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Abstract

Background: The enormous physicochemical and structural diversity of metal oxide
nanoparticles (MeONPs) poses significant challenges to the testing of their biological uptake,
biodistribution, and effects that can be used to develop understanding of key nano-bio modes
of action. This has generated considerable uncertainties in the assessment of their human
health and environmental risks and has raised concerns about the adequacy of their regulation.
In order to surpass the extremely resource intensive case-by-case testing, intelligent strategies
combining testing methods and non-testing predictive modeling should be developed.
Methods: The quantitative structure-activity relationship (QSARs) in silico tools can be
instrumental in understanding properties that affect the potencies of MeONPs and in predicting
toxic responses and thresholds of effects.
Results: The present study proposes a predictive nano-QSAR model for predicting the
cytotoxicity of MeONPs. The model was applied to test the relationships between 26
physicochemical properties of 51 MeONPs and their cytotoxic effects in Escherichia coli. The
two parameters, enthalpy of formation of a gaseous cation (4Hme+) and polarization force (Z/r),
were elucidated to make a significant contribution for the toxic effect of these MeONPs. The
study also proposed the mechanisms of toxic potency in E. coli through the model, which
indicated that the MeONPs as well as their released metal ions could collectively induce DNA
damage and cell apoptosis.
Significance: These findings may provide an alternative method for prioritizing current and
future MeONPs for potential in vivo testing, virtual prescreening and for designing
environmentally benign nanomaterials.

Keywords

Cytotoxicity, in silico modeling, metal oxide
nanoparticles, nano-QSARs

History

Received 9 December 2015
Revised 21 April 2016
Accepted 3 May 2016
Published online 4 July 2016

Introduction

Metal oxide nanoparticles (MeONPs) have been widely used
across various sectors including information and communication
technologies, healthcare, transportation and construction. Among
all currently produced materials that explicitly claim nanoscale
properties, 80% are metals or metal oxides with annual production
of approximately 242 000 tonnes, of which495% are TiO2, ZnO,
Al2O3, Fe2O3, and SiO2 (Markets, 2015). They offer an array of
promising applications as constituents of sunscreens, cosmetics,
textiles, medical products and electronic devices (De et al., 2008).
However, significant data gaps and uncertainties have prevented
their robust human health and environmental risk assessment
(Lubick, 2008), which has raised concerns about the adequacy of
their regulation. The underlying issue is the enormous complexity
caused by the physicochemical and structural diversity of

MeONPs, which poses significant challenges to the testing of
their biological uptake, bio-distribution, and effects in order to
develop understanding of key nano-bio interactions and relevant
toxicological modes of action. The data gaps and uncertainties
can be reduced through extensive in vivo testing complemented by
robust physicochemical characterization. Therefore, there are
growing concerns that their unique nanoscale properties (e.g.
surface characteristics, interface and quantum size) might induce
specific biological effects, pose a threat to ecosystem and human
health (Yin et al., 2013). Some nanoscale metal oxides (e.g. CuO,
ZnO and TiO2) might be more toxic than that of carbon
nanoparticles and multi-walled carbon nanotubes (Karlsson
et al., 2008). They can produce reactive oxygen species (ROS)
(Wilson et al., 2002) as well as modulation of inflammatory
responses, which play important roles in their toxicities at the
organism and cellular levels (Brown et al., 2001).

Given the enormous diversity and multitude of MeONPs
reaching the market, this effort would be extremely resource-
intensive and in conflict with the principle for replacement,
reduction, and refinement of animal testing. Therefore, it is
essential to establish efficient testing strategies for the MeONPs
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that combine in vivo experiments with in vitro models and
computational in silico modeling methods. While there have been
some fundamental researches on toxic effects of nanomaterials
(Nel et al., 2015; Sarkar et al., 2014), it was important to develop
a conceptual framework that could be used to predict toxic
potencies and identify toxic mechanisms before their use in
various applications.

For a series of substances with the same mode of action,
quantitative structure-activity relationships (QSARs) can statis-
tically correlate physicochemical and structural properties of
MeONPs with their biological activity. Thus, QSAR or similar
in silico predictive tools can be useful as theoretical constructs to
facilitate better understanding of certain mechanisms of toxicity
in order to enable grouping and ‘‘read-across’’ strategies (Chen
et al., 2015; Mu et al., 2014; Wu et al., 2010, 2013). Such
strategies are needed as the multitude and variety of the MeONPs
reaching the market make their case-by-case risk assessment very
expensive both in terms of testing costs and sacrificed experi-
mental animals (Winkler et al., 2013). This has turned nano-
QSAR into a dynamic area of research, where more than 20
physicochemical properties have been identified as predictive of
the toxicity of MeONPs. While a minimal set of physicochemical
parameters that should be considered in the development of nano-
QSARs is still under discussions (Pathakoti et al., 2014; Schrurs
& Lison, 2012), much remains to be learned about the relation-
ships between nanoscale properties and biological outcomes.
(Meng et al., 2009; Zhao et al., 2014). Some predictive models of
nanoparticles uptake by cells and apoptosis were developed and a
strategy for modeling was applied for various nanoparticles or
modifications of their surfaces. (Epa et al., 2012; Pang et al.,
2016; Zhang et al., 2012). A model to describe toxic potencies of
17 MeONPs in Escherichia coli based on enthalpy of formation of
gaseous ions was recently proposed. (Puzyn et al., 2011).
However, this model needs to be further developed in order to
obtain better predictive capacity for determination of toxico-
logical mode of action.

