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Activities of gut microbiomes are often overlooked in assessments of ecotoxicological effects of environmental
contaminants. Effects of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) on active gut microbiomes
of juvenile fatheadminnows (Pimephales promelas) were investigated. Fishwere exposed for two weeks, to con-
centrations of 0, 1, 10, 100, or 1000 μg BaP g−1 in the diet. The active gutmicrobiomewas characterized using 16S
rRNA metabarcoding to determine its response to dietary exposure of BaP. BaP reduced alpha-diversity at the
greatest exposure concentrations. Additionally, exposure to BaP altered community composition of active
microbiome and resulted in differential proportion of taxa associated with hydrocarbon degradation and fish
health. Neighborhood selection networks of active microbiomes were not reduced with greater concentrations
of BaP, which suggests ecological resistance and/or resilience of gut microbiota. The active gut microbiome had
a similar overall biodiversity as that of the genomic gut microbiota, but had a distinct composition from that of
the 16S rDNA profile. Responses of alpha- and beta-diversities of the active microbiome to BaP exposure were
consistent with that of genomic microbiomes. Normalized activity of microbiome via the ratio of rRNA to rDNA
abundance revealed rare taxa that became active or dormant due to exposure to BaP. These differences highlight
the need to assess both 16S rDNA and rRNA metabarcoding to fully derive bacterial compositional changes
resulting from exposure to contaminants.
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1. Introduction

Like other vertebrates, fishes benefit from having host associated
symbiotic gut microbiota. The gut microbiota contribute to the health
of fish via important biological processes, including nutritional provi-
sioning (Dimitroglou et al., 2011), regulation of intestinal barrier func-
tions (Pérez et al., 2010), and immune defence (Egerton et al., 2018;
Rolig et al., 2015). Facing environmental fluctuations, biodiversity of
the gut microbiome is vital to stabilization of the internal ecosystem
for proper functioning and host well-being (Van den Abbeele et al.,
2013; Vinebrooke et al., 2004). Additionally, environmental contami-
nants can alter community structure resulting in disturbed homeostasis
(Adamovsky et al., 2018; Claus et al., 2016), which is associated with
several harmful outcomes, including chronic inflammation, metabolic
syndromes, stress, and disease susceptibility (Carding et al., 2015; He
et al., 2019; Kotas and Medzhitov, 2015; Llewellyn et al., 2014). A few
approaches have been developed to study interactions betweenmammal
gut bacteria and chemical pollutants, including cultured bacteria, fecal/gut
microbiota suspensions, germ-free or antibiotic-treated animals, micro-
fluidic intestines-on-chips, 3D bioengineered gastrointestinal models,
and animals treatedwithmicrobiotas altered by environmental chemicals
(Claus et al., 2016; Fois et al., 2019).However, due to limitedknowledgeof
fish gut microbiota and fewer isolated bacteria from fish, these methods
require additional refinement before being applied tofishes. Furthermore,
most studies offishmicrobiome have focused solely on the genomic com-
position of gut microbiome by use of 16S rDNA metabarcoding or
metagenomics, which mainly targets both active and inactive abundant
microorganisms (Egerton et al., 2018; Givens et al., 2015). This approach
underestimates the active fraction of the gut microbiome, which is con-
tributing to the actual metabolic functions in the gut.

Like other ecosystems, rare species of gut microbial ecosystems can
play important roles in maintaining ecological homeostasis of gut mi-
crobiota and benefits to host fitness (Chen et al., 2016; Sfanos et al.,
2018) via modulating hormone metabolites (Antwis et al., 2019) or
the immune system (Rolig et al., 2015). Rare species provide dispropor-
tionately large functional contributions to species assemblages; how-
ever, they are vulnerable to anthropogenic disturbances (Leitão et al.,
2016). It's still challenging to detect responses of rare species exposed
to stressors because vertebrate gut microbiomes are typically domi-
nated by a few abundant species and several less-abundant species
(Jousset et al., 2017; Rolig et al., 2015). Experimental approaches, such
as creating synthetic communities andmanipulating natural communi-
ties, are useful to study rare species in environmental communities, but
are hardly feasible formanipulating gutmicrobiota (Jousset et al., 2017).
16S rDNA and rRNA metabarcoding are powerful tools for characteriz-
ing rare microbiota, with 16S rRNA metabarcoding providing insight
into the activity of the microbiome (Campbell et al., 2011; Jousset
et al., 2017; Zhou et al., 2021). Compared to 16S rDNA metabarcoding,
16S rRNA metabarcoding serves as a potential proxy for protein-
synthetic activity of the microbial community (De Vrieze et al., 2016),
which can give information on low abundance taxa with high activity
(Abu-Ali et al., 2018; Revetta et al., 2011). Integrated rDNA and rRNA
metabarcoding can provide a comprehensive view for assessing re-
sponses of gut microbiome to chemical pollutants.

Understanding effects of chemical pollutants on fish gut microbial
communities is complex because of the triad relationship between
host physiology, gut microbiota, and chemical pollutants. Benzo[a]
pyrene (BaP) is an ideal compound of persistent organic pollutants
(POPs) to stimulate rare species of gut microbiota. BaP is the most
well-studied polycyclic aromatic hydrocarbon (PAH), known to induce
or promote tumor formation, as well as suppressing immune function
(Beyer et al., 2010; Carlson et al., 2004a; Tuvikene, 1995). Additionally,
BaP has well-characterized deleterious effects in fishes (Carlson et al.,
2004b; Costa et al., 2011; Nacci et al., 2002; Phalen et al., 2014).
BaP can alter fish gut microbiota, with increasing presence of
hydrocarbon-degrading bacteria at low dosages (DeBofsky et al., 2020,
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2021), and inflammation in the intestinal tracts at a high dose (Xie
et al., 2020). The hydrocarbon-degrading bacteria are ubiquitous but
rare in the environment (Xu et al., 2018), and their rareness in the gutmi-
crobiota of wild aquatic organisms is related to the level of habitat con-
tamination (Šyvokiene and Mickeniene, 2011). Additionally, there are
still knowledge gaps of the effects of BaPon active gutmicrobiomes offish.

