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Abstract 

Studies investigating aryl hydrocarbon receptor (AhR)-active compounds in the 

environment typically focus on non- and mid-polar substances, such as PAHs; while, information 

on polar AhR agonists remains limited. Here, we identified polar AhR agonists in sediments 

collected from the inland creeks of an industrialized area (Lake Sihwa, Korea) using effect-

directed analysis combined with full-scan screening analysis (FSA; using LC-QTOFMS). Strong 

AhR-mediated potencies were observed for the polar and latter fractions of RP-HPLC 

(F3.5−F3.8) from sediment organic extracts in the H4IIE-luc in vitro bioassays. FSA was 

performed on the corresponding fractions. Twenty-eight tentative AhR agonists were chosen 

using a five-step process. Toxicological confirmation using bioassay revealed that canrenone, 

rutaecarpine, ciprofloxacin, mepanipyrim, genistein, protopine, hydrocortisone, and 

medroxyprogesterone were significantly active. The relative potencies of these AhR-active 

compounds compared to that of benzo[a]pyrene ranged from 0.00002 to 2.0. Potency balance 

analysis showed that polar AhR agonists explained, on average, ~6% of total AhR-mediated 

potencies in samples. Some novel polar AhR agonists also exhibited endocrine-disrupting 
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potentials capable of binding to estrogen and glucocorticoid receptors, as identified by QSAR 

modeling. In conclusion, the focused studies on distributions, sources, fate, and ecotoxicological 

effects of novel polar AhR agonists in the environment are necessary. 

Keywords: Aryl hydrocarbon receptor, LC-QTOFMS, Nontarget analysis, Sediments, Industrial 

area. 

1. Introduction 

In 2020, the number of chemicals registered in the Chemical Abstracts Service (CAS) is 

about 164 million. Compared to the 20 million registered in 2002, a huge number of new 

chemicals continue to be created. While chemicals, such as pesticides, industrial chemicals, and 

pharmaceuticals, have improved the quality of human life, some organic chemicals present their 

inherent hazard (Escher et al., 2020). Innumerable organic chemicals are introduced into the 

marine environment through point and non-point sources and can accumulate in sediments and 

biota (Escher et al., 2020; Hong et al., 2012). Coastal sediment is a major sink for various 

organic chemicals and can potentially have adverse effects on marine ecosystems (Chiaia-

Hernandez et al., 2013; Li et al., 2019; Pal et al., 2014). When evaluating the sediment-related 

risk, it is important to unravel key toxicants (Escher et al., 2020; Li et al., 2019). Although target 

analysis is an essential element of risk assessment, it is unable to identify causative chemicals for 

ecological risk in complex mixtures (Brack et al., 2016; Doyle et al., 2015; Escher et al., 2020; 

Li et al., 2019; Zhang et al., 2018). 

Effect-directed analysis (EDA) combined with full-scan high resolution mass 

spectrometric screening analysis (FSA) has been widely used to identify previously unmonitored 

toxic substances in environmental matrices (Cha et al., 2019; Kim et al., 2019). This approach 

could be applied to various environmental media, including sediments, wastewater, and biota 

(Brack, 2003; Brack et al., 2016; Cha et al., 2019; Hong et al., 2016; Kim et al., 2019; Muschket 

et al., 2018). The potential toxicity in samples is measured using in vivo and/or in vitro bioassays. 

Complexity within samples can be reduced through multi-step fractionation to isolate causative 

substances (Brack, 2003; Lee et al., 2020; Regueiro et al., 2013; Schmitt et al., 2012; Weller, 

2012). Then, high-resolution mass spectrometry, such as time-of-flight mass spectrometry 

(TOFMS), is used to screen all compounds in toxic fractions. Screening processes are then used 

to select candidate substances, and chemical and toxicological confirmation is conducted (Cha et 

al., 2019; Hong et al., 2016; Kim et al., 2019; Simon et al., 2013). These processes are relatively 
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time-consuming and somewhat complex, but reveal the existence and contribution of previously 

unidentified toxic substances. Consequently, this approach has revealed a number of novel toxic 

substances present in environmental samples (Cha et al., 2019; Hong et al., 2016; Kim et al., 

2019; Simon et al., 2013). 

Previous studies have identified major aryl hydrocarbon receptor (AhR)-active chemicals 

in sediments of industrialized areas (Cha et al., 2019; Kim et al., 2019; Peng et al., 2016).
 
For 

example, benz[b]anthracene, 11H-benzo[a]fluorene, and 4,5-methanochrysene are AhR agonists 

that have been identified in the sediments of inland creeks of Lake Sihwa, Korea (Cha et al., 

2019). In another study, 1-methylchrysene, benzo[j]fluoranthene, 3-methylchrysene, 5-

methylbenz[a]anthracene, 11H-benzo[b]fluorene, benzo[b]naphtho[2,3-d]furan, and 

benzo[b]naphtho[2,1-d]thiophene were recently found in Ulsan Bay, Korea (Kim et al., 2019). 

Due to the addition of these compounds, the explanatory power of total induced AhR-mediated 

potency in samples was greatly increased. Previous studies searching for AhR-active substances 

have mainly focused on non-polar and mid-polar compounds, such as PAHs (Cha et al., 2019; 

Kim et al., 2019). Significant AhR-mediated potencies were observed in the polar fractions of 

organic extracts from sediments; however, the polar AhR-active compounds remain largely 

unknown (Cha et al., 2019; Hong et al., 2016; Kim et al., 2019).
 

Polar compounds generally have relatively high water solubility, bind to membrane 

transport proteins, and are easily transported into cells (Alharbi et al., 2016; Katayama et al., 

2010; Morandi et al., 2016; Redman et al., 2018). Consequently, polar AhR agonists exhibit 

greater bioavailability and bioaccessibility compared to non- and mid-polar compounds. Thus, it 

is necessary to detect polar AhR agonists present in environmental samples. Previous studies 

have documented the presence of polar AhR-active chemicals in sediments, including (hydroxy-

)quinones, keto-, dinitro-, hydroxy-PAHs, and N-heterocycles (Andrysik et al., 2011; Song et al., 

2006; Xiao et al., 2016). In addition, benzothiazole and 2-mercaptobenzothiazole, which are used 

as vulcanization accelerators in rubber production, have been identified as polar AhR agonists in 

sediments of the Three Gorges Reservoir in China (Xiao et al., 2016). Of note, enoxolone, which 

is used as an anti-inflammatory agent, was identified as a novel polar AhR agonist in the 

sediment of Masan Bay, South Korea (Lee et al., 2020). These polar AhR agonists reach coastal 

sediments via surface runoff and outfall from wastewater treatment plants (WWTPs) (De Wever 

and Verachtert, 1997; Xiao et al., 2016), and cause acute toxicity to aquatic organisms (Kloepfer 
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et al., 2005; Xiao et al., 2016). 

