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Phytate is the most abundant organic phosphorus (P) in the environment and is also an important

bioavailable P source for algal blooms in some lakes. A novel Fe–Al–La (FAL) tri-metal composite adsorbent

was developed by the coprecipitation method. The maximum adsorption capacity was 2.09 μmol m−2 at

298 K and an initial pH of 4.0, and it could keep high adsorption capacity when the pH varied from 4.0 to 9.0.

The dominant process for the adsorption of phytate by the FAL adsorbent was surface chemical reactions

mainly by monolayer coverage. The adsorption was best described by Langmuir isotherms, and its kinetics

by a pseudo-second-order kinetic equation. Thermodynamic parameters indicated that adsorption of

phytate by the FAL adsorbent was a spontaneous and endothermic process. The adsorption capacity

decreased with pH variation from 3.2 to 11.0, especially when pH > 9.0. The sequence of strength of

competition of coexisting anions with phytate was CO3
2− > SO4

2− > NO3
− > Cl−. Dissolved organic matter

(DOM) also competed for adsorption sites with phytate on the surface of the FAL adsorbent. Fourier

transform infrared (FT-IR) spectroscopic and X-ray photoelectron spectroscopic (XPS) analyses showed that

phytate had been adsorbed onto the surface of the FAL adsorbent and that Fe, Al and La all participated in

adsorption. The prepared FAL adsorbent exhibited potential for removing both phytate and other

phosphate species during treatment of wastewaters including those from pig and poultry manures. The

FAL adsorbent could also be a potential agent for immobilization of both phytate and phosphate in

overlying water and lake sediments. This study also indicated that eutrophication of lakes would increase

the potential of phytate to be a bioavailable form of P in blooming of algae.

1 Introduction

Phosphorus (P) is an element that is a nutrient essential for
life and a major contributor to nonpoint-source pollution

and eutrophication.1 Thus, biogeochemical cycling of P and
methods to reduce and control P in wastewater, natural
water, and sediments have been widely studied.2–5 The
predominant inorganic P species such as HPO4

2− or H2PO4
−

are the most bioavailable forms of P, and emphasis has been
placed on the study of inorganic P abundance, dynamics,
adsorption and desorption by various adsorbents for many
decades.6 However, in most wastewater, natural water, soils,
sediments and manure, organic P in the form of phytate,
nucleic acids, phospholipids, sugar phosphates, and organic
condensed P species is at least as abundant as inorganic P.
In particular, phytate, which is the most abundant organic P
in the environment,7 is widely present in wastewaters,8

soils,9–11 sediments12,13 and poultry litter.14,15 Additionally,
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Water impact

Phytate is the most abundant organic phosphorus (P) species in the environment, which is widely present in wastewater, soils, sediments and poultry litter
and is also an important bioavailable P source for algal blooms in lakes. The adsorbent with a high adsorption capacity would be important for recovery or
immobilization of phytate from wastewater, soils, sediments and poultry litter. The adsorption and desorption mechanisms of phytate onto Fe and Al
oxides are also fundamental processes in understanding the biogeochemical cycling of phytate in water, soils or sediments.
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phytate is likely an important bioavailable P source for algal
blooms in some lakes, such as Lake Dianchi, China.3

Phytate with six phosphate groups linked to the six carbon
atoms of the inositol ring has a highly negative charge and
can strongly interact with metal ions and metal oxides such
as aluminum (Al) and iron (Fe) oxides.16,17 The adsorption
and desorption of phytate by various monometallic oxide-
based adsorbents such as Al2O3,

18,19 hematite,20 goethite,21

and kaolinite22,23 have been reported. Compared to
orthophosphate, phytate is not only much larger in molecular
size and structure, but also possesses much more complex
functional groups and shows very different pronation and
depronation characteristics.24 Thus, the adsorption
characteristics (rate, affinity, capacity, and binding mode) of
phytate and orthophosphate are rather different.19,24–26

However, previous studies have mainly focused on
monometallic oxides and have paid little attention to binary
metal oxides or trimetallic oxides.27,28 Phytate can form
complexes with Fe and Al oxides,22,29 and can also precipitate
on surfaces of Fe and Al oxides.19,30 Fe and Al oxides are
important for the precipitation, adsorption, desorption and
bioavailability of phytate in soils22,29 and sediments.31,32

Thus, the adsorption and desorption mechanisms of phytate
onto Fe and Al oxides are fundamental processes in
understanding the biogeochemical cycling of phytate or
effective control of redundant phytate in water, soils or
sediments. Indeed, it is proposed that phytate found in
animal manure has a strong chelating ability with metal ions
with potential for in situ immobilization of heavy metals and
remediation of metal-contaminated soils.33