In order to investigate the response of the activemicrobiome, partic-
ularly that of rare microbiota, this study utilized dietary exposure of ju-
venile fathead minnows (Pimephales promelas) to a model compound,
BaP. Dietary exposure is more effective to distribute BaP into gut-
intestine track because it results in accumulation of BaP in the bile and
intestine (Sandvik et al., 1998). Specific objectives were to: 1) Describe
the active gutmicrobiome in juvenile fatheadminnows; 2) Characterize
the responses of the active gut microbiome to exposure of BaP; and
3) Compare responses of abundant and rare bacteria in gut to exposure
of BaP. To satisfy these objectives, the active microbiome in guts of fat-
head minnows were characterized using 16S rRNA metabarcoding
after dietary exposure to BaP for two weeks.

2. Materials and methods

2.1. Fish husbandry, dietary exposure, and sampling

Fish husbandry procedures have been fully described previously
(DeBofsky et al., 2021). Briefly, laboratory-reared juvenile fathead
minnows were acclimated at 25 ± 1 °C with a 16 h-light:8 h-dark
photoperiod. Fish were fed EWOS® Micro Crumble trout chow (Cargill
Inc., Wayzata, MN), twice daily on a maintenance food ration (2% of
mean, wet body mass per day). After a one-week acclimation, fish were
randomly assigned to each group (n = 30 per group; 3 tanks per
group; 10 fish per tank), and exposed to a solvent control (0.02% metha-
nol), or nominal concentrations of 1, 10, 100 or 1000 μg g−1 dry mass
(dm) of BaP in food for two weeks. Nominal concentrations were based
on environmentally-relevant concentrations of PAHs found in highly con-
taminated sites (Claisse, 1989; Knutzen and Sortland, 1982). At the end of
the exposure, fish were euthanized via cervical dislocation. The whole in-
testinal tract was excised from each fish to collect the microbiome, and
gallbladders were removed for quantifying BaP metabolites. Thirty-two
fishes were discarded due to sexual differentiation over the course of
the exposure. Samples were stored at −80 °C before RNA extraction. All
fish procedures followed the animal use protocol (#20090108) approved
by the Animal Research Ethics Board at the University of Saskatchewan.

2.2. Quantification of BaP in food and BaP metabolites in bile

Detailed procedures of quantification of BaP in food and BaP metab-
olites in bile are available in DeBofsky et al., 2021. Briefly, internal cali-
bration based on isotope dilution was used to quantify BaP in samples
using an eight-point calibration curve between 0.5 and 500 ng mL−1,
each spiked at 100 ng mL−1 with BaP-d12. Triplicate 0.05 g aliquots of
prepared food were spiked with BaP-d12 at a target concentration of
100 ng mL−1 in the final 1 mL extract. Each sample was extracted
using an accelerated solvent extraction cell. Concentrations of mono-
hydroxylated BaP (OH-BaP)were quantified directly by use of analytical
standards and external calibration. Semi-quantification of OH-BaP-O-
glucuronide (BaP-Gluc) and sulfate-BaP (BaP-SO4) was accomplished
by use of a relative response factor approach. Analysis was done by GC-
QE-Orbitrap mass spectrometer system (Q Exactive, Thermo Scientific).
Detailed results of the BaP in food and BaP metabolites in bile have been
reported previously (DeBofsky et al., 2021). Nominal concentrations
were confirmed bymeasuring concentrations of BaP in food (SI Table S1).

2.3. Metabarcoding and bioinformatics

The active gut microbiome was characterized by 16S rRNA
metabarcoding. Total RNA was co-isolated with DNA from intestines
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using the AllPrep DNA/RNA Mini Kit (Qiagen Inc., Mississauga, ON).
Residual DNA was removed by on-column digestion with DNase I
and ezDNase. Complementary DNA was synthesized with the
SuperScript™ IV Reverse Transcriptase kit (ThermoFisher Scien-
tific, Waltham, MA). PCR amplification of the V3-V4 region of the
16S rRNA gene, construction of the sequencing libraries and next-
generation sequencing were performed as previously described
(DeBofsky et al., 2021).

Sequences of 16S rDNA and rRNA metabarcoding were pooled and
analyzed together in the same bioinformatics pipeline to compare
rRNAactive gutmicrobiomewith rDNA-based genomic gutmicrobiome
(DeBofsky et al., 2021). On average, 69% of demultiplexed reads sur-
vived through the cleaning process, and 99% of the cleaned reads
could be aligned to bacteria. Numbers of reads per sample pre- and
post-cleaning are summarized in SI Table S2. The feature table was rar-
efied at 13,133 sequences per sample to avoid biases introduced by dif-
ferent sequencing depths (SI Fig. S1). Thirty-four samples were
removed due to low sequencing depth. Alpha- (Shannon diversity and
number of observed amplicon sequence variants (ASVs)) and beta-
diversities (Bray-Curtis dissimilarities) were calculated in QIIME2
(Bolyen et al., 2019). PICRUSt2 (Douglas et al., 2019)was used to predict
functional abundances of MetaCyc pathways (Caspi et al., 2017) based
on 16S rRNA gene sequences. Data can be accessed at: https://doi.org/
10.20383/101.0247.