Lake Sihwa is an artificial lake located on the west coast of Korea. Industrial complexes, 

including metal, petrochemical, biochemical, pharmaceutical factory, and engineering 

manufacturing industries, are located adjacent to Lake Sihwa (Cha et al., 2019). Persistent toxic 

substances (PTSs), such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), and 

styrene oligomers (SOs) are widely distributed in the sediments of Lake Sihwa (Hong et al., 

2016; Jeon et al., 2017; Lee et al., 2017a; Meng et al., 2017). In particular, the concentrations of 

PAHs and APs in sediments exceeded interim sediment quality guidelines (ISQGs) established 

by the Canadian Council of Ministers of the Environment (CCME) (Cha et al., 2019; CCME, 

2002). Accordingly, the Korean government designated Lake Sihwa as a special coastal 

management zone in 2000 and implemented a total pollution load management system in 2013 to 

regulate the release of land-derived pollutants (Lee et al., 2017b). Since then, the environment in 

Lake Sihwa has been shown to have improved significantly, but the contamination of sediments 

of inland creeks flowing into Lake Sihwa is still found to be serious (Cha et al., 2019; Hong et al., 

2016). 

Here, we investigated polar AhR agonists in the sediments of inland creeks in a highly 

industrialized area (Lake Sihwa) using EDA with FSA. The specific objectives were to: (i) 

investigate AhR-mediated potencies in the polar fractions of sediment organic extracts using 

H4IIE-luc bioassay, (ii) identify major AhR agonists in toxic fractions using LC-QTOMFS, and 

(iii) determine the contribution of polar AhR agonists to total AhR-mediated potencies. 

2. Materials and methods 

2.1. Sampling and sample preparation 

Surface sediments were collected from the inland creeks of industrial (C1) and urban (C2) 

areas of Lake Sihwa in April 2015, and collected from a rural area (C3) in September 2017 (Fig. 

S1). Detailed methods on sample preparation for bioassays and chemical analyses are described 

elsewhere (Cha et al., 2019; Hong et al., 2016). In brief, surface sediments were collected using 

hand shovels, and were transferred to pre-cleaned glass jars. Sediments were immediately 

transported to the laboratory, where they were stored at –20 ℃ until analysis. Approximately 60 

g of freeze-dried sediments were extracted with 350 mL dichloromethane (DCM, J.T. Baker, 

Phillipsburg, NJ) on Soxhlet extractor for 16 h. To remove elemental sulfur from extracts, 

activated copper was added for about 1 h, and organic extracts were concentrated to 4 mL with a 
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rotary evaporator and N2 gas flow (~15 g sediment equivalent (SEq) mL 
-1

). Four milliliters of 

raw extract were divided into 2 mL portions for silica gel column fractionation and bioassays. 

The solvent of the extract used for H4IIE-luc bioassays was exchanged with dimethyl sulfoxide 

(DMSO, Sigma-Aldrich, Saint Louis, MO). 

2.2. Silica gel and RP-HPLC fractionations 

Sediment organic extracts were separated in two-step fractionations, including silica gel 

column chromatography (8 g activated silica gel, 70–230 mesh, Sigma-Aldrich, Saint Louis, MO) 

and reverse-phase high-performance liquid chromatography (RP-HPLC, Agilent 1260 HPLC, 

Agilent Technologies, Santa Clara, CA) (Hong et al., 2015, 2016). Two milliliters of organic 

extract were placed on the column and separated into non-polar (F1), aromatic (F2), and polar 

(F3) fractions. The first fraction (F1) was eluted with 30 mL hexane (Honeywell, Charlotte, NC). 

The aromatic fraction (F2) was collected with 60 mL of 20% DCM in hexane. The third fraction 

(F3), which contained polar compounds, was eluted with 50 mL of 60% DCM in acetone (J.T. 

Baker). All elutriates were evaporated on a rotary evaporator and concentrated to 2 mL using N2 

gas flow. To identify polar AhR agonists in sediment organic extracts, the F3 fraction was further 

separated into 10 subfractions using RP-HPLC (Hong et al., 2016). Separation conditions of RP-

HPLC were previously optimized using standard materials of various compounds (34 PCBs, 16 

PAHs, 7 alkylphenols, and 5 phthalates), and elution efficiency showed more than 85% for all 

compounds (Hong et al., 2016; Lee et al., 2020). A C18 column (PrepHT XBD, 21.2 × 250 mm, 

7 μm, Agilent Technologies) was used for fractionation. Subfractions were exchanged to hexane 

or DMSO for further analyses. Detailed instrumental conditions of RP-HPLC were reported 

previously (Hong et al., 2016; Lee et al., 2020).  

2.3. In vitro bioassays 

AhR-mediated potencies were measured using H4IIE-luc bioassays in raw organic extracts 

of sediments, silica gel fractions, and RP-HPLC fractions. The H4IIE-luc bioassay was 

performed following the existing methods (Cha et al., 2019; Hong et al., 2016). In brief, 

trypsinized cells (~7.0 ⅹ 10
4
 cells mL 

-1
) were seeded in the 96 micro-well plate at 250 µL per 

well. After seeding, cells were incubated at 37 ℃ in a 5% CO2 incubator for 24 h. Dosing was 

carried out by adding the appropriate standards (benzo[a]pyrene (BaP) for 4 h exposure and 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 72 h exposure; 0.1% dose), samples (raw 

extracts, silica gel fractions, RP-HPLC fractions, and tentative AhR agonists; 0.1% dose), 
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solvent control (0.1% DMSO), and media control. BaP and TCDD standards were diluted three 

times with 50 nM (=100 %BaPmax) and 300 pM (=100 %TCDDmax) as the first concentration, 

respectively. After 4 h or 72 h exposure durations, luciferase luminescence was quantified using 

a Victor X3 multi-label plate reader (PerkinElmer, Waltham, MA). Responses of the H4IIE-luc 

bioassay were converted to percentages of maximum response of BaP and TCDD, respectively. 

AhR-mediated potency at 4 h exposure was expressed as potency-based BaP-equivalent (EQ) 

values. Potency-based BaP-EQ values were obtained from sample dose-response curves of the 

sediment samples at six dilutions. All bioassays were conducted in triplicate. Of note, surrogate 

standards could not be added in the extraction and fractionation procedures because such 

chemicals would influence the changes of biological response during the bioassays. 

2.4. Full-scan screening analysis 

FSA using LC-QTOFMS was performed on highly toxic fractions, including F3.5−F3.8 of 

the sediment organic extract from Shiheung Creek (C1), where AhR-mediated potencies were 

greatest. Instrumental conditions are described in Table S1. The liquid chromatography 1290 

infinity (Agilent Technologies) coupled with a triple time-of-flight (TripleTOF®) 5600+ mass 

spectrometer (AB Sciex, Framingham, MA) was used for FSA. An Eclipse XDB-C18 column 

(150 mm × 2.1 mm i.d. × 5 μm film) was used for separation. The selection criteria for tentative 

AhR agonists from LC-QTOFMS analysis had five steps. The first step involved matching the 

compounds with TCM library 1.0 metabolite software (Zedda and Zwiener, 2012). The second 

step selected compounds with a score of ≥70 by identifying isotope distribution (Lee et al., 2020). 

