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Directly Predicting Water Quality 
Criteria from Physicochemical 
Properties of Transition Metals
Ying Wang1,2, Fengchang Wu1, Yunsong Mu1, Eddy Y. Zeng3, Wei Meng1, Xiaoli Zhao1, 
John P. Giesy1,4,5, Chenglian Feng1, Peifang Wang6, Haiqing Liao1 & Cheng Chen1,6

Transition metals are a group of elements widespread in aquatic environments that can be hazardous 
when concentrations exceeding threshold values. Due to insufficient data, criteria maximum 
concentrations (CMCs) of only seven transition metals for protecting aquatic life have been 
recommended by the USEPA. Hence, it is deemed necessary to develop empirical models for predicting 
the threshold values of water quality criteria (WQC) for other transition metals for which insufficient 
information on toxic potency is available. The present study established quantitative relationships 
between recommended CMCs and physicochemical parameters of seven transition metals, then used 
the developed relationships to predict CMCs for other transition metals. Seven of 26 physicochemical 
parameters examined were significantly correlated with the recommended CMCs. Based on this, five 
of the seven parameters were selected to construct a linear free energy model for predicting CMCs. The 
most relevant parameters were identified through principle component analysis, and the one with the 
best correlation with the recommended CMCs was a combination of covalent radius, ionic radius and 
electron density. Predicted values were largely consistent with their toxic potency values. The present 
study provides an alternative approach to develop screening threshold level for metals which have 
insufficient information to use traditional methods.

Transition metals are a group of elements in groups IIIB to IIB of the Periodic Table of the elements. The last 
electron in a transition metal normally fills the secondary outer layer d orbital, resulting in low ionization ener-
gies and various, multiple valences. Transition metals, with richer chemical characteristics than main-group ele-
ments1, are an important class in the Periodic Table. They are widespread in aquatic environments, mostly at 
low concentrations, but can exert detrimental effects on aquatic life and human health. Water quality criteria 
(WQC) are the scientific foundation for assessment or qualities of aquatic environments and risk management. 
The United States Environmental Protection Agency (USEPA) published the first WQC guidelines, referred to as 
the “Red Book”, in 1976. The document proposed criteria maximum concentrations (CMCs) for nine transition 
metals2. The USEPA has subsequently updated WQC guidelines seven times in the past 40 years3–9. In the latest 
guideline, the USEPA recommended CMCs for only 10 metals for protecting aquatic life; seven of them are tran-
sition metals8, i.e., chromium (Cr (III), Cr (VI)), nickel (Ni), copper (Cu), zinc (Zn), silver (Ag), cadmium (Cd) 
and mercury (Hg).

Due to the lack of data on toxic potency of metals, WQC for more than 50 other transition metals have not yet 
been promulgated by regulatory jurisdictions. The reason for this is a general lack of empirical information on 
toxic potencies of these elements to model aquatic species, which is needed to derive WQC10. However, because 
tests to determine toxic potencies are often costly and time-consuming, they are not available for many species, 
and in particular rare for endangered species that would be the focus of protective WQC. Furthermore, toxicities 
of some non-essential transition metals are greater than those of the main-group elements.
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There are two indirect methods that have been used to predict toxic potency of metals for which toxicity data 
were insufficient. The first method is the interspecies correlation estimations (ICE) model, intended for species 
that can not be tested and is therefore used to extrapolate from toxicity data for surrogate species11. The second 
method is based on quantitative structure-activity relationships (QSARs), which are correlations between physic-
ochemical properties and toxic potencies of target compounds12,13. These methods are not adequate for data-poor, 
non-essential transition metals for which data are available for only surrogate or common species. Therefore, new 
methods to directly predict WQC of transition metals using minimal toxic data were desirable.