2.4. Statistics

Statistical analyses were performed using R Statistical Language v.
3.6.1 (R Core Team, 2013). Assumptions of normality and equal variance
were assessed, then depending on if assumptions of parametric statis-
tics were met, either an analysis of variance (ANOVA) followed by a
Dunnett's test, or a Kruskal Wallis followed by Mann-Whitney U test
to compare exposure groups to the solvent control was used. Unless
otherwise noted, statistics were completed using the ‘vegan’ package
(Oksanen et al., 2019). Concentrations of predominant metabolites of
BaP were log10-transformed prior to statistical analysis. To avoid taking
logs of zero, an arbitrary value of 0.0001 ng g−1 was assigned to values
below the detection limit. To retain as much microbiome data as possi-
ble, samples where the gall bladder was emptywere assigned as the av-
erage value from their corresponding exposure group. Abundant ASVs/
taxa were defined as those that comprise ≥1% of the community, and
rare ASVs were <1%. The ratio of active gut microbiome to genomic
gut microbiome was assessed independently to evaluate normalized
activity of bacterial genus. The normalized activity was calculated
(Eq. (1)).

λ f ;i ¼
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f Df ;i

" #
ð1Þ

Rf,i and Df,i are the counts of feature/taxa f in sample i, for the rRNA
metabarcoding and rDNA metabarcoding respectively. The variable t is
the detection limit, here set to 1read, and n is the sample size after
filtering.

Differentially abundant bacterial taxa and MetaCyc pathways
were calculated using the ANOVA-Like Differential Expression tool
(ALDEx2) (Fernandes et al., 2013). Spearman correlations between
taxa or MetaCyc pathways and log-transformed BaP-SO4 (lgBaP-SO4)
were also computed by use of Aitchison's centered log-ratio (CLR)-
transformed data. To determine differences among community compo-
sition based on nucleotide and exposure conditions, Bray-Curtis dissim-
ilarities for log-transformed ASV values at the level of genera for each
exposure group were assessed using ‘adonis2’ (Oksanen et al., 2019),
and the pairwise.adonis2 function with Bonferroni p-value adjustment
(Martinez Arbizu, 2019). A Constrained Analysis of Principal Coordi-
nates (CAP) was conducted to ordinate the data and view the clusters
3

of samples as constrained by the log-transformed BaP metabolite data.
Significant BaP metabolites contributing to the ordination were
assessed using an ANOVA of the terms. To visualize community differ-
ences, bootstrapped Bray-Curtis dissimilarity averages of the genus
tables for each exposure group were plotted using metric MDS
(PRIMER-e v.7). Neighborhood selection network (Meinshausen and
Bühlmann, 2006) was constructed by the SPIEC-EASI package (Kurtz
et al., 2015).

3. Results

3.1. Active gut microbiome of juvenile fathead minnows

The active gutmicrobiome, as determined through 16S rRNA analysis,
was diverse, but dominated by limited numbers of key bacterial taxa. In
total, 1575 non-singletons active ASVs of 75 bacterial genera among 84
samples (n = control: 19, 1 μg g−1: 15, 10 μg g−1: 20, 100 μg g−1: 15,
1000 μg g−1: 15) were recovered using rRNA metabarcoding. The active
gut microbiomes were dominated by (mean ± standard error)
Proteobacteria (48% ± 1%), Fusobacteria (43.5% ± 1%), and Bacteroidetes
(4% ± 0.4%) at the phylum level (Fig. S2A). The dominant classes were
Gammaproteobacteria (46% ± 1%), Fusobacteriia (43% ± 1%), and
Bacteroidia (4% ± 0.4%) (Fig. S2B). The dominant families were
Fusobacteriaceae (43% ± 1%), Aeromonadaceae (26% ± 1%), and
Pseudomonadaceae (13% ± 1%) (Fig. S2C).

rRNAmetabarcoding detectedmore ASVs than rDNAmetabarcoding
(Welch's t-test: t = −4.6, p < 0.001). Fifty-eight genera were detected
by both rDNA and rRNAmetabarcoding, while six were unique to rDNA
metabarcoding and 17 were unique to rRNA metabarcoding (Fig. S3A).
The profile of the active gut microbiome was significantly different
from that of the genomic gut microbiome (adonis test, F = 5.5,
p < 0.001, Fig. S3B).

3.2. Dietary exposure of BaP altered active gut microbiome

Alpha-diversity of the active gutmicrobiomewas less in groups that
were exposed to BaP. Dietary exposure to BaP resulted in lesser
Shannon diversity of the active gut microbiome (KW test, χ2 = 12.9,
p = 0.01), which approached significance in the greatest exposure
(1000 μg g−1) group relative to the control group (Fig. 1). The fewer ob-
served active ASVs based on exposure to BaP approached significance
(ANOVA test, F = 2.2, p = 0.08), and the greatest exposure concentra-
tion (1000 μg g−1) had significantly fewer ASVs than the control
group (Fig. 1).

There was a significant effect of dietary exposure to BaP on commu-
nity structure agglomerated to genus level (adonis test, F = 3.2, p =
0.001; Fig. 2A). The structure of the active gut microbiome was signifi-
cantly affected by exposure to BaP at the greater exposure concentra-
tions; while the control group community structure was not
significantly different from the 1 or 10 μg g−1 groups, itwas significantly
different from the 100 (Pairwise adonis test, F = 2.4, p = 0.02) and
1000 μg g−1 (Pairwise adonis test, F = 4.9, p=0.001) groups. Metabo-
lites of BaP (log10 transformed) significantly constrained the ordination
of the CAP1 and CAP2 (ANOVA test, p = 0.001 and p = 0.04 for lgBaP-
OH and lgBaP-SO4, respectively).