In the present study, the relationships between 26 physico-
chemical properties and the cytotoxicity of MeONPs in E. coli
were examined using multiple linear regressions (MLR).
The optimal structure parameters of 16 MeONPs were developed,
describing the properties of both MeONPs and metal ions released
from them. In addition, cytotoxicities of 51 MeONPs, except for
the alkali metal oxides and most alkaline-earth metal oxides in the
periodic table, were predicted by means of a feasible nano-QSAR
model, for which no empirical toxicity data were available and
especially for those that had not yet been synthesized or had not
yet been used on an industrial scale. To show the feasibility of
constructing nano-QSARs, two commercially available MeONPs
were tested in concentrations needed to yield EC50 value.
Therefore, it is not mainly concerned on the relation to
environmentally realistic concentration in the context. The
proposed nano-QSAR model provided some advantages over
previous methods, making an improvement in calculation of
structural parameters, development of predictive capacity, and
explanation for mode of action. This in silico modeling approach
proved to be an effective solution to overcome current scarcity of
toxicity data for a variety of MeONPs and to guide the design of
safer nanomaterials.

Methods

Biological data and nanoscale structural properties

Data on the toxic potencies of 16 MeONPs to E. coli were
obtained from the literature and laboratory experiments that were
expressed in terms of the negative logarithm of EC50 (mol/L) (Hu
et al., 2009; Puzyn et al., 2011). Twenty-six physicochemical
properties of 51 MeONPs were calculated (1326 data points),
which contained physicochemical, scale, and thermodynamic
properties of both nanoparticles and metal ions (Table 1).
Three-dimensional structures were prepared using the previously
described methods (Puzyn et al., 2011). Calculations were made
at the semi-empirical theoretical level using PM6 methods in the

Table 1. Clustering, principal component analysis and evaluating contributions of each parameter.

Principle components

1 2 3 4
Properties Descriptions 43.170 71.583 84.537 90.137

DHme+ Enthalpy of formation of a gaseous cation 0.812 0.524 �0.088 0.139
�p Softness index �0.235 �0.681 0.455 0.248
�p/Z Softness index per ion charge �0.755 �0.597 �0.019 �0.047
AN Atomic number �0.292 0.780 0.479 0.252
r Pauling ionic radius �0.479 0.429 0.722 0.151
DIP Difference in IP(N + 1) and IP 0.678 �0.390 0.153 0.408
DE0 Electrochemical potential 0.352 �0.569 0.601 0.162
Xm Electro negativity �0.492 0.579 �0.566 0.194
jlogKOHj First hydrolysis constants �0.652 �0.556 �0.127 �0.187
Xm

2r Covalent index �0.605 0.722 �0.043 0.275
Z2/r Polarization force parameters 0.962 0.231 �0.029 �0.037
AN/DIP Atomic ionization potential �0.626 0.703 0.159 0.227
AR Atomic radius �0.030 �0.643 �0.066 0.549
IP IP values for the ON state of the ion 0.888 0.420 �0.110 �0.053
IP(N + 1) IP values for the O(N+1) state of the ion 0.845 �0.189 0.091 0.321
AW Atomic weight �0.273 0.779 0.483 0.262
AR/AW Electron density 0.311 �0.722 �0.404 0.329
Z Ionic charge 0.869 0.407 0.240 0.047
Z/r2 Polarization force parameters 0.893 �0.094 �0.401 0.061
Z/AR2 Similar polarization force parameters 0.643 0.629 0.164 �0.290
Z/r Polarization force parameters 0.968 0.088 �0.206 0.021
Z/AR Similar polarization force parameters 0.760 0.570 0.205 �0.163
x Electro negativity �0.495 0.576 �0.567 0.193
Z/rx Relative softness 0.974 �0.138 0.096 �0.043
GAP Energy difference between HOMO and LUMO energies �0.384 �0.226 0.490 �0.389
HoF Standard heat of formation of the oxide cluster �0.439 0.501 �0.575 0.034
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MOPAC 2012 software package (Colorado Springs, CO, USA)
(Tamura, 2010). The descriptors could reliably reflect various
properties of MeONPs, which included enthalpy of formation of a
gaseous cation (DHme+), energy difference between HOMO and
LUMO energies (GAP), and standard heat of formation (HoF)
(Puzyn et al., 2011). Twenty-three properties of metal ions
released from the MeONPs included: softness index (�p), ionic
charge (Z), softness index per ion charge (�p/Z) (Pearson &
Mawby, 1967); atomic number (AN), difference in ionization
potentials between the O(N + 1) state (IP(N + 1)) and ON state (IP)
of the ion (DIP), and atomic ionization potential (AN/DIP)
(Kaiser, 1980; Mccloskey et al., 1996; Wolterbeek & Verburg,
2001); electro negativity (Xm), Pauling ionic radius (r), and
covalent index (Xm

2r) (Wolterbeek & Verburg, 2001); electro-
chemical potential (DE0) (Kaiser, 1980); first hydrolysis constants
(jlogKOHj) (Base & Mesmer, 1976); relative softness (Z/rx) where
x represents electro-negativity values, atomic radius (AR), atomic
weight (AW), and electron density (AR/AW) (Wolterbeek &
Verburg, 2001); polarization force parameters (Z/r, Z/r2 and Z2/r),
and similar polarization force parameters (Z/AR and Z/AR2)
(Mccloskey et al., 1996).

The above descriptors are size-independent, which seems to be
in conflict with the widely accepted notion that the size of
MeONPs is decisive for their toxicity. However, the reason is that
a preliminary investigation on nanoparticles of different sizes
have revealed that some molecular descriptors (e.g. DHme+ and
HoF) correlate linearly with the cluster size (Gajewicz et al.,
2011). Moreover, the size-dependent change of some electronic
properties (e.g., DIP and Xm) occurs below about 5 nm (Zhai &
Wang, 2007). The variation of property with the increasing size of
the nanomaterials does not occur until it reaches the saturation
point. Therefore, we assumed that the clusters must be of the same
size and bigger than 5 nm for all the studied oxides.