Lanthanum (La) is known to have high affinity for some
anions, such as phosphate and fluoride,5,34,35 and is also
relatively abundant in the Earth's crust. However, the price of
La is higher than that of some other metals, such as
magnesium (Mg), Al, and Fe. Thus, La oxide is usually
combined with other metal oxides to form La-type
adsorbents, such as La–Fe binary oxides,36 La–Mg–Fe trimetal
oxides,37 and La–Fe–Mn trimetal oxides.34 In this study, a
novel Fe–Al–La (FAL) trimetal composite adsorbent that is
less costly to produce than La oxide alone and is also more
environmentally friendly was developed. Phytate adsorption
experiments including measurement of adsorption kinetics,
adsorption isotherms, thermodynamic parameters, and the
effects of pH, anions, and dissolved organic matter (DOM) on
the FAL adsorbent were performed. The mechanisms of
adsorption of phytate by the FAL adsorbent are analyzed and
discussed. Finally, the potential application of the prepared
FAL adsorbent for environmental remediation and
implications for the migration and transformation of phytate
in lakes are also discussed.

2 Materials and methods
2.1 Materials

Analytical reagent grade chemicals, including Fe(NO3)3·9H2O,
La(NO3)3·6H2O, Al(NO3)3·9H2O, NaOH, HCl, and NaNO3, were

purchased from Shanghai Macklin Biochemical Co., Ltd
(Shanghai, China). Humic acid (HA, CAS: 1415-93-6, Sigma
No. 53680) and phytate (C6H18O24P6·xNa

+·yH2O, analytical
reagent grade, CAS: 14306-25-3, Sigma No. P8810) were both
purchased from Sigma-Aldrich Trading Co., Ltd (Shanghai,
China).

A stock solution of phytate (1000 mg P L−1) was prepared
by dissolving an appropriate quantity of phytate in ultrapure
water in a 1 L volumetric flask. In the same way, stock
solutions of NaNO3 (0.5 mol L−1) and HA (500 mg C L−1) were
prepared.

2.2 Sorbent preparation

The FAL adsorbent with an Fe : Al : La molar ratio of 2 : 2 : 1
was prepared by a coprecipitation method.38,39 The ratio was
decided based on our preliminary result as well as the
consideration of the material cost. Briefly, the working
solutions of Fe(NO3)3, Al(NO3)3, and La(NO3)3 were diluted
from their corresponding stock solution to 0.2 mol L−1, 0.2
mol L−1 and 0.1 mol L−1, respectively. These solutions were
then combined. Sodium hydroxide solution (1 mol L−1) was
then added to the mixed solution until the pH approached
9.0. The solution was continuously mixed for 1 h with a
magnetic stirrer. The Fe–Mn–La precipitate was aged for 24 h
at room temperature. Then, the precipitate was washed
several times with ultrapure water. The precipitate was
filtered and dried in an oven at 338 K for 24 h. Finally, the
dried FAL trimetal material was ground into a fine powder
and kept in a dessicator at room temperature for subsequent
analyses.

2.3 Characterization of adsorbents and humic acid

The purchased HA was characterized by UV-visible
spectrophotometry (Agilent 8453), Fourier transform infrared
(FT-IR) spectroscopy (Nicolet 6700, Thermo Scientific), and
three dimensional fluorescence spectrometry (Cary Eclipse,
Agilent).

The zeta potential of the prepared FAL adsorbent was
analyzed. First, the prepared 0.5 mol L−1 NaCl solution was
added to five 50 mL centrifuge tubes. The initial pH ranged
from 3.0 to 11.0. The FAL adsorbent (1 g L−1) was added to
these centrifuge tubes and incubated for 24 h. The final pH
remained at 3.2, 5.2, 7.0, 9.0, or 11.0. Zeta potential was
measured by the use of a zeta potential analyzer (Malvern
Zetasizer Nano-ZS). In order to analyze the porosity and
specific surface area of the prepared FAL sorbent, nitrogen
adsorption/desorption isotherms were measured using an
ASAP 2020 M surface area and porosity analyzer
(Micromeritics Instruments Crop., USA).

The prepared FAL adsorbent was characterized by X-ray
diffraction (XRD, Bruker D8 Advance, Bruker AXS, Germany).
The FAL adsorbent was analyzed by FT-IR spectroscopy
(Nicolet 6700, Thermo Scientific), before and after adsorption
of phytate. X-ray photoelectron spectroscopy (XPS) analysis of
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the FAL adsorbent after phytate adsorption was performed
with an ESCALAB 250 instrument (Thermo Fisher VG).

2.4 Adsorption experiments

2.4.1 Adsorption kinetics. Adsorption kinetics was
investigated at an initial phytate concentration of 10 mg P
L−1 with a background ionic strength of 0.01 mol L−1 NaNO3.
In addition, the initial pH of the solution was controlled at
4.0 ± 0.2 via addition of an acid or base. FAL adsorbents (20
mg) were added to 50 mL centrifuge tubes. These centrifuge
tubes were then shaken at 298 K. The samples were
incubated for specific durations from 0 to 60 h. That is, at a
specific incubation interval, triplicate tubes of the incubation
mixtures were centrifuged and the subsequent supernatants
were further filtered. Phosphorus in these clean supernatants
was determined by the molybdenum blue/ascorbic acid
method40 after K2S2O8 digestion.