Dietary exposure to BaP altered compositions of active gut
microbiomes (Fig. 2B). Proportions of Barnesiellaceae and Bacteroidaceae
were significantly less in the 1000 μg g−1 groups relative to the control
group (Dunnett test, p < 0.001, p= 0.005, respectively). The proportion
of Barnesiellaceaewas greater in the 100 μg g−1 group relative to the con-
trol group (p = 0.02), while the proportion of Chromobacteriaceaewas
significantly less in the 100 μg g−1 group relative to the control group
(p= 0.004). The proportion of Flavobacteriaceae was significantly larger
in the 1000 μg g−1 groups relative to the control group (p < 0.001).
Mycobacteriaceae was significantly lower in proportion in the 10 μg g−1

(p = 0.005) and 100 μg g−1 (p = 0.002) groups relative to control; the

https://doi.org/10.20383/101.0247
https://doi.org/10.20383/101.0247


Fig. 1. Shannon Index values and number of observed amplicon sequence variants (ASVs)
for each exposure group from the active gut microbiome. Mean and standard error values
are presented.
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lesser proportion in the 1000 μg g−1 group was not significant. Further-
more, several proportions of families (CLR-transformed) were signifi-
cantly correlated with lgBaP-SO4 (p < 0.05; Fig. S4).

Rare taxa presented greater variance in response to BaP exposure
than did more abundant taxa (Fig. S2A–C). The abundant phylum
Actinobacteria shifted into the rare fraction in 100 μg g−1 and
1000 μg g−1 groups, and the abundant class Alphaproteobacteria shifted
into the rare fraction in the 100 μg g−1 group. More families shifted be-
tween abundant and rare fractions among groups.
4

The number of nodes and edges of neighborhood selection net-
works of active microbiomes weren't correlated with exposure dos-
age (Fig. 3 and Table 1) compared to that of rDNA-based networks (SI
Fig. S5 & Table S3). Numbers of nodes and edges were not signifi-
cantly correlated with concentrations of BaP (Spearman correlation,
P > 0.05). Edges between ASVs of Proteobacteria, Fusobacteria,
Bacteroidetes, or Actinobacteria dominated the neighborhood selec-
tion networks across groups.

3.3. Concentrations of BaP metabolites correlated with predicted metabolic
pathways

In total, 179 MetaCyc pathways of active gut microbiomes were
significantly correlated with lgBaP-SO4 (Spearman correlation,
p < 0.05, Fig. S6). In total, 22 pathways were negatively correlated
with lgBaP-SO4, while 157 pathways were positively correlated
with lgBaP-SO4. Pathways showed a clear separation among
treatment groups, with the control and 1 μg g−1 groups clustering
together, the 10 and 100 μg g−1 groups clustering together, and the
1000 μg g−1 group separated from the rest. Several negatively
correlated pathways, including super-pathway of fucose and rham-
nose degradation, fucose degradation, and mannan degradation
were associated with degradations of sugars. A number of positively
correlated pathways with lgBaP-SO4 were associated with the
tricarboxylic acid cycle or biosynthesis of amino acids such as
methionine, arginine, and tyrosine.

3.4. rDNA-normalized active gut microbiome

The rDNA-normalized active gut microbiome had a better perfor-
mance to cluster community structure than the genomic or active gut
microbiome, corresponding to exposure groups. The rDNA-normalized
active gut microbiome showed better separation among exposure
groups than the active and genomic gut microbiomes. rDNA-
normalized active microbiome (Pseudo-F = 2.0, p < 0.001) resulted in
greater magnitudes in the structural differences among exposure
groups than the genomic (Pseudo-F = 1.4, p = 0.20) or active gut
microbiome (Pseudo-F = 1.7, p = 0.03) (Fig. 4).

rDNA-normalized activity allowed for analysis of the activity-
dormancy dynamics of overlapping taxa (Fig. 5). Several proportions
of rDNA-normalized active families (CLR-transformed) were signifi-
cantly correlated with measured lgBaP-SO4 metabolites (Fig. S4). The
normalized active of rare families, Rikenellaceae, Sphingomonadaceae,
Nocardiaceae, and Xanthomonadaceae were all negatively correlated
with lgBaP-SO4, while that of Desulfovibrionaceae, Microbacteriaceae,
Flavobacteriaceae, Rhizobiaceae, Chitinibacteraceae, and Moraxellaceae
were positively correlated with lgBaP-SO4 (Spearman correlation,
p < 0.05).

rDNA-normalization detected correlations between certain taxa
(Desulfovibrionaceae, Shewanellaceae, Aeromonadaceae, Rhizobiaceae,
and Nocardiaceae) and lgBaP-SO4 that were not observed within the
active or genomic microbiomes.

4. Discussion

This study revealed that dietary exposure to BaP significantly altered
the active microbiome in the gut of fathead minnows. Genomes of gut
microbiota shaped the overall active biodiversity of gutmicrobiome ex-
plored by use of 16S rRNA metabarcoding. The responses of alpha- and
beta-diversities of the active microbiome were consistent with that of
genomic microbiomes to dietary exposure of BaP. Less abundant and
rare taxa of activemicrobiome had differential compositional responses
to BaP exposure from that of genomicmicrobiome. The use of the rDNA-
normalized active microbiome can providemeaningful insights into the
hidden impacts of BaP on the microbiome.



Fig. 2. Families of bacteria from the gut microbiome that were (A) positively and (B) negatively correlated with lgBaP-SO4 with the genomic, active, and DNA-normalized active
microbiomes. (C) Relative abundance of the taxa that were significantly different in the exposure groups relative to the control, based on Dunnett's tests. (D) Constrained Analysis of
Principal Coordinates (CAP) of the different exposure groups constrained by the vectors of the measured metabolite concentrations, using Bray-Curtis dissimilarities. Both lgOH-BaP
and lgBaP-SO4 metabolites were the significant environmental variables constraining the ordination (p = 0.001 and p = 0.04, respectively).
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The overall active biodiversity of gut microbiomewas shaped by ge-
nomic capability of gutmicrobiota. The abundant active gutmicrobiome
in fathead minnows was consistent with the genomic gut microbiome
Fig. 3.Neighborhood selection networks of active gutmicrobiome, as determinedwith SPIEC-EA
bacterial phylum; color of node: bacterial class; size of node: abundance.
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from previous studies (DeBofsky et al., 2020; Gaulke et al., 2016;
Narrowe et al., 2015), but with different proportions. Although the ac-
tive gut microbiome has similar alpha-diversity as that of genomic gut
SI, after exposure to (A) Control, (B) 1, (C) 10, (D) 100, (E) 1000 μg g−1 BaP. Shape of node:



Table 1
Number of nodes and edges from the neighborhood selection networks of the active gut microbiome.