Using fewer species and making better predictive models are the future integrated strategies of toxicology14. 
Critical mechanisms of toxicities of metals are often associated with their electronic structures and key phys-
icochemical properties, such as binding affinity with biological macromolecular ligands15. Hence it has been 
proposed that physiochemical parameters can be used to develop models to predict toxic potencies of metals16. 
Because they are similar in electronic structures, transition metals can have similar physicochemical proper-
ties and mechanisms of toxicity17. For example, more than 20 physicochemical parameters, including softness, 
hydrolyzability, ionizability, complexing ability and geometric characteristics, have been shown to correlate with 
biological activities16. Alternatively, methods recommended by the USEPA, such as toxicity centile rank, SSDs and 
evaluation factors, all utilize data on toxic potency to several species to derive both WQC and CMCs18.

To demonstrate this structural property-based approach, empirical relationships between the 
USEPA-recommended CMCs and physicochemical properties of seven transition metals were established. After 
the most relevant parameters were selected, a model was established to predict CMCs of 49 other transition met-
als in the fourth, fifth, sixth and seventh periods of the Periodic Table of the elements, including the Lanthanide 
and Actinide Series. The predicted values were then compared with toxicity data from the literature, so as to 
examine the utility and reliability of the predictive model.

Results and Discussion
Single Physicochemical Properties-CMCs Relationships of Transition Metals.  Twenty-six descrip-
tors of physicochemical properties were considered in constructing models to predict CMCs by use of single-pa-
rameter linear regressions (Table 1). Seven structural parameters, including atomic number (AN), relative atomic 

Properties Abbreviation

Metals

Cd Cr(III) Cr(VI) Cu Hg Ni Ag Zn

Criteria maximum concentrations 
recommended CMCs 2 570 16 13 1.4 470 3.2 120

Atomic number AN 48 24 24 29 80 28 47 30

Relative atomic weight AW 112.4 51.99 51.99 63.55 200.6 58.69 107.9 65.39

Atomic radius AR 1.71 1.85 1.85 1.57 1.76 1.62 1.75 1.53

Covalent radius CR 1.48 1.18 1.18 1.17 1.49 1.15 1.34 1.25

Pauling ionic radius r 0.97 0.52 0.52 0.73 1.02 0.69 1.26 0.74

Melting point MP 321 1857 1857 1085 − 39 1453 961 420

Density of 300K D 8.65 7.19 7.19 8.96 13.6 8.90 10.5 7.13

Heat of vaporization of the ionization 
potential change Eh 99.57 344.3 344.3 300.3 59.23 370.4 250.6 115.3

Boiling point BP 321 2672 2672 2567 357 2732 2163 907

Difference in ionization potentials between 
the ion oxidation numbers OX and OX−1 ΔIP(eV) 7.91 14.5 21.2 12.6 8.32 10.5 7.57 8.57

Electrochemical potential ΔE0(V) 0.40 0.41 0.13 0.16 0.91 0.23 0.80 0.76

Electronegativity Xm 1.69 1.66 1.66 1.90 2.00 1.91 1.93 1.65

First hydrolysis constants |logKOH| 10.1 4.00 4.00 8.00 3.40 9.90 12.4 8.20

Covalent index X2
mr 2.71 1.71 1.21 2.64 4.08 2.52 4.28 2.01

Polarization force parameters Z2/r 4.21 14.5 81.8 5.48 3.92 5.80 0.87 5.41

Atomic ionization potential AN/ΔIP 6.07 1.66 1.13 2.31 9.62 2.66 6.21 3.50

Softness index σp 0.08 0.11 0.11 0.10 0.07 0.13 0.07 0.12

Ionization potential IP 16.90 30.96 90.63 20.30 42.32 18.76 18.17 17.96

Electron density AR/AW 0.02 0.04 0.04 0.02 0.01 0.03 0.02 0.02

Ionic charge Z 2 3 6 2 2 2 1 2

Polarization force parameters Z/r2 2.22 7.80 31.0 3.75 1.92 4.20 0.76 3.65

Similar polarization force parameters Z/AR2 0.68 0.88 1.75 0.81 0.65 0.76 0.33 0.85

polarization force parameters Z/r 2.11 4.84 13.6 2.74 1.96 2.90 0.87 2.70

Similar polarization force parameters Z/AR 1.17 1.62 3.24 1.27 1.14 1.23 0.57 1.31

