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ABSTRACT: Environmental pollutants are known as disruptors of gut
microbiota. However, it remains unexplored whether the dysbiosis of gut
microbiota by pollutants is durable and transgenerational in teleost. Therefore,
this study exposed eggs of marine medaka to environmentally realistic
concentrations (0, 1.0, 2.9, or 9.5 μg/L) of perfluorobutanesulfonate (PFBS), a
persistent organic pollutant of emerging concern, until sexual maturity. A
proportion of F0 adults was dissected after exposure (F0-exposed). Remaining
fish were depurated in clean seawater (F0-depurated). F1 offspring were also
cultured in clean seawater for a complete life-cycle. Substantial amounts of
PFBS were accumulated in F0-exposed intestines, while F1 intestines
contained no PFBS. Significant alterations were observed in physiological
activities of F0-exposed and F1 medaka. The gut microbial community in F0-
exposed, F0-depurated, and F1 medaka were restructured in a concentration-
dependent manner by PFBS exposure. Dysbiosis of gut microbiota caused by
PFBS exposure was durable in parents and persisted in the offspring. Significant positive correlations were constructed for the
genus Cetobacterium with host intestinal epithelial permeability and production of endotoxin lipopolysaccharides. Overall, this
study provided the first insight into durable and transgenerational dysbiosis of gut microbiota and intestinal health by PFBS,
highlighting the particular susceptibility of gut to xenobiotic stresses.

■ INTRODUCTION

Environmental pollutants are increasingly documented to
disrupt the dynamics of gut microbiota in animals.1−3 Albeit
with varying physicochemical properties, diverse pollutants,
including persistent organic pollutants, antibiotics, and
pesticides, can potentially alter compositions and metabolic
activities of intestinal microbiota. Gut microbes are closely
involved with physiological regulation of hosts, including
metabolism of nutrients, immune function, and neuro-
behavior.4−8 Changes in composition and metabolism of gut
microbiota by environmental pollutants can eventually
compromise the health of host organisms, by inducing the
onset of various diseases, including obesity and diabetes.
However, although long-lasting perturbation of gut microbiota
by chemicals is observed in mouse and human,9−12 it is still
unknown whether dysbiosis of gut microbiota by environ-
mental pollutants is recoverable in teleost after the exposure
has ceased. Furthermore, whether parental exposure to

pollutants will transgenerationally dysregulate gut microbiota
of offspring also needs to be elucidated.
Perfluorobutanesulfonate (PFBS) is a persistent organic

pollutant of emerging concern in aquatic environments.
Following worldwide phasing-out of perfluorooctanesulfonate
(PFOS),13,14 PFBS has been increasingly used as a
replacement in diverse industrial and commercial products.15

Consequently, it has been ubiquitously detected in environ-
mental abiotic and biotic matrices. Concentrations of PFBS as
great as 1.9 μg/L have recently been reported in leachate of a
landfill site at Singapore.16 In Tangxun Lake at Hubei Province
of China, discharges of municipal and industrial wastewater
result in point-source pollution of PFBS, where concentrations
up to 8.0 μg/L have been observed.17 Increasing accumulation
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of PFBS has also been observed in cetacean samples from 2002
to 2014, causing a shift in bioaccumulation pattern from PFOS
to PFBS.18 Although PFBS has been considered less
accumulative and less toxic than PFOS due to shorter chain
length,19−21 potent and multigenerational disruption of the
thyroid endocrine system by PFBS in marine medaka has been
recently reported after parental life-cycle exposure to environ-
mentally realistic concentrations.22 PFBS is also found to
accumulate in the eyes and impair the visual function of
medaka fish.23 Therefore, hazards of PFBS to aquatic wildlife
cannot be neglected, which necessitates more toxicological
studies for a comprehensive risk assessment.
In order to clarify whether environmental pollutants will

cause persistent or even transgenerational dysbiosis of gut
microbiomes, the present study exposed eggs of marine
medaka (Oryzias melastigma) to various waterborne concen-
trations of PFBS (0, 1.0, 2.9, or 9.5 μg/L) for an entire life-
cycle. A portion of the F0 fish was dissected immediately after
exposure, while another portion of F0 medaka was transferred
to clean seawater to depurate for another two months. F1
offspring were also cultured in PFBS-free seawater until sexual
maturity. Intestines from F0-exposed, F0-depurated, and F1
adults were all dissected. Concentrations of PFBS in F0 and F1
intestines were quantified. Potential changes in physiological
activities of medaka were also monitored by an array of
sensitive biomarkers. Compositions of intestinal microbial
communities were profiled and intercompared among F0-
exposed, F0-depurated, and F1 adults to distinguish the
durable and transgenerational effects of PFBS.