2.4.2 Adsorption isotherms. The procedure of the
adsorption isotherm experiment was similar to that of the
adsorption kinetics experiment, but the variables were the
concentration of phytate and incubation temperature, rather
than the incubation time. The concentration of phytate,
calculated as phosphorus, was varied from 5 to 80 mg P L−1.
The working solutions were shaken until adsorption
equilibrium was reached, which was determined by
adsorption kinetic experiments. Three temperatures, 298,
308, and 318 K, were applied during adsorption equilibrium
testing. These solutions were then centrifuged and filtered
for clean supernatants, and the phytate concentration
remaining in the supernatants was determined by the use of
the molybdenum blue method after digestion of samples
with K2S2O8. The amount of adsorbed phytate was calculated
by the difference in phytate concentration, calculated as
phosphorus, measured before and after adsorption
equilibrium was reached.

2.4.3 Influencing factors. The impacts of the selected
influencing factors on adsorption were evaluated under the
optimal incubation conditions determined in subsections
2.4.1 and 2.4.2. These selected factors included pH, anions
including CO3

2−, SO4
2−, Cl−, and NO3

−, dissolved organic
matter (represented by HA), and content of the FAL adsorbent
itself. A series of phytate solutions (10 mg P L−1) with initial
pH from 3.0 to 11.0 and a background ionic strength of 0.01
mol L−1 NaNO3 were prepared.

Phytate solutions with a range of ionic strengths including
0.01, 0.05, and 0.1 mol L−1 were also prepared. The initial pH
was maintained at 4.0 ± 0.2 via addition of an acid or base.
Subsequent adsorption experiment steps were the same as
previously described.

A series of phytate solutions (20 mg P L−1) with various
concentrations of HA (10 to 100 mg C L−1) were prepared.
The initial pH was maintained at 4.0 ± 0.2 via addition of an
acid or base and the ionic strength was maintained at 0.01
mol L−1 NaNO3. Subsequent adsorption experiment steps
were the same as previously described.

Various amounts of the FAL adsorbent from 10 to 50 mg
were added to 50 mL centrifuge tubes and then 50 mL of
phytate solution (10 mg P L−1) was added to the centrifuge
tubes. The initial pH was maintained at 4.0 ± 0.2 via addition
of an acid or base and the ionic strength was 0.01 mol L−1

NaNO3. Subsequent adsorption experiment steps were the
same as previously described.

2.5 Analysis of data

2.5.1 Adsorption capacity and removal efficiency. The
adsorption capacity and removal efficiency were calculated
(eqn (1)).

qe ¼
C0 − Ctð ÞV

m
(1)

where qe is the equilibrium adsorption capacity (mg g−1), C0

is the initial concentration (mg L−1) of the adsorbent, Ct is
the adsorbent concentration at time t (mg L−1), V is the
volume of the solution (mL), and m is the weight of the
adsorbent (g).

2.5.2 Adsorption kinetics. The pseudo-first-order kinetic
relationship (eqn (2)) and pseudo-second-order kinetic
relationship (eqn (3)) were applied to describe the kinetics of
adsorption.41

ln(qe − qt) = ln qe − k1t (2)

t
qt

¼ 1
k2qe2

þ 1
qe

t (3)

where qe (mg g−1) and qt (mg g−1) are the amount of
phosphate adsorbed per unit mass of adsorbent at
equilibrium and time t, respectively; k1 (min−1 or h−1)
is the pseudo-first-order rate constant; k2 (g mg−1

min−1 or g mg−1 h−1) is the second-order constant for
adsorption.

2.5.3 Adsorption isotherms. Both the Langmuir (eqn (4))
and Freundlich relationships (eqn (5)) were used to describe
adsorption:42

qe ¼
qmKLCe

1þ KLCe
(4)

qe = KFCe
1/n (5)

where qe is the equilibrium adsorption capacity (mg g−1),
Ce is the equilibrium liquid-phase concentration (mg L−1),
qm is the theoretical saturation sorption capacity
(mg g−1), KL is a constant related to the adsorption heat
(L mg−1), and KF (mg1+n Ln g−1) and n are Freundlich
constants.

2.5.4 Thermodynamic data. The thermodynamic
parameters of the adsorption process were analyzed (eqn (6)–
(8)):43
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KC = 55.5 × 1000 × KL (6)

ΔG = −RT lnKC (7)

lnKC ¼ ΔS
R

− ΔH
R

×
1
T

(8)

where KL is the Langmuir constant, Kc is the equilibrium
constant, T is the absolute temperature (K), R is the gas

constant (8.314 J mol−1 K−1), ΔG0 is the Gibbs free energy (kJ
mol−1), ΔH0 is the change in enthalpy (kJ mol−1), and ΔS0 is
the change in entropy (J mol−1 K−1).

