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Information on temporal dynamics of phytoplankton communities and their responses to
environmental factors can provide insights into mechanisms driving succession of
phytoplankton communities that is useful in programs to manage and or remediate
undesirable assemblages. Populations of phytoplankton can be controlled by bottom-up
factors such as nutrients and temperature or top-down such as predation by
zooplankton. Traditionally, taxonomic diversity based on morphologies has been the
measure used for analysis of responses to environmental factors. Recently, according to
functional groupings, including functional groups (FG), morpho-FG (MFG), and
morphology-based FG (MBFG), functional diversity has been used to represent
functional aspects of phytoplankton communities. However, to what extent these
taxonomic and functional groupings are congruent at seasonal time-scales and the
main environmental factors, which drive succession, have remained less studied. Here,
we analyzed absolute and relative proportions of a phytoplankton community during a 3-
year period in Lake Erhai, a eutrophic highland lake in China. Alpha diversity and beta
diversity, as measured by Shannon-Wiener and Bray-Curtis indices of taxonomic
grouping and three functional groupings (FG, MFG, and MBFG) were applied to
investigate environmental factors determining diversity. Significant, positive relationships
were observed between taxonomic diversity and functional diversity that were strongly
linked through seasons. In order to exclude the influence of dominant species' tolerance
to extreme environments, the dominant species were excluded one by one, and the
results showed that residual communities still exhibited similar patterns of succession.
This synchronous temporal pattern was not principally driven by the dominant genera
.org March 2020 | Volume 11 | Article 1791
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(Microcystis, Psephonema, andMougeotia). Instead, the entire phytoplankton community
assemblages were important in the pattern. Most diversity indices of taxonomic and
functional groupings were significantly correlated with solar irradiance, but not nutrient
concentrations. Because the lake is eutrophic and there were already sufficient nutrients
available, additional nutrients had little effect on seasonal taxonomic and functional
diversity of phytoplankton in Lake Erhai.
Keywords: seasonal succession, environmental drivers, algal taxonomic and functional groupings, alpha and beta
diversity, eutrophication
INTRODUCTION

Phytoplankton, including planktonic algae and cyanobacteria, are
primary producers in aquatic ecosystems, which play key roles in
providing food for and affecting other organisms, and in turn are
regulated by interactions with other organisms (Hutchins and
Boyd, 2016; Kohlbach et al., 2016). Due to their small sizes, short
life cycles of individual taxa and rapidly changing community
structures, successional changes in phytoplankton communities
are useful, rapid, integrative indicators of ecosystem status and
trends in aquatic systems (Camp et al., 2015; Zwart et al., 2015).
Compositions of species in algal communities are widely used to
quantify temporal fluctuations and succession of aquatic
ecosystems (Rodrigues et al., 2015; Wu et al., 2017; Cupertino
et al., 2019). Succession of phytoplankton is related to multiple
environmental factors such as nutrient concentrations,
temperature, and quantity and quality of light in aquatic systems
(Malik and Saros, 2016; Paerl et al., 2016; Thomas et al., 2017). It
has long been debated whether numbers and types of
phytoplankton are controlled by bottom-up factors, such as
absolute and relative concentrations of nutrients, including
phosphorus (P) or nitrogen (N), or by top-down processes, such
as predation by zooplankton and fishes (Vanni et al., 1990; Xie and
Liu, 2001; Zhang et al., 2008). Understanding mechanisms of
phytoplankton succession and investigating responses in species
composition to environmental factors can improve predictive
power for phytoplankton responses to environmental changes.