Modeling

We use MLR, combined with Pearson and pair-wise correlations,
clustering and principal component analysis to obtain optimal
structure descriptors, to build a simple linear QSAR model that
provided a quick estimate of the cytotoxicity to E. coli. The
Pearson correlation coefficients (R2) between pairs of structural
parameters were calculated to avoid auto-correlation, and then
used to select parameters maintained in models. Clustering and
principal component analyses (PCA) were performed on the
structure properties that had significant correlations with
observed toxicities (R40.8). Combinations of four parameters,
Z/r, IP, DHme+ and �p/Z, were used as independent variables,
since they made excellent contributions to the first principle
component. The coefficient of determination (r2) and the root
mean square error (RMSE) were applied as measures of the
goodness-of-fit. Obtained data were statistically analyzed using
analysis of variance (ANOVA) and expressed as the mean with
standard error. The obtained F-value was compared with the
corresponding critical value (p¼ 0.05). A value of p50.05 was
considered statistically significant. Calculations were made with
the QSAR toolbox in the SYBYL X1.1 program (Tripos, Inc. Co,
Princeton, NJ, USA) and SPSS statistics 17.0 (IBM, Chicago, IL,
USA).

Internal validation and statistical measures of robustness

Internal validation was conducted to assess predictive ability,
sensitivity and reliability of the models and chance correlation
was assessed by three methods, including leave-one-out (LOO),
leave-many-out (LMO, m¼ 3), and bootstrapping (Golbraikh
et al., 2003; Tropsha et al., 2003). To avoid autocorrelations and
to confirm the robustness of the QSAR model, progressive

scrambling analyses (randomization: 50, maximum: five bins,
minimum: two bins and critical point: 0.75) were also performed.
In the progressive randomization approach, small random
perturbations were introduced into the training set. The statistical
results included the predicted perturbation (Q2), the calculated
cross-validated standard error of prediction (SEPCV) expressed as
a function of the correlation coefficient between the true values
(y) and the perturbed values (y’) of the dependent variables, and
the slope of Q2 with respect to the correlation of the original-
dependent variables against the perturbed-dependent variables
(dq2/dr2

yy) (Clark & Fox, 2004). The QSAR models that change
greatly with small changes in underlying responses are unstable,
which are characterized by slopes greater than 1.20.

Empirical toxicity testing

The two types of the nanoparticles that were tested empirically,
Mn2O3 (99.2%, TEM, 30 nm) and Co3O4 (99%, TEM, 10–30 nm),
were purchased from US Research Nanomaterials, Inc (Houston,
TX, USA). The E. coli (wild type) was cultured at 37˚C overnight
using Luria-Bertani (LB) broth. Cultures were centrifuged at
3000 g for 10 min and resuspended in sterilized physiological
saline. Densities of cultures of bacteria were adjusted to
0.5� 109–1.66� 109 cells/mL as determined by enumeration of
colony forming units on LB Petri dishes.

Cytotoxicities of nanoparticles were expressed in terms of the
negative logarithm of EC50, which is the effective concentration
of a given oxide that reduces viability of cells of bacteria by 50%.
Heterotrophic mineralization of glucose by bacteria was also
identified as a measure of the rate of metabolism of the selected
samples. After being washed three times with physiological
saline, 0.1 mL suspensions of E. coli were added to 2 mL of
distilled water (control) or 2 mL of nanoparticles/distilled water
solution at the nominal concentrations of 200, 400, and 600 mg/L,
respectively. To ensure dispersal of nanoparticles, stock solutions
were prepared at a concentration of 1.2 g/L after sonication
(Fisher Scientific FS30 Ultrasonic Cleaner, Marshall Scientific,
Hampton, NH, USA) at 25 �C for 20 min. Suspensions were
sonicated again for 10 min just before commencement of the
exposure experiments. Both control and experimental groups were
then agitated for 2 h at 150 rpm. Rates of metabolism were
measured by quantification of 14CO2 released during metabolic
respiration of uniformly radioactive labeled UL-14C-D-glucose
(specific radioactivity 3 mCi/mmol, American Radio-labeled
Chemicals, St. Louis, MO, USA) dissolved in ethanol following
the 2 h incubation period.

At time zero, the 50 mL glass vial was sealed with a silicone
stopper, on the bottom of which was hung a needle with a folded
filter paper soaked with 0.05 mL of 4 mol/L NaOH solution for
CO2 trapping. Trapping occurred overnight (8–12 h) after injec-
tion with 1 mol/L H2SO4 at the end of 2 h incubation. Filter papers
were then removed and placed in 6 mL scintillation vials
containing 1 mL of 1 mol/L NaOH. Then 3 mL scintillation
cocktail (Gold Star multi-purpose, Maridian Biotechnology Ltd,
Epsom, UK) was added to the scintillation vials and radioactivity
was quantified by counting with a liquid scintillation counter (LS-
6500, Beckman-Coulter, Series Liquid Scintillation Counters,
Brea, CA, USA). Concentrations were calculated from disinte-
grations per minute (DPM) and the specific activity of the
mixture.

External validation and applicability domain of the model

To ensure that there was no systematic error due to variation
under laboratory conditions, measurements of toxicity among a
series of experiments were repeated for Mn2O3 and Co3O4. These
two commercially available MeONPs were tested for external
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validation. Measures of predictive ability based on external
validation can be expressed as the root mean square error of
prediction (RMSEP) (Equation 1).

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPv
i¼1 ðyobs

i � y
pred
i Þ2

v

s
ð1Þ

where: yi
obs is experimental (observed) value of the property

for the ith compound; yi
pred is predicted value for

ith compound; v is the number of compounds in the
validation set.

Responses were also verified by the use of response and
structure space of MeONPs, in which the model makes predic-
tions with the most optimal reliability. In the present study, the
leverage approach and Williams plots were used to visualize
results (Tropsha et al., 2003). Defining borders of the space,
which is referred to as the ‘‘optimum prediction space’ or
‘applicability domain’, is important, especially for compounds
with unavailable experimental data to verify quality of predic-
tions. If the standardized residual of a compound is greater than
three standard deviation units (±3s), the compound is classified
as an outlier that might be less reliable and thus treated with
greater care (Dearden et al., 2009). The leverage value hi for each
ith compound is calculated from the descriptor matrix (X)
(Equation 2).

hi ¼ xT
i XTX
� ��1

xi ð2Þ

where: xi is a row vector of molecular descriptors for a particular
compound. The value of hi greater than the warning h* value
indicates that the structure of a compound substantially differs
from those used for the calibration. Therefore, the compound is
located outside the optimum prediction space. The h* value is
defined (Equation 3).

h� ¼ 3ðpþ 1Þ
n

ð3Þ

where: p is the number of variables used in the model and n is the
number of training compounds.