3 Results and discussion
3.1 Characterization of the FAL adsorbent and HA

When the crystal structure of the adsorbent was characterized
by the use of XRD (Fig. 1a), no obvious characteristic peaks
were observed, which indicated that the FAL adsorbent had
an amorphous structure. Based on the zeta potential of the
prepared FAL adsorbent (Fig. 1b), the pH at the point of zero
charge (pHpzc) of the FAL adsorbent was approximately 6.3.
In other words, when the pH was less than 6.3, the functional
groups on the adsorbent are positively charged, which
created a favorable chemistry for the binding of negatively
charged phytate. The surface charges of the FAL adsorbent
became negative when the pH of the solution is above 6.3.
Additionally, the prepared FAL adsorbent had a specific
surface area of 68.1 m2 g−1. Additionally, more
characterization of the prepared FAL adsorbent could be
found in section 3.6, such as FT-IR and XPS spectra.

The UV-visible spectra of HA showed that the absorbance
of HA decreased rapidly with increasing acquisition
wavelength (Fig. 2a), typical for natural organic matter
samples.44 There were no obvious absorption peaks in the
UV-visible spectra of HA. However, the prepared HA absorbed
radiation significantly at wavelengths between 200 and 400
nm, which indicated that the majority of chromophores
included aromatic groups with various degrees and types of
substitution, such as polysubstituted and monosubstituted
phenols and different aromatic acids.45 The UV-visible
eigenvalue of HA, i.e., the ratio of absorbance at 250 nm to

Fig. 1 XRD pattern (a) and zeta potential (b) of the Fe–Al–La trimetal
adsorbent.

Fig. 2 UV-visible spectrum (a), three-dimensional fluorescence spectrum (b), and FT-IR spectrum (c) of humic acid.
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that at 365 nm (E2/E3), was 2.4, the ratio of absorbance at 300
nm to that at 400 nm (E3/E4) was 2.4, and the ratio of
absorbance at 350 nm to that at 550 nm (E3/E5) was 4.8.

Additionally, peak C (Ex, 370 nm; Em, 480 nm) and peak
D (Ex, 280 nm; Em, 475 nm) could be found in the excitation-
emission matrix (EEM) spectrum of the prepared HA
(Fig. 2b), and were typical characteristic peaks of HA.46 The
FT-IR spectrum of HA indicated some functional groups in
the prepared HA (Fig. 2c). The band at approximately 1581

cm−1 could be attributed to CC stretching in aromatic
rings. The band at approximately 2919 cm−1 could be
assigned to C–H stretching in aliphatic chains. The band
centered at approximately 3365 cm−1 indicated the presence
of OH groups.47

3.2 Adsorbent addition and adsorption kinetics

The efficiency of removal was directly proportional to the
concentration of the FAL adsorbent from 0.2 to 1.5 g L−1;
however the adsorption capacity was decreased (Fig. 3). The
efficiency of removal was approximately 93% at the steady
state when the amount of adsorbent was approximately 1.0 g
L−1. When the amount of adsorbent added is low, the active
sites would be fully exposed to the interactions with phytate,
and the sites would be also saturated rapidly. High amounts
of adsorbent would also provide enough sites for adsorption
of phytate. Thus, the optimum adsorbent dosage could be
checked by the concentration of phytate when the FAL
adsorbent is applied. The adsorbent dosage of 0.4 g L−1 was
applied in subsequent studies to characterize the adsorption
of phytate and investigate the effect of other factors including
the pH of solution, coexisting anions and DOM
concentrations.

The adsorption of phytate by the FAL adsorbent was rapid
with 37.7% of the initial phytate adsorbed within 0.5 h
(Fig. 4). Then, 64.0% of the initial phytate was adsorbed by
the FAL adsorbent within 8 h. After 8 h, due to the scarcity of
available adsorption sites for phytate on the surface of the
FAL sorbent, adsorption was significantly less, and the steady
state was approached after approximately 32 h.

Adsorption kinetics were fitted with both pseudo-first-
order and pseudo-second-order relationships (Table 1). Based
on coefficient of determination (R2) values, pseudo-second-
order kinetics described the adsorption of phytate by the FAL
adsorbent better. Also, theoretical adsorption capacities were
predicted by the pseudo-first-order kinetic equation (qe,1) and
pseudo-second-order kinetic equation (qe,2) (Table 1). The qe,2
was consistent with the experimental data for the capacity for
adsorption (qe,exp). These results suggested that the surface
chemical reactions between the active sites of the adsorbents
and phytates are likely the dominant processes for the
adsorption of phytates onto the FAL adsorbents.48,49

3.3 Adsorption isotherms and thermodynamics

Based on the adsorption isotherms of phytates onto the FAL
adsorbent at the initial pH of 4.0 and at three different
temperatures, the adsorption capacity increased significantly
with the equilibrium concentration of phytate from 0 to 10

Fig. 3 Effect of the amount of adsorbent added on the removal
efficiency and adsorption capacity (conditions: the initial concentration
of phytate was 10 mg P L−1, the initial pH was 4.0 ± 0.2, and the
temperature was 298 K).