The third step involved selecting compounds with a score of ≥70 by confirming library MS/MS 

matching (Muz et al., 2017). The fourth step involved identifying aromatic compounds 

(Mekenyan et al., 1996). The fifth step selected only compounds that were commercially 

available. Finally, 28 tentative AhR agonists including canrenone, triphenyl phosphate, daidzein, 

genistein, quercetin, rutaecarpine, mepanipyrim, glycetein, kaempferol, loratadine, coumarin, 

ciprofloxacin, pyridaben, cortisone, naringenin, protopine, formononetin, clodinafop-propargyl, 

dioctyl phthalate, ziprasidone, danazol, hydrocortisone, dibutyl phthalate, medroxyprogesterone, 

wogonin, rafoxanide, 17α-ethynylestradiol, and thioridazine were selected. All compounds were 

purchased from Sigma-Aldrich. 

2.5. HPLC-MS/MS analysis 

The eight polar AhR agonists (canrenone, rutaecarpine, ciprofloxacin, mepanipyrim, 
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genistein, protopine, hydrocortisone, and medroxyprogesterone) in the fraction samples were 

quantified using HPLC-MS/MS. Detailed information on instrumental conditions and methods 

are described in Table S2. Newly identified AhR agonists were quantified using a 1290 infinity II 

series HPLC (Agilent Technologies) combined with a QTRAP 6500 series electrospray 

ionization tandem mass spectrometer (AB Sciex). Compounds were separated with an Eclipse 

XDB-C18 column. The mobile phase was: (A) 0.1% formic acid and 10 mM ammonium formate 

in water, and (B) 0.1% formic acid in acetonitrile. The injection volume was 3 μL, and the flow 

rate was 0.4 mL min
−1

. Procedural blanks were analyzed concurrently to check for interfering 

peaks. The polar AhR agonists identified in the present study were not detected in blank samples.  

2.6. Relative potency values of putative AhR-active compounds 

The relative potency values (RePs) for the AhR-mediated potencies of eight tentative AhR 

agonists were determined using H4IIE-luc bioassays with effective concentrations (EC) at 50% 

of the maximum level achieved by BaP (EC50). Chemicals were prepared at 10 concentrations 

using 3-fold serial dilution (viz., 1000, 333, 111, 37, 12, 4.1, 1.4, 0.46, 0.15, and 0.05 µg mL
-1

), 

and were tested using the in vitro bioassay method, as described above. 

2.7. Potency balance analysis 

Potency balance analysis was performed between instrument-derived BaP equivalent 

concentrations (BEQs) and bioassay-derived BaP-EQs (potency-based) to determine the 

contribution of each compound to total induced AhR-mediated potency. Instrument-derived 

BEQs were used to calculate the sum of the products of measured concentrations for individual 

compounds in sediments multiplied by their RePs (Cha et al., 2019; Kim et al., 2019). 

2.8. VirtualToxLab in silico analysis 

Other toxic potentials of eight polar AhR agonists were evaluated using quantitative 

structure-activity relationship (QSAR) modeling. AhR, estrogen receptor (ER), and 

glucocorticoid receptor (GR) binding affinities with candidates were estimated by VirtualToxLab 

(Vedani et al., 2015). Combined automated and flexible docking with multidimensional QSAR 

was used to simulate and quantify toxic potential and how chemicals bind to a set of currently 

implemented proteins that cause adverse effects. 

3. Results and discussion 

3.1. AhR-mediated potencies in sediments 

All raw extracts of sediments reached saturation efficiency (≥100% BaPmax) for AhR-
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mediated potency after 4 h exposure, whereas C1 and C2 only showed significant responses after 

72 h exposure (Fig. 1a). For the silica gel fractions of the three raw extracts (C1–C3), AhR-

mediated potencies were relatively greater in F2 (aromatics) and F3 (polar) compared to F1 (non-

polar) after both 4 h and 72 h exposure (Fig. 1b). The causative chemicals of F2 responses are 

clarified in the previous studies (Cha et al., 2019; Hong et al., 2016; Kim et al., 2019; Lee et al., 

2017a); here, the focus was on AhR-mediated potencies in F3. To reduce the complexity of F3, 

samples were further separated into 10 sub-fractions using RP-HPLC. Significant AhR-mediated 

potencies were commonly observed in F3.5–F3.8 at 4 h exposure (Fig. 1c). Patterns showing the 

significant AhR-mediated potencies in F3.5–F3.7 of sedimentary organic extracts were also 

found in a previous study conducted in Masan Bay, South Korea (Lee et al., 2020). In addition, 

enoxolone (ReP=0.13), a newly identified AhR agonist, was found to be present in the F3.7 (Lee 

et al., 2020). F3.5 and F3.6 of C1 extract had high AhR-mediated potencies, indicating that site 

C1 was contaminated with polar AhR agonists. 

Meanwhile, AhR-mediated potencies in the F3 subfractions after 72 h exposure were less 

than 20% TCDDmax in all samples (Fig. 1c). Comparison of AhR-mediated potencies between 4 

h and 72 h exposure in the H4IIE-luc bioassay provides metabolic information on AhR agonists 

in environmental samples (Cha et al., 2019; Hong et al., 2016; Xiao et al., 2017). For example, 

labile compounds such as PAHs tended to be easily metabolized during the longer exposure 

(Hong et al., 2016; Xiao et al., 2017). The decrease in the relative potency values of PAHs with 

increasing exposure time could be the metabolic process in the H4IIE-luc cells, resulting from 

the induction of CYP1A1 (Larsson et al., 2014). However, refractory AhR agonists, PCDD/Fs 

and coplanar-PCBs were relatively stable during exposure of 72 h (Hong et al., 2016; Xiao et al., 

2017). The polar AhR agonists in sediment might be easily metabolized in H4IIE-luc cells, and 

have labile characteristics, in general (Andrysik et al., 2011; Song et al., 2006; Xiao et al., 2016). 

EC50 was calculated from dose-response curves for the highly toxic fractions (F3.5–F3.8) (Fig. 

1d). For F3.5 of C3, the maximum BaPmax was <50%, and EC20 was used to calculate BaP-EQ. 

Potency-based BaP-EQ values ranged from 70 to 1800 ng BaP-EQ g
-1

 dm in C1, 12 to 430 ng 

BaP-EQ g
-1

 dm in C2, and 0.7 to 150 ng BaP-EQ g
-1

 dm, respectively (Fig. S2). Potency-based 

BaP-EQs concentrations were used for potency balance analysis. 

