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Highlights 26 

• Regulations and production bans on legacy PFAS continue to expand. 27 

• Emerging replacement PFAS are rising health, environmental, and regulatory 28 

concerns. 29 

• Replacement substances can undergo or show long-range transport potential. 30 

• Novel PFAS bind to nuclear receptors, disrupt metabolism and stress pathways. 31 

• Gaps exist in the (eco)toxic potency and interactions of replacement PFAS. 32 

 33 
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Abstract 34 

Widespread application of poly- and per-fluoroalkyl substances (PFAS) has resulted in 35 

some substances being ubiquitous in environmental matrices. That and their resistance 36 

to degradation have allowed them to accumulate in wildlife and humans with potential 37 

for toxic effects. While specific substances of concern have been phased-out or banned, 38 

other PFAS that are emerging as alternative substances are still produced and are 39 

being released into the environment. This review focuses on describing three emerging, 40 

replacement PFAS: perfluoroethylcyclohexane sulphonate (PFECHS), 6:2 chlorinated 41 

polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES), and hexafluoropropylene oxide dimer 42 

(HFPO-DA). By summarizing their physicochemical properties, environmental fate and 43 

transport, and toxic potencies in comparison to other PFAS compounds, this review 44 

offers insight into the viabilities of these chemicals as replacement substances. Using 45 

the chemical scoring and ranking assessment model (SCRAM), the relative hazards, 46 

uncertainties, and data gaps for each chemical were quantified and related to PFOS 47 

and PFOA based on their chemical and uncertainty scores. The substances were 48 

ranked PFOS > 6:2 Cl-PFAES > PFOA > HFPO-DA > PFECHS according to their 49 

potential toxicity, and PFECHS > HFPO-DA > 6:2 Cl-PFAES > PFOS > PFOA 50 

according to their need for future research. Since future uses of PFAS remain uncertain 51 

in the face of governmental regulations and production bans, replacement PFAS will 52 

continue to emerge on the world market and in the environment, raising concerns about 53 

their general lack of information on mechanisms and toxic potencies.  54 

 55 

Keywords: PFAS, Replacement PFAS, Emerging Contaminants, Aquatic Toxicity, 56 

Chemical Scoring 57 
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 4 

1. Introduction 60 

Per and poly-fluoroalkyl substances (PFAS) are a group of industrial chemicals that 61 

contain a hydrophobic alkyl chain and a hydrophilic functional group such as 62 

carboxylate, sulfonate, or phosphonate [1]. Alkyl chains, which can be straight-chain or 63 

branched, consist of one or more carbon atoms in which all or most of the available 64 

valence electrons are bound to fluorine (F) atoms [1]. Therefore, PFAS are defined as 65 

chemicals with at least one perfluorocarbon moiety (CnF2n), although structurally, they 66 

can differ by the addition of more per-fluorinated (fully fluorinated) or poly-fluorinated 67 

chains (partially fluorinated) [1,2]. 68 

The presence of multiple strong carbon-carbon and carbon-fluorine bonds gives 69 

PFAS unique properties and versatility, but also means PFAS are stable and resistant 70 

to most forms of degradation, including hydrolysis, photolysis, biodegradation, and 71 

metabolism [3,4,5]. This has made PFAS important synthetic chemicals that have been 72 

used in a variety of industrial processes and products since the 1950s [3,4,5]. The 73 

hydrophobic and hydrophilic properties of PFAS make them adaptable surface-active 74 

substances that repel grease and dirt, adding stain-resistant and hydrophobic properties 75 

to fabrics [6]. PFAS have also been used in fire-fighting foams, cleaning supplies, 76 

cosmetics, and to reduce the buildup of static electricity in manufacturing electronics, 77 

especially microchips [7]. Widespread industrial and commercial applications of PFAS 78 

have resulted in some PFAS being ubiquitous in the environment [3,8]. PFAS tend to 79 

bind to proteins, resulting in accumulation in plants, wildlife, and humans [8,1,9,10].  80 

Since the early 2000s, bioaccumulation of PFAS has raised concerns about their 81 

potential effects on humans and wildlife. Potential toxic effects of PFAS were 82 

discovered in the early 2000s by Giesy and Kannan after they described for the first 83 

time the global extent of PFAS accumulation in marine organisms, terrestrial mammals, 84 

and seabirds [3,7,8]. Since then, most research on the effects of PFAS in the 85 

environment has focused on two chemical classes of PFAS: perfluoroalkane sulfonic 86 

acid (PFSA) and perfluorocarboxylic acids (PFCA), as well as their anthropogenic 87 

precursors [1,7,11]. However, out of these classes and among the more than 4700 88 

PFAS, only perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), 89 

Jo
urn

al 
Pre-

pro
of



 5 

perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) have been 90 

studied extensively [1,7,11]. 91 

Of particular concern are the effects PFAS might cause in aquatic environments 92 

since lakes, seas, and oceans are often considered environmental sinks of PFAS 93 

chemicals [12,13,14,15]. After use, PFAS are released into aquatic environments 94 

through surface runoff, wastewater effluent, and leaching from products and 95 

degradation of precursors [1,15,16]. Environmental monitoring of PFAS in aquatic 96 

environments, plants and animals, as well as studies focusing on their effects of 97 

exposure, have indicated potential and known toxic effects and potencies of PFAS 98 

include reproductive toxicity, growth, and developmental defects, neuro-behavioural 99 

defects, and other general disorders arising from the disruption of the immune system 100 

and changes in properties of membranes [11].   101 

These known and potential concerns surrounding adverse effects on humans and 102 

wildlife have resulted in and continue to result in certain manufacturers voluntarily 103 

phasing out production of the legacy substances PFOA and PFOS [17,18,19,20]. While 104 

PFOA, its salts, and all related compounds were not listed under Annex A of the 105 

Stockholm Convention for Virtual Elimination until 2019, its toxicological effects and 106 

spread in the environment were known by the public as early as 2004 [3,8]. Conversely, 107 

PFOS was listed under Annex B for restriction in 2009 [17]. There has also been a 108 

general push in the consumer and stakeholder sectors to virtually eliminate all PFAS 109 

‘forever chemicals’ [18]. Countries globally have begun to implement phase-out plans 110 

for legacy PFAS and some second-generation compounds. PFOS and PFOA are 111 

regulated along with PFHxS as substances of concern under the European Union (EU) 112 

Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) program 113 

[19]. Member states of the EU have often published environmental guidelines for 114 

exposure to PFAS that are stricter, compared to those recommended by the EU 115 

Environmental Quality Standards, as well as outright banned their use in food 116 

packaging paper and cardboard [19]. In Canada, PFOA, PFOS, other long-chain 117 

perfluorocarboxylic acids and their salts, and precursors are prohibited, and their 118 

addition to the Government of Canada Toxic Substances List has demonstrated the 119 

country’s efforts to virtually eliminate their production [20]. While the United States of 120 
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 6 

America (USA) has not yet implemented bans on specific compounds, the United States 121 

Environmental Protection Agency has released a PFAS response roadmap and plans 122 

leading to the registration of PFOA and PFOS on the Harmful Substances List, and 123 

safety guidelines for PFAS exposure are similar to those employed in Canada and the 124 

EU [18]. The status of PFAS in the USA largely demonstrates the status of PFAS 125 

regulations globally, where outright bans are being discussed or implemented and 126 

environmental safety advisories are reported or observed. 127 

However, thousands of PFAS compounds still exist, and compounds with known 128 

modes of toxic action are still being manufactured around the globe and available 129 

commercially [2]. Due to the complexity, versatility, and number of PFAS chemicals, 130 

PFAS will continue to be produced for use in industries that require their unique 131 

characteristics and might appear as unintended by-products of industrial processes 132 

[21,22,23]. Recently, attention has shifted to the manufacture of alternatives to replace 133 

PFAS, such as PFOS and PFOA, that have been banned or regulated. Although 134 

marketed as safer from environmental and human health perspectives, little information 135 

exists surrounding the toxicity and environmental fate of these compounds that is 136 

available to the general public, and information that is available has yet to be collated in 137 

a way that allows robust comparisons of these replacements to legacy substances.  138 

To date, multiple reviews on PFAS have been published covering a range of topics 139 

and focuses, including several reviews on toxicities of legacy PFAS to mammals and 140 

humans [24,25,26], adverse effects of PFAS on aquatic organisms [11,27], and next-141 

steps in management of PFAS, classifications, and identification [22,28,29]. However, 142 

an overview of current knowledge surrounding key next-generation, alternate PFAS in 143 

the aquatic environments and their comparative risk assessments were lacking. This 144 

review summarizes information on the aquatic toxicity and human risk factors of three 145 

emerging Replacement PFAS and highlights gaps in information needed for more 146 

comprehensive and accurate risk assessments. 147 

Three novel replacement PFAS were chosen as a focus of this review: 148 

hexafluoropropylene oxide dimer acid (HFPO-DA, sometimes known as GenX), 6:2 149 

chlorinated polyfluorinated ether sulphonate (6:2 Cl-PFAES sometimes known as F-150 

53B) and perfluoroethylcyclohexane sulphonate (PFECHS). These three substances 151 
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 7 

were chosen as they represent a broad range of PFAS sub-classes: sulphonates, 152 

carbonates, short-chain, and cyclic PFAS [11]. Also, while multiple replacements have 153 

been proposed or outlined in research, PFECHS, HFPO-DA, and 6:2 Cl-PFAES have 154 

been identified as potential global contaminants with enough toxicity information to 155 

relate them to legacy substances [30,31,32]. Currently known and predicted 156 

physicochemical characteristics of these compounds are listed in Table 1.157 
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Table 1: Known and predicted physiochemical characteristics of known and emerging 158 

replacement Perfluoroalkyl Substances compared to legacy substances 159 

Perfluorooctane Sulphonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) 160 