Electronegativity index x 1.70 1.60 1.60 1.90 1.90 1.80 1.90 1.60

Relative softness (x is a electronegativity 
value index ) Z/rx 1.24 3.02 8.52 1.44 1.03 1.61 0.46 1.69

Table 1.   Values of criteria maximum concentrations (CMCs) recommended and 26 physical and chemical 
properties for seven transition metals.
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weight (AW), covalent radius (CR), Pauling ionic radius (r), atomic ionization potential (AN/∆IP), softness index 
(σp) and electron density (AR/AW), were found to reasonably correlate with the CMCs of the seven transition 
metals recommended by the USEPA (R2 >  0.5 and P <  0.05; Table 2). It is therefore possible to develop empirical 
models by use of physicochemical properties and recommended CMCs for the seven transition metals, which can 
be employed to predict CMCs of other transition metals.

The parameters, AN, AW, CR, r and AN/∆IP were significantly and negatively correlated with CMCs 
(Supplementary Fig. S1A–E). This result is consistent with previously reported findings that the toxic potency of a 
metal is determined by its electronic configuration (AN/∆IP)16, AN16,19 and AW19. Significant correlations between 
LD50 and AN for some mammalian and between EC50 and AW of Daphnia magna have also been reported20,21. 
AN/∆IP, represents the difficulty of metal ions to form covalent bonds due to configurations of their electrons 
and subsequent crystalline structures. In addition, ∆IP is an indicator of change in ionization potential between 
ion oxidation numbers OX and OX−1. As a result, the potential for forming stable complexes between metal ions 
and biological ligands is directly related to toxic potencies of transition metals. Previous studies also indicated 
that AN/∆IP was negatively correlated with log EC50 (median effect concentration) of Lymnaea acuminata and 
LC50 (median lethal concentration) of Caenorhabditis elegans22,23. Parameters CR and r comprehensively describe 
the propensity of metal ions to form covalent and ionic bonds. In a similar study, Enache et al.24 noticed that 
increased inherent toxicity of metals was generally accompanied with increasing AN, CR and r of cabbage plants 
(Brassica oleracea L var capitata cv Soshu).

Alternatively, σp and AR/AW are positively correlated with CMCs, such that ions of metals with stronger 
hydrolysis and ionization potential have lesser toxic potency to aquatic organisms (Supplementary Fig. S1F,G). 
The softness index σp, derived by application of the Hard-Soft-Acid-Base (HSAB) theory, is indicative of the abil-
ity of metal ions to lose their valence electrons, while AR/AW is regarded as a measure of the electron density of 
ions. The results presented herein are consistent with those of previous studies. For instance, significant positive 
correlations between σp and LD50 determined in toxicity tests with mice were obtained for all hard, soft and bor-
derline metal ions25. A positive correlation between AR/AW and EC50 values was also noted21.

Moreover, the two parameters with the largest coefficients of determination (R2) in PPCR models are σp 
(R2 =  0.75; F =  17.6 and P =  0.006) and CR (R2 =  0.62; F =  9.9 and P =  0.020). Consistently, σp is significantly 
and positively correlated with logEC50 and is the single best parameter used to predict relative toxic potencies 
of metal ions to a range of species, including Vibrio fischeri, Helianthus annuus Sunspot, and four arthropods 
(Chironomus tentans, Planaria, Crangonyx pseudogracilis and Daphnia magna)22,23,26. However, in contrast to the 
results obtained in the present study, Khangarot et al.27 observed no significant correlation between CR and EC50 