Phytoplankton have been classified by kingdom, phylum,
class, order, family, genus and species based on morphological
.org 2
characteristics and or pigments (Hu and Wei, 2006; Reynolds,
2006). In aquatic ecology, algal taxonomic variation has been
used for explaining community properties and environmental
variation (Lehtinen et al., 2017; Rozema et al., 2017). However,
various species of phytoplankton in the same taxonomic
association might have different morphological or functional
features and taxonomically different algae usually co-occur in the
same habitats (Reynolds et al., 2002; Salmaso and Padisák, 2007;
Padisák et al., 2009; Kruk et al., 2010). Different phytoplankton
taxa living in similar habitats often have the same ecological
functions considering functional, morphological, physiological
and ecological traits (Reynolds et al., 2002; Salmaso and Padisák,
2007; Padisák et al., 2009; Kruk et al., 2010). Thus, classifications
of phytoplankton into functional groupings have been proposed,
because functional and ecological traits can reflect strong
mechanisms of natural selection (Salmaso et al., 2015;
Özkundakci et al., 2016; Fontana et al., 2018). These include
functional groups (FG, Table 1) (Reynolds et al., 2002; Padisák
et al., 2009), morpho-FG (MFG) (Salmaso and Padisák, 2007)
and morphology-based FG (MBFG) (Kruk et al., 2010). FG
represents the classical and the widest used system of
classifying phytoplankton, based on habitat properties,
environmental tolerance and trophic state. FG integrates a base
of information and relies on expert judgment (Hu et al., 2013;
Zhu et al., 2013). MFG is identified using a priori determined
traits influencing functional processes and ecological
characteristics (Naselli-Flores et al., 2007; Mihaljević et al.,
2013 ; Deng et a l . , 2019) . MBFG uses exc lus ive ly
morphological/structural criteria in the definition of groups
TABLE 1 | Comparisons of taxonomic and three functional groupings, including functional groups (FG), morpho-FG (MFG), and morphology-based FG (MBFG).

Taxonomic and functional
groupings

Number of
groups

Main grouping
criteria

Principle of subdivision Applied Cases

Genus [based on (Hu and
Wei, 2006)]

Not
Applicable

Phylogenetic
characteristics

Size, population/single cell, color,
structure and other features that can be
observed under a microscope

Winder et al., 2008; Wang et al., 2010; Yang
et al., 2012; Wu et al., 2013

Functional groups (FG,
based on Reynolds et al.,
2002 and Padisák et al., 2009)

39 Habitat, tolerances and
sensitivities

Nutrient levels, water depth, salt and
fresh water, scour, stratification, pH,
transparency, light intensity and grazing

Vinebrooke et al., 2004; Fonseca and
Bicudo, 2008; Stanković et al., 2012; Zhu
et al., 2013; Borics et al., 2016

Morpho-Functional Groups
(MFG) [based on (Salmaso
and Padisák, 2007)]

11 categories
and 32
subcategories

Morphological and
functional characteristics

size and form, mobility, potential
mixotrophy, nutrient requirements,
presence of gelatinous envelopes

Naselli-Flores et al., 2007; Mihaljević et al.,
2013; Deng et al., 2019

Morphologically based
functional groups (MBFG)
[based on (Kruk et al., 2010)]

7 Morphological and
structural characteristics

Size, flagella, siliceous structures,
mucilage, aerotopes and surface/volume
ratio

Petar et al., 2014; Beamud et al., 2015;
Mihaljević et al., 2015; Bortolini et al., 2016;
Kruk et al., 2017; Cupertino et al., 2019
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and MBFG is an easier, but more effective classification that has
only seven categories (Petar et al., 2014; Allende et al., 2019).
Functional groupings with special traits can directly describe
ecological processes, such as growth, sedimentation, grazing
losses and nutrient acquisition (Weithoff, 2003). Functional
groupings have been used as powerful and complementary
approaches to describe dynamics of phytoplankton community
assemblies and their ecological functions. Each of these methods
has advantages and limitations.

Trait-based groupings have identified environmental factors
that determine succession of phytoplankton communities in
temperate (Weithoff et al., 2015), tropical (Costa et al., 2009;
Rodrigues et al., 2018), subtropical (Becker et al., 2009) and
Mediterranean (Becker et al., 2010) regions, such as the
environmental resources, environmental change and predation
(Reynolds, 1984; Salmaso and Padisák, 2007; Salmaso et al., 2015).
Results of previous studies have shown that composition, biomass
and diversity of phytoplankton is primarily determined by
nutrients (Reynolds and Irish, 1997; Rangel et al., 2012). Results
of other studies have shown that succession of phytoplankton
communities is controlled by physical conditions such as light
(Edwards et al., 2015), water temperature (Rasconi et al., 2017;
Neukermans et al., 2018), mean depth (Pinckney et al., 2015),
flushing rate (Cañavate et al., 2015) and their interactions (Hart
et al., 2015; Edwards et al., 2016; Burson et al., 2018; Richardson
et al., 2019). Competition for resources, predation, environmental
change and rates of mutation and plasticity will affect succession of
taxonomic and functional groupings, but whether there is seasonal
congruence between functional and taxonomic groupings or not
remains unclear in natural communities. If the answer is yes, then,
how is this congruence driven by environmental factors?