Compound  HFPO-DA  6:2 Cl-PFAES PFECHS PFOS PFOA 

Cas # 13252-13-6 756426-58-1 646-83-3 1763-23-1 335-67-1 

Structure  

 

 

 

 
 

 

Molecular 

mass 

(g/mol) 

330.04 300.10 461.13 500.13 414.07 

Boiling 

Point (˚C) 

129 211 221 249 189 

Melting 

Point (˚C) 

<40 N/A 74.1 71 55 

Partitioning 

Coefficient 

(LogP) 

2.84 1.82*–3.81 3.19–5.92* 4.9 4.81*–6.3 

Vapour 

Pressure 

(mmHg)  

2.7 0.0268 9.38e-5 to 

0.0159 * 

0.0149 0.53 

Water 

Solubility 

(mol/L)  

>2.61 1.15e-3 9.68e-6 to 

1.35e-3* 

1.07e-3 7.97e-3 

References  (PubChem 
114481); 

[33] 

(PubChem 22568738) (PubChem 

101650) 

(PubChem 74483) (PubChem 9554) 

*Predicted 161 

2. Methods 162 

Searches of literatures were conducted on Web of Science, Google Scholar, 163 

ECOTOX, and PubMed databases using keywords consisting of each chemical name of 164 

focus perfluoroethylcyclohexane sulphonate [PFECHS], hexafluoropropylene oxide 165 

Jo
urn

al 
Pre-

pro
of

https://commonchemistry.cas.org/detail?cas_rn=756426-58-1


 9 

dimer acid [HFPO-DA] and 6:2 chlorintated polyfluorinated ether sulphonate [6:2Cl-166 

PFAES], the names of highly cited PFAS chemicals (perfluorooctanoic acid [PFOA], 167 

perfluorooctane sulfonic acid [PFOS], perfluorononanoic acid [PFNA], perfluorodecanoic 168 

acid [PFDA], perfluorododecanoic acid [PFDoA, PFDoDA]), perfluorodecane sulfonic 169 

acid [PFDS], per-fluorodecyl phosphonic acid [PFDPA], perfluorohexane sulfonic acid 170 

[PFHS], perfluorobutane sulfonic acid [PFBS], perfluoropen-tanoic acid [PFPA], 171 

perfluorotetradecanoic acid [PFTDA], perfluo-ropentanoic acid [PFBA], 172 

perfluoroundecanoic acid [PFUnA or PFUnDA], perfluorooctane sul-famide [PFOSA], 173 

perfluorotridecanoic acid [PFTrDA or PFTriA], perfluoroheptanoic acid [PFHpA], 174 

perfluoroheptane sulfonoic acid [PFHpS], perfluoro-hexanoic acid [PFHxA], 175 

perfluorohexane sulfonic acid [PFHxS], or perfluorooctylphosphonic acid [PFOPA]), 176 

toxicity description, regulation status of the chemical, and concentrations in the 177 

environment. Identified papers were checked for relevance to aquatic environments, 178 

downstream human effects, and environmental concentrations and transport. A total of 179 

188 publications related to legacy and replacement PFAS were selected for inclusion 180 

(Figure 1). Previously published reviews have already synthesized information on 181 

adverse effects on fish and aquatic organisms [11]. Therefore, only environmental 182 

concentrations, physicochemical properties, human exposure, and adverse outcomes 183 

related to exposure of emerging Replacement PFAS of concern, PFECHS, 6:2 Cl-184 

PFAES, and HFPO-DA in the aquatic environment are summarized comparatively.   185 
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 10 

 187 

Figure 1: Distribution of the numbers of references cited in this paper organized by year. 188 

This figure also highlights the trend of perfluoroalkyl substance research from mainly 189 

legacy perfluoroalkyl substances as indicated by the dark blue bars and numbers of 190 

publications, to novel perfluoroalkyl substance replacements as indicated by the light 191 

blue bars and numbers of publications over time.  192 

  193 
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 11 

3. Long-distance Transport Potential and Environmental Concentrations of Emerging 194 

Replacement PFAS 195 

Primary emission sources of legacy PFAS into the water and air have been 196 

identified as industrial facilities producing fluoro-chemicals and wastewater 197 

management and treatment facilities [1]. However, even contamination of PFAS in 198 

terrestrial environments would be eventually distributed to aquatic environments by 199 

abiotic and biotic transfer mechanisms, including advection, dissolution, and biotic 200 

uptake [1, 24]. Considered a sink for contamination, PFAS partition to the surface water 201 

and sediment in aquatic environments [12,13,14,15]. While legacy PFAS tend to adsorb 202 

to sediments, different substances can be highly mobile, and the log carbon/water 203 

partitioning coefficient (log Koc) of PFAS can range between 0.5 and 5, depending on 204 

the substance [34]. In general, shorter chain PFAS remain more soluble in water, while 205 

longer chain PFAS adsorb and partition more to sediments. However, direct 206 

measurements of environmental and biological partitioning coefficients of PFAS have 207 

proven difficult given their amphiphilic nature and observed behavioural differences 208 

compared to other non-ionic polar chemicals [34]. Apart from direct release through 209 

industry and waste treatment, PFAS are also known to enter the environment through 210 

consumer goods, waste collection sites, and other industrial and consumer processes 211 

[35,36,37].    212 

Multiple studies have indicated that HFPO-DA, 6:2 Cl-PFAES, and PFECHS follow 213 

similar pathways of exposure in environments as legacy PFAS [38,39]. The ammonium 214 

salt HFPO-DA is a short-chain, organo-fluoride chemical developed to replace PFOA 215 

[40,41,42,43]. While HFPO-DA is often referred to as GenX. For the purpose of this 216 

review, GenX will refer to the group of chemicals used in the production of HFPO-DA, 217 

such as 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid and ammonium 218 

2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, and will only be used when 219 

studies investigating general GenX chemicals are discussed [44,45]. A suspect 220 

screening and inter-year comparison of surface waters and sediments within and 221 

surrounding the Xiaoguang River, which received wastewaters from a fluoro-chemical 222 

production plant in China, identified HFPO-DA, as well as numerous chemicals that 223 

were also potentially under the GenX classification [46]. While concentrations of GenX 224 
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chemicals were determined to be 1 to 2 orders of magnitude less than those of PFOA, 225 

the GenX chemicals followed the same pathways of transport, including horizontal 226 

transport in the water, showed no evidence of degradation, and illustrated a tendency to 227 

adsorb to sediment [46,47]. It was concluded that GenX chemicals identified in this 228 

study posed a similar potential for exposure to humans [46,47]. These findings have 229 

also been supported by similar studies, which have quantified downstream 230 

concentrations of HFPO-DA and PFOA in waters near fluoro-chemical processing 231 

plants throughout Asia and in Europe [47,48,49].   232 

Known by the trade name F-53B, 6:2 CL-PLAES is an ether-sulphonate used 233 

widely as an alternative to PFOS as a mist-suppressant in the electroplating industry 234 

[50,51]. The motivation for its creation is largely attributed to increasing regulations of 235 

PFOS, and in China specifically,the lack of regulations on 6:2 Cl-PFAES led to an 236 

estimated annual usage of 30–40 t of alternative mist-suppressants in 2009, eventually 237 

leading to the detection of 6:2 Cl-PFAES in the aquatic environment [51,52]. The annual 238 

release of 6:2 Cl-PFAES is similar to that of PFOS and PFOA, which had an 239 

approximate annual release of 62 and 36 t in 2017, respectively [53]. Research on the 240 

environmental distribution and transport of 6:2 Cl-PFAES has also indicated that it 241 

follows similar pathways of transportation, emission, and degradation as PFOS, the 242 

legacy substance in which 6:2 Cl-PFAES was developed to replace [30]. 6:2 Cl-PFAES 243 

has been found globally in multiple environmental matrices, including the atmosphere, 244 

fresh and salt surface waters, cultivated and uncultivated soil, sediment, and drinking 245 

water at similar concentrations to PFOS. For example, 6:2 Cl-PFAES is found in 246 

concentrations up to 30 ng/L in local Chinese freshwater and PFOS typically around 15 247 

ng/L [30,54]. 248 

However, unlike PFOS, only a small percentage of annual emissions of 6:2 Cl-249 

PFAES (0.2%–0.5%) reaches the Arctic by oceanic advection [30]. While it is believed 250 

that the bulk of 6:2 Cl-PFAES remains in northern temperate regions not far from its 251 

sources in the Eastern hemisphere, a limited number of samples from Europe and North 252 

America have contained quantifiable concentrations of 6:2 Cl-PFAES, from 0.01 ng/L to 253 

0.08 ng/L, and up to 52 ng/L near local manufacturing plants [49]. Average 254 

concentrations in Chinese freshwater samples ranged from 2 ng/L up to 29 ng/L, but 255 
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local concentrations of 6:2 Cl-PFAES in Chinese freshwater near chromium-plating 256 

plants were predicted to reach 2.3 mg/L by 2020, increasing from 0.7 mg/L in 2015 [30]; 257 

however, this prediction was not confirmed by the time this review was written. While 258 

annual global emissions of 6:2 Cl-PFAES have remained stable (around 12 t), it is 259 

predicted to increase as PFOS continues to be phased out and more regulations are 260 

introduced [30].   261 

PFECHS is an 8-carbon cyclic PFAS marketed for use as an erosion inhibitor in 262 

aircraft hydraulic fluids [55,56]. While production of PFECHS was voluntarily phased out 263 

in the United States via 3M’s phase-out of PFOS-based materials beginning in 2002, 264 

PFECHS is still permitted to be used in hydraulic fluids by Canada and the United 265 