Pearson’s product-moment correlation

Ion characteristics t P Correlation

σp 4.47 0.004* 0.88

CR − 3.15 0.020* − 0.79

AR/AW 2.80 0.031* 0.75

AN − 2.68 0.037* − 0.74

AW − 2.64 0.039* − 0.73

AN/ΔIP − 2.59 0.041* − 0.73

IR − 2.55 0.043* − 0.72

D − 2.04 0.088* − 0.64

X2
mr − 1.97 0.096* − 0.63

MP 1.94 0.100 0.62

Eh 1.87 0.111 0.61

BP 1.69 0.142 0.57

x − 1.44 0.200 − 0.51

Xm − 0.98 0.366 − 0.37

ΔE0(V) − 0.94 0.385 − 0.36

ΔIP(eV) 0.76 0.479 0.29

Z/AR2 0.56 0.596 0.22

Z/AR 0.46 0.664 0.18

Z/rx 0.42 0.693 0.17

Z/r 0.40 0.704 0.16

AR − 0.38 0.719 − 0.15

Z 0.38 0.719 0.15

Z/r2 0.29 0.778 0.12

|logKOH| − 0.28 0.789 − 0.11

IP − 0.27 0.799 − 0.11

Z2/r 0.12 0.913 0.05

Table 2.   Pearson product-moment parametric correlation of 26 characteristics of metal ions and the 
criteria maximum concentrations (CMCs) values by US EPA.
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of Cypris subglobosa. The reason for such a discrepancy may be that these authors investigated the sensitivities 
among metals for a single species, whereas we considered threshold values for protecting all aquatic organisms.

Development of an Integrated Radius-PPCR Model.  It has been difficult to predict relative poten-
cies of metals by use of a single structural parameter13. Thus, it might be more appropriate to use common and 
easy-to-obtain physiochemical properties28. Because values for σp and ∆IP were scarce, data for AN, AW, CR, 
r and AR/AW, which are readily available, were used to predict CMCs. However, because there were multiple 
parameters with correlation coefficients greater than 0.65, the information produced by the models described in 
the preceding section was somewhat redundant. To address this issue and extract canonical relationships, PCA 
was used to reduce the number of independent variables to a small set of integrated variables. Contributions to 
PC by the reduced number of variables were determined all autocorrelations eliminated.

Because coefficients of determination of pairwise correlations between AN, AW and AW/AR were all greater 
than 0.87, PCA analyses were conducted on four different combinations of the parameters: (1) CR, r and AR/
AW; (2) AN, CR and r; (3) AW, CR and r and (4) all five parameters. The accumulated proportions of the first PC 
were 88.8%, 87.8%, 85.7% and 85.0%, respectively, for the four PCA analyses (Table 3). Thus, the first PCs were 
all selected to construct the PPCR models with single-parameter linear regression (Table 3). Among the four 
regressions, X1 =  0.567CR +  0.568r −  0.597AR/AW was the best fitted (R2 =  0.63, F =  10.2, P =  0.019). The results 
of internal cross-validation for the finally selected model was Qcv

2 =  0.55 and RMSEcv =  0.32, which demonstrated 
that the model was robust. In addition, the results of the applicability domains were acceptable, indicating that 
the model could be applied for predicting CMCs of other metal (Supplementary Fig. S2, S3). Herein, X1 is defined 
as integrated radius (IR) related to AR, CR and r, which are all basic parameters for describing metal properties 
including toxic potency29.

Some chemical and biological characteristics associated with adsorption and migration of ions are related 
to r30. For example, toxic potencies of metal ions are determined from their atomic orbital energies and r, and 
metal ions with greater toxic potency mostly have multiple oxidation states31. In general, r and CR can be calcu-
lated from nuclear charge and electron configuration16. CR is also related to r32. IR accounts for the effects of the 
radius on toxicity and also averts redundancy. Thus, it was more accurate than a single parameter for predicting 
CMCs.

The IR-PPCR model (Fig. 1) predicted CMCs for all seven metals except for that of Cr were within the 95% 
confidence intervals of the CMCs predicted from IR. In addition, the difference between the CMC for Hg pre-
dicted by IR and the recommended value was within ±  0.20, whereas differences for all other metals were within 
an order of magnitude. These results suggest that the model based on IR is capable of reliably predicting CMCs 
for transition metals. The WQC for Cu derived by the SSD approach was 30 ±  0.6133 and 48 ±  0.27 μg/L34, which 
is close to the predicted values of 39 and 35 μg/L obtained in the present study. As for Cr, the difference between 
the predicted and recommended values of CMCs is greater, probably because Cr has different valence states.