■ MATERIALS AND METHODS
Chemicals. PFBS was purchased from Tokyo Chemical

Industry (Tokyo, Japan; purity >98.0%). Stock solutions of
PFBS were prepared using dimethyl sulfoxide of high-
performance liquid chromatography-grade (DMSO; Sigma-
Aldrich Corp., St. Louis, MO, USA). Other chemicals used in
the present study were of analytical grade.
Fish Maintenance and Life-Cycle Exposure. Culture

and exposure of marine medaka O. melastigma were conducted
following a previously described protocol,22 in a semistatic
system containing charcoal-filtered, fully aerated artificial
seawater (salinity: 25‰) at 24 ± 0.5 °C with a photoperiod
of 14-h light:10-h dark. Marine medaka eggs were nominally
exposed to environmentally realistic concentrations of PFBS
(0, 1.0, 3.0, or 10.0 μg/L). Actual waterborne concentrations
of PFBS were previously measured to be 0, 1.0, 2.9, and 9.5
μg/L, respectively.22 Each tank equivalently contained very low
concentration of DMSO (<0.001% v/v). Approximately, 150
eggs were included in 100 mL of exposure medium per glass
beaker. Each exposure group had three replicates (n = 3).
Juvenile medaka were transferred to 4-L media at one-month
old and later to 20-L media at two-month old. Exposure media
were renewed daily to maintain constant concentrations of
PFBS. F0 fish were exposed until sexual maturity when males
and females can be easily discerned by secondary sexual
characters after males develop larger and parallelogram-shaped
anal fins. During the last 1 week of exposure, F0 adults were
paired to spawn F1 eggs, which were collected and cultured for
a life-cycle in clean seawater without further exposure to PFBS
(approximately 50 eggs per dish and three replicates per
group). A portion of the F0 adults was dissected right after
exposure to obtain the intestine, liver, and blood, which were
defined as F0-exposed samples. The remaining F0 medaka

were depurated in PFBS-free seawater for another two months.
After depuration, all F0 medaka were dissected and intestines
were collected, which were defined as F0-depurated samples.
Sexually mature F1 adults were also dissected to collect the
intestine, liver, and blood. All the tissues from F0-exposed, F0-
depurated, and F1 medaka were snap-frozen in liquid nitrogen
and then stored at −80 °C for further analytic and molecular
analyses.

Quantification of PFBS in Intestines. Intestines from
five individual fish of the same sex were pooled as a replicate (n
= 3). PFBS in intestine was quantified according to previous
methods.24 In brief, PFBS was extracted by sonication and
cleaned up using ENVI-Carb graphitized carbon cartridges
(250 mg; Supelco, Bellefonte, PA). After elution and
concentration in 0.5 mL of methanol, PFBS extracts were
analyzed and quantified on an Agilent 1290 Infinity ultra-
performance liquid chromatograph (Agilent, Palo Alto, CA,
USA) coupled with a 5500 QTRAP mass spectrometer (AB
Sciex, Foster City, CA, USA). The spike recovery of PFBS in
nonexposed fish was at 93 ± 7%.

Monitoring of Host Health. A battery of sensitive
biomarkers was measured to indicate the physiological
disturbances in intestine, liver, and blood of hosts, including
interleukin 1β (IL1β) for inflammatory response; serotonin for
neural signaling; tight junction protein 2 (TJP2) for intestine
epithelial permeability; reactive oxygen species (ROS), super-
oxide dismutase (SOD) and catalase (CAT) for oxidative
damage; triglyceride (TG) and free fatty acid (FFA) for lipid
metabolism; and lipopolysaccharides (LPS) for endotoxin
production. Detailed procedures have been previously
described.25