Diversity indices, of algal taxonomic and functional
groupings, such as Shannon-Wiener or Bray-Curtis, have been
used to track succession of communities in response to
environmental factors (Maloufi et al., 2016; Vallina et al.,
2017). Diversity of phytoplankton communities based on
taxonomy of algae can be used to describe patterns of
succession and have been used to analyze the ecological status
of assemblages of phytoplankton (Rodrigues et al., 2015;
Wojciechowski et al., 2017). Functional diversity of algae is
based mainly on similarities of morpho-functional traits
between species and are directly related to environmental
factors, therefore, functional diversity affects processes at all
scales of community and ecosystem organization (Zwart et al.,
2015; Vallina et al., 2017). Therefore, taxonomic plus functional
classifications might be a useful combination to assess
environmental factors influencing aquatic communities
(Cupertino et al., 2019). It is critical to understand how
various factors are coupled if ecosystems are to be managed
and/or restored to provide particular ecological services
for humans.

In this study, data from a 36-month study of phytoplankton
in Lake Erhai, a eutrophic highland lake in China, was used to
calculate diversity indices of taxonomic and three functional
groupings, including FG, MFG, and MBFG. Three hypotheses
Frontiers in Plant Science | www.frontiersin.org 3
were tested: (1) taxonomic and functional diversity are positively
correlated and their diversity indices show the same synchronous
seasonal patterns; (2) seasonal congruence is generally driven by
one or a few dominant genera. In eutrophic systems, the genera
Microcystis, Psephonema, and Mougeotia, which are adapted to
conditions of greater concentrations of phosphorus, can
determine the temporal pattern of functional and taxonomic
groupings; and (3) seasonal congruence is caused by the fact that
functional and taxonomic diversity respond in a similar way to
environmental factors. To test for seasonal congruence and
environmental drivers of phytoplankton taxonomic and
functional groupings, in the present study, results of which are
reported here, both alpha (a) and beta (b) diversities of genera
grouping and three functional groupings (FG, MFG, and MBFG)
of phytoplankton with monthly measurements were compared.
In addition, to test if dominant genera were most important
determinants of changes in composition of species, dominant
genera, were sequentially removed and diversity indices were
recalculated to determine if removing these genera would affect
the seasonal patterns.
METHODS

Study Site and Sampling Method
The study was performed in Lake Erhai (25°36′-25°58′ N, 100°
05′-100°17′ E), the second largest, high-altitude freshwater lake
on the Yunnan Plateau, China (Figure 1). Lake Erhai is located
in the central zone of the Dali Bai Autonomous Prefecture in
Yunnan Province. Lake Erhai has a total surface area of
approximately 250 km2, an elevation of 1,974 m and a volume
of nearly 28.8 × 108 m3. Mean and maximum depth are 10.5 and
20.5 m, respectively. Lake Erhai, is currently in the early stages of
eutrophication (Lin et al., 2016; Wang et al., 2018), with
concentration of total nitrogen (TN) of 0.7 mg/L (Zhu et al.,
2018), total phosphorus (TP) of 0.03 mg/L (Zhu et al., 2018) and
chlorophyll a (Chl a) of 13.33 µg/L during June 2013 to May
2015, with a peak value exceeding 30 µg/L (Wang et al., 2018), all
of which exceed the threshold value of the eutrophication
categories (TP > 0.03 mg/L, TN > 0.65 mg/L, and Chl a > 9
µg/L, Nürnberg, 1996). Samples were collected monthly, from 15
locations, between January 2012 and December 2014 (Figure 1).
Composite, integrated samples were collected by combining
samples of water from the upper (0.5 m below the water
surface), middle (midway between the surface and the bottom),
and lower (0.5 m above the sediment surface) portions of the
water column at each site. Composite, integrated samples were
used for analysis of nutrient concentration and phytoplankton.

Physical and Chemical Analysis
Water temperature (T) was measured at 0.5 m below the water
surface at each sampling site using a YSI ProPlus multiparameter
water quality meter (Yellow Springs, OH, USA). Water
transparency (SD) was measured using a Secchi disk (20 cm
diameter) in situ. Secchi depth is a visual measure of light
March 2020 | Volume 11 | Article 179
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intensity, because light is absorbed by particles and soluble
substances in the water, resulting in disappearance of view at a
certain depth (Secchi , 1866; Pre isendorfer , 1986) .
Concentrations of dissolved inorganic phosphorus (DIP) and
ammonium (NH4-N) in mixed samples were measured by use of
standard preservation and analytical procedures established by
Government Water Association (APHA-AWWA-WPCF, 1915).