Three factors can explain uncertainties due to the use of different radii in IR, which was responsible for the 
discrepancy between predicted and recommended CMCs of the seven transition metals. First, substantially differ-
ent predictions may be obtained if different ion radii are used. The radii reported by different groups for the same 
metal are not always identical35, and an ion radius can be classified as several types, including Lande, Wasastjerna, 
Goldschmidt or Pauling36. The inter-nuclear distance between a positive and a negative ion is the sum of their 
radii, but the boundary between them is quite difficult to determine. Second, both Cu and Zn always occur as 
+ 2 cations in freshwater, and thus can form stable complexes with hydroxo and carbonato- complexes37. The 
order of stability constants for + 2 cations of first-row transition metals to form a complex with a ligand, called 
Irving-Williams stability series, is Cd2+ <  Mn2+ <  Fe2+ <  Co2+ <  Ni2+ <  Cu2+ >  Zn2+. Because Zn uses 4s4p2 tet-
rahedral orbitals, it often forms weaker complexes with organic ligands than other transition metals38. The effect 
of the ligand field in this case may cause uncertainties associated with r values used in the present study. Finally, 
AR can not be determined directly, and it is often measured with the assumption that the structure of metal atoms 
is spherically symmetrical. Similar to r, different values of the same metal radius also can be measured and calcu-
lated by different groups, such as Slater36 and Pauling39. Therefore, the use of different AR values may have caused 
the different results.

Prediction and Comparison of Criteria Maximum Concentrations.  CMCs of 56 transition metals 
in the fourth, fifth, sixth and seventh periods, including the lanthanide series and the actinide series, were 
predicted from the IR-PPCR model (Fig. 2A). Predicted CMCs of the lanthanides and actinides are similar 
(Fig. 2B,C). To facilitate pattern recognition, metals of the same period are divided into three groups, i.e., 

Principal Components
Standard 
deviation

Proportion of 
Variance

Cumulative 
Proportion Predictive Equations R2 RSE F P

X1 =  0.567 CR +  0.568 r −  0.597 AR/AW 1.63 0.89 0.89 ln CMC =  − 8.75X1 +  13.34 0.63 1.58 10.23 0.019

X2 =  − 0.586 AW −  0.596 CR −  0.549 r 1.60 0.86 0.86 ln CMC =  − 0.16X2 +  6.82 0.55 1.74 7.30 0.035

X3 =  0.588 AN +  0.592 CR −  0.551 r 1.60 0.85 0.85 ln CMC =  0.059X3 +  6.23 0.54 1.76 7.03 0.038

X4 =  − 0.46 AN +  0.362 AW− 0.329 
CR +  0.162 r +  0.723 AR/AW 2.06 0.88 0.88 ln CMC =  − 0.064X4 +  6.32 0.54 1.76 7.04 0.038

Table 3.   Regression models with principal components for criteria maximum concentrations (CMCs) at 
natural logarithmic scale, where R2 is the coefficient of determination, RSE is residual standard error, P is 
the statistical level of significance.
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IIIB− VIIB, VIII and IB− IIB. Within the same period, CMCs increase with increasing atomic number for all 
three groups (Fig. 2D). Within the same group of the Period Table, CMCs are inversely proportional to atomic 
number (Fig. 2D).

Median acute, lethal (LC50) concentrations, determined for 31 transition metals in one-week exposure experi-
ments with Hyalella azteca (Crustacea) collected from Lake Ontario40, were correlated with the predicted CMCs. 
Exceptions were observed for yttrium (Y) and niobium (Nb), Cu and Zn, Ag and Cd, and gold (Au) and osmium 
(Os) (Fig. 3A,B,D). Within the same group, the sequences of LC50 concentrations and predicted CMCs are iden-
tical for the pairs of vanadium (V) and Nb, Cu and Ag, and Zn and Cd (Table 4). In addition, differences between 
LC50 concentrations or predicted CMCs with respect to atomic number are similar for the lanthanide and actinide 
series (Fig. 3C,E), probably because they are comparable in electronic structures in outside orbitals. If nominal 
LC50 concentrations40 are used for comparison, their sequences are the same as those of predicted CMCs for Y 
and Nb, Ag and Cd, and Nb and tantalum (Ta) (Table 4). It should be noted that Au was excluded from the above 
assessment because there are insufficient toxicity data for this relatively unreactive metal.