Results

Quantitative nanostructure-activity relationship studies
on MeONPs

QSAR models for 16 MeONPs were developed and then used
to predict cytotoxicities of 35 nanoparticles for which data on
toxicity to E. coli were not available (Puzyn et al., 2011).
Although the number of nanoparticles was limited, it was
enough to build a predictive model. Twenty-six structure
descriptors were obtained by employing semi-empirical quan-
tum chemistry calculations or from informations in the
literature. These descriptors represent physicochemical proper-
ties at the molecular scale, properties of surface and valence,
physicochemical properties of free metal ions, describing
dissolution and ionization potentials of metal ions released
from MeONPs that were used in development of the QSAR
models (Table S1, SI). After an initial assessment of associ-
ations on the basis of Pearson and pair-wise coefficients of
determination (r2) (Table S2, SI), clustering and principal
component analyses (Table 1) were performed to help select
four optimal parameters (e.g., Z/r, IP, DHme+, and �p/Z) and
establish multiple linear regression models. After assessing
some developed models, an optimal two-variable model was
selected (Table 2). A simple but statistically significant QSAR
model was developed to predict toxicities of nanomaterials
(Equation 4). Statistical indicators of this model were as
follows, R2¼0.8793, RMSE¼ 0.442, F¼ 55.654, and p¼ 4.23
� 10� 7, which means that these two descriptors can

Table 2. Summary of model performance using different parameter setsa.

Properties No. r2 F p Multiple linear regression model

Z/r, IP, DHme+, �p/Z 4 0.8614 24.306 2.05� 10�05 T¼ (4.88 ± 0.86) + (–0.09 ± 0.11)Z/r+
(–0.01 ± 0.02)IP+ (–0.01 ± 4.74� 10�4)DHme+

+ (–5.49 ± 9.84)�p/Z
Z/r, IP, DHme+ 3 0.8693 34.270 3.65� 10�06 T¼ (4.41 ± 0.17) + (–0.16 ± 0.10)Z/r+

(–0.01 ± 0.02)IP+ (–0.01 ± 3.89� 10�4)DHme+

Z/r, DHme+, �p/Z 3 0.8717 34.961 3.28� 10�06 T¼ (4.74 ± 0.72) + (–0.12 ± 0.07)Z/r+
(–0.01 ± 4.37� 10�4)DHme++ (–3.95 ± 8.35)�p/Z

IP, DHme+, �p/Z 3 0.8657 33.216 4.31� 10�06 T¼ (5.17 ± 0.76) + (–0.02 ± 0.01)IP+
(–0.01 ± 4.59� 10�4)DHme++ (–9.01 ± 8.65)�p/Z

Z/r, IP, �p/Z 3 0.8030 21.374 4.19� 10�05 T¼ (3.75 ± 0.87) + (–0.14 ± 0.13)Z/r+
(–0.03 ± 0.03)IP+ (7.48 ± 9.90)�p/Z

Z/r, IP 2 0.8095 32.860 8.24� 10�06 T¼ (4.38 ± 0.21) + (–0.10 ± 0.11)Z/r+
(–0.05 ± 0.02)IP

Z/r, DHme+ 2 0.8793 55.654 4.23� 10�07 T¼ (4.412 ± 0.165) + (–0.121 ± 0.068)Z/r+
(–0.001 ± 2.57� 10�4)DHme+

Z/r, �p/Z 2 0.8054 32.046 9.44� 10�06 T¼ (3.12 ± 0.52) + (–0.24 ± 0.07)Z/
r+ (14.49 ± 6.23)�p/Z

IP, DHme+ 2 0.8648 48.954 8.88� 10�07 T¼ (4.40 ± 0.18) + (–0.02 ± 0.01)IP+
(–9.93� 10�4±3.95� 10�4)DHme+

IP, �p/Z 2 0.8006 31.117 1.11� 10�05 T¼ (4.11 ± 0.80) + (–
0.06 ± 0.02)IP+ (3.00 ± 9.03)�p/Z

DHme+, �p/Z 2 0.8551 45.250 1.39� 10�06 T¼ (4.86 ± 0.76) + (–0.01 ± 3.58� 10�4)DHme++
(–6.24 ± 8.75)�p/Z

Z/r 1 0.7442 44.643 1.04� 10�05 T¼ (4.22 ± 0.23) + (–0.35 ± 0.05)Z/r
IP 1 0.8133 66.341 1.11� 10�06 T¼ (4.37 ± 0.21) + (–0.06 ± 0.01)IP
DHme+ 1 0.8602 93.263 1.44� 10�07 T¼ (4.34 ± 0.17) + (–0.001 ± 1.49� 10�4)DHme+

�p/Z 1 0.6403 27.704 1.20� 10�04 T¼ (1.40 ± 0.27) + (30.72 ± 5.84)�p/Z

ar2 is coefficient of determination and p is the statistical significance level.
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explain approximately 88% of the variability within the toxicity
data.

log 1=EC50ð Þ ¼ 4:412� 0:165ð Þ þ �0:121� 0:068ð ÞZ=r

þ �0:001� 2:57� 10�4
� �

DHmeþ
ð4Þ

Validation and prediction of the nano-QSAR model

Predicted cytotoxicities of the 16 MeONPs were in a good
agreement with observed ones (R2¼0.882, F¼ 113.14,
p¼ 0.001) (Figure 1). Internal validation of the QSAR model
was performed by use of the ‘‘leave-one-out’’, ‘‘leave-many-out’’,
‘‘bootstrapping’’, and ‘‘progressive scrambling’’ methodologies
(Table S3, SI). The recommended reference criteria are R240.81
and the difference between R2 and QCV