States [55,56]. Besides, PFECHS is not considered by the Stockholm Convention of 266 

Persistent Organic Pollutants to be a PFOS-related substance, nor is it proposed as a 267 

chemical for listing under the convention [17]. Therefore, PFECHS has continued to be 268 

used in various commercial products from manufacturers other than 3M [57]. While the 269 

total release of PFECHS into the environment remains largely unreported, Italy reported 270 

low release in 2005 at less than 1 t [58]. However, PFECHS has been found in surface 271 

waters from the Great Lakes and other freshwater bodies (0.16–5.7 ng/L), predator fish 272 

from the Great Lakes (up to 3.7 ng/g wet body weight), the Baltic Sea, samples of 273 

drinking water, and within multiple media from the high Arctic [55,59,60,61,62,63]. 274 

Detectable concentrations of PFECHS have also been measured in herring gull eggs 275 

from the Great Lakes and in liver samples from marine mammals such as ringed seals 276 

[64]. Within pooled serum samples from Swedish women, PFECHS has been detected, 277 

and concentrations followed throughout generations, suggesting an inter-species 278 

bioaccumulation potential of PFECHS exists and could become a potential human 279 

health concern [64,65,66].  280 

The detection and spread of PFECHS are similar to that of PFOS, which has been 281 

detected in marine, freshwater, and terrestrial environments, as well as avian, aquatic, 282 

and terrestrial organisms [3,8]. While wastewater treatment plants have been 283 

associated with the detection of PFECHS in both nearby fish [67] and effluent [68], the 284 

greatest and most reliable concentrations have been detected near airports [69,70]. For 285 

example, PFECHS detected in runoff water from the Beijing International Airport was 286 
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measured up to 195 ng/L, but the total amount of PFECHS, its isomers and related 287 

impurities can reach up to 324 ng/L [70] (Table 2). Depending on the source measured, 288 

concentrations of PFECHS can be higher than those of PFOS measured from the same 289 

sample [64]. PFECHS remains an isomer of concern, given it shares many 290 

physicochemical properties with PFOS. The compounds have similar molecular 291 

masses, boiling points, melting points, and partitioning coefficients (Table 1) [55,56,62].   292 

To fully answer whether these replacement compounds can be considered global 293 

pollutants, potential sources of contamination other than direct and local contamination 294 

were taken into consideration. While HFPO-DA was determined to follow similar 295 

transport as PFOA in water [46,49,54], this transport was dependent on direct release 296 

from processing plants into the environment. However, machine models and published 297 

literature have associated HFPO-DA with a high risk of atmospheric deposition [31,32]. 298 

While no published studies to date have detected HFPO-DA in remote environments 299 

such as Polar regions, it is considered to have the potential to spread to such 300 

environments by long-range transport processes [31,32]. HFPO-DA has also been 301 

detected in the environment in North America, Europe, and China [46,48,71]. As their 302 

industrial application determines whether these compounds become global 303 

contaminants through use and release, the probability of HFPO-DA being confirmed as 304 

a global contaminant will continue to increase as its usage increases. 305 

Furthermore, while only a small percentage of 6:2 Cl-PFAES is carried by oceanic 306 

advection to remote locations [30], it has been detected up to 0.27 ng/g in the livers of 307 

polar bears, killer whales, and ringed seals from Arctic environments [49,50], similar to 308 

that of PFOS. Environmental concentrations of 6:2 Cl-PFAES have also been shown to 309 

be correlated to those of PFOS [49]. Even if 6:2 Cl-PFAES appears to only have a 310 

limited ability to travel to the Arctic by oceanic advection, other transport processes 311 

such as atmospheric deposition should be further investigated [30]. Detection of 6:2 Cl-312 

PFAES in marine mammals from remote locations is a concerning sign of its potential 313 

for long-range transport.    314 

Detection of PFECHS in freshwater lakes has been attributed to direct 315 

contamination from local airports, where PFECHS-containing fluids are heavily used 316 

[59]. However, PFECHS has also been detected in remote marine/arctic environments 317 
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without an obvious source of contamination nearby [61,62]. Evidence for long-range 318 

transport of PFECHS was outlined by MacInnis et al., who proposed oceanic transport 319 

processes as the source of PFECHS on the Devon Ice Cap [61]. Detection of PFECHS 320 

in the Baltic Sea [62] also supported this hypothesis. However, it was also stated that 321 

long-range transport of PFECHS could be due to leakage from commercial airplanes 322 

into the atmosphere, but this hypothesis was admittedly challenging to corroborate 323 

given the complexity of aviation sources [62]. Mechanism aside, detection of PFECHS 324 

in such remote locations provides support for its referral as a potential global 325 

contaminant. Further, PFECHS is considered one of the more widespread PFAS 326 

detected in the environment [72].   327 
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Table 2: Concentrations of replacement PFAS in the Environment.  328 

Compound Matrix Concentration  Reference 

HFPO-DA Freshwater 0.1–0.8 ng/L [49,75] 

Drinking Water 1.4–8.0 ng/L** [76] 

Wastewater Up to 40,000 ng/L*** [33] 

Sediment >100 pg/g [71] 

Plant material 1–27 ng/g ww** [76] 

6:2 Cl-PFAES Freshwater <0.01–50 ng/L [77] 

Drinking Water <0.01–50 ng/L [77] 

Marine  0.21–7.9 ng/L [78,79] 

Wastewater 7600 ng/L 

65000–120000 ng/L 

(influent) 

43000–78000 ng/L (effluent) 

[77,78] 

Sediment 200 pg/g–0.013 ng/g [71,80] 

PFECHS Freshwater 0.16–5.7 ng/L 

20 ng/L * 

[39,59,60,69] 

Drinking Water 4 ng/L [73] 

Marine  0.043–0.14 ng/L [62] 

Wastewater 10–195 ng/L [68,74] 

Sediment 0.0004 ng/g 

>10 pg/g 

[59,61,71] 

 

Ice cap <1 ng/L 

0.031 ng/mL 

[59,61] 

*Within 1.61 km of an airport 329 

**Within 25 km of a fluoropolymer production plant 330 

*** Direct Industrial Effluent 331 

  332 

Jo
urn

al 
Pre-

pro
of



 17 

4. Human Exposome of Emerging Replacement PFAS 333 

Detection in human tissues is an important aspect of toxicology testing when 334 

completing a risk assessment as it confirms whether humans are a receptor of 335 

environmental exposure. Since PFAS as a class are considered to have the potential to 336 

bioaccumulate in biota included in human food chains [81] and specific substances such 337 

as PFOS and PFOA have been detected in human serum samples at concentrations as 338 

high as 44.7 and 10 μg/L, respectively [82], it is important to review whether alternative 339 

and replacement PFAS substances also pose this risk. This section will review current 340 

known information pertaining to the detection of replacement PFAS in human samples.  341 

While HFPO-DA has been detected in environmental matrices and locations where 342 

humans were exposed [76], it has not yet been detected in tissues of humans [83,84]. In 343 

a study that aimed to identify novel fluoroethers and legacy PFAS in serum samples 344 

from residents residing near or who had lived near a fluoro-chemical processing plant, 345 

GenX fluoroethers were not detected with a limit of detection (LOD) of 2 μg/L [84]. 346 

Failure to detect HFPO-DA as well as other GenX fluoroethers in human tissues is 347 

consistent in studies investigating concentrations in serum and urine of participants who 348 

had been exposed to GenX compounds in their drinking water [83,85]. However, these 349 

studies consistently employed detection limits at the part per billion (µg/L; ppb) range, 350 

although PFAS can commonly be detected at the part per trillion (ng/L; ppt) 351 

concentrations in sources of drinking water [83]. Although it is believed HFPO-DA is 352 

effectively eliminated from human bodies given its lesser bioaccumulation potential 353 

compared to other legacy PFAS, HFPO-DA has been shown to be potentially toxic to 354 

humans by many toxicity tests, including those with rats, mice, and zebrafish 355 

[86,87,88,89,90,91]. Acute and chronic reference doses for human exposure were 356 

calculated by the Environmental Protection Agency to be 30 ng/(kg·day) for acute 357 

exposure, and 3 ng/(kg·day) for chronic exposure [92]. This is similar to the calculated 358 

reference doses for PFOA, which correspond to 20 ng/(kg·day) for sub-chronic 359 

exposure [93].  360 

 No quantifiable concentrations of 6:2 Cl-PFAES have been detected in the blood 361 

plasma of humans in Europe or North America (LOD 0.9 pg/mL–0.5 ng/mL) [94,95]. 362 

This result was expected since 6:2 Cl-PFAES is not officially used in Europe and given 363 
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the small potential for long-range transport of 6:2 Cl-PFAES, as illustrated by Ti et al. 364 

[30]. However, that is not to say that 6:2 Cl-PFAES will not be detected in human 365 

samples on these continents in the future, given a limited number of environmental 366 

detections in river waters in Europe, and detection in marine mammals from remote 367 

locations [50]. Alternatively, 6:2 Cl-PFAES has been detected in the blood serum of 368 

people from China at concentrations second to that of PFOA and PFOS (LOD 0.02 369 

ng/mL) [77,96].  370 

Concentrations of 6:2 Cl-PFAES in human blood plasma as great as 0.14 ng/mL 371 

have been reported and were greatest in people considered obese [96]. Concentrations 372 

detected in serum increased with age, suggesting a high bioaccumulation potential and 373 

long-half life in humans [96]. Males also had slightly greater concentrations than did 374 

females [96], which supports findings from other PFAS such as PFOA and PFOS [97]. 375 