3.2. Full-scan screening analysis 

FSA using LC-QTOFMS was conducted for F3.5–F3.8 of C1. These fractions had 
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relatively strong AhR-mediated potencies. The data handling strategy involved five steps to 

select tentative AhR agonists in samples (Fig. 2a). The library software directly matches 

compounds with chromatograms from LC-QTOFMS results, which can enable it easier to search 

the identity, generation, and relevance of the mass under investigation (Muz et al., 2017). Thus, 

library matching in high-resolution mass spectrometry can allow in a time-effective for searching 

candidate compounds and improve reliability to provide accurate information on unknown 

compounds. In the first step, 359, 332, 273, and 255 compounds were detected in F3.5, F3.6, 

F3.7, and F3.8 of C1 extract, respectively (Zedda and Zwiener, 2012). In the second step, 

compounds with an isotope score of ≥70 were selected, narrowing them down to 64, 62, 53, and 

60 compounds (Lee et al., 2020). Out of them, 21, 36, 31, and 44 compounds with a library 

matching score ≥70 were found (step 3) (Muz et al., 2017). In the fourth step, 12, 22, 20, and 27 

compounds with aromatic rings were selected (Mekenyan et al., 1996). Compounds with the 

structure of aromatic rings and planar tend to bind to the AhR (Cha et al., 2019; Kim et al., 2019; 

Mekenyan et al., 1996). Eighty-one compounds were identified as tentative candidates for polar 

AhR agonists in the sediments of C1 (Table S3). Out of these, analytical standards were only 

available for 28 compounds (Fig. S3), which were purchased for chemical and toxicological 

confirmation. The candidates included 21 pharmaceuticals, 4 pesticides, 2 plasticizers, and 1 

dietary supplement (Table 1). 

3.3. Toxicological and chemical confirmation 

For toxicological confirmation, dose-response tests for 28 candidates were performed in 

the H4IIE-luc bioassay after 4 h exposure. Out of the 28 compounds, eight compounds 

(including canrenone, genistein, rutaecarpine, mepanipyrim, ciprofloxacin, protopine, 

hydrocortisone, and medroxyprogesterone) showed significant AhR-mediated potencies (Fig. 2b). 

Rutaecarpine (2.0) showed a greater affinity (binding) with AhR compared to BaP. In addition, 

RePs of hydrocortisone (2.0×10
-1

), medroxyprogesterone (2.0×10
-2

), canrenone (6.0×10
-3

), 

ciprofloxacin (5.0×10
-3

), mepanipyrim (4.0×10
-4

), genistein (1.0×10
-4

), and protopine (2.0×10
-5

) 

for AhR-mediated potency were newly obtained. Out of these, rutaecarpine (Han et al., 2009), 

hydrocortisone (Abbott et al., 1999), mepanipyrim (Medjakovic et al., 2014), genistein 

(Piasecka-Srader et al., 2016), and protopine (Vrba et al., 2011) were previously reported as 

capable of binding to AhR. To the best of our knowledge, medroxyprogesterone and canrenone 

were newly found as novel polar AhR agonists in sediments. Retention time and mass fragment 
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ions of eight polar AhR agonists were confirmed using HPLC-MS/MS (positive ionization mode 

(ESI+) and multiple reaction monitoring (MRM)) (Table S4). The concentrations of these 

compounds in the fractions were quantified (Table S5). Extracted ion chromatograms and Q1/Q3 

masses for canrenone and medroxyprogesterone are shown in Fig. S4. 

3.4. Distributions, compositions, and sources of polar AhR agonists 

The sedimentary distributions of newly identified polar AhR agonists were site-specific 

(Fig. 3a and Table S5). Concentrations of polar AhR agonists in the sediment of the industrial 

area (C1) tended to be greater compared to urban (C2) and rural (C3) areas. Site C1 was 

previously identified as being highly contaminated by mid-polar AhR agonists, including PAHs 

and SOs (Cha et al., 2019). The newly identified polar AhR agonists showed different 

compositions for each site (Fig. 3b). For example, hydrocortisone was the most dominant in C1 

sediment. In C2, hydrocortisone and genistein showed similar contributions, and genistein 

dominated in C3 sediment. 

Out of the eight polar AhR agonists, hydrocortisone had the highest concentrations in 

sediments, and was widely distributed across sampling sites. Hydrocortisone is used as an anti-

inflammatory agent (Sprung et al., 2008), and can be adsorbed on the organic phase of suspended 

particles and sediments, due to its hydrophobic characteristics (Louie, 2010). Genistein is an 

isoflavone isolated from soybeans, and is widely used as an anti-cancer agent (Banerjee et al., 

2008; Coward et al., 1993; Wang et al., 1996). Medroxyprogesterone had detectable 

concentrations of 4.8 ng g
-1

 dm in C1, 1.9 ng g
-1

 dm in C2, and 1.8 ng g
-1

 dm in C3. It is used as 

a uterine cancer agent (Prior et al., 1994). In addition, medroxyprogesterone is an endocrine-

disrupting compound (EDC) capable of binding to the androgen receptor of organisms (Sauer et 

al., 2018). Ciprofloxacin is used as an anti-cancer drug. It is introduced to surface waters from 

hospital and/or pharmaceutical factories (Mater et al., 2014). Canrenone is used as a diuretic 

(Romanelli and Gentilini 2004). It is released from pharmaceutical factories, and causes the 

abnormal growth of fish in aquatic ecosystems (Gilbert, 2011; Sanchez et al., 2011; Weizel et al., 

2018).  

Rutaecarpine and mepanipyrim were only detected in the sediments of the industrial area. 

Rutaecarpine is a quinazolinocarboline alkaloid that has been used as herbal medicine (Shew et 

al., 1996). Mepanipyrim is used as fungicide and insecticide (Miura et al., 1994; Nakamura et al., 

2003). These compounds might be mainly used in industrial areas, including pharmaceutical 
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factory, metal, biochemical, and engineering manufacturing industries. Protopine is used as an 

anti-cancer agent (Jiang et al., 2004). It was less than the limit of quantification at all sampling 

sites. Even if these AhR agonists are presented less than their own threshold effect and detection 

limit, they can contribute to toxicity in complex mixtures of sediments (Escher et al., 2020; 

Kortenkamp and Faust, 2018). 

Overall, polar AhR agonists are present at greater concentrations in sediments of the 

industrial area. These agonists were assumed to originate from various industrial and 

pharmaceutical complexes. Previous studies on the distribution of polar AhR agonists in the 

environment were mainly conducted in river water and the effluent of WWTPs (Araujo et al., 

2013; Azuma et al., 2017; Creusot et al., 2014; Hajj-Mohamad et al., 2014; Louie, 2010; Weizel 

et al., 2018; Yarahmadi et al., 2018). In comparison, studies evaluating the distribution of these 

compounds in sediments are extremely rare. Results of the current study showed that polar AhR 

compounds are widely distributed in sediments. Thus, follow-up studies on the fate, sources, and 

potential effects of polar AhR agonists in sediments are needed. 