Group Number of
nodes

Number of nodes
(non-alone)

Number of
edges

Clustered
edges

Percentage of edges Proteobacteria, Fusobacteria,
Bacteroidetes, or Actinobacteria

Control 160 160 325 267 82.4%
1 μg g−1 94 54 41 40 92.5%
10 μg g−1 129 129 205 168 82.7%
100 μg g−1 78 68 332 263 75.7%
1000 μg g−1 127 127 201 164 76.1%
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microbiome (DeBofsky et al., 2021), the composition of active
microbiome is different from that of genomicmicrobiomebecause a sig-
nificant portion of gut microbiome might be dormant and not actively
transcribing (Jones et al., 2010). The active bacteria with a greater tran-
script activity might quickly respond to fluctuations in environmental
factors or health statuses of hosts (Revetta et al., 2011). Redundancy
of gutmicrobiomemight determinebacteria providing similar functions
Fig. 4. Bootstrap averages ofMetricMDS plot for (A) the DNA-normalized activemicrobiome, (B
genus level. Av: averaged resemblance.

6

to have lesser transcript activity (Escalas et al., 2017), which highlights
the less-abundant and rare but more active bacteria might be linked to
potential nonredundant functions.

Effects of BaP on alpha- and beta-diversity of the gut microbiome
were consistent across the active and genomicmicrobiomes,which sug-
gested the overall responses of gut microbiome to BaP exposure for a
short-term is determined by genomic capability of gut microbiota
) the activemicrobiome, and (C) the genomicmicrobiome. ASVswere agglomerated to the



Fig. 5. (A) Heatmap of the abundance of DNA-normalized active gut microbiome in each exposure group. (B) Percent relative abundance of genera across all samples. (D) Percent
abundance of genera in the genomic and (D) active microbiomes. (E). Percent relative abundance of genera in the control (F) 1, (G) 10, (H) 100, and (I) 1000 μg g−1 groups. In total, 8
genera were abundant (>1%), shown in blue, 13 genera were less abundant (0.1%–1%), shown in pink, and the remaining 30 genera were rare (<0.1%), shown in purple. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Madlung and Comai, 2004). Alterations of gut microbiome by BaP
might lead to deleterious effects, including decreased digestive function
and immune capacity, (Carlson et al., 2004a; Reynaud and Deschaux,
2006). Bacteroidaceae and Barnesiellaceae, both negatively correlated
with lgBaP-SO4, are associated with digestion (Bäckhed et al., 2005;
Ikeda-Ohtsubo et al., 2018; Thomas et al., 2011) and immune
regulation (Hiippala et al., 2018). PAH-degrading bacteria are rare in
the gut of fish reared under clean lab conditions with lesser concentra-
tions of PAHs in the facilities (Šyvokiene and Mickeniene, 2011).
Moraxellaceae isolates are capable of degrading BaP (Sowada et al.,
2014), while they are recognized as being opportunistic pathogens in
fish (Austin and Austin, 2016). PAH-degrading bacteria stimulated by
greater concentrations of BaP can result in greater activity (Claus et al.,
2016; Ghosal et al., 2016). This supports the conclusion that 16S rRNA
metabarcoding is able to detect potentially important rare, but active,
taxa that would otherwise be missed with rDNA analyses.

Several taxa in the activemicrobiomewere correlatedwith lgBaP-SO4

that were not correlated with taxa inferred from the genomic
microbiome. This means that the activity, rather than genomic
abundance, of these taxa is either stimulated or inhibited due to
exposure to BaP. Rikenellaceae, for example, was significantly negatively
correlated with lgBaP-SO4. Exposing mice to the fungicide imazalil
resulted in a reduction in proportion of Rikenellaceae and was
associated with colonic inflammation (Zeng et al., 2016). Reduction in
Rikenellaceae was also seen in an in vitro assay exposing fecal
microbiomes to BaP (Defois et al., 2017). Therefore, the reduction in
Rikenellaceae might be a biomarker of reduced health of these fish. In
addition, rRNA metabarcoding exhibited a positive relationship between
lgBaP-SO4 and Flavobacteriaceae as well as Pseudomonadaceae, which
are families that contain known opportunistic pathogens in fish
(Austin and Austin, 2016; Loch and Faisal, 2015). Furthermore, there
are also a number of bacterial species from Flavobacteriaceae and
7

Pseudomonadaceae that are capable of degrading hydrocarbons (Balba
et al., 1998; Šyvokiene and Mickeniene, 2011). The duality of
unrelated functions associated with these bacterial families supports
the conclusion that exposure to BaP affects abundances of these
families. Burkholderiaceae, another family positively correlated with
lgBaP-SO4 are also capable of degrading hydrocarbons and are found
in greater proportions at contaminated sites (Laurie and Lloyd-Jones,
2000; Seo et al., 2009; Yang et al., 2016). In a study in which mice
were exposed to BaP, exposure resulted in a greater proportion of
Alcaligenaceae, which, are in the order Burkholderiales (Ribière et al.,
2016). Finally, a positive correlation between Isosphaeraceae and fish
exposed to BaP via an aqueous exposure was also seen in DeBofsky
et al. (2020), although the function of this taxa is uncertain.