Concentrations of 6:2 Cl-PFAES have also been reported as being comparable to those 376 

of PFOA, both in maternal blood sera and cord sera in pregnant women from China, as 377 

great as 0.6 ng/mL (LOD 0.01 ng/L) [77,78,79]. In addition, multiple studies investigating 378 

human exposure in China to 6:2 Cl-PFAES have indicated it is bio-accumulative with a 379 

potentially longer half-time in humans compared to PFOS and PFOA. The log Kow and 380 

predicted bioaccumulation factors (BAF) of 6:2 Cl-PFAES were 5.29 and 3.81, 381 

respectively, compared to 4.49 and 3.28 for PFOS [98,99]. In humans occupationally 382 

exposed to 6:2 Cl-PFAES, detected concentrations in blood serum have been reported 383 

as great as 5000 ng/mL (LOD = 0.01 ng/L) [77]. These results suggest humans are as 384 

susceptible to 6:2 Cl-PFAES exposure and accumulation as they are to PFOS, and that 385 

6:2 Cl-PFAES shows the same potential to cross the blood-brain and -placenta barrier 386 

[78,79,98,99].  387 

Suspect screening has identified PFECHS in pooled human blood serum, cord 388 

sera, and placental tissue taken from expecting mothers from Europe at concentrations 389 

ranging from 21 ng/L to 38 ng/L (LOD = 0.25 ng/mL) [66,95,100]. Conversely to 6:2 Cl-390 

PFAES, PFECHS has not yet been reported in tissues of humans in China, likely 391 

because it hasn’t until recently been a target of concern, but detection of PFECHS in 392 

drinking waters from China and around the globe suggests that it could be identified in 393 
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targeted analysis of human blood plasma and sera as well as other tissues 394 

[10,59,70,101].  395 

5. Aquatic Toxicology of Legacy PFAS 396 

Legacy PFAS are often not considered acutely toxic relative to other aquatic 397 

contaminants found in the environment [102], and concern surrounding their 398 

environmental effects is related to their bioaccumulative ability and long half-lives 399 

[1,7,11]. In aquatic organisms, the bioaccumulation potential of legacy substances 400 

depends on the species exposed, and can range from a low potential to a very high 401 

potential [81]. In regard to PFOA, serum bioconcentration factors (BCFs) ranged from 402 

9.4 to 578 when calculated in carp (Cyprinus carpio) and black rockfish (Sebastes 403 

schlegeli), respectively [103]. However, the whole body log BCF of PFOA measured 404 

across species was only determined to be as high as 1.36, which corresponds to a BCF 405 

value of 22 [81]. PFOS is considered to have a BCF as high as 26,000 when whole-406 

body concentrations were measured in catfish (Lctalurus punctatus) and large-mouth 407 

bass (Micropterus salmoides) [27]. In a critical review of the calculated bioaccumulation 408 

potential of a number of legacy PFAS, whole body log BAF ranged from 1.30–4.86 409 

depending on the substance under study [81]. These values correspond to log BAFs 410 

ranging from 3.6 to 4.6 [56]. The bioaccumulation potential of legacy PFAS is one of the 411 

defining aspects of their chemical class, and allows organisms exposed to low 412 

concentrations to accumulate a toxic internal dose [27].  413 

Because a comprehensive review on the adverse effects of PFAS in aquatic 414 

environments has already been published [11], this review only briefly describes and 415 

summarizes the known effects of PFAS on aquatic receptors, particularly in the domains 416 

of the non-targeted and targeted tissue and organ-level effects, and population-level 417 

effects. Because toxic potencies of emerging replacement PFAS are largely unknown, 418 

the following sections will be used as a foundation for comparing the known effects of 419 

legacy PFAS and emerging replacements. 420 

 421 

5.1. Non-organ directed bio-active effects of PFAS exposure 422 

Exposure of fish and other aquatic organisms to PFAS can result in both non-423 

organ-directed toxicity and target organ toxicity. Non-organ-directed toxicity can be 424 
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summarized as toxic effects and potencies relating to oxidative stress and the 425 

metabolism of xenobiotics and key macromolecules [11,104]. Several previous studies 426 

have identified oxidative stress in aquatic organisms following exposure to PFAS. In a 427 

study in which cultured hepatocytes of Nile tilapia (Oreochromis niloticus) were exposed 428 

to 30 mg/L of PFOS and PFOA, increased activities of superoxide dismutase (SOD), 429 

catalase (CAT), and glutathione reductase (GR) were observed, suggesting greater 430 

concentrations of reactive oxygen species (ROS) [105]. Similarly, exposure of zebrafish 431 

embryos (Danio rerio) to 1 mg/L of PFOS resulted in ROS production and induction of 432 

antioxidants [106]. Results of these and other studies have suggested that the 433 

production of antioxidants after exposure to PFAS is related to the activation of the 434 

mitogen-activated protein kinase (MAPK) pathway [106,107]. For example, studies 435 

investigating the effects of exposure of zebrafish larvae or embryos to PFNA or PFOS 436 

have found an increased abundance of transcripts coding for kinases and transcription 437 

factors involved in the MAPK signaling pathway, such as jun-N-terminal kinases (JNKs), 438 

and nuclear respiratory factors (NRF-1 and NRF-2) [106,107,108,109,110].  439 

Exposure to PFAS also alters the expression and regulation of genes related to the 440 

metabolism of xenobiotics. In fish, PFAS have been shown to up-regulate expressions 441 

of various phase I cytochrome P450 enzymes as well as phase II detoxification 442 

enzymes and phase III transporter receptors [111,112]. Up-regulation of cytochrome 443 

p450 genes, such as CYP3A and CYP2Y3, was observed in male cryptid fish 444 

(Gobiocypris rarus) exposed to 30 mg/L of PFOA [113]. Significant induction of CYP3A 445 

has also been observed in other fish exposed to PFOA, such as rainbow trout 446 

(Oncorhynchus mykiss) [114,115]. In addition, exposure to PFAS can result in activation 447 

of the aryl hydrocarbon receptor (AhR), peroxisome proliferated activated receptor 448 

(PPAR), and the pregnane X receptor (PXR), which has been demonstrated by an 449 

increase in transcription abundance of some genes in a variety of species exposed to 450 

PFOS, PFOA, and mixtures containing each [112,116]. Extensively described by Lee et 451 

al., these findings suggest that organisms attempt to excrete PFAS by activating the 452 

PPAR, PXR, AhR receptors, and by use of biotransformation mechanisms that involve 453 

phase I (cytochrome P450), phase II (glutathione), and phase III (ATP-binding cassette) 454 

enzymes [11]. Activation of PPAR, AhR, PXR, and other receptors, including the retinoic 455 
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acid receptor (RAR), recombinant retinoic X receptor (RRXR), and liver X receptor 456 

(LXR) by PFAS, has also been shown to affect the metabolism of lipids and 457 

carbohydrates in aquatic species [112,117,118,119,120].  458 

 459 

5.2. Target-organ and -system bioactive effects of exposure to PFAS  460 

Exposure to PFAS has been associated with endocrine-disrupting effects, including 461 

significant regulatory changes in genes connected with serum testosterone, 17β-462 

estradiol (E2), and production of the egg yolk protein, vitellogenin [114,121,123,124]. In 463 

the brain, gonads, and liver of zebrafish, significant changes in transcription abundance 464 

of genes for the follicle-stimulating hormone receptor, luteinizing hormone receptor, and 465 

the steroidogenic acute regulatory protein (FSHR, LHR, and STAR) were observed after 466 

exposure to 1 mg/L of PFNA [124]. In fathead minnows (Pimephales promelas), 467 

exposure to PFOS resulted in greater concentrations of plasma testosterone [125]. 468 

These studies have provided evidence that PFAS can directly bind with receptors along 469 

with the hypothalamus-pituitary-gonad-liver (HPGL) axis and estrogen receptors 470 

[11],and are supported by observed tissue and organ level effects in affected 471 

organisms. A study investigating the exposure of cryptid fish to 30 mg/L of PFOA 472 

reported degenerating oocytes [113]. Similar results have also been reported by later 473 

studies that observed ovarian follicle cell atrophy, degeneration, and spermatozoa 474 

paucity in fish exposed to PFOA and mixtures of PFOS, PFOA, PFNA, and 475 

perfluorobutanesulfonic acid (PFBS) [11, 126].  476 

Disruption of thyroid function has also been observed in aquatic organisms 477 

exposed to PFAS. Exposure to PFDoA has resulted in a number of transcriptional 478 

changes, such as the upregulation of genes like thyrotropin-releasing hormone (TRH), 479 

corticotropin-releasing hormone (CRH), and iodothyronine deiodinase 2 (DIO2), a gene 480 

that codes enzymes important for the activation and de-activation of thyroid hormones 481 

in zebrafish [121,127]. Down-regulation of genes such as thyroglobulin (Tg) and thyroid 482 

hormone receptor (THRβ) has also been observed concurrently with the above gene 483 

up-regulation in zebrafish [121]. Similar results were observed in zebrafish exposed to 484 

PFOS but also included up-regulation of early development-related genes necessary for 485 

the differentiation and formation of thyroid follicles such as homeobox protein (Hhex) 486 
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and paired box gene 8 (PAX8) [128]. Concurrent observed changes in thyroid structure 487 

and function were also observed in accordance with the above molecular-level changes 488 

[128,129]. Significant changes such as inhibition of growth and decreased 489 

concentrations of thyroid hormone have been observed in zebrafish exposed to either 490 

PFOS or PFDoA [127], and exposure to mixtures including PFOS, PFOA, PFNA, and 491 

PFBS have resulted in thyroid follicle cell degeneration and atrophy of male fish [130]. 492 