16S rRNA Amplicon Sequencing. Intestines of five
individuals of the same sex were pooled as a replicate. There
were three replicates for each exposure group (n = 3).
Genomic DNA of whole intestines was extracted using a
DNeasy Blood & Tissue Kit based on the manufacturer’s
instructions (Qiagen, Hilden, Germany). The 16S rRNA gene
was amplified using the primer pair 515 F (5′-GTGCCA-
GCMGCCGCGGTAA-3′) and 909R (5′- CCCCGYCAATT-
CMTTTRAGT-3′), which target V4 V5 hypervariable regions.
The amplicons were sequenced on an Illumina MiSeq PE250
platform (Illumina, San Diego, CA, USA). Raw reads were
filtered, clustered to Operational Taxonomic Units (OTUs) of
97% similarity following the UPARSE pipeline, and phyloge-
netically annotated using the RDP classifier against the
Greengenes database to obtain the microbial abundances at
each taxonomic level (e.g., phylum and genus).26

Statistical Analyses. Values are presented as mean ± SEM
of three replicates. Data were checked for normal distribution
and homogeneous variance using Shapiro-Wilk and Levene’s
tests, respectively. One-way analysis of variance (ANOVA) was
employed to differentiate significant difference between
exposure groups and the control group, followed by the post
hoc LSD test. If assumptions of normality and homogeneity
could not be met after log-transformation, the nonparametric
Kruskal−Wallis ANOVA test with Dunn-Bonferroni posthoc
comparison was used to determine significances of differences
among groups. Statistical analyses were performed using SPSS
version 22.0 software (IBM SPSS Statistics, IBM Corporation,
Armonk, New York). A P value <0.05 was selected as the
criterion for significant difference.
Unweighted pair group method with arithmetic mean

(UPGMA) clustering analysis was conducted based on
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unweighted UniFrac distances using QIIME 1.9.0 software.
Principal component analysis (PCA) was conducted based on
the variance−covariance matrix of genera abundances (>1%)
using PAST software. Pearson correlation analysis and linear
regression analysis among toxicological indices were also
evaluated using SPSS version 22.0 software (IBM SPSS
Statistics).

■ RESULTS AND DISCUSSION

Concentrations of PFBS in F0 and F1 Intestines. In
intestines of F0-exposed male medaka, 7.3, 44.2, and 191.5 ng
PFBS/g dry mass were observed after exposure to 1.0, 2.9, or
9.5 μg/L, respectively (Figure 1A). Intestines of F0-exposed
females contained 6.8, 37.0, and 124.3 ng/g dry mass of PFBS
after a life-cycle exposure to 1.0, 2.9, or 9.5 μg/L, respectively

(Figure 1A). No PFBS was observed in intestines of control F0
medaka that were not exposed to PFBS. In intestines of F1
offspring, there was also no PFBS after culturing in PFBS-free
seawater until sexual maturity, which indicated that PFBS
transferred from F0 to F1 offspring was eliminated during the
period of depuration.

Health of F0 and F1 Generations.Mortality of F0 during
entire life-cycle was not significantly affected by PFBS
waterborne exposure. However, parental exposure to PFBS
(2.9 and 9.5 μg/L) increased the mortality rate of F1
generation, which were reared in clean seawater until sexual
maturity (Figure S1A). Within the last week of exposure, egg
production of F0 adult was significantly decreased at exposure
groups relative to control fish (Figure S1B). In F0-exposed
male or female medaka, both the values of condition factor (K

Figure 1. (A) Significant concentrations of PFBS observed in intestines of F0-exposed medaka and (B) a heatmap demonstrating substantial
disturbances in the physiological conditions within gut, liver, and blood of F0-exposed and F1 medaka after a life-cycle exposure to various
environmentally realistic concentrations of PFBS (0, 1.0, 2.9, or 9.5 μg/L). Values are presented as mean ± SEM of three replicates. In the
heatmap, red represents up-regulation, while green represents down-regulation. Color intensity is proportional to extent of change. Significant
differences are indicated by *P < 0.05 between exposure groups and the control group. Abbreviations: interleukin 1β, IL1β; tight junction protein 2,
TJP2; reactive oxygen species, ROS; superoxide dismutase, SOD; catalase, CAT; triglyceride, TG; free fatty acid, FFA; lipopolysaccharides, LPS.
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factor) and hepatosomatic index (HSI) were significantly