Fig. 4 Adsorption of phytate onto the Fe–Al–La trimetal adsorbent
with time (the initial concentration was 10 mg P L−1, temperature was
controlled at 298 K, and the initial pH was controlled at 4.0 ± 0.2).

Table 1 Adsorption kinetic parameters of phytate onto the Fe–Al–La trimetal adsorbent

qe,exp
(mg
P g−1)

Pseudo-first-order Pseudo-second-order

qe,1 (mg P g−1) K1 (h
−1) R2 qe,2 (mg P g−1) K2 (g mg−1 h−1) R2

14.2 8.9 0.094 0.981 15.0 0.031 0.996
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mg P L−1 (Fig. 5). Saturation and equilibrium were achieved
when the equilibrium concentration of phytate approached
60 mg P L−1. The capacities for adsorption at the steady state
were proportional to temperature (Fig. 5), which indicated
that the adsorption of phytates by the FAL adsorbent was an
endothermic process.41

When data were fitted to isotherms using Langmuir and
Freundlich models, based on coefficients of determination
(R2), the Langmuir model best described the adsorption of
phytates by the FAL sorbent at various temperatures (R2 >

0.993) (Table 2). This indicated that the adsorption of phytate
by the FAL adsorbent is due to a surface monolayer.50

Additionally, the values of KL in the Langmuir model were all
greater than 0, which indicated that the adsorption
properties were excellent.37

The theoretical saturation sorption capacity (qm) was 26.4,
31.9, and 43.0 mg g−1 at temperatures of 298, 308, and 318 K,
respectively (Table 2). Based on the maximum sorption
capacity and specific area of the adsorbent, the maximum
adsorption densities for phytate by the FAL adsorbents were
calculated. Under certain conditions, the maximum
adsorption densities for phytate by the FAL adsorbents were
greater than those of other Fe or Al adsorbents, except for the
ferrihydrite–kaolinite adsorbents in the literature (Table 3).
However, the adsorption capacity would also vary with
different conditions for adsorption, such as the amount of
adsorbent added, pH, and temperature. The adsorbent
dosage was lowest for the FAL adsorbent in Table 3, which
could lead to a higher adsorption capacity. Thus, it is difficult

to conclude that the FAL adsorbent is truly better for
adsorption of phytate. Generally, the FAL adsorbent has
application potential for removal of phytate from water or for
interrupting phytate release from sediments of lakes.

During adsorption, thermodynamic parameters, including
ΔG0, ΔH0 and ΔS0, were calculated from the adsorption
isotherms of phytate on the FAL adsorbent at various
temperatures (Fig. 5 and Table 4). Values for ΔG0 varied from
−29.4 to −15.1 kJ mol−1, which indicated that the adsorption
of phytate onto the FAL adsorbent was a spontaneous
process.51 Greater negative values of ΔG0 were observed at
higher temperatures, indicating that adsorption reactions
were more thermodynamically favorable at higher
temperatures than at relatively low temperatures. The positive
ΔH0 value (26.2 kJ mol−1) indicated that this adsorption was
an endothermic process. Additionally, the positive value of
ΔS0 (167.7 J mol−1 K−1) suggested that the isothermal
adsorption process of phytate onto the FAL adsorbent would
increase the randomness at the solid–solution interface and
the degree of disorder when phytate from the hydrous phase
adsorbed onto the surface of the FAL adsorbent.49,52

3.4 Effects of pH

The capacities for adsorption at the steady state were
proportional to the initial pH from 3.2 to 11.0 (Fig. 6a). When
the initial pH was at 3.2, the initial concentration 10 mg P
L−1 and the adsorbent concentration 0.4 g L−1, the maximum
proportion of phytate removed was 84.5%. The capacity for
adsorption varied in a narrow range from 14. 2 to 11.4 mg P
g−1 when the initial pH approached 4.0 to 9.0. However, the
adsorption capacity would be decreased quickly after pH >

9.0. Generally, after adsorption of phytate onto the FAL
adsorbent, the pH of solution varied in a narrow range. This
implied that the prepared FAL adsorbent could be well
applied in a wide pH of wastewater or overlying water of lakes
ranging from 3.0 to 9.0. The capacities for adsorption were
determined by the pHpzc of the FAL adsorbent and forms of
phytate in solutions.34,53 Ionization and dissociation of
dissolved phytate could be described in three steps such that
ionization constants were 1.84, 6.30, and 9.70, respectively. In
these three steps, 6, 2 and 4 H+ ions are produced,
respectively. Based on the ionization constants of dissolved
phytate, species of phytate at different pH values were
analyzed (Fig. 6b). And the pHpzc of the FAL adsorbent was
6.3 (Fig. 1b). When the pH was <6.3, the species of dissolved
phytate was electronegative, while the surface of the FAL
adsorbent was positive. Thus, acidic conditions would be

Fig. 5 Equilibrium isotherms of phytates onto the Fe–Al–La trimetal
adsorbent at different temperatures.