Studies investigating the effects of PFAS have suggested the hat accumulation of 493 

lipids in the liver is a primary outcome of PFAS exposure [114,117,119,120]. The 494 

previous discussion on molecular and transcriptomic changes in aquatic organisms has 495 

suggested that PFAS disrupt lipid metabolism. These findings, along with tissue- and 496 

systemic-level analyses, have linked PFAS exposure with lipid metabolism-related 497 

hepatoxicity [117]. In zebrafish chronically exposed to 0.5 µM (0.3 mg/L) of PFOS, 498 

serum cholesterol content measured as the low- and very-low-density lipoprotein 499 

(LDL/VLDL) ratio was decreased along with lesser ATP content in blood serum [119]. In 500 

contrast, total cholesterol and glycerol contents were greater in larger livers, which 501 

suggested an accumulation of lipids in the liver [119]. Hepatocyte viability was also 502 

decreased in Nile tilapia exposed to PFOS or PFOA [131], and in zebrafish exposed to 503 

PFOA, PFBA, or PFHxA [131]. Accumulation of lipid droplets in the liver, and swelling of 504 

hepatocytes, and hepatocellular vacuolar degeneration have also been observed in 505 

fishes, such as zebrafish and cryptid fish exposed to PFOS, PFOA, or PFDoA 506 

[117,119,120,122]. Steatosis (fatty liver) was observed in zebrafish exposed to 0.3 mg/L 507 

of PFOS [119], and research into the molecular responses matched those observed in 508 

mammals [117]. Lipid accumulation was also observed in adult zebrafish after chronic 509 

exposure to 0.3 mg/L PFOS, and observed brittle and pale livers in PFOS-exposed fish 510 

compared to the soft and sanguine livers of control fish suggested liver degeneration 511 

[122].  512 

The main mechanism associated with PFAS-induced hepatoxicity is the ability of 513 

PFAS to bind to proteins such as serum albumin [99], fatty acid protein [104], and 514 

apolipoprotein A-Ⅰ [120,132]. While binding to serum albumin is typically observed in 515 

mammals, binding into fatty-acid proteins in fish livers and apolipoproteins have the 516 

potential to alter liver metabolism as described above, leading to hepatoxicity and 517 
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associated apical events [99,104,120]. However, apical events related to protein binding 518 

of PFAS were substance-dependent, as only some resulted in moderate biochemical 519 

and molecular effects at concentrations higher than those found in the environment. In a 520 

study that investigated changes in fathead minnow exposed to PFOA, biochemical 521 

endpoints such as altered fatty-acid oxidase were observed at concentrations of 1 and 522 

30 mg/L [99]. In another study that identified alterations in apolipoprotein genes in rare 523 

minnows (G. rarus), only concentrations around 10 mg/L resulted in an altered 524 

expression [120]. Therefore, the severity of the effect PFAS have on the liver is 525 

dependent on the substance of exposure, and, in the case of substances like PFOA, 526 

can be relatively non-toxic at environmentally relevant concentrations [99].  527 

Effects of PFAS on the metabolism of lipids, as well as the general amphiphilic 528 

nature of PFAS, are also associated with altered cellular membranes 529 

[133,134,135,136,137]. Exposure of Atlantic cod (Gadus morhua) to mixtures of PFAS 530 

caused the enrichment of poly-unsaturated acyl-chains in phospholipids along with 531 

perturbation of lipid metabolism [137]. Acyl-chains confer membrane flexibility, enabling 532 

density adjustments that are theorized to be in response to acute membrane 533 

deformations potentially caused by PFAS exposure [137]. Previous studies have also 534 

demonstrated that exposure to PFOS results in increased membrane permeability and 535 

fluidity, and decreased membrane potential [134].  536 

Based on the targeted and non-targeted molecular and organ level responses of 537 

aquatic organisms, several molecular and cellular biomarkers of toxicity of PFAS have 538 

been suggested. These biomarkers include changes in expressions of apolipoprotein 539 

(ApoAL, ApoALV) due to its specific role in lipid metabolism, serum lipid content, liver 540 

triacylglycerol content, lipid droplet content, and the hepatosomatic index due to the 541 

ability of PFAS to influence the accumulation of lipids via changes in synthesis, uptake, 542 

and β-oxidation [11]. Changes in expressions of some key nuclear receptors, such as 543 

PPAR, THR, LXR, and PXR, could also be used as biomarkers for PFAS exposure. 544 

However, they lack specificity across species and experiments [11]. While not specific 545 

to PFAS exposure, genes for xenobiotic metabolism and oxidative stress are still 546 

consistently affected, and specific genes such as CYP3A1, JNKs, and NRF2 are 547 

important to characterize molecular effects of exposure [11,25,138]. At the cellular level, 548 
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altered amounts of glutathione, SOD, CAT, and lipid peroxidation (LPO) in the liver can 549 

also be used to characterize and mark PFAS exposure effects [11,25,138]. 550 

 551 

5.3. Individual- and population-level responses to PFAS exposure  552 

Molecular and mechanical alterations in response to exposure to PFAS can cause 553 

abnormalities in growth and development, as well as altered endpoints in reproduction 554 

and behavior [6,11]. These can include reductions in fecundity of the parent generation 555 

[125], as well as decreases in hatching rates, larvae survival, body length, and 556 

developmental abnormalities [128]. Multiple studies have demonstrated similar results, 557 

which observed decreases in larval survival and sperm density in male zebrafish 558 

exposed to PFOS [139]. The fecundity of Japanese medaka (O. latipes) was 559 

significantly decreased with exposure to a mixture of PFOS, PFOA, PFNA, and PFBS 560 

[130]. The results of such studies have suggested the potential for population-level 561 

effects of PFAS, particularly PFOS, which include a greater ratio of female fish as well 562 

as decreases in population numbers [139].  563 

However, some studies have reported that certain PFAS do not cause reproductive 564 

toxicity in some species of fish. A study investigating zebrafish exposed to PFOA 565 

showed no significant changes in hatching rates, fecundity, or fertility [121]. Although 566 

reductions in fecundity of the parental generation were observed when exposed to 0.3 567 

mg/L PFOS, there were no significant changes in hatching rates of eggs or effects on 568 

the growth and development of their offspring exposed to up to 0.3 mg/L of PFOS [125]. 569 

As well, investigations into aquatic invertebrates often lead to more contrasting results. 570 

In a study that investigated the effect of acute and chronic exposure of PFOA and other 571 

short-chain substances perfluorobutanoic acid (PFBA), and PFHxA on the mortality and 572 

fecundity of Daphnia magnia, PFOA was demonstrated to cause marked decreases in 573 

reproductive rates and increases in mortalities, where the calculated effective 574 

concentration (EC50) of 239 mg/L was significantly lower compared to that of PFBA and 575 

PFHxA which had EC50’s of 5251 mg/L and 1048 mg/L respectively [140]. Such 576 

differences in the toxicity of PFOA on fecundity across species highlight how PFAS 577 

research requires a broad range of studies on different endpoints and species to create 578 

a robust understanding of their effects on environmental populations.  579 
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The growth and development of aquatic organisms could also be affected by PFAS 580 

due to underlying mechanisms related to oxidative stress, thyroid disruption, and 581 

development-related gene regulation [11,127,128]. In a study by Zhang et al.[127], 582 

exposure to 6 mg/L of PFDoA inhibited growth and caused spine deformities in larval 583 

zebrafish, likely due to disruption of thyroid function. Along with up-regulation of genes, 584 

such as PAX8 and Hhex, zebrafish embryos exposed to 5 mg/L of PFOS were 585 

characterized by significant morphological abnormalities and developmental 586 

toxicological effects [128]. Underlying mechanisms affecting development might also be 587 

linked to neurobehavioral changes associated with PFAS exposure. In zebrafish 588 

exposed to PFDoA, a decrease in swimming speed was observed, along with a 589 

reduction of acetylcholine content (ACh) [141]. This suggested that ACh enzyme activity 590 

could have been inhibited by PFAS, which then resulted in the reduction of ACh [141]. 591 

Reduced behavioral activity has also been observed in goldfish exposed to PFOS [142]. 592 

This observation is supported by a reduction of aggressive behavior in male zebrafish 593 

exposed to PFOS and other PFAS [143]. However, some studies have also reported 594 

conflicting behavioral results. In zebrafish exposed to PFOS, there was a significant 595 

increase in basal swimming rate [139,144], and this hyperactivity has also been found in 596 

the offspring of fish exposed to PFOS [143]. While these multi-generational effects are 597 

believed to be caused by direct oviparous maternal transfer of PFOS rather than 598 

residual chemical exposure, given chemical analysis of maternal vs. paternal body of 599 

burden concentrations, the discrepancies in results across published literature highlight 600 

the need for future research in this domain to confirm a causal mechanism of transfer 601 

and effect [139].  602 

The paucity of studies focused on individual- and population-level effects of PFAS 603 

exposure is also reflected by the lack of studies that directly link PFAS exposure with 604 

standardized fish health indices such as the hepatosomatic index (HSI), gonadosomatic 605 

index (GSI), and Fulton’s condition factor (FCF). In a single study that investigated the 606 

effect of environmental levels of PFAS on morphometric fish health indices, it was 607 

determined that FCF was directly affected by PFAS exposure, and the HSI was also 608 

directly affected for certain fish species [145]. However, as the study was based on field 609 

collection of fish species and causal substance exposure was determined by 610 
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environmental sampling, the study was unable to identify the main contributions by 611 

individual PFAS [145]. Therefore, we recommend standardized laboratory studies on 612 

health indices in fish as another direction of future research for PFAS in general.  613 