3.5. Potency balance analysis 

Potency balance analysis between instrument-derived BEQs and bioassay-derived BaP-

EQs was conducted to evaluate the contributions of polar AhR agonists to total induced AhR-

mediated potencies (Fig. 4 and Table S6). The results of the potency balance analysis revealed 

varying contributions among sites and compounds. For example, canrenone accounted for 0.002% 

of total AhR-mediated potency in F3.5 of C1. In F3.6, the fractions included four polar AhR 

agonists, BEQs could explain only a small portion (0.002–0.02%) of BaP-EQs. Since protopine 

was not detected in the F3.7 of sediment extracts, it was excluded from the potency balance 

analysis. The explanatory power of AhR agonists was relatively high, ranging from 6.8 to 57%. 

Out of these, hydrocortisone was the greatest contributor, explaining 56% of total induced AhR-

mediated potency in the F3.8 of C1. However, the explanatory power of hydrocortisone in urban 

and rural areas was ~10 times lower, indicating that this compound mainly accumulates in the 

sediments of industrial areas. Overall, the eight polar AhR agonists had relatively minor 

contributions to the fractions of sediment extracts in C2 (0–6.9%) and C3 (0–6.8%) sites. Thus, it 

is necessary to investigate the major polar AhR agonists present in the sediments of rural and 

urban areas in the future. Furthermore, additional toxicological and chemical confirmation for 

the remaining candidates (Table S3) might be improved the explanatory power of AhR-mediated 
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potencies in polar fractions. Overall, the present study successfully applied EDA combined with 

FSA to identify AhR agonists in polar fractions of sediment organic extracts. 

3.6. Additional potential toxicity screening 

The newly identified polar AhR agonists had specific potential toxicities in previous 

studies. For example, canrenone (Fernandez et al., 1983), genistein (Hsieh et al., 1998), and 

ciprofloxacin (Beberok et al., 2018) are EDCs capable of binding to the ER. In addition, 

hydrocortisone (Hashmi et al., 2020), medroxyprogesterone (Hashmi et al., 2020), and genistein 

(Whirledge et al., 2015) are GR-active compounds. However, there are few reports on potential 

toxicities of some polar AhR agonists, such as rutaecarpine and mepanipyrim. Whether these 

compounds had other potential toxicities (such as AhR, ER, or GR activity) was further 

evaluated using QSAR modeling, such as VirtualToxLab (Table S7). VirtualToxLab predicted 

that canrenone, genistein, protopine, hydrocortisone, and medroxyprogesterone could bind to ER; 

however, all compounds exhibited binding affinity with GR. Five compounds (canrenone, 

rutaecarpine, mepanipyrim, medroxyprogesterone, and hydrocortisone) had AhR binding affinity. 

VirtualToxLab relies solely on thermodynamic considerations when evaluating the potential 

binding affinity between compounds and receptors; consequently, it might not be consistent with 

toxicological results from in vitro bioassays. Thus, predictions require careful consideration in 

combination with empirical verification, such as multiple bioassays. 

4. Conclusions 

Overall, the present study successfully identified polar AhR agonists in sediments by using 

EDA with FSA. Various pharmaceuticals, pesticides, and plasticizers had accumulated in 

sediments near industrial complexes, and were potential AhR-active substances. EDA combined 

with FSA will be useful for the identification and management of toxic substances in coastal 

environments. There is a limitation in evaluating the ecotoxicological effects of toxic substances 

by evaluating the AhR binding potency using H4IIE-luc cells applied in the present study. 

Nevertheless, it has the advantage of being able to select substances with high toxic potential 

among the numerous unknown compounds present in environmental samples. The present study 

provides baseline screening data for the establishment of ecological risk assessment. Further 

investigation on the distribution, sources, fate, and ecotoxicological effects of these unmanaged 

toxic substances in coastal ecosystems is urgently required in the near future. 
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Table 1. AhR agonist candidates in the RP-HPLC fractions (F3.5–F3.8) of sediment extracts 

from Siheung Creek of Lake Sihwa, Republic of Korea. 

Fractions and 

compounds 

Molecular  

formula 

CAS  

numbe

r 

Mola

r 

mass 

Intensit

y 

Uses Reference

s 

F3.5 fraction 

Canrenone
*
 C22H28O3 213-

554-5 

340.4

6 

100529 Diuretic Romanelli 

and 

Gentilini 

(2004) 

Triphenyl 

phosphate 

C18H15O4P 115-86-

6 

326.2

8 

1736175 Plasticizer, 

fire retardant 

Stapleton 

et al. 

(2009) 

Daidzein C15H10O4 486-

66-8 

254.2

4 

125412 Anti-cancer 

agent 

Coward et 

al. (1993) 

F3.6 fraction 

Genistein
*
 C15H10O5 446-

72-0 

270.2

4 

98801 Anti-cancer 

agent 

Banerjee 

et al. 

(2008) 

Quercetin C15H10O7 117-39-

5 

302.2

3 

79488 Dietary 

supplement 

Volate et 

al. (2005) 

Ruatecarpine
*
 C18H13N3O 84-26-

4 

287.3

2 

31527 Herbal 

medicine 

Shew et 

al. (1996) 

Mepanipyrim
*
 C14H13N3 110235

-47-7 

223.2

7 

240686 Fungicide, 

pesticide 

Nakamura 

et al. 

(2003) 

Glycitein C16H12O5 40957-

83-3 

284.2

6 

152401 Anti-cancer 

agent 

Shimoda 

and 

Hamada 

(2010) 

Kaempferol C15H10O6 520-

18-3 

286.2

4 

77339 Anti-cancer 

agent 

Kim and 

Choi 

(2013) 

Loratadine C22H23CIN2O2 79794-

75-5 

382.8

8 

205071 Anti-pruritic 

agent 

Roman 

and 

Danzig 

(1993) 

Coumarin C9H6O2 91-64-

5 

146.1

4 

54360 Anti-

coagulant 

Cravotto 

et al. 
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agent (2001) 

Ciprofloxacin
*
 C17H18FN3O3 85721-

33-1 

331.3

4 

40577 Anti-biotic 

agent 

Forrest et 

al. (1993) 

F3.7 fraction 

Pyridaben C19H25CIN2O

S 

96489-

71-3 

364.9

3 

1845249 Pesticide Zhu et al. 

(2005) 

Cortisone C21H28O5 53-06-

5 

360.4

4 

136293 Anti-

inflammator

y agent 

Alsop et 

al. (2016) 

Naringenin C15H12O5 67604-

48-2 

272.2

5 

35900 Anti-ulcer 

agent 

Yamamot

o et al. 

(2004) 

Protopine
*
 C20H19NO5 103-

86-9 

353.3

7 

52206 Anti-cancer 

agent 

Jiang et al. 