decreased after direct exposure to PFBS (Figure S1), possibly

indicating excessive energetic expenditure in a suboptimal

environment.27 In contrast, recovery of F1 offspring exhibited

increases in both K factor and HSI values after parental

exposure to PFBS (Figure S1). Physiological activities in F0-

exposed and F1 adults were also reflected by the use of

sensitive biomarkers in three tissues, including intestine, liver,

Figure 2. Unweighted UniFrac tree and heatmap profile of genera compositions (relative abundances >1%) in F0-exposed (M6/F6), F0-depurated
(M8/F8), and F1 intestines (MF1/FF1) after a life-cycle exposure to various environmentally realistic concentrations of PFBS (nominal 0, 1, 3, or
10 μg/L). Representative clusters are highlighted in blue circles. Each group includes three replicates (each replicate containing five intestines). In
the heatmap, red represents up-regulation, and intensity is proportional to the extent of changes. Abbreviations: M, male; F, female.
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and blood. Although F1 offspring were cultured in PFBS-free
seawater, significant alterations in the health of intestines were
observed in both the F0 and F1 generations (Figure 1B),
including inflammation (IL1β), neural signaling (serotonin),
intestinal epithelial integrity (TJP2), and oxidative stress
(ROS). Based on the measurements of physiological markers,
effects of PFBS on livers of both F0 and F1 fish appear to be
less severe than those on the intestines (Figure 1B), which is
consistent with previous observations.28 In blood of F0-
exposed male medaka, greater toxicity was caused by exposure
to PFBS, as indicated by increased levels of LPS (Figure 1B).
LPS is produced by microbes in the gut29 and can act as an
endotoxin to potently stimulate the secretion of pro-
inflammatory cytokines in host organisms.30 Therefore,
increased production of toxic LPS by PFBS exposure will
result in the induction of inflammatory responses, which is
here supported by concurrent greater amounts of LPS and
IL1β at 9.5 μg/L in F0-exposed males (Figure 1B). Decreased
concentrations of TG and FFA were also observed in blood of
F0-exposed females (Figure 1B), which indicates that
metabolism of lipids has been impaired. Furthermore, Pearson
correlation analysis showed that TJP2 expression was
significantly positively associated with SOD activity in
intestines (R = 0.7; P < 0.001). This tight relationship
between intestinal TJP2 and SOD is also supported by
previous toxicological studies about gut microbiota.25,26,28

Additionally, SOD activity showed significantly positive
correlation with ROS levels in both intestine (R = 0.8; P <
0.001) and liver (R = 0.7; P < 0.001), to remove excessive free
radicals.
Some physiological changes did not have a dose-dependent

response, which may be explained by the differential
responsiveness or sensitivities of certain tissues and toxic
indices toward the challenges of pollutants at various
concentrations.31,32 Additionally, a sex-specific response to
PFBS exposure was observed in male and female medaka of F0
or F1 generation (Figure 1B). The inherent distinction of
males and females in levels of sex hormones would impart
different detoxifying capacity through the crosstalk between ER
and AhR signals, which presumably accounts for the sex-
specificity of toxic responses.22,32

Durable and Transgenerational Dysbiosis of the
Intestinal Microbiome. Intercomparisons among commensal
microbial communities in guts of F0-exposed, F0-depurated,
and F1 medaka allowed the differentiation of durable and
transgenerational effects of PFBS on gut microbiota.
Rarefaction curves verified that current sequencing had a
good representation of microbial diversity in the guts (Figure
S2). PFBS exposure decreased the observed species and
diversity of gut microbes in F0-depurated male medaka after
life-cycle exposure to 2.9 and 9.5 μg/L, while F1 male or
female intestines contained increased microbial species and
diversity (Table S1). At the phylum level, exposure to PFBS
varied the composition of microbial communities in intestines
of both F0 (exposed or depurated) and F1 individuals (Figure
S3). Persistent and transgenerational dysbiosis of gut micro-
biomes by PFBS was also manifested at the level of genera
(Figure 2). Profiles of relative proportions of individual genera
varied among F0-exposed, F0-depurated, and F1 intestines. F0-
exposed intestines were clustered with F0-depurated replicates
(e.g., 10-1M6 and 10-1M8) and F1-unexposed replicates (e.g.,
1-3F6, 1-3F8, and 1-3FF1) based on the unweighted UniFrac
method (Figure 2), indicating the incomplete recovery and

transgenerational dysbiosis of gut microbiota by PFBS
exposure. PCA plots of microbial communities in intestines
of F0-exposed and F0-depurated medaka exhibited similar
patterns (Figure 3A and 3B, respectively). In a concentration-
dependent manner, PFBS life-cycle exposure caused deviation
of microbiota in exposed intestines relative to that in