 614 

5.4. Gaps in knowledge and future concerns 615 

The amount of PFAS used in industrial and commercial processes, and the growing 616 

number of substances detected in the environment is an inherent difficulty associated 617 

with any research on this chemical class [1,7]. Discrepancies in exposure periods, 618 

model organisms, concentrations of exposure, and chemical of study have made it 619 

difficult to rank PFAS in terms of toxicity [11]. While PFOS is generally considered the 620 

most toxic PFAS, this assumption is only supported by a small amount of toxicity 621 

information on other substances in the environment [11,24,25,26,27]. Depending on the 622 

endpoint of study, the ranking of substances can change as well. For example, 623 

exposure to PFOS but not PFOA at environmentally relevant concentrations resulted in 624 

chronic toxicity in Daphnia carinata [146], while dose-dependent increases in lipid-625 

peroxidation were observed in tilapia (Oreochromis niloticus) only with exposure to 626 

PFOA, not PFOS [105]. Additional studies on population- and individual-level effects of 627 

PFAS exposure would aid in highlighting the overall effects and general toxicity of 628 

substances, while also highlighting potential biological mechanisms of toxicity to be 629 

confirmed with future studies.   630 

Large concern also surrounds the mixture toxicity of PFAS chemicals and other 631 

micro-pollutants [11]. While PFAS often behave differently in the environment compared 632 

to other micro-pollutants [147], evidence suggests exposure to PFAS could impact the 633 

toxic potency of other micropollutants in the environment. In a study investigating the 634 

combined effect of binary and tertiary mixtures of PFOS with pesticides and/or 635 

pharmaceuticals, both antagonistic and synergistic toxic responses were observed 636 

[148]. Further, it has been theorized that the immunosuppressive effects of PFAS 637 

exposure could make organisms more susceptible to infection and less resilient to 638 

environmental stress [11,147]. This has been supported by a study in which exposure to 639 

10 μg/L (10 ppb) of PFHxS increased trematode infections in larval northern leopard 640 

frogs compared to the negative control [149]. However, exposure to PFOS did not result 641 
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in a similar increase in susceptibility, highlighting the gaps in knowledge that exist 642 

surrounding PFAS chemicals. 643 

 In summary, molecular-level mechanisms such as oxidative stress, nuclear 644 

receptor activation, and membrane interaction of PFAS can result in tissue- and organ-645 

level effects that can result in reproductive toxicity, growth and developmental defects, 646 

neurobehavior defects, and other disorders. However, more research is not only needed 647 

to highlight the general individual- and population-level effects of exposure, but it also 648 

elucidate the underlying mechanisms and molecular responses to PFAS leading to such 649 

individual- and population-level alterations. ‘Crosstalk’ between the different systems 650 

and diverse molecular pathways could be linked with PFAS-induced toxicity and help 651 

explain some of the contrasting results observed at both the molecular and individual 652 

levels [11,150]. For instance, it has been theorized that oxidative stress can affect the 653 

formation of eggs and the development of larvae, relating it to reproductive toxicity 654 

[11,130], and PFAS affect the production and regulation of lipids, which can be 655 

precursors for sex hormones [11,119,124]. While such systematic interactions could 656 

help clarify the adverse effects related to PFAS exposure, the field of PFAS-induced 657 

toxicity also suffers from unidentified fluorinated chemicals, lack of toxicity information, a 658 

deficit of studies using non-teleost models, and a disconnect between available results 659 

and environmentally relevant chemical concentrations and scenarios [25,29].   660 

Therefore, we suggest future studies of PFAS should focus on population- and 661 

individual-level effects in order to better support a general understanding of PFAS 662 

toxicity in the aquatic environment, and specific focus should be placed on determining 663 

exposure effects on standardized health indices to allow for better comparison across 664 

species. As well, more mixture studies are required to elucidate the effect of PFAS in an 665 

environmentally relevant scenario, as well as highlight mechanisms of their toxicity. 666 

Finally, investigations using new techniques such as high-throughput omics could also 667 

offer further insights into the environmental effects of PFAS exposure.  668 

 669 

 670 

Jo
urn

al 
Pre-

pro
of



 28 

6. Aquatic Toxicology of Novel, Emerging PFAS of Concern 671 

While extensive research on the environmental effects of PFOS and PFOA has 672 

occurred, critical scientific and policy needs remain. The large number of PFAS on the 673 

global market ensures that most of them remain un- or under-assessed and un- or 674 

under-regulated, with extensive data gaps in the public domain [25]. This has led to 675 

concerns that PFAS research might never converge due to: (1) a lack of information on 676 

mixture effects, total chemical burden, and mechanisms of action of both the numerous 677 

known and unknown chemicals, (2) current technology that might not be sufficient for 678 

detecting decreasing concentrations in the environment, and (3) the constant production 679 

of alternative substances that are being created and released into the environment 680 

[10,151]. However, recent progress has been made in each, particularly in the areas of 681 

grouping PFAS chemicals and prioritizing future research needs [22]. 682 

As knowledge of properties and the ability to define and group PFAS increases, it 683 

has become more likely that due to pressure from the scientific and stakeholder 684 

communities, governmental and industrial organizations will continue to employ blanket 685 

bans on legacy PFAS such as PFOS and PFOA [23,28]. Blanket bans, however, will not 686 

remove the PFAS that already exist in the environment, nor will they stop new and 687 

related PFAS chemicals from being produced and emerging as aquatic contaminants. 688 

Therefore, the following sections will outline the known toxicological information of the 689 

chosen replacement PFAS: HFPO-DA, 6:2 Cl-PFAES, and PFECHS and summarize 690 

the information in comparison to that known of legacy PFAS (Figure 2). 691 

 692 

 693 
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 694 

 695 

Figure 2: Summary of the most common shared and differential molecular effects 696 

between legacy perfluoroalkyl substances (blue) and novel replacement perfluoroalkyl 697 

substances (orange). The arrows point to the effects associated with the highlighted 698 

compounds.  699 
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6.1. Hexafluoropropylene Oxide Dimer (HFPO-DA) 701 

Most toxicological research on the GenX class exists for HFPO-DA, the final 702 

product detected in aquatic environments [168,169]. As a shorter chained PFAS (≤6 703 

carbons), HFPO-DA has been marketed as a safer alternative to other PFAS used 704 

historically and has been incorporated by many industries in recent years [168,170]. 705 

However, detection of HFPO-DA in surface waters and other environments indicated 706 

concern for its safety, and subsequent toxicological studies indicated that HFPO-DA 707 

was potentially as toxic, if not more, as the previous legacy PFAS it was meant to 708 

replace [171,172,173]. Significant concern arose surrounding human health implications 709 

after HFPO-DA was shown to be carcinogenic and toxic in rats and mammals [171,174]. 710 

However, relatively little is known about its impact in the aquatic environment and on 711 

aquatic organisms [11].   712 

Most studies of HFPO-DA have focused on reproductive, development, growth, and 713 

mortality endpoints after aqueous and dietary exposure to HFPO-DA in zebrafish, 714 

rainbow trout, common carp, algae, and D. magna [18]. In a 12-day study involving 715 

exposure of HFPO-DA to the algae C. pyrenoidosa, growth was inhibited after 6 days, 716 

and RNA-seq analysis showed that genes related to photosynthesis were down-717 

regulated in response to HFPO-DA at concentrations of 100 ng/L and 100 μg/L [175]. 718 

Differentially expressed genes were related to photosystem I and photosystem II 719 

proteins necessary for the photosynthetic pathways [175]. Similar studies have also 720 

shown that HFPO-DA inhibited the antioxidant capacity of algae and increased 721 

production of the reactive oxygen species indicated by a reduction in cellular chlorophyll 722 

contents at concentrations higher than 25 mg/L, as well as differential transcription of 723 

genes related to the oxidative stress pathway and photosynthesis, such as CAT, SOD 724 

and GST [176]. These molecular-level impacts can translate to cell-level effects in 725 

Chlorella sp. such as a reduction in cellular growth at environmentally relevant 726 

exposure concentrations of 10, 100, and 1000 ng/L [152].  727 

In vertebrate species, the acute lethal concentration of 50% (LC50) of HFPO-DA 728 

has been quantified to be >96.9 mg/L in adult rainbow trout [177], and similar results 729 

have been observed in medaka exposed to HFPO-DA which have a recorded LC50 730 

greater than 100 mg/L [177]. Rare gudgeon (G. rarus) have been shown to be less 731 
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sensitive to HFPO-DA with a recorded LC50 greater than 150 mg/L [177]. These acute 732 

toxicity values are significantly more potent compared to those recorded for PFOA. In 733 

multiple studies investigating the acute lethality of PFOA to early-life-stage fish, the 734 

recorded LC50 values were 430 and 730 mg/L for early-life stage zebrafish and rainbow 735 

trout, respectively [178,179]. However, PFOA is better known for causing sub-lethal 736 

chronic effects associated with exposure [11,104,143]. As there are little to no published 737 

studies on long-term exposure of HFPO-DA at sublethal concentrations, it is not 738 

possible to make a reliable statement comparing the overall toxic potency of HFPO-DA 739 

to legacy PFAS, although it appears to be more toxically potent at acute levels of 740 

exposure.  741 

In fish, HFPO-DA homologs of trimer and tetramer acids have also been shown to 742 

exhibit a binding affinity to ligand-binding domains of estrogen receptors (ER), with the 743 

lowest observable effect concentration (LOEC) for binding being 25 μM (~0.08 μg/L) 744 

and 12.5 μM (~0.04 μg/L) respectively [180]. While HFPO-DA did not show an ability to 745 

bind to estrogen receptors, it was shown to affect the expression of fatty-acid binding 746 

proteins at concentrations higher than 50 μM [181]. All homologs were concluded to 747 

have the potential to alter the sex-hormone balance and enhance the vitellogenin levels 748 

[91,180,182]. In a singular bioaccumulation test in common carp, the whole-body 749 

bioconcentration factors over a 28-day test exposure period were determined to be <30 750 

[177]. Compared to the calculated whole-body BCF of PFOA which was measured to be 751 