Exposure to BaP resulted in reduction in network connectivity and
complexity for the genomic (DeBofsky et al., 2021), but not the active
microbiomes (this study). Edges between ASVs of Proteobacteria,
Fusobacteria or Bacteroidetes of active gutmicrobiotawere resistant to ex-
posure of BaP. Maintenance of the network of the active microbiome
across treatments suggests resiliency and resistance of the microbial
communities in response to the BaP exposure (Elmqvist et al., 2003).
Compared with the network of genomic microbiome, active microbiome
had a greater overall complexity, which suggests that the genomic
microbiome contains a number of dormant taxa, whereas the active
microbiome represents the taxa that are interacting with one another
(Blazewicz et al., 2013).

Predicted functions of the activemicrobiome resulted inmore rational
patterns of MetaCyc pathways significantly correlated with concentra-
tions of lgBaP-SO4 than that of the genomic microbiome (DeBofsky
et al., 2021). Within the aromatic compound degradation pathways,
both predicted 4-methylcatechol degradation (ortho cleavage) and tolu-
ene degradation III (aerobic) (via p-cresol) were positively correlated
with lgBaP-SO4. Creatinine degradation was negatively correlated with
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lgBaP-SO4, which is consistent with a previous finding that greater
concentrations of creatinine are associated with exposure of humans to
PAHs (Srogi, 2007). However, further metagenomics, metatrans-
criptomics and single-cellmetabolomics are required to evaluate complex
functions of gut microbiota.

rDNA-normalization of the active microbiome revealed hidden pat-
terns of responses of the gut microbiome exposed to BaP. rDNA-
normalization attempted to discern the active bacteria from overall
community composition. A large value for normalized activity indicates
a certain taxa is more active relative to its abundance, whereas a small
value indicates that a taxa is largely dormant (Blazewicz et al., 2013).
Desulfovibrionaceae, which was correlated with pro-inflammatory
phenotypes,wasmore active at greater dietary exposure to BaP. That re-
sult is consistent to that observed in mice exposed to 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) (Lefever et al., 2016). Enrichment
of the family Microbacteriaceae has also been associated with soil sites
contaminated with hydrocarbons (Jacques et al., 2007). The families
Shewanellaceae and Aeromoadaceae contain known pathogens (Austin
and Austin, 2016), and Shewanellaceae is negatively correlated with
neutrophil recruitment (Rolig et al., 2015). Greater activity of those
taxamay bemodulating the immune response alongwith the BaP expo-
sure. Normalized activity of Sphingomonadaceae and Nocardiaceaewere
negatively correlatedwith lgBaP-SO4; severalmembers of these families
are capable of degrading hydrocarbons (Juhasz and Naidu, 2000).
Certain genera within Nocardiaceae are also pathogenic in fish (Austin
and Austin, 2016). While other potential hydrocarbon-degraders and
pathogens increased in proportion with increasing concentrations of
lgBaP-SO4, these taxa became dormant as concentrations increased.
The dormancy implies that other taxa have a competitive advantage
when exposed to BaP (Blazewicz et al., 2013). Several of these taxa
correlated with lgBaP-SO4 metabolites are the least abundant, indicat-
ing that rarer taxa are responsible for regulating the response to an ex-
posure to BaP.

5. Conclusions

Active gut microbiome had distinct compositional responses of less
abundant and rare taxa to BaP exposure. The results of this study
show that exclusively analyzing the genomic or active microbiome
study might fail to detect relationships between bacterial proportion
and a particular stressor. Not all taxa in the genomic microbiome
might be active, but this pool of species represents a potential “seed
bank” that can become active at any time, conferring advantage for
rapid adaptation to change (Caporaso et al., 2012; İnceoğlu et al.,
2015). The rDNA-normalized microbiome might be a better indicator
of the response to a stressor, but the issue of “phantom microbes” that
are present in the active microbiome but not the genomic microbiome
complicate solely relying on rDNA-normalized analyses (Bowsher
et al., 2019). The issue of how to handle these taxa has not been resolved
and therefore the importance of these taxa is unknown (Bowsher et al.,
2019). While this study showed that 16S rRNA metabarcoding can ad-
dress differences between the abundant and rare microbiome, utiliza-
tion of multiple techniques such as emerging single-cell-omics and
gastrointestinal models is necessary to fully understand the complexity
of microbial ecosystems.
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families from the microbiome that are significantly correlated with
log-transformed BaP-SO4, along with the correlation values (Fig. S3);
Neighborhood selection networks of the genomic gut microbiome
from exposure to Control, 1, 10, 100, and 1000 μg g−1 BaP (Fig. S4);
Heatmap of the MetaCyc pathways that are significantly correlated
with lgBaP-SO4 at each of the exposure concentrations (Fig. S5); Con-
centration of food and BaP metabolites along with respective standard
errors for the different exposure groups (Table S1); The counts of se-
quenced, filtered, denoised, merged, non-chimeric, and bacteria only
reads for each sample (Table S2); Number of nodes and edges from
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Fig. S2: Compositions of active gut microbiomes of fathead minnows exposed to benzo[a]pyrene at the (A) phylum, (B) class, and (C) 46 
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 52 
Fig. S3: (A) Venn plot of genus characterized by 16S rDNA and rRNA metabarcoding; (B) 53 
PCoA plot of log-transformed Bray-Curtis dissimilarities of 16S rDNA and rRNA 54 
metabarcoding, shown in red and blue, respectively. 55 
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 56 
 57 
Fig. S4: (A) Genomic (B) Active and (C) rDNA-normalized active families from the microbiome that are significantly correlated with 58 

log-transformed BaP-SO4, along with the correlation values. 59 
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 60 

 61 
Fig. S5: Neighborhood selection networks of the genomic gut microbiome from exposure to (A) Control, (B) 1, (C) 10, (D) 100, and 62 