Figure 3. Principal component analysis (PCA) based on relative
abundances of genera (>1%) in F0-exposed (A), F0-depurated (B),
and F1 intestines (C) after a life-cycle exposure to various
environmentally realistic concentrations of PFBS (0, 1.0, 2.9, or 9.5
μg/L). There are three replicates per group (each replicate containing
five intestines).
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unexposed, control intestines. After depuration in clean
seawater for two months after PFBS exposure, profiles of
microbial communities in previously exposed guts still did not
completely recover to the conditions of unexposed controls.
This result demonstrated that dysbiosis of microbiota in the
gut by exposure to PFBS was durable and long-lasting.
Compared to F0 parents, the PCA plot of microbiome in F1
guts after parental exposure to PFBS was significantly different

from that of the control group (Figure 3C). Although F1
offspring were cultured in PFBS-free seawater for an entire life-
cycle, transgenerational dysregulation of gut microbiota and
intestinal health was still notable. Because intestines of F1
adults did not contain PFBS, dysbiosis of microbiota in their
guts could result from the indirect influences from host
anomalies. Furthermore, variation in physiological status
between male and female medaka may influence gut microbial

Figure 4. Differential changes in relative abundances of representative genera and their correlations with biomarkers of physiological status in
intestines from F0-exposed and F1 medaka after a life-cycle exposure to various environmentally realistic concentrations of PFBS (0, 1.0, 2.9, or 9.5
μg/L). (A) Abundances of Cetobacterium in F0-exposed intestines; (B) correlation between Cetobacterium abundances and TJP2 expressions in F0-
exposed intestines; (C) abundances of Vibrio in intestines of F1; (D) abundances of Planctomyces in intestines of F1; (E) abundances of Lutimonas
in intestines of F1; (F) abundances of Cetobacterium in intestines of F1; (G) correlations between abundances of Cetobacterium and concentrations
of LPS in intestines of F1; (H) correlation between abundances of Vibrio and body masses of F1. Values are presented as mean ± SEM of three
replicates. Significant differences are indicated by *P < 0.05, **P < 0.01, and ***P < 0.001 between exposure groups and the control group.
Abbreviations: tight junction protein 2, TJP2; lipopolysaccharides, LPS.
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composition differentially. In F1 male adults, correlation
analysis showed that intestinal expressions of IL1β (R =
−0.5; P = 0.04) and TJP2 (R = −0.5; P = 0.03) were negatively
associated with the abundance of Vibrio genus. Serotonin levels
in F1 female intestines were significantly and positively
correlated with Lutimonas abundance (R = 0.9; P < 0.001).
Correlation between Intestinal Microbes and Host

Health. Changes in the abundances of major contributing
genera to PCA variation were listed herein. Correlation of
bacterial genera with host health was also constructed. In
intestines of F0-exposed males, abundances of Cetobacterium
were increased after exposure to 2.9 μg/L PFBS relative to
controls but were significantly decreased after exposure to 9.5
μg/L PFBS (Figure 4A). Cetobacterium genus was significantly
and positively correlated with host TJP2 expressions, a
biomarker of epithelial barrier integrity (Figure 4B). Intestines
of F1 females exhibited significantly lesser abundances of
Vibrio after exposure of F0 parents to 9.5 μg/L PFBS (Figure
4C). However, the genera Planctomyces and Lutimonas had
increased abundances in F1 intestines after parental exposure
to 9.5 μg/L PFBS (Figure 4D and 4E, respectively).
Significantly negative correlations between abundances of
Vibrio and Planctomyces (R = −0.8; P < 0.001) or Lutimonas
(R = −0.8; P < 0.001) were observed. These results indicated
that PFBS parental exposure induced niche transition of
microbes in the gut ecosystem. Decreased relative abundances
of Cetobacterium were observed in intestines of F1 males
derived from parents exposed to 1.0 μg/L PFBS (Figure 4F).
Furthermore, the abundances of the genus Cetobacterium were
significantly and positively correlated with production of toxic
LPS in F1 blood (Figure 4G). In intestines of teleosts,
Cetobacterium bacteria can efficiently produce vitamin B12