(2004) 

Formononetin C16H12O4 485-

72-3 

268.2

6 

100718 Anti-

angiogenic 

agent 

Huh et al. 

(2009) 

Clodinafop-

propargyl 

C17H13CIFNO

4 

105512

-06-9 

349.7

4 

94202 Herbicide Baghestan

i et al. 

(2008) 

F3.8 fraction 

Dioctyl phthalate C24H38O4 117-84-

0 

390.5

6 

1378461

5 

Plasticizer Rajendran 

et al. 

(2002) 

Ziprasidone C21H21CIN4O

S 

146939

-27-7 

412.9

4 

1934198 Anti-

psychotic 

agent 

Schmidt et 

al. (2001) 

Danazol C22H27NO2 17230-

88-5 

337.4

6 

227810 Endometrios

is treatment 

Igarashi et 

al. (1998) 

Hydrocortisone
*
 C21H30O5 50-23-

7 

362.4

6 

165545 Anti-

inflammator

y agent 

Sprung et 

al. (2008) 

Dibutyl phthalate C16H22O4 84-74-

2 

278.3

4 

1971180 Insect 

attractant 

Zong et al. 

(2013) 

Medroxyprogester

one
*
 

C22H32O3 520-

85-4 

344.4

9 

65514 Uterine 

cancer agent 

Prior et al. 

(1994) 

Wogonin C16H12O5 632-

85-9 

284.2

6 

71742 Anti-

convulsant 

drug 

Park et al. 

(2007) 

Rafoxanide C19H11CI2I2N

O3 

22662-

39-1 

626.0

1 

93218 Veterinary 

drug 

Matsubara 

et al. 

(2012) 

17α-

Ethynylestradiol 

C20H24O2 57-63-

6 

296.4

0 

55738 Contraceptiv

e 

Hua et al. 

(2016) 

Thioridazine C21H26N2S2 50-52-

2 

370.5

7 

55237 Anti-

psychotic 

Min et al. 

(2014) 
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agent 
* 
Newly identified AhR agonists. 

 

 

Figure captions 

Fig. 1. (a) AhR-mediated potencies of raw extracts, (b) silica gel fractions, (c) RP-HPLC 

fractions of inland creeks (C1–C3) after 4 h and 72 h exposure, and (d) dose-response 

curves for AhR-mediated potency of selected HPLC-fractions (F3.5–F3.8 of C1–C3 

sediment extracts) from the inland creeks of Lake Sihwa, Republic of Korea (Error bar: 

mean ± SD; n = 3; SEq: sediment equivalents; 
*
: EC20 values). 

 

 

Fig. 2. (a) Five-step selection process for LC-QTOFMS data analysis to select potential AhR 
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agonists, and (b) dose-response relationships for AhR-mediate potency of eight tentative 

AhR agonists and benzo[a]pyrene in the H4IIE-luc bioassay (Error bar: mean ± SD (n=3); 

ReP: relative potency value). 

 

 

Fig. 3. (a) Distributions and (b) relative compositions of newly identified AhR agonists in the 

organic extracts of sediments from the inland creeks (industrial, urban, and rural areas) of 

Lake Sihwa, Republic of Korea. 

 

 

Fig. 4. Contribution of instrument-derived BEQs (newly identified AhR agonists) to bioassay-

derived BaP-EQs (potency-based) in RP-HPLC fractions (F3.5–F3.8) of sediments from 
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the inland creeks (industrial, urban, and rural areas) of Lake Sihwa, Republic of Korea. 
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Highlights 

► Novel polar AhR agonists were identified in sediments using EDA combined with FSA. 

► A total of 8 compounds were shown significant AhR potencies in the H4IIE-luc bioassays. 

► Rutaecarpine showed 2-fold greater affinity with AhR compared to benzo[a]pyrene. 

► The novel polar AhR agonists are mainly originated from surrounding industrial complexes. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



S1 

 

<Supplementary Materials> 

 

Novel polar AhR-active chemicals detected in sediments of an industrial area 

using effect-directed analysis based on in vitro bioassays with full-scan high 

resolution mass spectrometric screening 

 

Jihyun Cha, Seongjin Hong*, Junghyun Lee, Jiyun Gwak, Mungi Kim, Taewoo Kim,  

Jin Hur, John P. Giesy, Jong Seong Khim* 

 

Supplementary Tables 

Table S1. Instrumental conditions of LC-QTOFMS for full-scan screening analysis. ·············S2 

Table S2. Instrumental conditions for analyzing polar AhR-active compounds using HPLC-

MS/MS. ···························································································S3 

Table S3. List of candidates for polar AhR-active compounds in the fraction samples (F3.5−F3.8) 

of organic extracts from C1 sediment using LC-QTOFMS. ······························· S4 

Table S4. Conditions of HPLC-MS/MS for quantification of polar AhR-active compounds in 

sediment organic extracts. ······································································ S6 

Table S5. Concentrations of polar AhR-active compounds in the sediments of inland creeks in 

Lake Sihwa, Republic of Korea. ······························································· S7 

Table S6. Potency balance between instrument-derived BEQs and bioassay-derived BaP-EQs in 

the RP-HPLC fractions (F3.5−F3.8) of selected inland creek sediments (C1–C3). 

····································································································· S8 

Table S7. Predicted potential toxicity of eight polar AhR agonists using VirtualToxLab. ······· S9 

 

Supplementary Figures 

Fig. S1. Map showing the sampling sites of surface sediments from the inland creeks in Lake 

Sihwa, Republic of Korea. ···································································· S10 

Fig. S2. Bioassay-derived BaP-EQs (potency-based) in RP-HPLC fractions (F3.5−F3.8) of 

sediment organic extracts. ···································································· S11 

Fig. S3. Chemical structures of 28 tentative AhR agonists in sediments from the inland creeks of 

Lake Sihwa, Republic of Korea. ······························································ S12 

Fig. S4. Extracted ion chromatograms (a, c) and Q1/Q3 masses (b, d) of canrenone and 

medroxyprogesterone. ········································································ S13 

 

 

*Corresponding authors.  

E-mail addresses: hongseongjin@cnu.ac.kr (S. Hong); jskocean@snu.ac.kr (J.S. Khim).  

mailto:hongseongjin@cnu.ac.kr
mailto:jskocean@snu.ac.kr


S2 

 

Supplementary Tables 

Table S1. Instrumental conditions of LC-QTOFMS for full-scan screening analysis. 