Toxic potency values expressed as CMCs and LC50 are similar between the lanthanide and actinide series 
metals (Fig. 3C,E). The lanthanides and actinides are similar in configurations of outside orbitals of electrons, 
which explains why most of their physical and chemical properties are similar. Lanthanides and actinides are 
also distinctly different from other elements in terms of physical and chemical properties because they have 
electrons in the f orbitals. The energy of the 4f sub-shell of lanthanides is lower than that of the 5d sub-shell for 
lanthanide metals, hence electrons fill the 4f sub-shell before the 5d sub-shell41. The “Lanthanide contraction”, 
another important feature of the lanthanide series in which the 5s and 5p orbitals penetrate the 4f sub-shell, 
results in the 4f orbital being exposed to the increasing nuclear change42. As a result, the atomic radius exhibits 
a decreasing trend throughout the series. This change in “charge density” might explain the difference in toxic 
potencies among the lanthanides. Therefore, the r and other physicochemical properties of the lanthanide metals 
beyond Eu in the Period Table are similar to those of Y, and these metals have similar LC50 concentrations and 
predicted CMCs as Y.

Actinides can form chemical compounds in solutions as cations with relatively large ionic radii43. Similar to 
the lanthanides, energies of the 6s and 6p sub-shells of actinides are greater than that of the 5f sub-shell; therefore 
electrons fill the 5f sub-shell before the 6s and 6p sub-shells. Therefore, both the lanthanides and actinides have 
the ability to form stable complexes with ligands, such as chloride, sulfate, carbonate and acetate. Moreover, some 
lanthanides and all actinides are radioactive44,45 and also exhibit characteristics of heavy metals, such that they are 
often considered toxic to aquatic life at ambient concentrations46. These results further corroborate the accuracy 
of the model based on IR in predicting toxic potency of metals (Fig. 2).

There is an apparent difference in the patterns of toxic potencies and predicted CMCs for some transition 
metals, probably since only the metal physiochemical properties are considered in the model based on IR, with-
out considering effects of characteristics of natural water. To predict the effects in surface waters, the results 
predicted by the model need to be adjusted to account for metal speciation and chemical activity or apparent 
concentrations in both fresh and marine water. Due to cation competition and formation of biotic ligands by 
use of models that predict metal speciation by combining with the Biotic Ligand Model (BLM), free ion activity 
model (FIAM) and gill surface interaction model (GSIM)47. The BLM assesses metal toxicity to aquatic organisms 
over a range of hardness, pH and dissolved organic carbon (DOC) by providing a quantitative framework48 and 
has been employed as a good solution to the problems associated with WQC for Cu49. However, it has been only 
used to predict the toxicity of a few metals such as Cu, Ag, Cd and Ni to a few species, including Salmo gairdneri, 
Pineohales pronelas, Daphnia magna, Ceriodaphnia dubia and Daphnia pulex50. In general, if the BLM can not be 
used, the toxicity data used to derive WQC need to select under a constant pH such as ranged from 6 to 8 and be 
hardness-normalized by use of hardness algorithms, for which might be not concerned about effect of organic 
complexation. While further development and improvements of the predictive model are necessary and their 

Figure 1.  Predictive model for Criteria Maximum Concentrations (CMCs) on a natural logarithmic scale 
and integrated radius (X1) at 95% centile. Data points of CMCs predicted from integrated radius (IR) are 
plotted as , and the data points for USEPA-recommended CMCs are plotted as . The purple, dashed line 
illustrated the 95% confidence interval.
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range of applicability needs to be determined, the predictive model provides a promising screening level tool that 
can be used for rapid prediction of the criteria of the metals without any toxicity data and water quality and risk 
assessment.

