basal body of cilia was examined, and the decrease in depth and
diameter of the basal body of cilia might be responsible for the
observed reduced number of cilia since changes of basal body of



Fig. 5. Effects on depth (A) and diameter (B) of basal body after TDCIPP exposure and recovery. Values are the mean ± SEM (n ¼ 18e54). Significant differences from the control are
indicated by *P < 0.05. Represented transmission electron microscopy images for changed ultrastructure of depth (C) (bar ¼ 200) and diameter (D) (bar ¼ 100) of basal body.

Fig. 6. Effects on the relative expression of genes after exposure to 3000 ng/L TDCIPP for 60 days and after subsequent 60-day recovery. Values are the mean ± SEM (n ¼ 3).
Significant differences from the control are indicated by *P < 0.05.
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cilia might inhibit growth and accelerate abscission of cilia.
Furthermore, expressions of ten genes were also examined in this
study. The ten genes are included in two functional classes and are
responsible for assembly and maintenance of cilia (Seixas et al.,
2003, 2010; Avasthi and Marshall, 2012; Lechtreck, 2015). Expo-
sure to TDCIPP significantly up-regulated expressions of all ten
genes, and thus the up-regulation was considered as a feedback
response since number of cilia and depth and diameter of basal
body of cilia were decreased. Recovery of effects has been consid-
ered as an important factor in assessments of potential long-term
effects of chemicals. Similar to exposure experiments, adverse ef-
fects were also observed during the 60-day recovery period,
including decreased number of cilia, changed ultrastructure of cilia
and up-regulated expressions of genes, although transcriptions of
partial genes tested (e.g., ift52, ift81, ift172, tcp-1-3700.m00089, and
tcp-1-16.m00478) were unchanged compared with the control.
These results suggested that TDCIPP might have the capability to
cause long-term damage in lower tropic-level organisms such as in
the protozoa T. thermophila. Consistent up-regulations of genes
between exposure and recovery experiments indicated that
changes in expressions of genes were not direct effects of TDCIPP
which thus further supported the hypothesis that up-regulation of
genes was a feedback response for the reduced number of cilia
observed.

Taken together, to our knowledge we report for the first time
that multigenerational exposure to environmentally relevant con-
centrations of TDCIPP significantly decreased the size of the pop-
ulation, size of individuals, expressed as length andwidth of bodies,
number of cilia, and depth and diameter of basal body of cilia in
T. thermophila and these results suggest that TDCIPP in natural
waters might cause a significant threaten to T. thermophila due to
multigenerational exposure. Furthermore, effects at the population
level could be recovered once TDCIPP was no longer in the media.
However, the “permanent” changes in number of cilia, ultrastruc-
ture of cilia, and expression of several genes related to assembly
and maintenance of cilia were also observed. Here, it should be
noted that T. thermophila has a short generation time (around
several hours depending on culture condition and seeding density),
and thus the multigenerational effects observed might be adaptive
changes. The object of the study was to evaluate multigenerational
effects of TDCIPP after exposure to environmentally relevant con-
centrations, and whether the multigenerational effects observed
were caused through genomic or epigenetic changes remains to be
determined.
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Table S1. Sequences of primers for the genes tested. 
 

Gene ID Gene Name Isoform Sense primer（5’-3’） Antisense primer （5’-3’） 
Product 

length (bp) 

TTHERM_00648910 IFT52/Intraflagellar transport protein 52  TGCGGCAGAAATAAAGAAGA TGCGATTCTTATGACCACCA 178 
TTHERM_00089240 IFT172/intraflagellar transport particle protein 172  GCAGTTTGCACAGCTGAAAG CCCATTCCTTGCCAATCTTA 

 

199 
TTHERM_01013160 IFT81/Intraflagellar transport protein 81  TTGCAGAAAAAGCTGCAAAA CACCTTGTTGGGCAATACCT 186 
TTHERM_00037060 TCP-1/cpn60 chaperonin family protein 2.m02183 CTCAAGGACGGCAAGTTTGT TTGAGCTTGGGGATGATTTC 197 
TTHERM_00134970 TCP-1/cpn60 chaperonin family protein 3698.m00091 CCTAAACCCAAAACCAAGCA TTCATCATCGAAACCCCATT 156 
TTHERM_00149340 TCP-1/cpn60 chaperonin family protein 3700.m00089 CAAATGGCTCTTGCTGTTGA CTTCAGCGATTTCGACCTTC 169 
TTHERM_00196370 TCP-1/cpn60 chaperonin family protein 16.m00478 TCCCTATGTTCTTCGCTGCT TCTTAGGGGGACCGAAAGTT 156 
TTHERM_00239290 TCP-1/cpn60 chaperonin family protein 3706.m00097 TTGCTTGGCTGTTGCTAAGA CCACAGTTTTGAGCCAAGGT 189 
TTHERM_00497960 TCP-1/cpn60 chaperonin family protein 3715.m00106 GAAGATGCATGAAGGCCAAT TCGTGACCAGCATTATCAGC 178 
TTHERM_00670500 TCP-1/cpn60 chaperonin family protein 3731.m00045 GCGAAGACCCCTCTAAGTCC ATCAGCCCAACCAAGATCAG 200 
TTHERM_00047040 Ubiquitin carboxyl-terminal hydrolase family protein  GCAAAATGGAATGGAGCATC GCCCCATCCATCATTGATAC 176 
TTHERM_00001480 Chlamydial polymorphic outer membrane protein repeat 

  

 AAACATTCCCTGATGGCTCA AGCTCTGTAGCCATCACCTTG 183 
TTHERM_00191270 Cysteine proteinase 3 precursor, putative  TTAGCTACTGCTGGCCCAAT AATGCTCACCCCAACTGTTC 187 
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Figure S1 

 
 

 

Figure S1: Time-dependent effects on theoretical populations during TDCIPP 

exposure (A) and after subsequent recovery (No significant effects were observed, so 

population curves from different concentrations were overlapped) (B). Values 

represent mean ± SEM. Significant differences from the control are indicated by *P < 

0.05.  Each concentration contains 6 biological replicate.  
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