Identification and Enumeration of
Phytoplankton
One-liter samples were fixed with 10 ml Lugol's iodine solution and
were concentrated to 50 ml with a siphon after sedimentation for 48
h in Utermhol chambers (Huang et al., 1999). After mixing,
concentrated samples (0.1 ml) were observed with a
phytoplankton-counting chamber (0.1 ml, Institute of
Hydrobiology, Chinese Academy of Sciences, China) under 400×
magnification using a light microscope (Olympus BX21, Tokyo,
Japan). Cells of colonial or filamentous (e.g., Microcystis,
Psephonema, Mougeotia, and Oscillatoria) algae were separated
using an ultrasonic device (JY88-II, Scientiz, Ningbo, Zhejiang,
China) before enumeration. Taxonomic identification of
phytoplankton was performed according to Hu and Wei (Hu and
Wei, 2006). Species were aggregated into kingdom, phylum, class,
order, family, genus and species (if needed) levels.
Frontiers in Plant Science | www.frontiersin.org 4
Sorting of Functional Groupings
Three functional classification schemes, including FG, MFG, and
MBFG, were performed. FG, based on genera or species, when
possible, resulted in 39 groups (Reynolds et al., 2002), identified
by use of alpha-numeric codes according to their similar
morphology, environmental sensitivity and tolerance, based on
Grime's (1979) seminal work on terrestrial vegetation, which
were applied to phytoplankton. MFG was composed of 32
groups, based on motility, the potential capacity to obtain
carbon and nutrients by mixotrophy, specific nutrient
requirements, size and shape, and presence of gelatinous
envelopes (Salmaso and Padisák, 2007). MBFG was composed
of 7 groups based on eight morphological traits of
phytoplankton, including flagella, mucilage, siliceous
exoskeletal structures, aerotopes, gas vesicles, volume, surface/
volume, and maximum linear dimension characterized by use of
light microscopy (Kruk et al., 2010).

Statistical Analyses
Indices of a diversity, calculated by use of the Shannon-Wiener
index (Shannon, 1948), and b diversity, calculated by use of the
Bray-Curtis dissimilarity index (Bray and Curtis, 1957), were
applied to characterize taxonomic groupings and three
functional groupings, including FG, MFG, and MBFG. The
FIGURE 1 | Map of Lake Erhai and the location of the 15 sampling sites.
March 2020 | Volume 11 | Article 179
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Shannon-Wiener index of each taxonomic and functional
classification in each site for each month was calculated. The
Bray-Curtis index was calculated to measure pairwise
dissimilarity in species composition between sites within each
month. Mean pairwise dissimilarity among sites for each month
was used as a response variable, i.e. spatial b diversity within the
lake. Both Shannon-Wiener and Bray-Curtis indices of each
taxonomic and functional classification were calculated in the
same way, with serial removal of the three most dominant
genera, which were taxa accounting for more than 70% of total
cell numbers. To investigate seasonality of environmental
parameters and diversity indices, a locally weighted scatter
smoothing function, using month as the predictor variable
(Cleveland, 1981), was used to fit curves (span = 0.75) for
these variables. To test if taxonomic and functional diversity
indices were related, generalized linear mixed models [GLMMs
(Bolker et al., 2009)] were used with pairs of mean diversity
indices for each month from all sampling points as variables. To
test how environmental factors affect taxonomic and functional
diversity indices and drive the congruence effect, in the GLMMs,
the mean values of each taxonomic and functional diversity
index in the 15 sites for each month were used as response
variables, and DIP, NH4-N, T, and SD were used as predictors.
To avoid pseudo-replication (pseudo-replication typically occurs
when the number of observations or the number of data points is
treated inappropriately as independent replicates) in the analysis
of the correlation among diversity indices, a seasonal (month)
effect was introduced as a random predictor variable (Hurlbert,
1984). All statistical analyses were conducted in R 3.1.0 (R
Development Core Team, 2014).
RESULTS

Mean values of concentrations of nutrients, including NH4-N
and DIP, and physical parameters, including Secchi depth (SD)
and water temperature (T), of the 15 sampling sites from January
2012 to December 2014 are shown (Figure 2). All parameters
exhibited seasonal variations. Concentrations of NH4-N were
greatest during summer, while concentrations of DIP were
greater during spring and autumn, SD was maximum in spring
Frontiers in Plant Science | www.frontiersin.org 5
and T reached its maximum in August. Mean concentrations of
NH4-N, DIP, SD, and T were 0.039 mg/L, 0.006 mg/L, 2.22 m,
and 18.12˚C, respectively.