Instrument 

 

LC: 1290 infinity II (Agilent Technologies, Santa Clara, CA) 

QTOFMS: Triple time-of-flight (TripleTOF®) 5600+ mass spectrometer (AB 

Sciex, Framingham, MA) 

Samples F3.5, F3.6, F3.7, and F3.8 RP-HPLC fractions from C1 

Analytical column 

Column temperature 

Injection volume 

Flow rate 

ZORBAX Eclipse XDB-C18 (150 mm × 2.1 mm i.d. × 5 μm film) 

40 °C 

3 μL 

0.4 mL min-1 

Mobile phase A: 0.1% Formic acid and 10mM ammonium formate in water,   

B: 0.1% Formic acid in acetonitrile 

Mobile phase gradient 
Time (min) 

Solvent 

A B 

0 90 10 

1 90 10 

15 0 100 

24 0 100 

25 90 10 

30 90 10 
 

Ionization mode Electrospray ionization (ESI) Positive and Negative mode 

Mass scan type Full scan and Information Dependent Acquisition (IDA) Scanning 

TOF masses (Da) 

Ion source gas 1 

100–2000 Da 

50 psi 

Ion source gas 2 50 psi 

Curtain gas 30 psi 

Temperature 500 °C 

Ion source DuoSpray Ion Source 

Ion spray voltage Positive: 5,500 V, Negative -4,500 V 

Software All-in-One_HRMS/MS 

TCM library 1.0 metabolite software 
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Table S2. Instrumental conditions for analyzing polar AhR-active compounds using HPLC-

MS/MS. 
Instrument HPLC: Agilent Infinity 1290 II, MS/MS: SCIEX Qtrap 6500 

Samples F3.5, F3.6, F3.7, and F3.8 RP-HPLC fractions from C1, C2, and C3 

Analytical column ZORBAX Eclipse XDB-C18 (150 mm × 2.1 mm i.d. × 5 μm film) 

Column temperature 

Injection volume 

Flow rate 

40 ℃ 

3 μL 

0.4 mL min-1 

Mobile phase  A: 0.1% Formic acid and 10mM ammonium formate in water,   

B: 0.1% Formic acid in acetonitrile 

Mobile phase gradient 
Time (min) 

Solvent 

A B 

0 90 10 

1 90 10 

15 0 100 

24 0 100 

25 90 10 

30 90 10 
 

Ionization mode Electrospray ionization (ESI) Positive mode 

TOF masses (Da) 

Ion source gas 1 

100–2000 Da 

50 psi 

Ion source gas 2 50 psi 

Curtain gas 30 psi 

Temperature 500 °C 

Ion source DuoSpray Ion Source 

Ion spray voltage  Positive: 5,500 V 
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Table S3. List of candidates for polar AhR-active compounds in the fraction samples 

(F3.5−F3.8) of organic extracts from C1 sediment using LC-QTOFMS. 
Fractions and compounds Molecular 

formula 

CAS  

number 

Molecular 

weight 

Matching 

factor 

AhR 

activity 

F3.5 fraction 

Canrenone C22H28O3 213-554-5 340.456 99 +a 

Triphenyl phosphate C18H15O4P 115-86-6 326.283 98 −b 

Diphenoxylate C30H32N2O2 915-30-0 452.587 95  

Hydroxygenkwanin C16H12O6 20243-59-8 300.263 94  

Daidzein C15H10O4 486-66-8 254.238 89 − 

Neburon C12H16Cl2N2O 555-37-3 275.174 89  

Scutellarein C15H10O6 529-53-3 286.236 86  

Eriodictyol C15H12O6 552-58-9 288.252 86  

Danofloxacin C19H20FN3O3 112398-08-0 357.379 79  

Bulleyaconitine A C35H49NO9 107668-79-1 643.764 77  

Difenzoquat C17H17N2 49866-87-7 249.330 74  

Strychnine C21H22N2O2 57-24-9 334.412 73  

F3.6 fraction 

Isorhamnetin C16H12O7 480-19-3 316.262 100  

Genistein C15H10O5 446-72-0 270.237 99 + 

Oxadixyl C14H18N2O4 77732-09-3 278.304 96  

Quercetin C15H10O7 117-39-5 302.236 94 − 

Rutaecarpine C18H13N3O 84-26-4 287.315 93 + 

Eupatilin C18H16O7 22368-21-4 344.315 92  

Fenthion-sulfoxide C10H15O4PS2 3761-41-9 294.328 91  

Doxycycline C22H24N4O8 564-25-0 444.435 91  

Mepanipyrim C14H13N3 110235-47-7 223.273 89 + 

Ellagic acid C14H6O8 476-66-4 302.193 85  

Glycitein C16H12O5 40957-83-3 284.263 85 − 

Kaempferol C15H10O6 520-18-3 286.236 85 − 

Loratadine C22H23ClN2O2 79794-75-5 382.883 84 − 

1,7-Dimethoxyxanthone C15H12O4 50415-71-9 182.191 83  

3,4,5-Trimethoxycinnamic acid C12H14O5 90-50-6 238.237 82  

Luteoloside C21H20O11 5373-11-5 448.377 80  

Coumarin C9H6O2 91-64-5 146.143 79 − 

Flunixin C14H11F3N2O2 38677-85-9 296.245 79  

Ciprofloxacin C17H18FN3O3 85721-33-1 331.341 75 + 

Baquiloprim C17H20N6 102280-35-3 308.381 74  

Lorazepam C15H10Cl2N2O2 846-49-1 321.158 73  

Imipramine C19H24N2 50-49-7 280.407 72  

F3.7 fraction 

[10]-Gingerol C21H34O4 23513-15-7 350.492 100  

Amygdalin C20H27NO11 29883-15-6 457.428 100  

Pyridaben C19H25ClN2OS 96489-71-3 364.933 100 − 

Corticosterone C21H30O4 50-22-6 346.461 99  

Cortisone C21H28O5 53-06-5 360.444 96 − 

Flavin Mononucleotide C17H21N4O9P 146-17-8 456.344 93  

Fenazaquin C20H22N2O 120928-09-8 306.401 92  

Naringenin C15H12O5 67604-48-2 272.253 92 − 

Protopine C20H19NO5 130-86-9 353.369 91 + 

Phenazepam C15H10BrClN2O 51753-57-2 349.610 89  

Donepezil C24H29NO3 120014-06-4 379.492 86  

16-Dehydroprogesterone C21H28O2 1096-38-4 312.446 85  

Bisdemethoxycurcumin C19H16O4 33171-05-0 308.328 85  

Psoralidin C20H16O5 18642-23-4 336.388 82  
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Ranitidine C13H22N4O3S 66357-35-5 314.404 81  