Table 2 Langmuir and Freundlich isotherm parameters for phytate adsorption onto the Fe–Al–La trimetal adsorbent

Temperature
(K)

Langmuir Freundlich

qm (mg P g−1) KL (L mg−1) R2 KF (mg1+n Ln g−1) n−1 R2

298 26.4 0.272 0.994 11.151 0.205 0.998
308 31.9 0.367 0.993 14.674 0.191 0.968
318 43.0 0.529 0.995 21.309 0.181 0.980
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favored for the adsorption of dissolved phytate onto the FAL
adsorbent. A small proportion of dissolved phytate would
likely be hydrolyzed to dissolved phosphate, especially under
acidic conditions (Fig. 6c). Generally, the FAL adsorbent
adsorbed much more phytate than dissolved phosphate at
each pH. When the pH was >6.3, there would be fewer
positive charges on the surface of the FAL adsorbent and
greater OH− in solution, where OH− would compete with
dissolved phytate and phosphate under alkaline conditions,
which would result in lower capacities for adsorption of
dissolved phytate.

3.5 Effect of coexisting anions and DOM on phytate
adsorption

Coexisting anions such as Cl−, NO3
−, CO3

2− and SO4
2− are

commonly distributed in natural and wastewaters. These
coexisting anions would compete with phytate for active sites
on the surface of the FAL adsorbent (Fig. 7). The capacities
for adsorption of phytate onto the FAL adsorbent were
inversely proportional to ionic strength increasing from 0 to
0.1 mol L−1, which indicated that the adsorption was mainly
due to outer-sphere (electrostatic) associations.54 The
strength of competition of coexisting anions with adsorption
of phytate on the FAL adsorbent surface was in the order of
CO3

2− > SO4
2− > NO3

− > Cl−. Generally, the effect of
coexisting anions with two negative charges was stronger
than that of coexisting anions with only one negative charge.
Even 0.01 mol L−1 coexisting CO3

2− and SO4
2− anions could

significantly reduce adsorption capacities. When the
concentrations of coexisting CO3

2− and SO4
2− anions were 0.1

mol L−1, the capacities for adsorption were 83.0% and 71.2%
lower, respectively. In this study, the final pH of these
solutions was near 4.0; thus, the surface charge of the FAL
adsorbent was positive, which would adsorb coexisting
anions. These resulted in the competition between phytate

and coexisting anions. In particular, the coexisting CO3
2−

anion has a large negative charge and could bind to the
metal active site through a bidentate inner-sphere bond.55

DOM is also a significant component and colloid in waste
and natural waters, and influences the efficiency of
adsorption capacities and biogeochemical cycling of
nutrients in the environment such as in lakes.41,56–58 HA is
part of the labile organic matter pool in nature.59 Meanwhile,
Sigma-Aldrich HA is a technical humic acid extracted from
lignite, and has been used as model labile organic matter for
various environmental studies. Thus, as representative
organic matter, the effect of HA on the adsorption capacity of
phytate onto the FAL adsorbent was evaluated in this study
(Fig. 8). The adsorption capacity (qe) at the steady state was
inversely proportional with the initial concentration of HA.
Accordingly, the amount of HA adsorbed by the FAL
adsorbent was greater at greater initial concentration of HA.
These results indicated competition between phytate and HA
on the surface of the FAL adsorbent. The prepared HA
contained large amounts of functional groups, such as
phenolic, carboxylic, amino, and alcoholic groups (Fig. 2),
which would compete for adsorption with phytate.34 Also, the
adsorbed HA would likely generate an electrostatic field and
negative charges, which could affect the capacity for
adsorption of phytate onto the FAL adsorbent.60

3.6 Mechanisms of adsorption

The FAL adsorbent before and after phytate adsorption was
characterized by FT-IR (Fig. 9). The FT-IR spectrum of the
FAL adsorbent without phytate adsorption exhibited peaks at
3431, 1631, 1490, 1385, 1049, 835, and 570 cm−1 (Fig. 9a).
The appearance of peaks at 3431 cm−1 and 1631 cm−1 was
associated with the stretching and bending vibrations of H–