Patterns of succession of compositions of species in taxonomic
and functional groupings of phytoplankton communities during the
sampling period are shown (Figure 3). Cyanophyta, Chlorophyta
and Bacillariophyta were the three dominant phyla. Cyanophyta
was the dominant phylum from July to December (blooming
period), whereas Bacillariophyta dominated from February to
June. Populations of Chlorophyta peaked during summer and
then decreased from summer to winter. Communities of
cyanophyta were by the genera Microcystis and Aphanizomenon,
and Chlorophyta was dominated by genera Psephonema and
Mougeotia (Figure 3A-Genus). Thirty-two (32) FG groups were
identified, with the primary three being M dominated by
Microcystis, T dominated by Psephonema, and S1 dominated by
Oscillatoria (Figure 3A-FG). A total of 23 MFG groups were
identified with the primary three being X5b, dominated by
Microcystis, X10a, dominated by Psephonema, and X5a,
dominated by Oscillatoria and Aphanizomenon (Figure 3A-
MFG). Seven (7) MBFG groups were identified, with the three
primary being VII, dominated by Microcystis, IV, dominated by
Psephonema and III, dominated byOscillatoria (Figure 3A-MBFG).

For both a and b diversities, taxonomic (genus) and
functional diversities of FG, MFG, and MBFG exhibited
maxima during summer then decreased in autumn (Figures
3B, C). Significant positive correlations were also observed
between taxonomic and functional groupings (Figures 3D, E).
The coefficients of determination (R2) between taxonomic and
functional a diversities were ≥ 0.88 (p < 0.05) (Figure 3D) and
the R2 of b diversities were ≥ 0.95 (p < 0.05) (Figure 3E).

The dominant genera, which accounted for > 70% of total
numbers of cells, were Microcystis, Psephonema, and Mougeotia
(Figure S1). To check whether dominant genera affected
seasonal patterns of diversity indices, these three dominant
genera were removed serially. Successional patterns of
taxonomic and functional groupings of the rest of the
phytoplankton community are shown in Figures S2A, S3A,
and S4A (supplementary information). The a (Figures S2B,
S3B, and S4B) and b diversity (Figures S2C, S3C, and S4C)
indices of the remaining phytoplankton community showed a
FIGURE 2 | Monthly time series of values of physical and chemical parameters in Lake Erhai from January 2012 to December 2014. (A) ammonium (NH4-N), (B)
Secchi depth (SD), (C) dissolved inorganic phosphorus (DIP), and (D) water temperature (T). Values are presented as the mean ± standard deviation (SD) among the
15 sites for each month. To detect the seasonality of environmental parameters, a locally weighted scatter smoothing function (Cleveland, 1981) was used to fit a
smooth curve (span = 0.75) using month as the predictor variable.
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similar seasonal pattern to those of the whole community, and
significant correlations (p < 0.001) were found for genus, FG,
MFG, and MBFG groupings (Figure S5).

Results of GLMMs showed that both a and b diversities of
taxonomic and functional groupings responded similarly to
environmental factors (Table 2). Except for a diversity of
MFG and MBFG groupings, all the other diversity indices were
significantly correlated with SD (p < 0.05) (Table 2). Meanwhile,
b diversity of FG was significantly correlated with water
temperature (p < 0.05) (Table 2). However, all diversities
showed weaker correlations with concentrations of NH4-N and
DIP than with SD or water temperature.
Frontiers in Plant Science | www.frontiersin.org 6
DISCUSSION