(E) 1000 μg g-1 BaP. Shape of node: bacterial phylum; color of node: bacterial class; Size of node: abundance. 63 
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 64 
                                    CTRL           1 μg g-1          10 μg g-1            100 μg g-1      1000 μg g-1 65 
 66 
Fig. S6: Heatmap of the MetaCyc pathways that are significantly correlated with lgBaP-SO4 at 67 

each of the exposure concentrations. The correlation value of each pathway with lgBaP-SO4 is 68 

shown on the left. Colors denote a scaled relative abundance for visualization, from the 69 

pheatmap package in R, of the MetaCyc pathways, with red indicating more abundant, and 70 

yellow indicating less abundant. 71 

                 72 
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Table S1: Concentration of food and BaP metabolites along with respective standard errors for 73 

the different exposure groups. 74 

Exposure 
(μg g-1) 

Food (μg g-1) OH-BaP (ng g-1) BaP-Gluc (ng g-1) BaP-SO4 (ng g-1) 

CTRL 0.06 ± 0.02 0 0 178.12 ± 51.28 

1 0.98 ± 0.04 0 1.44 ± 1.44 46.67 ± 17.87 

10 8.03 ± 1.61 0 9.63 ± 2.88 1385.3 ± 307.71 

100 104.61 ± 3.08 7.67 ± 3.32 157.07 ± 46.88 8084.58 ± 2281.28 

1000 1166.45 ± 32.07 48.98 ± 16.66 280.35 ± 92.64 41003.53 ± 9556.2 

 75 
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Table S2: The counts of sequenced, filtered, denoised, merged, non-chimeric, and bacteria only 76 

reads for each sample. 77 

sample-id input filtered denoised merged non-chimeric bact only 

R11000F1C 41391 40661 40018 38155 32565 32539 

R11000F2C 44524 43970 43792 43363 40261 39744 

R11000F3C 49160 48119 47383 45381 36812 36812 

R11000F4C 34808 34108 33681 32416 27072 27057 

R11000F5C 53894 53128 52715 50719 40097 39118 

R11000F6C 7 6 4 3 3 3 

R11000F7C 61653 60684 60077 58006 49835 49703 

R11000F9C 47633 46812 46030 43728 34523 34504 

R1100F10C 61568 60537 59646 56383 41408 40360 

R1100F1C 54401 53459 52329 48760 37757 37725 

R1100F2C 5 5 3 0 0 #N/A 

R1100F3C 50236 49364 48500 45809 35609 35483 

R1100F4C 40079 39424 38632 36128 29070 29042 

R1100F5C 45038 44115 43619 41551 34398 34358 

R1100F6C 56392 55524 54897 52087 37808 37801 

R1100F7C 46141 45461 44828 42785 34480 34471 

R1100F8C 36281 35554 34956 32813 25350 25258 

R1100F9C 3 1 1 1 1 #N/A 

R110F10C 57091 56185 55494 53461 45056 45048 

R110F1C 18010 17759 17494 16601 14365 14345 

R110F2C 55878 55043 54341 52187 42803 42781 

R110F3C 33241 32608 32166 30928 28649 28438 

R110F4C 41132 40410 39860 38065 30891 30874 

R110F5C 50829 50012 49164 46087 35532 35428 

R110F6C 58978 58126 57509 55458 45249 45130 

R110F8C 15 13 3 0 0 #N/A 

R11F10C 14 14 9 9 4 4 

R11F1C 40030 39470 38883 36711 31641 31615 

R11F2C 16079 15295 14996 14627 14146 12475 

R11F3C 43 43 26 26 26 26 

R11F4C 55141 54207 53467 51071 43399 43244 

R11F5C 16916 16586 16251 15150 12060 11919 

R11F6C 41771 41011 40684 39463 34465 34394 

R11F7C 55930 55043 54097 51417 40942 40873 

R11F7xC 65 40 32 31 31 31 
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sample-id input filtered denoised merged non-chimeric bact only 

R11F8C 39823 39318 38884 37399 33388 33384 

R11F9C 11 11 6 0 0 #N/A 

R1CTRLF10C 59382 58454 57659 54854 44361 44304 

R1CTRLF1C 51253 50377 49887 47677 39181 39158 

R1CTRLF2C 50171 49394 48319 45196 33658 33614 

R1CTRLF3C 43047 42464 41891 40344 31932 31904 

R1CTRLF4C 47658 46875 46217 43965 34418 34394 

R1CTRLF5C 12 12 4 4 4 4 

R1CTRLF6C 15899 15674 15336 14468 11601 11601 

R1CTRLF7C 12655 12251 11884 11072 9732 9696 

R1CTRLF8C 58582 57368 56726 54342 46943 46943 

R1CTRLF9C 41067 40460 40153 39134 36947 36853 

R21000F10C 36394 35914 35248 33387 30871 29983 

R21000F1C 31 30 15 13 13 13 

R21000F2C 18683 18365 17886 16345 13265 13237 

R21000F2xC 32705 32248 31619 29892 24443 24443 

R21000F4C 55913 55152 54201 50599 36175 36008 

R21000F4xC 34659 34146 33290 30790 23901 23837 

R21000F5C 30559 30105 29647 28017 23855 23838 

R21000F6C 34411 33719 33094 30965 25158 25085 

R21000F9C 37068 36550 36049 34131 25583 25577 

R2100F1C 18539 17887 17312 15656 11293 3698 

R2100F2C 20890 20587 20214 18762 12812 #N/A 

R2100F3C 26803 26406 25896 24036 17040 17036 

R2100F3xC 30099 29674 29193 27662 20053 20000 

R2100F4C 28870 28426 27894 26125 18873 18864 

R2100F5C 40995 40261 39375 36747 27268 27134 

R2100F7C 26568 26176 25530 23659 17333 17292 

R2100F8C 8982 8822 8565 7912 6680 6680 

R210F10C 21335 21041 20761 19952 17171 15994 

R210F10xC 38850 38105 37349 35067 27238 27065 

R210F2C 29395 29016 28593 27141 21727 21720 

R210F3C 40 38 27 26 26 26 

R210F4C 27564 27082 26749 25593 19652 19498 

R210F5C 30894 30479 30203 29379 25407 25404 

R210F6C 33152 32709 32146 30285 22589 22540 

R210F7C 40075 39461 38829 36684 29471 29424 

R210F8C 30279 29839 28896 26131 21146 21034 

R210F9C 36430 35878 34566 30780 24685 24433 
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sample-id input filtered denoised merged non-chimeric bact only 