2 does not exceed 0.3
(Eriksson et al., 2003). The progressive scrambling results
indicated that the model was robust and the chance correlation
did not occur with dq2/dr2

yy51.20 (Kubinyi, 1993) (Figure S1,
SI). The leverage value ‘‘h’’ indicates the optimal applications
domain of the model where the structures of tested MeONPs
change (h (DHme+)5h* and h (Z/r)5h*) (Figure S2, SI).
External validation, in which the toxicity testing should be
consistent with the toxicities of the training sets, is also an
essential part of the validation process. Toxic potency of Mn2O3

and Co3O4 had been investigated based on the effects on
heterotrophic mineralization ratios of glucose by bacteria
(Figure S3, SI). The predicted error between predicted and
observed log-EC50 of Mn2O3 was 0.37, while the predicted error
of Co3O4 was 0.06. The predictive potency of the model was
validated with a good root mean square error of prediction
(RMSEP¼ 0.228).

A periodic table for cytotoxcities of MeONPs to E. coli was
established based on the predicted model (Table S4, SI). As can
be observed in the periodic table of chemical elements, there are
about 80 (� 65%) metals and 7 metalloids (e.g. B, Si, Ge, As, Sb,
Se, Te and Po). From the second to the sixth period, the 51
MeONPs were in main groups of IIA-VA and subgroups of IB-
VIII, with the range of predicted log (1/EC50) varying from 1.5 to
4.1 (Figure 2).

The proposed mechanisms of toxic potency in E. coli

The potential mechanisms of cytotoxicity in E. coli were deduced
on the basis of the nano-QSAR model (Figure 3). Details of this
procedure includes four steps. First, the clusters of MeONPs were
accumulated through the cell membrane and interacted with
proteins on the surface of the membrane. Second, the MeONPs
entered into the cytoplasm through physicochemical interaction
and were exposed to weakly acidic conditions, which can break
the Me-O bond around the surface of the nanoparticles. Then,
metal ions are involved in macromolecular complexation. In the
meantime, free electrons are generated and interact with various
molecules in the cell to produce reactive oxygen species (ROS).
Finally, the ROS cause DNA damage and metal ions will be
involved in macromolecular complexation

In the proposed mechanisms, the DHme+ characterized the
capacity of the MeONPs to form free metal ions, while the Z/r
characterized the capacity of free metal ions to cause toxicity.
These two parameters represent the key steps in an adverse
outcome pathway that resulted in toxic effects. Since diameters of
the tested nanoparticles were in the range from 15 to 90 nm, the
parameters used to characterize the size of the MeONPs clusters
were ignored. However, in the real toxicity studies, the size of the
nanomaterials also play an important role (Gliga et al., 2014).
Therefore, a better model including size parameters should be
developed in the future.

Discussion

The nano-QSAR model, which includes two parameters
(DHme+ and Z/r), was developed from a training set of 16
individual compounds. The ratio between the number of training
sets and the number of structure parameters met the criteria of
Toppliss and Costello (1972). Meanwhile, the two structure
parameters can contribute to characterize the mode of toxic
action. The parameter DHme+, computed from semi-empirical
quantum chemistry, represents molar enthalpy of formation of
gaseous ions. Release of ions from MeONPs is an important
factor in induction of toxicity of MeONPs. Cations of lesser
charge, are more energetically favorable than those cations with
more electrons to loose. For example, nano PbO is predicted more
toxic than nano PbO2. This results are in accordance with the
finding that the higher the ionic potential, the greater the degree
of the ion–ion screening effects in an oxide by surrounding anions
(Erdemir et al., 2005). Several studies have confirmed that the
released metal ions in culture media from some nanomaterials
were the proximal cause of adverse effects (Alaraby et al., 2016;
Wang et al., 2014, 2016). Another parameter, Z/r, represents
electro-negativity or propensity of metal ions to bind to
bioligands. Inferred from the model, the binding capacity can
enhance the MeONPs to cause toxic effects. Toxicities of n-ZnO
and n-CuO to a bacterium (V. fischeri) and some crustaceans (D.
magna and T. platyurus) were mostly due to dissolution of
Zn2+ and Cu2+ (Heinlaan et al., 2008), which was significantly
different with the toxic mechnisms of their nano-state (Lubick,
2008). Cytotoxicities of Mn2O3 (99.2%, TEM, 30 nm) and Co3O4

(99%, TEM, 10-30 nm) were tested to acquire the EC50 values for
the purpose of external validation. These values were 192 mg/L
and 245 mg/L, respectively. The values predicted by the model for
these two compounds were 93 mg/L and 210 mg/L, respectively. It
is important to note that these dose ranges were selected only for
validation purposes and do not reflect environmentally relevant
concentrations.

As shown in the period table, since elements in the same main
group have similar extranuclear electron arrangements, toxic
potencies of elements with the same valence vary with less than 1

Figure 1. Observed toxic potencies as a function of predicted toxic
potencies, given as log (1/EC50). The straight line represents perfect
agreement between experimental and calculated values. Bold dots
represent values predicted for the metal oxides from the training set;
triangles represent the data from the external validation sets. The distance
of each symbol from the line corresponds to its deviation from the related
experimental value, which is within the range of 95% prediction level.
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order of magnitude. In contrast, elements in the same period have
identical numbers of electrons in their outer shell, which lead to
the fact that elements in IB, IIA, IIB cause adverse effects but
higher valencies correlate with lower toxicity of the ions. For
instance, Tl2O, Ag2O and Au2O had the greatest toxic potency
(Predicted log 1/EC5044), while PtO2 and TcO2 were less toxic
(Predicted log 1/EC5051.6) (Table S4, SI). This result is
consistent with previously reported results (Negi et al., 2013).
The reason for this is that s-, p-, and d-metals have different
oxidation states. The s-metal only has one oxidation state, but p-
has two oxidation states. The difference between them is two
units. The d-metal has higher valence state except for the +2
oxidation state. For example, lanthanide and actinide metals have
fully occupied d10 orbitals, with significant differences among
ionic radii and atomic radii. Moreover, it was also found that
MeONPs, which were less oxidized, exhibited greater toxic
potencies. For instance, nano-CoO was more toxic to E. coli than
nano-Co3O4 (Table S5, SI). Toxicity of nano-TiO2 to E.coli with
the logarithm of EC50 has been determined to be –1.60 (Dasari