O–H, which indicated physisorbed H2O molecules on the
surface of the prepared FAL adsorbent.61 The peaks at 1490
cm−1 and 1385 cm−1 were assigned to La–OH,62 while the
peak at 1049 cm−1 was assigned to Fe–OH,63 and the peak at
570 cm−1 was assigned to Al–O.64 The characteristic peaks of
the FAL adsorbent were weakened or shifted after adsorption
of phytate from solutions, which indicated that Fe, Al, and La
in the FAL adsorbent all participated in phytate adsorption.
Also, after adsorption of phytate, four new peaks appeared at
1137, 1086, 993, and 668 cm−1 (Fig. 9b). The peak at 1137

Table 4 Thermodynamic parameters for phytate adsorption onto the
Fe–Al–La trimetal adsorbent

Temperature (K) ΔG0 (kJ mol−1) ΔS0 (J mol−1 K−1) ΔH0 (kJ mol−1)

298 −15.1 167.7 26.2
308 −20.4
318 −29.4

Table 3 Comparison of the maximum adsorption capacities (calculated as sorption density by the maximum sorption capacity and specific area of the
adsorbent) of phytate onto the Fe–Al–La adsorbent developed in this study and other adsorbents in previous studies

Adsorbent Adsorbent dose (g L−1) pH Temperature (K) pHpzc Adsorption capacity (μmol m−2) Ref.

Nano γ-Al2O3 0.75 5.0 298 9.3 1.32 18
Ferrihydrite–kaolinite 2.75 4.5 298 6.5 2.24 22
Kaolinite 7.94 4.5 298 5.0 0.27 22
α-Al2O3 25 5.0 298 — 1.13 19
Boehmite 2 5.0 298 — 0.73 19
Goethite 5 5.0 298 8.7 0.62 21
Hematite 7 5.0 298 8.4 0.67 20
Fe–Al–La 0.4 4.0 298 6.3 2.09 This study
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cm−1 was associated with the stretching vibration bands of
the PO group.65 The peak at 1086 cm−1 was assigned to the
stretching vibration bands of P–O groups,66 while the peak at
993 cm−1 was assigned to the bands of C–C stretching,67 and
the peak at 668 cm−1 was assigned to the bending vibration
bands of O–P–O groups.68 These results indicated that
phytate had been adsorbed onto the surface of the prepared
FAL adsorbent.

The FAL adsorbent after adsorption of phytate was further
characterized by the use of XPS (Fig. 10). Elements, such as

Fe, Al, La, O, C, and P, were characterized in the XPS
spectrum, which further indicated that phytate was adsorbed
onto the surface of the FAL adsorbent. Characteristic peaks
of FePO4, LaPO4, and AlPO4 were observed in the P2p XPS
spectrum69–71 (Fig. 10b). These results indicated that
complexes were formed and Fe, Al, and La were all
participating in phytate adsorption. The presence of
characteristic peaks of H2PO4

−, HPO4
2−, and PO4

3− was likely
due to hydrolysis of phytate (Fig. 6c). The characteristic peaks
of C–C and C–O were identified at binding energies of 284.8
eV and 286.7 eV, respectively, in the C1s XPS spectrum.72,73

These results further supported that phytate was adsorbed
onto the FAL adsorbent.

Fig. 8 Effect of HA on the adsorption of phytate by the Fe–Al–La
trimetal adsorbent.

Fig. 6 Adsorption of phytate onto the Fe–Al–La trimetal adsorbent (a), species of dissolved phytate (b), and hydrolysis of dissolved phytate at
different pH values (c).

Fig. 7 Effect of coexisting anions on the adsorption of phytate onto
the Fe–Al–La trimetal adsorbent.
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The simultaneous adsorption of phosphate was also found
when phytate was adsorbed by the FAL adsorbent. However,
the adsorption of phosphate by the FAL adsorbent was not
investigated simultaneously in this study. Based on a
previous study of phosphate adsorption by a similar trimetal
adsorbent (Fe–Mn–La trimetal composite adsorbent),34 the
adsorption kinetics, isotherms, and thermodynamics were all
similar. However, the effects of pH, coexisting anions,
organic matter on the adsorption of phytate and phosphate
were different,34 which implied that the adsorption
mechanisms of phytate and phosphate were different.
Generally, the organic moiety affected the process in terms of
conformational hindrance; two to four phosphate groups of
phytate were likely bound to Fe, Al oxides or other
adsorbents.19,24–26 Thus, the adsorption capacity, calculated
by P, of phytate on the FAL adsorbent was likely 1.5 to 3
times higher than that of phosphate. However, Xu et al.25

showed the maximum adsorption capacity of phytate, also
calculated by P, by a La–Al hydroxide composite was

Fig. 10 XPS spectra of the Fe–Al–La trimetal adsorbent after phytate adsorption: (a) wide-scan XPS spectra, (b) and (c) P2p spectra, and (d) C1s
spectra.