Formononetin C16H12O4 485-72-3 268.264 77 − 

Clodinafop-propargyl C17H13ClFNO4 105512-06-9 349.741 76 − 

Atenolol C14H22N2O3 29112-68-7 266.366 75  

Columbianadin C19H20O5 5058-13-9 328.359 75  

Teflubenzuron C14H6Cl2F4N2O2 83121-18-0 422.469 71  

F3.8 fraction 

Cinnamic acid C9H8O2 140-10-3 148.159 100  

7-Ketocholesterol C27H44O2 556-28-9 400.637 100  

Dioctyl phthalate C24H38O4 117-84-0 390.556 100 − 

Etofenprox C25H28O3 80844-07-1 376.488 99  

Ziprasidone C21H21ClN4OS 146939-27-7 412.936 99 − 

Danazol C22H27NO2 17230-88-5 337.455 98 − 

Hydrocortisone C21H30O5 50-23-7 362.460 98 + 

Dibutyl phthalate C16H22O4 84-74-2 278.344 97 − 

Naringin C27H32O14 10236-47-2 580.535 97  

11a-Hydroxyprogesterone C21H30O3 312-90-3 330.461 95  

Inabenfide C19H15ClN2O2 82211-24-3 338.788 93  

Medroxyprogesterone C22H32O3 520-85-4 344.488 93 + 

Syringin C17H24O9 118-34-3 372.367 93  

Wogonin C16H12O5 632-85-9 284.263 92 − 

Cortexolone C21H30O4 152-58-9 346.461 92  

Enrofloxacin-D5 C19H22FN3O3 1173021-92-5 364.426 90  

Tadalafil C22H19N3O4 171596-29-5 389.404 89  

Rafoxanide C19H11Cl2I2NO3 22662-39-1 626.010 82 − 

Phthalic acid C8H6O4 88-99-3 166.131 81  

Triclabendazole sulfone C14H9Cl3N2O3S 106791-37-1 391.657 81  

17α-Ethynylestradiol C20H24O2 57-63-6 296.403 79 − 

Fenthion-sulfone C10H15O5PS2 3761-42-0 310.327 78  

Daphnoretin C19H12O7 2034-69-7 352.294 75  

Norfludiazepam C15H10ClFN2O 2886-65-9 288.704 72  

Myricetin C15H10O8 529-44-2 318.235 72  

β-Carotene C40H56 7235-40-7 536.873 72  

Thioridazine C21H26N2S2 50-52-2 370.574 70 − 
a +: Significant response in the H4IIE-luc bioassay. 
b −: Not significant response in the H4IIE-luc bioassay. 
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Table S4. Conditions of HPLC-MS/MS for quantification of polar AhR-active compounds in sediment organic extracts. 
Compounds MRM transition Parent ion → Daughter ion (m/z) DP 

(volts) 

EP 

(volts) 

CE 

(volts) 

CXP 

(volts) 

Canrenone 341.24 → 106.70 (ESI+) 6 10 35 54 

Genistein 270.92 → 153.00 (ESI+) 211 10 37 6 

Ruatecarpine 287.98 → 272.90 (ESI+) 226 10 43 26 

Mepanipyrim 223.95 → 106.00 (ESI+) 1 10 33 10 

Ciprofloxacin 332.00 → 314.00 (ESI+) 1 10 27 16 

Protopine 353.95 → 189.10 (ESI+) 1 10 41 10 

Hydrocortisone 363.04 → 121.00 (ESI+) 76 10 31 10 

Medroxyprogesterone 345.11 → 122.90 (ESI+) 121 10 29 20 
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Table S5. Concentrations of polar AhR-active compounds in the sediments of inland creeks in Lake Sihwa, Republic of Korea. 
Sites Concentrations of polar AhR-active compounds (ng g-1 dm) 

 Canrenone Genistein Rutaecarpine Mepanipyrim Ciprofloxacin Protopine Hydrocortisone Medroxyprogesterone 

C1 2.6 58 0.2 0.03 1.1 <LOD 280 4.8 

C2 0.2 37 <LODa <LOD 0.1 <LOD 53 1.9 

C3 0.1 24 <LOD <LOD 0.1 <LOD 1.5 1.8 
a Below the limit of detection. 
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Table S6. Potency balance between instrument-derived BEQs and bioassay-derived BaP-EQs in the RP-HPLC fractions (F3.5−F3.8) 

of selected inland creek sediments (C1–C3). 
Compounds C1 C2 C3 

F3.5 F3.6 F3.7 F3.8 F3.5 F3.6 F3.7 F3.8 F3.5 F3.6 F3.7 F3.8 

Instrument-derived BEQs (ng BEQ g-1 dm) 

Polar AhR agonists 

Canrenone 0.01    0.0008    0.0007    

Genistein  0.01    0.003    0.002   

Rutaecarpine  0.26    <LOD    <LOD   

Mepanipyrim  0.00001    <LOD    <LOD   

Ciprofloxacin  0.004    0.0005    0.0005   

Protopine   <LODa    <LOD    <LOD  

Hydrocortisone    39    7.4    0.2 

Medroxyprogesterone    0.07    0.03    0.03 

BEQ-polar AhR agonistsb 0.01 0.28 <LOD 39 0.0008 0.004 <LOD 7.4 0.0007 0.002 <LOD 0.2 

Bioassay-derived BaP-EQs (ng BaP-EQ g-1 dm) 

Potency-based BaP-EQ50
c 586 1810 1300 69 12 170 430 110 0.66d 29 150 3.6 

Contribution (%) 0.002 0.02 <LOD 57 0.01 0.002 <LOD 6.9 0.10 0.01 <LOD 6.0 
a Limit of detection. 
b BEQ-polar AhR agonists concentrations were calculated from the concentrations of canrenone, genistein, rutaecarpine, mepanipyrim, ciprofloxacin, protopine, 

hydrocortisone, and medroxyprogesterone multiplied by their ReP values obtained from this study. 
c Potency-based BaP-EQ50 was obtained from sample dose-response relationships elicited by the sediments samples at 6 levels of dilution. 
d Potency-based BaP-EQ20 value. 
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Table S7. Predicted potential toxicity of eight polar AhR agonists using VirtualToxLab. 
Toxicity Compounds 

Canrenone Genistein Rutaecarpine Mepanipyrim Ciprofloxacin Protopine Hydrocortisone Medroxyprogesterone 

AhR 6.8 µma Not binding 2.0 µm 26 µm Not binding Not binding 1.2 µm 403 nm 

ERb 57 µm 2.6 µm Not binding Not binding Not binding 40 µm 46 µm 954 nm 

GRc 4.3 µm 4.2 µm 4.2 µm 21 µm 72 µm 261 nm 3.2 nm 27 nm 
a Blue: weak binding, red: moderate binding, black: strong binding. 
b Estrogenic receptor activity. 
c Glucocorticoid receptor activity. 
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Supplementary Figures 

 
Fig. S1. Map showing the sampling sites of surface sediments from the inland creeks in Lake 

Sihwa, Republic of Korea. 
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Fig. S2. Bioassay-derived BaP-EQs (potency-based) in RP-HPLC fractions (F3.5−F3.8) of 

sediment organic extracts (*: based on EC20 values). 
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Fig. S3. Chemical structures of 28 tentative AhR agonists (for toxicological confirmation) in 

sediments from the inland creeks of Lake Sihwa, Republic of Korea. 
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Fig. S4. Extracted ion chromatograms (a, c) and Q1/Q3 masses (b, d) of canrenone and 

medroxyprogesterone. 

  

 