et al., 2013), which is consistent with the predicted value –1.95.
Due to the log–log scale, the predicted and the observed toxic
endpoints for well-predicted MeONPs differ by a factor of two.
This uncertainty could prevent their use in robust assessments of
risk in regulatory decision-making. Therefore, an intelligent
testing strategy that combines in vivo experiments with in vitro
models and computational in silico methods, is needed to
facilitate the risk analysis of MeONPs, and to support their risk
management and regulatory oversight. In the context of paucity of
robust experimental data for the multitude of existing and
emerging nanoformulations, the proposed modeling approach
can be an alternative solution to obtain predicted endpoint values
in rapid, inexpensive, and reasonably accurate manner. The model
has proved to be able to predict the toxicity of the MeONPs, and
therefore can provide useful guidance for their regulation and
safer design.

There are some fundamental differences in bioavailability and
uptake. The chemistry and behavior of MeONPs involves
dynamic aspects of aggregation theory, rather than the

Figure 3. Proposed mechanism of toxic
potency of MeONPs combined with
released metal ions to E. coli. There are four
steps as follows: (1) The MeONPs are
absorbed or accumulated through the cell
membrane and interacted with proteins on the
surface of membrane. (2) The MeONPs enter
into the cytoplasm, break the Me-O bond, and
release metal ions and free electrons. (3) The
metal ions are involved in macromolecular
complexation. (4) The free electrons are
generated and interact with various molecules
in the cell to produce reactive oxygen species
(ROS). Then, it attacks the DNA to cause
DNA damage and cell apoptosis.

Figure 2. A periodic table of predicted toxic potencies of 51 MeONPs. The predicted value is described as the negative logarithm of median effect
concentration, with the unit of the EC50 defined as mol/L. The color scale of log (1/EC50) value shows the potential assigned to each of the MeONPs,
ranging for green (52), light green (2-3), yellow (3-4), and red (44), respectively. .
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equilibrium models traditionally used for free metal ions. Some
MeONPs can release free metal ions from the surface of the
particles. Biological uptake of nanomaterials is not only via
endocytosis but also ion transporters, as well as Trojan-horse
mechanisms (Hsiao et al., 2015). Optimal structural parameters
can characterize energy of the lattice, reflecting dissolution and
ionization potential of nanoparticles which is a good parameter to
describe chemical stability. This process is related to the
dissolution and redox reactions, which can release metal ions or
produce free radicals that caused adverse effects on host bacteria.
It was reported that mechanisms of toxicities of nanoscale metals
and dissolved metals to fish vary among materials (Shaw &
Handy, 2011). Composite mechanisms of oxidative stress and free
metal ions, have been studied during experiments to measure
ROS, concentrations of metal ions, reduced glutathione and lipid
peroxidation (Neal, 2008).

Conclusions

A nano-QSAR model was developed to predict the cytotoxicity of
51 MeONPs to E. coli for which no empirical data were available.
Based on the results of a previous study, the model was improved
by use of additional structure parameter Z/r, which increased
accuracy of prediction. The results of applying the two-variable
model provide an evidence for understanding the key steps of the
MeONPs, as well as released metal ions, to cause toxic potency in
E. coli. The results of the study suggest that nano-QSARs can be a
useful complementary method for hazard screening of MeONPs
and their prioritization for further testing and risk assessment. In
addition, it can provide excellent information supporting the safer
design of nanomaterials.
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S1 

Table S1. The list of MeONPs and their structural properties 1 

MeO

NPs 
ΔHme+ σp σp/Z AN r ΔIP ΔE0 Xm 

|logK

OH| 
Xm

2r Z2/r 
AN/

ΔIP 
AR IP IP(N+1) AW 

AR/

AW 
Z Z/r2 Z/AR2 Z/r Z/AR x z/rx GAP HoF 

 kcal/mol / / / Å eV V Å / / / / Å eV eV / / / / / / / Å / eV kcal/mol 

ZnO 662.44 0.12 0.06 30 0.74 21.76 0.76 1.65 8.2 2.01 5.41 1.38 1.53 17.96 39.72 65.4 0.02 2 3.65 0.85 3 1.31 1.65 1.64 3.87 -5307 

CuO 706.25 0.1 0.05 29 0.73 16.55 0.16 1.9 8 2.64 5.48 1.75 1.57 20.29 36.84 63.6 0.02 2 3.75 0.81 3 1.27 1.9 1.44 -3.85 -954.75 

Y2O3 837.15 0.15 0.05 39 0.9 40.08 2.37 1.22 7.7 1.34 10 0.97 1.78 20.52 60.6 88.9 0.02 3 3.7 0.95 3 1.69 1.22 2.73 -2.48 -11486 

Bi2O3 1137.4 0.11 0.04 83 1.03 19.74 0.2 2.02 1.09 4.2 8.74 4.2 1.46 25.56 45.3 209 0.01 3 2.83 1.41 3 2.05 2.02 1.44 -2.71 -1966 

In2O3 1271.13 0.1 0.03 49 0.8 25.97 0.49 1.78 4 2.53 11.25 1.89 1.62 28.03 54 115 0.01 3 4.69 1.14 4 1.85 1.78 2.11 -4.79 -3088 

Al2O3 1187.83 0.14 0.05 13 0.54 91.54 1.66 1.61 4.3 1.4 16.67 0.14 1.82 28.45 119.99 27 0.07 3 10.29 0.91 6 1.65 1.61 3.45 -4.59 -8244 