R21F10C 30 28 13 11 11 #N/A 

R21F1C 38820 38242 37619 35514 27145 27139 

R21F2C 25789 25438 24919 23171 17997 17993 

R21F3C 23113 22822 22589 21936 21090 20622 

R21F5C 39583 38994 38064 35348 29381 29372 

R21F6C 34915 34327 33619 31263 22793 22733 

R21F7C 32474 31897 31371 30024 25559 25503 

R21F8C 34159 33595 32697 29768 22723 22424 

R21F9C 36042 35458 34819 32692 27081 27069 

R2CTRLF10C 34791 34218 33522 31242 26591 26351 

R2CTRLF1C 39431 38939 38703 37961 35014 34839 

R2CTRLF2C 33942 33319 32589 30211 25004 24990 

R2CTRLF3C 27448 26994 26546 25182 19046 19030 

R2CTRLF3xC 31210 30791 30333 29020 20922 20916 

R2CTRLF4C 43137 42466 41805 39471 31555 31471 

R2CTRLF4xC 31473 30940 29927 26850 21340 21279 

R2CTRLF5C 42068 41519 40814 38490 30695 30655 

R2CTRLF7C 31967 31582 31359 30997 27427 27162 

R2CTRLF8C 30215 29760 28842 26466 21119 21102 

R2CTRLF9C 34457 33953 32929 29713 24340 24070 

R31000F10C 26306 25977 25258 23668 17306 17294 

R31000F1C 8249 8140 7948 7537 6719 6707 

R31000F2C 34925 34523 33675 30642 24525 23439 

R31000F3C 36637 36206 35494 33445 26726 26423 

R31000F3xC 13039 12858 12593 11896 9361 8966 

R31000F4C 44859 44311 43566 41105 30841 30794 

R31000F4xC 42566 42021 41371 40057 35889 34964 

R31000F6C 40860 40354 40042 39090 31464 30926 

R31000F7C 36548 36072 35412 33470 24630 24517 

R31000F8C 19926 19683 19200 17823 14559 14255 

R31000F9C 12049 11826 11596 11079 8387 8240 

R3100F1C 25920 25589 24996 23473 18943 18931 

R3100F2C 48581 47948 47340 45056 42431 40731 

R3100F4C 12608 12407 12250 11880 11722 11309 

R3100F5C 27813 27494 26881 25370 19849 19694 

R3100F6C 19972 19675 19393 18848 18627 18575 

R3100F7C 45992 45242 44540 42714 38492 38113 

R3100F8C 13542 13363 12946 11621 8622 8576 

R3100F9C 29413 29048 28802 28232 24831 24784 
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sample-id input filtered denoised merged non-chimeric bact only 

R310F1C 47951 47330 46148 42512 30453 30424 

R310F2C 29819 29460 28787 26296 17800 #N/A 

R310F3C 45244 44675 43695 40633 29411 29406 

R310F4C 39842 39348 38639 36007 25145 25108 

R310F5C 265 260 249 244 244 244 

R310F6C 12866 12705 12193 10919 7816 7808 

R310F7C 40334 39869 39240 36578 25497 25414 

R310F8C 44285 43770 43368 41973 37471 36956 

R310F9C 35287 34839 34101 31433 22655 22649 

R31F10C 59346 58502 57188 51853 30988 30776 

R31F10xC 1370919 1353110 1344492 1285214 904422 898579 

R31F1C 34672 34215 33241 29863 19799 19694 

R31F2C 7 7 1 0 0 #N/A 

R31F3C 39553 38996 38153 34830 22807 22766 

R31F4C 34656 34169 33381 30482 19372 19324 

R31F5C 11 11 4 4 4 4 

R31F6C 12471 12315 11859 10399 7454 7439 

R31F7C 14 14 6 3 3 3 

R31F8C 5 5 1 0 0 #N/A 

R31F9C 10944 10810 10398 9139 6288 6282 

R3CTRLF10C 39469 39014 38215 35391 25109 25016 

R3CTRLF1C 31954 31586 30702 27870 18735 18726 

R3CTRLF2C 9 9 3 2 2 2 

R3CTRLF3C 33344 32868 31920 28533 19179 19006 

R3CTRLF4C 12 12 4 2 2 2 

R3CTRLF5C 36667 36181 35240 32203 24879 22707 

R3CTRLF6C 39882 39396 38400 35026 26088 25950 

R3CTRLF7C 40002 39435 38283 34250 23283 23224 

R3CTRLF8C 33680 33311 32432 29354 20577 20560 

R3CTRLF9C 44403 43843 42560 37778 24163 22309 

NTC2D 593 583 526 429 384 378 

NTCD 8 8 2 2 2 2 

78 
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Table S3: Number of nodes and edges from the neighborhood selection networks of the genomic 79 

gut microbiome discovered by rDNA metabarcoding. 80 

Molecule 
Exposure 
(μg g-1) 

Number of nodes 
Number of nodes 
 (non-alone) 

Number of edges cluster-edges 

rDNA 0 107 104 131 111 
 1 89 73 240 197 
 10 90 71 60 57 
 100 78 56 44 42 
 1000 81 70 75 69 

 81 
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