In Lake Erhai, taxonomic and functional diversities were positively
correlated and both alpha and beta indices showed the same
synchronous seasonal pattern. The maximum species diversity
was observed under multiple conditions of nutrient
concentrations, where nutrients and light provided ample scope
for coexistence of species (Török et al., 2016), therefore both
functional and taxonomic diversity increased during spring,
followed by a decrease in summer and then increasing in winter.
Results of previous studies have shown that seasonal congruence
occurs when selection acts predominantly on one trait so that
FIGURE 3 | Seasonal composition and successions of phytoplankton in Lake Erhai from January 2012 to December 2014 according to taxonomic and three
functional groupings. (A) Cell density and composition, (B) alpha diversity (Shannon-Wiener diversity) indices, (C) beta diversity (Bray-Curtis dissimilarity) indices, (D)
pair plot for linear fitting of alpha and (E) beta diversity. The order from left to right is genus, functional groups (FG), morpho-FG (MFG), and morphology-based FG
(MBFG). The cell density values are presented as the mean of 15 sites for each month. Alpha and beta diversity values are presented as the mean ± standard
deviation (SD) among the 15 sites for each month. To detect the seasonality of alpha and beta diversity indices, a locally weighted scatter smoothing function
(Cleveland, 1981) was used to fit a smooth curve (span = 0.75) using month as the predictor variable. The numbers in the lower left columns in (d) and (e) are
correlation coefficients (R2) (p < 0.05).
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increase or decrease of species characterized by this trait will result
in increase or decrease of both functional and taxonomic diversity
(Weithoff et al., 2015). In this study, due to increases in light
intensity, some groups, such as Bacillariophyta would be
eliminated through competition because they could not adapt to
strong light (Reynolds et al., 2002). However, other genera, such as
Microcystis and Psephonema which are better adapted to the
changed environment would outcompete (Reynolds et al., 2002).
This seasonal congruence in phytoplankton species composition
illustrate the changes in functional diversity in Lake Erhai and this
algal succession is a distinguishable yearly cycle in many natural
aquatic ecosystems (Lund, 1965; Reynolds, 2006). These results
suggest that functional diversity may encompass the overall
variability of taxonomic diversity. Interestingly, assemblage
structure in simplified classifications (MBFG and MFG) was
affected by the same environmental variation, further
highlighting the similarity of taxonomic and functional
groupings in this eutrophic highland lake.

During the entire study period, from 2012 to 2014, significant,
positive correlations were observed between taxonomic and
functional diversities. However, the seasonal congruence of
taxonomic and functional diversities was not driven by the
dominant genera, suggesting that the phytoplankton
community consisted of species with similar adaptive strategies
(Reynolds, 1984). Since coexisting species represented FG with
different photosynthetic pigments, it was verified that niche
differentiation in the light spectrum played a role. In eutrophic
environments, adequate supply of nutrients promotes biomass
growth (Agawin et al., 2000; Søndergaard et al., 2017), and the
species interact through mutual shading, and the best light
competitor (Microcystis) is expected to prevail, and results in
blooms. Under the cover ofMicrocystis, conditions for growth of
Psephonema and Mougeotia result in large numbers of those
species. Light is considered especially important for Microcystis
and FG M, X5b and VII (Reynolds et al., 2002; Salmaso and
Padisák, 2007; Padisák et al., 2009; Kruk et al., 2010), which were
most represented in Lake Erhai. Because the three dominant
groups accounted for the majority of cell density (>70%),
interferences of dominant species were excluded. However, the
results were still significantly correlated, which suggested that
responses of phytoplankton communities to the environment
were not based on dominant effects of individual species.
Frontiers in Plant Science | www.frontiersin.org 7
Results of the study presented here revealed diversities of
taxonomic and functional groupings responded in a similar way
to light levels and there is no significant relationship between
diversities and concentrations of nutrients. Results of previous
studies showed that the seasonal pattern of diversity indices of
both taxonomic and functional groupings is dependent on the
environmental factors (Becker et al., 2010; Weithoff et al., 2015).
The fundamental factors that determine algal seasonal diversity
are the physico-chemical characteristics in the water column
such as nutrient concentrations, water temperature and light
(Smith, 1986; Reynolds, 1989; Jensen et al., 1994; Elliott, 2010).
Understanding how environmental variations affect the
biodiversity and succession of phytoplankton is a key
challenge. Results of several studies have shown that
composition and biomass of phytoplankton were shaped by
nutrients in nutrient-poor environments (Alpine and Cloern,
1992; Watson et al., 1997). In oligotrophic environments,
structures of algal communities are driven by strong
competition for nutrients (Tsiola et al., 2016). Limitation by
individual nutrients prevents accumulation of sufficient biomass
of phytoplankton, so shading effects and competition for light are
negligible. In addition, increasing nutrient loads caused changes
in phytoplankton species composition by shifting the species
interactions from competition for nutrients to competition for
light (Burson et al., 2018). In this study, no significant correlation
between nutrient concentrations and phytoplankton community
structure were found over time in Erhai Lake. Instead, water
transparency (SD) and water temperature were strongly related
to seasonal succession of phytoplankton community, especially
SD. Therefore, nutrient concentrations are not a constraint for
phytoplankton in eutrophic Lake Erhai, with means of
concentrations of 0.039 mg NH4-N/L, 0.006 mg DIP/L,
respectively (Wen and Ma, 2011). This result is consistent with
the Liebig Law of the Minimum, which states that only one
factor, such as a nutrient, can limit a biological process, such as
primary productivity of phytoplankton (Liebig, 1840). For
instance, in natural systems, concentrations of phosphorus (P)
are often limiting (Krom et al., 1991). However, after cultural
eutrophication during which P is added due to human activities,
such as agriculture or urbanization, once the minimum is
exceeded, P is no longer limiting to primary production.
Relative proportions of nitrogen (N) and P needed to support
TABLE 2 | Generalized linear mixed models (GLMMs) results for environmental factors and diversity indices of taxonomic and three functional groupings, including
functional groups (FG), morpho-FG (MFG), and morphology-based FG (MBFG).