200 in carp as well, HFPO-DA has a lesser bioaccumulation potential [81]. 752 

While the toxic potency of HFPO-DA compared to legacy PFAS depends on the 753 

duration of exposure, species, and endpoints tested, the mechanisms of toxicity appear 754 

to be similar. Exposure of longer-chain, legacy PFAS to algae is known to result in 755 

down-regulation of SOD and CAT activity in antioxidant systems [118,150,163]. While 756 

this was also observed in exposure to HFPO-DA, further effects included the overall 757 

downregulation of the algae’s total antioxidant capacity (T-AOC) [175,176]. Further, 758 

certain homologues of HFPO-DA have a higher binding affinity to estrogen receptors 759 

compared to PFOA where the LOEC is 50 μM (~1.6 μg/L) [180]. While HFPO-DA 760 

specifically was not observed to bind to estrogen receptors, it was shown to impact the 761 

expression of fatty-acid binding protein [181]. Fatty-acid binding proteins are required 762 
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for the transport of hydrophobic ligands into cells before fatty acid oxidation is able to 763 

take place [183]. As described previously, legacy PFAS impact fatty acid oxidation 764 

[102,104,118] which can ultimately lead to observed hepatoxic effects 765 

[82,102,104,118,150,163].   766 

 767 

6.2. 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate (6:2 Cl-PFAES)  768 

Initially, 6:2 Cl-PFAES was marketed by manufacturers as less persistent, less bio-769 

accumulative, and less toxic compared to other, greater molecular mass PFAS like 770 

PFOS [153]. However, recent evidence suggests that these proclamations are not 771 

necessarily true, and 6:2 Cl-PFAES likely poses a significant risk to the health of the 772 

aquatic environment [74,77]. Evidence surrounding bioaccumulation of 6:2 Cl-PFAES 773 

as well as long-range transport has increased in recent years [71,154]. 6:2 Cl-PFAES 774 

has been shown to be bioaccumulative in several species, including algae and fish. It 775 

was reported that whole-body log BAF in Crucian carp (Carassius carassius) exceeded 776 

the regulatory bioaccumulation criterion with log BAF values between 4.1 and 4.3 777 

[155,156], ranking the bioaccumulation potential of 6:2 Cl-PFAES above that of PFOS 778 

[56]. 6:2 Cl-PFAES has been detected in the livers of ringed seals, polar bears, and 779 

killer whales, mirroring the detection of PFOS in marine and arctic mammals [49,157]. 780 

Although detected at concentrations approximately four-fold less than PFOS, the 781 

detection of 6:2 Cl-PFAES in keystone species as well as the observed bioaccumulation 782 

and maternal transfer in model fish species greatly increases its potential risk for the 783 

health of humans and wildlife [154,156,158,159,159]. 784 

In the freshwater algal species Scenedesmus obliquus (S. obliquus), exposure to 785 

6:2 Cl-PFAES resulted in many toxic effects associated with exposure to PFOS [160]. 786 

Exposure to environmentally relevant concentrations caused an oxidative stress 787 

response, increased cell membrane permeability and mitochondrial membrane 788 

potential, as well as direct growth toxicity at concentrations similar to or even less than 789 

the no-effect level of PFOS [160]. Specifically, exposure to 50 mg/L of 6:2 Cl-PFAES 790 

doubled the permeability of the cellular membrane of algae, while previously reported 791 

exposure to 30 mg/L of PFOS had the same effect [135]. 6:2 Cl-PFAES was also 792 

observed to be more potent at reducing growth in S. obliquus compared to PFOS, with 793 
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a reported 50% inhibition concentration (IC50) of 40.3 mg/L 6:2 Cl-PFAES compared to 794 

an IC50 of 112 mg/L PFOS [160,135]. These results have also been observed in other 795 

algae species such as Chlorella sp., which demonstrated reduced growth at 796 

environmentally relevant concentrations of 6:2 Cl-PFAES, increased SOD and 797 

glutathione activity, and decreased activities of CAT and POD [152,154]. In zebrafish, 798 

exposure to 6:2 Cl-PFAES has also been shown to have multi-generational effects. 799 

Exposure of the parent generation to 6:2 Cl-PFAES has been shown to impair the 800 

embryonic development of offspring by induction of oxidative stress [158], disrupt the 801 

expression of HPG-axis genes in both generation one and two offspring, and affect 802 

concentrations of thyroid hormone in generation one offspring [159].   803 

Furthermore, in zebrafish, chronic exposure to 6:2 Cl-PFAES at environmentally 804 

relevant concentrations resulted in the compound accumulating in the liver, gonads, and 805 

embryos [159,160], similar to the accumulation of other PFAS [119,133]. Greater mean 806 

concentrations of 6:2 Cl-PFAES were found in the livers of male fish (111.4 to 67.5 807 

ng/mg), while greater concentrations were found in the gonads of females [161]. This 808 

sex-dependent accumulation has also been observed after exposure to other PFAS 809 

samples [122,162,163,164]. Consequently, 6:2 Cl-PFAES has been associated with a 810 

greater incidence of liver injury, including hepatomegaly and changes in the pathological 811 

structure of the tissue [159,165]. This relates to effects on the liver due to exposure to 812 

other long-chain PFAS have on fish, including hepatocellular hypertrophy, cytoplasmic 813 

vacuolation, necrosis, and apoptosis [166,119]. 6:2 Cl-PFAES has also been shown to 814 

interfere with the PPAR signal pathway in adult zebrafish [158], indicated by down-815 

regulation of genes related to fatty acid β-oxidation (acox1, cpt2, cpt1a), lipid transport 816 

(LPL, CD36), and cholesterol metabolism (CYP27A, Nrlh3) [158], similar to responses 817 

observed after exposure to PFOS and PFOA [112,114,167]. Oxidative stress 818 

biomarkers such as SOD, CAT, and GSH were also affected by exposure [152]. The 819 

observed decrease in SOD and CAT and increase in GSH have been observed in 820 

response to long-chain compounds PFOS and PFOA [114,117,119,120].  821 
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6.3. Perfluoroethylcyclohexane Sulphonate (PFECHS) 823 

Little data is available to characterize the toxic potencies of PFECHS to humans or 824 

wildlife, as only two studies exist that characterize its biological effects and toxicities to 825 

aquatic organisms [60,152]. The first study investigated the acute and chronic toxic 826 

potency of PFECHS to D. magna, and the second investigated the effect of PFECHS on 827 

the growth and proliferation of Chlorella sp. [60,152]. The studies resulted in 828 

significantly less growth and inhibited catalase activity, increased SOD and peroxidase 829 

activities, and down-regulation of vitellogenin-related genes [60,152]. These results 830 

suggest that exposure to PFECHS could result in oxidative stress and endocrine 831 

disruption.  832 

In other studies investigating the compartmentalization of PFECHS in field 833 

samples, PFECHS has been observed to bioaccumulate in kidney, liver, blood, muscle, 834 

and plasma of fish [56,60]. The log BAF of PFECHS has been estimated to be 2.7 [56] 835 

and 2.8 [55], ranking below PFOS, which has log BAFs ranging from 3.6 to 4.6 836 

depending on whether it is branched or linear [56]. However, the liver/blood partitioning 837 

ratio of PFECHS in fish is estimated to be significantly greater than that of PFOS, and 838 

PFECHS and PFOS likely share similar mechanisms of uptake and distribution [56].  839 

The LC50 of PFECHS was estimated to be 186.61 mg/L when exposed to D.magna 840 

for 48 hours [60]. This high LC50 is supported by a following study where it was 841 

determined that PFECHS did not have an effect on Chlorella sp. growth rates at 842 

concentrations below 1000 ng/L, much higher than its environmental concentrations 843 

[152]. Both studies suggested that PFECHS has a lower toxic potency than PFOS, 844 

which has calculated EC50 values typically less than 150 mg/L for growth endpoints in 845 

various invertebrate species [27]. However, as discussed throughout this review, the 846 

toxicity of legacy PFAS can differ significantly between species of exposure [27,60,152]. 847 

The toxic potency of PFAS can be significantly higher in fish species compared to 848 

invertebrates, particularly at sensitive times of development, as exemplified by Shi et al.,  849 

in which the approximate 96-hour LC50 for zebrafish embryos was calculated to be less 850 

than 1 mg/L [128]. Therefore, it is difficult to accurately compare PFECHS to legacy 851 

PFAS until more toxicity information is available. While the limited information on 852 

molecular-level effects suggests PFECHS could impact endocrine functions and induce 853 
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oxidative stress similar to legacy PFAS, whether or not exposure will result in similar 854 

cell-, organ-, and individual-level impacts remains unanswered [72].  855 

 856 

6.4. Gaps in Knowledge Compared to Legacy PFAS 857 

Knowledge of these three novel, emerging PFAS in the environment is limited in 858 

the same ways that knowledge of legacy PFAS is limited. There exists little to no 859 

studies on individual- and population-level effects, while some investigating molecular-860 

level alterations are available [56,60,152,158,175,176], cell- and tissue-level effects are 861 

also limited [181,159,165]. Without a more robust understanding of the toxic effects of 862 

exposure, it is not only difficult to understand the true impact of these chemicals in the 863 

environment, but also the true mechanisms of action associated with their exposure. 864 

However, apart from the limitations that apply to PFAS in general, the emerging 865 

chemicals also face specific limitations.  866 

While the results surrounding the toxicity of HFPO-DA appear to be related to the 867 

toxic mechanisms of other PFAS, studies in fish are limited to a few species, partial-life 868 

stage tests, or early-life stages [18]. No studies were published at the time of this review 869 

that investigated long-term, chronic effects of HFPO-DA and its related compounds at 870 

sub-lethal concentrations in aquatic organisms. As well, there is relatively little 871 

information on the extent of HFPO-DA in the environment. While it is considered highly 872 

likely that HFPO-DA is able to follow similar long-range transport as legacy PFAS 873 