Fe2O3 1408.29 0.1 0.03 26 0.55 24.15 0.77 1.83 2.2 1.84 16.36 1.08 1.72 30.65 54.8 55.9 0.03 3 9.92 1.01 5 1.74 1.83 2.98 -6.45 -1051 

SnO2 1717.32 0.08 0.02 50 0.69 31.54 0.15 1.96 3.4 2.65 23.19 1.59 1.4 40.74 72.28 119 0.01 4 8.4 2.04 6 2.86 1.96 2.96 -3.85 -2611 

TiO2 1575.73 0.1 0.03 22 0.61 56.03 0.5 1.54 2.2 1.45 26.23 0.39 1.45 43.27 99.3 47.9 0.03 4 10.75 1.9 7 2.76 1.54 4.26 -7.47 -9826 

V2O3 1097.93 0.12 0.04 23 0.64 17.4 1 1.63 2.26 1.7 14.06 1.32 1.31 29.31 46.71 50.9 0.03 3 7.32 1.75 5 2.29 1.63 2.88 -4.17 -3192 

Sb2O3 1233.06 0.12 0.04 51 0.76 18.9 0.66 2.05 2.72 3.19 11.84 2.7 1.53 25.3 44.2 113 0.01 3 5.19 1.28 4 1.96 2.05 1.93 -7.27 -2140 

ZrO2 1357.66 0.12 0.03 40 0.72 46.01 1.45 1.33 0.3 1.27 22.22 0.87 1.59 34.34 80.35 91.2 0.02 4 7.72 1.58 6 2.52 1.33 4.18 -1.65 -9834 

CoO 601.8 0.13 0.07 27 0.65 16.42 0.28 1.88 9.7 2.3 6.15 1.64 1.67 17.08 33.5 58.9 0.03 2 4.73 0.72 3 1.2 1.88 1.64 -2.2 -8799 

NiO 596.7 0.13 0.06 28 0.69 17.02 0.23 1.91 9.9 2.52 5.8 1.65 1.62 18.17 35.19 58.7 0.03 2 4.2 0.76 3 1.23 1.92 1.51 -4.73 63.89 

Cr2O3 1268.7 0.11 0.04 24 0.62 18.2 0.41 1.66 4 1.71 14.52 1.32 1.85 30.96 49.16 52 0.04 3 7.8 0.88 5 1.62 1.66 2.91 -6.41 -2829 

La2O3 1017.22 0.17 0.06 57 1.03 30.77 2.37 1.1 8.5 1.25 8.74 1.85 2.74 19.18 49.95 139 0.02 3 2.83 0.4 3 1.09 1.11 2.62   



 

S2 

Table S2. Pearson correlation coefficients (r) between structure properties of 26 MeONPs 2 

 ΔHme+ σp σp/Z AN r ΔIP ΔE0 Xm |logKOH| Xm
2r Z2/r AN/ΔIP AR IP IP(N+1) AW AR/AW Z Z/r2 Z/AR2 Z/r Z/AR x z/rx GAP HoF 

ΔHme+ 1.000 -.607 -.974 .175 -.209 .349 -.018 -.037 -.839 -.097 .896 -.135 -.204 .945 .591 .186 -.074 .912 .718 .759 .856 .855 -.041 .699 -.510 -.021 

σp  1.000 .649 -.212 .151 .253 .656 -.455 .367 -.278 -.405 -.147 .412 -.590 .021 -.215 .341 -.361 -.294 -.489 -.361 -.461 -.452 -.084 .239 -.509 

σp/Z   1.000 -.272 .066 -.245 .024 .075 .854 .053 -.848 .057 .281 -.925 -.498 -.284 .221 -.911 -.599 -.794 -.773 -.877 .080 -.651 .438 -.016 

AN    1.000 .852 -.325 -.230 .378 -.333 .784 -.114 .854 -.351 .006 -.267 .998 -.777 .197 -.506 .292 -.302 .273 .376 -.355 .113 .245 

r     1.000 -.316 .026 .075 -.008 .605 -.393 .736 -.211 -.313 -.362 .850 -.705 -.062 -.769 .031 -.588 .000 .074 -.467 .335 .033 

ΔIP      1.000 .569 -.494 -.244 -.515 .545 -.609 .287 .401 .956 -.298 .652 .454 .600 .162 .582 .288 -.494 .672 -.104 -.609 

ΔE0       1.000 -.812 -.078 -.632 .159 -.495 .384 -.044 .457 -.228 .310 .223 .149 -.069 .176 .044 -.812 .459 .174 -.666 

Xm        1.000 .069 .831 -.320 .667 -.293 -.158 -.459 .366 -.252 -.325 -.241 -.057 -.297 -.167 1.000 -.639 -.229 .775 

|logKOH|         1.000 -.026 -.711 -.105 .303 -.758 -.444 -.349 .159 -.805 -.522 -.711 -.666 -.780 .074 -.592 .374 -.011 

Xm
2r          1.000 -.419 .945 -.371 -.245 -.504 .778 -.562 -.241 -.568 .018 -.509 -.082 .831 -.715 -.017 .618 

Z2/r           1.000 -.457 -.176 .961 .758 -.100 .115 .934 .847 .766 .964 .868 -.322 .911 -.415 -.324 

AN/ΔIP            1.000 -.343 -.294 -.598 .848 -.665 -.216 -.657 .012 -.564 -.076 .666 -.688 .062 .533 

AR             1.000 -.288 .145 -.354 .549 -.231 .079 -.725 -.048 -.554 -.292 .059 -.105 -.231 

IP              1.000 .652 .024 .000 .918 .784 .821 .913 .896 -.161 .800 -.470 -.132 

IP(N+1)               1.000 -.239 .540 .669 .747 .396 .774 .525 -.461 .812 -.237 -.546 

AW                1.000 -.752 .209 -.487 .305 -.286 .286 .364 -.338 .120 .232 

AR/AW                 1.000 -.138 .545 -.365 .322 -.295 -.251 .332 -.173 -.247 

Z                  1.000 .636 .830 .834 .936 -.328 .818 -.360 -.319 

Z/r2                   1.000 .435 .954 .531 -.242 .845 -.499 -.215 

Z/AR2                    1.000 .636 .973 -.060 .551 -.218 -.093 

Z/r                     1.000 .742 -.299 .916 -.489 -.273 

Z/AR                      1.000 -.170 .682 -.284 -.190 

x                       1.000 -.641 -.229 .777 

z/rx                        1.000 -.306 -.549 

GAP                         1.000 -.246 

HoF                          1.000 



 