Importance and Uncertainties.  Transition metals under investigation in the present study behave vari-
ably due to their individual physical and chemical properties; they have been widely used not only in industrial 
products but also in daily life. However, most transition metals exhibit significant toxic potency, some of them 
are even radioactive. Because of the difficulty to conduct experiments on these transition metals, there are few 
data on toxic potency to a range of species. As a result, it is difficult to establish water quality standards, conduct 
water quality assessment and practice risk management. Models obtained in the present study could be useful 
for deriving threshold values for data-poor transition metals. More importantly, the results of the present study 
demonstrated correlations between the physicochemical properties of transition metals and WQC and toxic 
potencies of metals. The modeling approaches used in the present study have also opened up a new dimension for 
investigating the complex environmental behavior and toxic action of transition metals, which is important for 
examining toxic potency and threshold values for other metals as well.

Although the IP-based model developed in the present study can reasonably predict CMCs of transition met-
als with limited information, experimental verification and subsequent modifications of the model are deemed 
necessary in future studies. In addition, the metal valence and the effects of water chemistry on toxic potency 
should also be considered in further modifications of the model. Nevertheless, the predictive model provides a 
new approach for WQC development and water quality assessment of metals.

Methods
Preparation of CMCs and Physicochemical Properties of Selected Transition Metals.  Seven 
transition metals (Cr(III), Cr(VI), Ni, Cu, Zn, Ag, Cd and Hg) for which CMCs have been recommended by the 
USEPA9 were selected as “test elements” in the training set of elements, to which the results of the predictive mod-
els could be compared. Based on the results of several previous studies12,28,51–54, 26 structural parameters charac-
terizing various physical and chemical properties of the metal ions were investigated. They include AN12, AW28,52, 
AR28,52,53,55, CR51–53, r12,28,52,53, melting point (MP)52, density (D)52, enthalpy (heat) of vaporization (Eh)52, boiling 
point (BP)52, difference in ionization potentials between the ion oxidation numbers OX and OX−1 (ΔIP(eV))12,28,54, 
electrochemical potential (∆ E0(V))12,28,52,54, log of first hydrolysis constant (|logKOH|)12, covalent index (Xm

2r)12,24, 
polarization force parameters (Z/r, Z/r2 and Z2/r)12,24, σp12, ionization potential (IP)12,23,24,26, electronegativity 
(Xm)12,23,24, AN/∆IP12,23,24,26, AR/AW23,24, electronegativity index (x)12,23, relative softness (Z/rx) (x is a electroneg-
ativity value index)12,23,24, similar polarization force parameters (Z/AR and Z/AR2)12,28,52,53 and ionic charge (Z)26. 

Figure 2.  Predicted Criteria Maximum Concentrations (CMCs). (A) Periodic Table of CMCs for 
transition metals, showing CMCs recommended by US EPA and predicted by the integrated radius-PPCR 
(Physicochemical Properties-CMCs Relationships) model. (B) The predicted CMCs of the lanthanides. (C) 
The predicted CMCs of the actinides. (D) Comparison among the predicted CMCs in the forth (blue), fifth 
(red) and six period (green). The x axis of this graph is the group from IIIB to IIB, the y axis of the graph is the 
concentrations of the predicted CMCs, and the z axis is the periods.
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Some of these parameters such as Z/AR, Z/rx and Z2/r were recalculated to fit the model. Moreover, because the 
variables used to describe environmental concentrations often follow a lognormal frequency distribution, values 
of the descriptors were transformed to natural logarithm before use56.

Statistical Analysis.  Based on results of Pearson correlations analysis, 26 parameters were correlated with 
CMCs of the target metals recommended by the USEPA (Table 1), so that relationships between physicochem-
ical properties and CMCs could be developed. Selected parameters and CMCs were used as independent and 
dependent variables, respectively. These Physicochemical Properties-CMCs Relationships (PPCR) models were 
developed based on multiple linear regressions of those parameters with the greatest correlations and thus pre-
dictive power. Selected parameters and CMCs were used as independent and dependent variables, respectively. 
Principal component analysis (PCA) was used to manage multivariate variables by transforming relationships 
from a higher-dimensional space to a lesser-order dimensional space, which simplified and optimized the infor-
mation in the multivariate data. After linear regression of the original variables, several newly created varia-
bles expressed as principal components (PCs) can optimally represent the dynamic and interactive relationships 
among the original variables57. Since these comprehensive indices are perpendicular and minimally related, they 
can provide key non-redundant information about the original parameters. The first principal component (PC) 
generally explains the largest portion of the variation. While the number of PCs derived is equal to the total num-
ber of parameters included in the PCA, the number of PCs was chosen in the model so that greater than 85% of 
the total variance could be explained58. By using the PCA regression approach, the best correlation between the 
first principal component X1 and the recommended CMCs of the target metals was obtained. The model obtained 