Group (Intercept) Ammonium Phosphorus Secchi depth Water temperature rvalue

Alpha diversity (Shannon-Wiener index) Genus 0.851 0.65 0.652 0.029 0.226 0.244
FG 0.668 0.723 0.7 0.01 0.115 0.322
MFG 0.847 0.563 0.473 0.082 0.311 0.15
MBFG 0.409 0.615 0.771 0.1 0.251 0.122

Beta diversity (Bray-Curtis index) Genus 0.173 0.161 0.098 0.002 0.053 0.357
FG 0.156 0.192 0.112 0.003 0.047 0.346
MFG 0.183 0.121 0.073 0.003 0.051 0.334
MBFG 0.246 0.143 0.131 0.007 0.053 0.255
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primary productivity is defined by the Redfield number, which is
the ratio of N to P in cells (N/P ratio of 16) (Redfield, 1958). In
North American lakes, succession of phytoplankton was
determined not by predation by zooplankton or temperature
or depletion of nutrients but rather sensitivities of species of
phytoplankton to ultraviolet (UV) light (Gala and Giesy, 1991).
Results of previous studies also showed that seasonal variation in
phytoplankton community composition was affected by light
(SD, water transparency and UV radiation) in eutrophic lakes
(Sommaruga and Augustin, 2006; Wondie et al., 2007). In this
study, light conditions, but not nutrients, is also the key driver of
algal taxonomic and functional diversities in eutrophic Lake
Erhai. Further studies might be required to explore how solar
UV radiation and visible light affect the succession of
phytoplankton in different lakes, especially in highland lakes
with high intensities of light.

Since the MBFG approach is easier and less resource intensive
than genus level and other functional classifications, it is suitable
for routine biomonitoring, long-term studies, or to process large
amounts of samples when comparing systems. Nonetheless, the
genus-level taxonomic approach, FG and MFG provided the
detailed information and multiple insights on assemblage
dynamics of phytoplankton in this study, and using multiple
classifications at the same time can provide the most detailed
variation for further analysis.
CONCLUSIONS

In Lake Erhai, a eutrophic highland lake in China, significant
positive relationships were observed between taxonomic diversity
and functional diversity of phytoplankton, with a strong
synchronous seasonal pattern of succession. Taxonomic and
functional diversity can complement each other and provide a
more comprehensive explanation of the driving effect of
environmental changes on phytoplankton communities from
biological and functional perspectives. Results of this study
demonstrated that functional groupings can be used as simple
avenues for studying temporal patterns of phytoplankton
community assembly and the environmental drivers in
eutrophic lake. Furthermore, the seasonal congruence was not
driven by the dominated genera, Microcystis, Psephonema, and
Mougeotia, which suggested that the algal community consisted of
species with similar ecological strategies. Both functional diversity
and taxonomic diversity were significantly, positively correlated
with light conditions, but not concentrations of nutrients.
Conclusively, light is the key driver of seasonal congruence of
phytoplankton taxonomic and functional diversity in this
Frontiers in Plant Science | www.frontiersin.org 8
eutrophic highland lake. Our results also showed that alternative
functional groupings of phytoplankton can be reliable predictors
of environment-biological relationships.
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