S3 

Table S3. Internal validation of QSAR model 3 

 Bootstrapping Leave-one-out 
Leave-many-out 

n=3 

Progressive scrambling 

analysis 

Q2 SEPCV dq2/dr2
yy 

R2 

Standard error 

0.910 

0.153 

0.855 

0.217 

0.846 

0.223 
0.579 0.366 1.109 
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Table S4. Predicted cytotoxicity (log 1/EC50) of 51 MeONPs obtained by multiple linear regression 4 

ID MeONPs ΔHme+ Z/r Obs. log 1/EC50 Pred. log 1/EC50 Residuals 

1 ZnO 662.44 2.703  3.45 3.39  0.06 

2 CuO 713.74 2.740  3.20 3.35  -0.15 

3 Y2O3 837.15 3.333  2.87 3.13  -0.26 

4 Bi2O3 1137.40 2.913  2.82 2.87  -0.05 

5 In2O3 1271.13 3.750  2.81 2.62  0.19 

6 Al2O3 1187.83 5.556  2.49 2.46  0.03 

7 Fe2O3 1363.40 5.455  2.29 2.25  0.04 

8 SnO2 1717.32 5.797  2.01 1.89  0.12 

9 TiO2 1575.73 6.557  1.74 1.95  -0.21 

10 V2O3 1097.73 4.688  3.14 2.69  0.45 

11 Sb2O3 1233.06 3.947  2.64 2.62  0.02 

12 ZrO2 1357.66 5.556  2.15 2.31  -0.16 

13 CoO 594.59 3.077  3.51 3.39  0.12 

14 NiO 596.88 2.899  3.45 3.42  0.03 

15 Cr2O3 1266.62 4.839  2.51 2.48  0.03 

16 La2O3 1017.22 2.913  2.87 3.04 -0.17 

Prediction set      

17 BeO 657.34 4.444 N/A 3.22  N/A 

18 MgO 543.10 2.778 N/A 3.53  N/A 

19 CaO 407.29 2.020 N/A 3.76  N/A 

20 SrO 413.87 1.786 N/A 3.78  N/A 

21 BaO 388.71 1.481 N/A 3.84  N/A 

22 Sc2O3 874.35 4.000  N/A 3.05  N/A 

23 HfO2 1555.34 4.819  N/A 2.27  N/A 

24 Nb2O3 1312.47 4.167  N/A 2.60  N/A 

25 Ta2O3 1368.16 4.167  N/A 2.54  N/A 

26 Mo2O3 1306.84 4.348  N/A 2.58  N/A 
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27 WO2 2005.58 6.061 N/A 1.67  N/A 

28 MnO2 1602.05 7.547  N/A 1.90  N/A 

29 TcO2 2114.98 6.154 N/A 1.55  N/A 

30 ReO2 1780.23 6.349 N/A 1.86  N/A 

31 RuO2 1674.84 6.452  N/A 1.96  N/A 

32 OsO2 1757.52 6.349 N/A 1.89  N/A 

33 Rh2O3 960.20 4.478  N/A 2.91  N/A 

34 IrO2 1410.10 6.349  N/A 2.23  N/A 

35 PdO 657.34 4.444 N/A 3.22 N/A 

36 PtO2 2165.13 6.349  N/A 1.48  N/A 

37 Ag2O 233.51 0.870 N/A 4.07  N/A 

38 Au2O3 1289.31 3.529  N/A 2.70  N/A 

39 CdO 548.22 2.105 N/A 3.61  N/A 

40 HgO 679.86 1.961 N/A 3.49  N/A 

41 Ga2O3 1384.15 4.839  N/A 2.44  N/A 

42 Tl2O 207.75 0.629   N/A 4.13  N/A 

43 GeO2 1857.61 7.547  N/A 1.64  N/A 

44 PbO 499.19 1.681 N/A 3.71  N/A 

45 PbO2 1994.02 5.128 N/A 1.80 N/A 

46 Co3O4 811.12 4.603 3.00 2.94 0.06 

47 PtO 813.94 2.500 N/A 3.30 N/A 

48 Au2O 314.86 0.730 N/A 4.01 N/A 

49 Tl2O3 1341.37 3.371 N/A 2.66 N/A 

50 Mn2O3 1017.99 5.172  3.08 2.77 0.36 

51 Co2O3 919.39 5.505  N/A 2.83 N/A 
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Table S5. Predicted cytotoxicity of MeONPs with various valences of metals 5 

Compounds ΔHme+ Z/r Pred. log 1/EC50 

CoO 594.59 3.077 3.39 

Co3O4 811.12 4.603 2.94 

Co2O3 919.39 5.505  2.83 

PbO 499.19 1.681 3.71 

PbO2 1994.02 5.128 1.80 

PtO 813.94 2.500 3.30 

PtO2 2165.13 6.349 1.48 

Au2O 314.86 0.730 4.01 

Au2O3 1289.31 3.529 2.70 

Tl2O 207.75 0.629 4.13 

Tl2O3 1341.37 3.371 2.66 

Mn2O3 1017.99 5.172  2.77 

MnO2 1602.05 7.547  1.9 
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 6 

Figure S1. Results of progressive scrambling plot: q2/fitted q2 versus r2yy7 
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 8 

Figure S2. The Williams plot9 
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 10 

Figure S3. Dose–response curve of nano Mn2O3 (a) and Co3O4 (b) used for external validation 11 
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