Figure 3.  Comparison among Criteria Maximum Concentrations (CMCs) predicted by the model based on 
integrated radius (IR) ( ), median lethal concentration (LC50) for the fresh water amphipod (Hyalella azteca, 
Crustacea) in Lake Ontario (Burlington city tap, Canada) in soft water (nominal) ( ) and soft water (measured) 
( ), for seven transition metals in the fourth period (A), five transition metals in the fifth period (B), five 
transition metals in the sixth period (D), 14 lanthanide series metals (C) and two actinide series metals (E).
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by linear regression was used to predict CMCs for other transition metals. Principal component linear regression 
analyses were carried out by use of the R programming language and MATLAB (Mathworks, Natick, MA, USA). 
The predictive potential of the model was evaluated with the coefficient of determination (R2), residual standard 
error (RSE), the value of F-test statistic using analysis of linear regression fit and the level of Type I error (P) with 
the level of significance at α  <  0.05.

Model Validation.  To reduce the probability of over-fitting and test the robustness of the model, internal 
validation was evaluated with k-fold cross-validation correlation coefficient (Qcv

2), for which recommended min-
imum acceptable value is 0.5, and cross-validated root mean square error of prediction (RMSEcv)59. Moreover, 
predictions of WQC and toxic potencies of metals are valid only if the properties of such metals are within the 
applicability domains of the developed QSAR models. The applicability domains of the developed QSAR models 
were evaluated with the hat value and Williams plot60. The hat value hi for each ith metal was calculated with 
=h x (X X)xi i

T T
i, where xi is a row vector of the parameter for an ith metal used to establish the QSAR model. The 

hat value hi should be smaller than the warning h* value, i.e., the predicted CMC of an ith metal is located within 
the optimum applicability domains. The h* value was calculated with = +⁎h p

n
3( 1) , where p is the variables num-

ber used in the model, and n is the number of recommended CMCs for metals.
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Supplementary Figure Captions 

 

Supplementary Figure S1. Models of USEPA-recommended criteria maximum concentrations 

(CMCs) plotted as natural logarithmic and seven physicochemical parameters of seven transition 

metal ions used in a of a single-parameter linear regression method, with natural logs of CMSs 

recommended by the USEPA labeled as .  (A) Regression of natural logarithms of CMCs USEPA 

vs atomic number (AN) (R
2
 = 0.544 and P < 0.05).  (B) Regression of natural logarithms of CMCs 

USEPA vs atomic mass (AM) (R
2
 = 0.536 and P < 0.05).  (C) Regression of natural logarithms of 

CMCs USEPA vs relative covalent radius (CR) (R
2
 = 0.623 and P < 0.05).  (D) Regression of 

natural logarithms of CMCs USEPA vs Pauling ionic radius (r) (R
2
 = 0.520 and P < 0.05).  (E) 

Regression of natural logarithms of CMCs USEPA vs atomic ionization potential (AN/∆IP) (R
2
 = 

0.528 and P < 0.05).  (F) Regression of natural logarithms of CMCs USEPA vs softness index (σp) 

(R
2
 = 0.746 and P < 0.05).  (G) Regression of natural logarithms of CMCs USEPA vs electron 

density (AR/AW) (R
2
 = 0.567 and P < 0.05). 

 

Supplementary Figure S2. Williams plot.  The blue line represents residuals of ±3 standard 

deviations, while the red line represents the critical value of h*=0.75, training metals were labeled 

as ◊.   

 

Supplementary Figure S3. Hat plot.  The red line represents the critical value of h*=0.75.  Hat 

values of training metals were labeled with ◊, and the hat values of predicted metals were labeled as 

◊. 
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