Fig. 9 FT-IR spectra of the Fe–Al–La trimetal adsorbent before (a) and
after (b) adsorption by phytate.
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approximately 1.9 times lower than that of phosphate, which
though that phytate has larger molecular dimensions and
encounters increased steric hindrance than does phosphate.
Thus, the different adsorption mechanisms of phytate and
phosphate by the FAL adsorbent or other adsorbents should
be investigated further.

3.7 Application and implications

Phytate is an organic phosphorus chemical found widely in
natural environments, and can account for 60% to 80% of
the phosphorus in mature seeds.74 However, monogastric
animals, such as pigs and poultry, cannot digest phytate,
which results in excess phytate remaining in the manures of
pig and poultry.15,75 Thus, a rapid and cost effective method
for treating phytate contained in wastewater containing pig
and poultry manures was needed. It was found that such
wastes could be effectively treated by the use of a FAL
adsorbent to remove both phytate and phosphate.

Large amounts of phytate or phytate-like P have been
found in sediments from some eutrophic lakes, such as Lake
Dianchi3 and Lake Taihu,58 both of which are in China.
However, the bioavailability of phytate from soils or
sediments is still in dispute. It has been reported that phytate
appeared to be stable in some sediments of lakes and could
even be a phosphorus-specific paleoindicator.76 However,
long-term (20 years) application of phytate-rich poultry litter
did not raise the organic P content in pasture soil, implying
the lability of phytate and other organic P forms.15 This
observation has been further confirmed by various field and
lab studies (e.g., ref. 77–81). In this work, aggregate results
showed that phytate adsorbed onto FAL adsorbents could be
influenced by the amount of adsorbent, pH, and anion and
DOM concentrations. Oxides of Al and Fe are key
constituents involved in adsorption of phytate in sediments.
Thus, the migration, transformation and bioavailability of
phytate in sediments of lakes should be further elucidated.
Eutrophication and blooming of algae can remove carbon
dioxide and thus, increase the pH of the overlying water of
lakes,82,83 which are thus often alkaline with pH > 9.0 in
eutrophic lakes such as Lake Dianchi, China.83 When the pH
exceeds 9.0, the phytate adsorbed onto the sediment is likely
to be desorbed and released to the overlying water (Fig. 6a).

Eutrophication results in a rapid increase in DOM in lakes.
The interaction of phytate and DOM such as HA and fulvic acid
(FA) is an important factor influencing the bioavailability and
preservation of phytate in sediments.3,57,58,84 HA decreased the
adsorption capacity of phytate on the FAL adsorbent, which
also indicated that the increase in DOM would also likely
decrease the adsorption of phytate by sediments or desorb
phytate from sediments. Conversely, HA would also possibly
interact with phytate to form HA-phytate or HA-metal-phytate
complexes to resist hydrolysis by enzymes.58,84 Thus, the
comprehensive effect of DOM on the bioavailability of phytate
in lakes should be clarified further. Generally, eutrophication
of lakes could increase the amount of phytate as a bioavailable

P source for algal blooms, such as those in Lake Dianchi.3 The
FAL adsorbent developed in this study could be a potential
agent to immobilize both phytate and phosphate together in
the overlying water and sediments of lakes.

4 Conclusions

A novel FAL trimetal composite adsorbent was developed for
potential use in removing phytate by coprecipitation and showed
a high adsorption capacity in a wide range of pH from 3.0 to 9.0.
The removal efficiency at steady states was as much as 93%.
Dynamic equilibrium was approached after 32 h. Adsorption
kinetics were well described by pseudo-second-order kinetics.
Adsorption isotherms were described well by the Langmuir
model. The dominant process for adsorption of phytate onto the
FAL adsorbent was surface chemical reactions which mainly
occur in monolayers. Evaluation of the thermodynamic
parameters indicated that the adsorption of phytate onto the
FAL adsorbent was a spontaneous and endothermic process.

The adsorption capacity was proportional to the initial pH
from 11.0 to 3.2, especially when pH > 9.0. The adsorption
capacity was varied in a narrow range when the initial pH
approached 4.0 to 9.0, which implied that the prepared FAL
adsorbent could be well applied in a wide pH of wastewater
or overlying water of lakes ranging from 3.0 to 9.0. The
sequence of coexisting anions competing with phytate was
CO3

2− > SO4
2− > NO3

− > Cl−. The presence of CO3
2− would

largely reduce the adsorption capacities of phytate onto the
FAL adsorbent. DOM would also compete for the adsorption
sites with phytate on the surface of the FAL adsorbent.
Results of FT-IR and XPS analyses showed that the phytate
was adsorbed onto the surface of the FAL adsorbent and that
Fe, Al and La were all participating in adsorption. A small
amount of orthophosphate hydrolyzed from phytate was also
adsorbed onto the surface of the FAL adsorbent, which could
be used for simultaneous removal of phytate and other
phosphate species from wastewater, such as those from pig
and poultry manures. The FAL adsorbent could also be used
for immobilization of both phytate and phosphate in
overlying water and sediments of lakes.
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