[31,32,46,48,49], this has yet to be confirmed by environmental sampling from remote 874 

environments.   875 

Further, while more papers exist outlining the toxicity of 6:2 Cl-PFAES in the 876 

aquatic environment compared to PFECHS, further investigations are required to clarify 877 

the bioaccumulation, environmental fate, and ecotoxicity of this compound in laboratory 878 

settings [77]. Environmental variation between matrices and concentrations along with 879 

local contamination increasing exposure estimates could introduce biases, affecting 880 

results [77]. 881 

Finally, PFECHS is inherently limited by the number of studies on its toxicity with 882 

two studies investigated its molecular impacts on field-obtained fish and growth 883 

endpoints in invertebrates [56,152]. Considering that some physicochemical properties 884 
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are shared between PFECHS and PFOS, studies investigating the effects of PFECHS 885 

on more aquatic organisms are required to obtain a more robust picture of its impact in 886 

the environment. Particularly, studies investigating cell- and individual-based effects 887 

could give a better overall picture of apical effects of exposure. Given the detection of 888 

PFECHS in multiple environmental media around the globe, such information could also 889 

help overcome some of the limitations inherent in PFECHS detection. For example, 890 

methods for identification and quantification of PFAS within drinking water sponsored by 891 

the US Environmental Protection Agency (USEPA) do not include PFECHS as an 892 

analyte [184,185].   893 

A major limitation that applies to all novel replacement chemicals is the lack of 894 

native standards [57,77,78]. Many replacements are not well characterized 895 

physicochemically or isometrically, and impurities associated with the production 896 

process of these PFAS can make isolating them difficult [57]. Not only does this limit the 897 

ability to track these substances and their isomers in the environment, but it also limits 898 

the ability to determine exposure concentrations, compartmentalization, and 899 

accumulation of the PFAS [57]. Overall, future directives of studies on novel 900 

replacement PFAS in the environment should focus on generally identifying cell- to 901 

population-level effects, while also following lines of inquiry important for legacy PFAS 902 

in general such as mixture effects [11]. However, it is particularly important for future 903 

studies to investigate the environmental fate and transport processes of the novel 904 

PFAS, particularly for chemicals like HFPO-DA in which in situ results support the 905 

potential for long-range transport but there is no field evidence identifying its presence 906 

in remote locations [31,32,46,49]. Clarifying transport potential, as well as whether 907 

global environmental concentrations are conflated by local contamination, is an 908 

important research directive for these emerging replacement PFAS.  909 

 910 

7. Characterizations of Risk  911 

Currently, regulations pertaining to the registration of new chemicals in the 912 

European Union under REACH, the United States EPA, and with the Government of 913 

Canada require substances to be reported based on the total amount of chemicals 914 

produced or utilized per year [186], and the manufacturer or industry in which they are 915 
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being sent to or used by Government Notices [20]. However, chemicals released or 916 

used in small amounts, such as less than 1 t, annually, as is the case for multiple PFAS 917 

compounds, are exempt from registration, even if they are associated with adverse 918 

environmental and health effects [186]. Therefore, the existence of a toxic chemical 919 

registry is not always a prerequisite to indicating the toxic potential of an emerging 920 

substance. For this reason, to score the toxicity of the replacement PFAS discussed in 921 

this review, the Chemical Scoring and Ranking Assessment Model (SCRAM) was 922 

utilized [187]. While multiple other chemical scoring and ranking systems are available 923 

for use, such as quantitative structure-activity relationships (QSAR) models [188], we 924 

chose to use SCRAM as it had previously been utilized to rank chemicals similar to 925 

PFAS [187], and offered a robust uncertainty ranking system which is important for 926 

chemicals that lack available toxicity information, as is the case with many PFAS [29].  927 

SCRAM was developed as a tool to standardize the ranking of chemicals of 928 

concern among countries and regulatory bodies in which consensus of relevant 929 

definitions, guidelines, and toxicity profiles is often disparate [187]. The model is 930 

designed to give relative scores and also score uncertainty due to missing or uncertain 931 

information on a particular substance. SCRAM includes values for parameters 932 

(Supplementaty Table S1), including bioaccumulation, persistence, and toxicity across 933 

receptors, eventually outputting a final composite score, in which a higher score is 934 

associated with a more potentially environmentally relevant compound [187]. For each 935 

parameter, the max score achievable is 5, and the uncertainty score can be as high as 936 

5 depending on whether no data is available or predicted data is used [187]. The final 937 

chemical, uncertainty, and composite scores are calculated as weighted percents of 938 

their associated bioaccumulation, persistence, and toxicity components as described in 939 

Part IV of Snyder et al. [187]. Therefore, the lowest potential composite score is 1, 940 

which means at least one parameter must be completed for the model to function [187]. 941 

For the purposes of this review, HFPO-DA, 6:2 Cl-PFAES, and PFECHS were ranked 942 

according to SCRAM and related to PFOS and PFOA to quantify their relative 943 

significance in the human and environmental sectors.   944 

 945 
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The scoring of the SCRAM model ranks each chemical with an overall, composite 946 

score that can be used to rank chemicals according to their effect or potential effect in 947 

the environment [187]. The composite score increases if the chemical and uncertainty 948 

score increase, but chemicals with high uncertainty scores may lead to high composite 949 

scores even if the associated chemical score is low. Therefore, this review ranks the 950 

chemicals by both their chemical and uncertainty score to avoid potential conflation 951 

between which chemicals are most potentially toxic (indicated by a high chemical score) 952 

and which chemicals are the best candidates for future research (indicated by a high 953 

uncertainty score).  954 

According to the chemical score of each PFAS tested, the ranking from greatest to 955 

least potentially toxic was as follows: PFOS > 6:2 Cl-PFAES > PFOA > HFPO-DA > 956 

PFECHS (Table S1). While it was not surprising that PFOS remained the most 957 

potentially toxic PFAS given the amount of literature on its effects of exposure, what 958 

was concerning was the ranking of 6:2 Cl-PFAES above PFOA, indicating its potential 959 

to be more acutely toxic. However, this ranking could be affected if more sub-lethal 960 

chronic 6:2 Cl-PFAES exposure studies are released, as there is still a small amount of 961 

information on chronic aquatic toxicity of 6:2 Cl-PFAES. As well, while HFPO-DA was 962 

ranked below that of PFOA for potential toxicity, the SCRAM model only took into 963 

consideration its chronic toxicity scores based on its environmental persistence (Table 964 

S2). Based on acute toxicity, HFPO-DA is considered to be potentially more toxic than 965 

PFOA in certain exposure scenarios [178,179].  966 

When ranked by uncertainty scores, the order for which chemical is a candidate for 967 

future research on its toxicity from the highest necessity to the lowest is as follows: 968 

PFECHS > HFPO-DA > 6:2 Cl-PFAES > PFOS > PFOA (Table S1). This ranking simply 969 

illustrates which chemicals have the least associated amount of toxicity and 970 

environmental fate data, of which PFECHS has the lowest. HFPO-DA and 6:2 Cl-971 

PFAES have a similar uncertainty score (13 vs. 12), illustrating all three emergent 972 

compounds in this review remain largely uncertain relative to PFOS and PFOA as 973 

expected. Based on the results of SCRAM, future studies should focus on evaluating 974 

the impact of PFECHS, HFPO-DA, and 6:2 Cl-PFAES in the environment to accurately 975 

Jo
urn

al 
Pre-

pro
of



 39 

compare them to legacy chemicals like PFOA and PFOS, and better inform whether 976 

replacement PFAS are a viable pathway for future PFAS management strategies.   977 

8. Conclusions 978 

Several PFAS chemicals have been removed from the general market in multiple 979 

countries or by various industries, and regulations will likely continue to expand to cover 980 

more substances and become more encompassing [22,28]. Apart from the significant 981 

threat these substances continue to pose to aquatic environments due to their 982 

persistence, concern also surrounds the development of replacement compounds, 983 

which have also started to appear in various environmental matrices [77]. Preliminary 984 

results of a relatively small number of aquatic toxicity studies have suggested that some 985 

of the most popular replacements: PFECHS, 6:2 Cl-PFAES, and HFPO-DA, as 986 

highlighted in this assessment, potentially pose significant risks to the environment, 987 

similar to the legacy substances that they have been developed to replace. The 988 

available literature indicates these replacement compounds affect aquatic organisms by 989 

causing oxidative stress and dysregulation of genes related to fatty acid β-oxidation and 990 

cholesterol metabolism, similar as seen to the effect mechanism of PFOS and PFOA 991 

[11].   992 

However, the paucity of toxicity studies on replacement compounds means that 993 

there is no robust set of data upon which to base assessments, including information on 994 

targeted molecular effects after exposure and a limited number of multi-generational 995 

and full-life cycle studies. As well, the lack of reliable detection methods and uncertainty 996 

in their environmental spread could impact the understanding of how diverse these 997 

chemicals are. The SCRAM model was effective at quantitatively ranking the hazards 998 

posed by the three chemicals as well as describing and quantifying uncertainties 999 

associated with the ranking so that data gaps could be identified for each compound. 1000 

Overall, these knowledge gaps in replacement PFAS largely parallel the gaps relating to 1001 

the aquatic toxicity of PFAS in general. However, given the probability these 1002 

compounds will emerge in the environment as the contaminants of the future as they 1003 

replace legacy substances in industrial production, increased focus and scrutiny should 1004 

be placed on emerging PFAS alternatives, and robust toxicity profiles completed by 1005 

multiple independent agencies should be determined before global scale marketing.  1006 
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