upon the demand of host.33 Therefore, fluctuations in
abundances of Cetobacterium might affect the supply of vitamin
B12 in the intestine, which could result in deficiencies and
mental disorders.34 The positive correlations of Cetobacterium
with both TJP2 and LPS levels probably indicate the pros and
cons of certain bacterium in the intestines. A significant
positive correlation was also observed between abundances of
Vibrio and body weight of F1 individuals, which is indicative of
an apical adverse effect (Figure 4H). Vibrio is the dominant
genus in the gut of the marine medaka. While some species of
Vibrio are pathogenic to human and fish, this genus may also
participate in the normal metabolism and growth of marine
organisms.35
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Figure S1. Changes in mortality through entire duration (A), egg production within 

the last week of exposure (B), K factor (C and D) and hepatosomatic index (HSI; E 

and F) of male or female, F0-exposed or F1 marine medaka after a life-cycle exposure 

to various concentrations of PFBS (0, 1.0, 2.9 or 9.5 μg/L). K factor = mass (g)/length 

(cm)3 × 100; HSI = liver mass/body mass × 100. Values represent the mean ± SEM of 

three replicates. *P <0.05, **P <0.01 and ***P <0.001 indicate significant difference 
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between exposure groups and the corresponding control group.



S4

0 5000 10000 15000 20000 25000
0

200

400

600

800

1000

1200
O

bs
er

ve
d 

sp
ec

ie
s

Sequences per sample

Figure S2. Rarefaction curves based on numbers of sequences using 16S rRNA 

amplicon sequencing and observed species to demonstrate diversity of the microbial 

community of the intestine.
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Figure S3. Alterations in relative abundances (%) of bacterial phyla in F0-exposed, 

F0-depurated and F1 intestines after a life-cycle exposure to various environmentally 

realistic concentrations of PFBS (0, 1.0, 2.9 and 9.5 μg/L). Values are represented as 

mean of three replicates (each replicate containing five intestines).
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Table S1. Alpha diversity in intestines from F0-exposed, F0-depurated and F1 
medaka after parental exposure to environmentally realistic concentrations of PFBS (0, 
1.0, 2.9 or 9.5 µg/L).a

Male Observed
species Shannon b Simpson b PD whole 

tree b Chao1 c
Good’s

Coverage% 
d

0 1018.3±80.5 6.2±0.2 1.0±0.0 62.8±3.5 2167.7±292.6 97.8±0.0
1.0 806.3±9.7 5.6±0.3 0.9±0.0 50.5±1.1 1506.6±159.9 98.4±0.0
2.9 764.0±89.8 5.4±0.4 0.9±0.0 47.3±3.9 1484.3±274.3 98.3±0.0

F0-exposed

9.5 771.0±158.8 5.3±0.9 0.9±0.1 49.4±11.0 1499.6±393.6 98.4±0.0
0 949.0±83.2 6.1±0.2 1.0±0.0 56.6±3.9 2064.3±274.1 97.9±0.0

1.0 745.7±68.6 5.5±0.1 0.9±0.0 44.9±5.2 1450.1±192.9 98.4±0.0
2.9 700.0±68.4* 5.7±0.2 1.0±0.0 39.5±2.8* 1406.5±265.9 98.5±0.0

F0-depurated

9.5 685.7±87.9* 5.6±0.6 0.9±0.1 42.3±4.5* 1377.7±372.1 98.6±0.0
0 563.0±22.0 3.7±0.2 0.8±0.0 33.9±1.7 937.4±20.6 98.9±0.0

1.0 561.3±24.9 3.7±0.2 0.8±0.0 34.9±1.6 980.7±27.0 98.9±0.0
2.9 620.7±71.4 3.8±0.6 0.8±0.1 37.2±3.7 1142.2±168.0 98.7±0.0

F1

9.5 817.0±148.7* 5.1±0.6* 0.9±0.1 47.8±8.5 1685.9±509.6 98.2±0.0

Female  

0 785.3±60.3 5.7±0.4 1.0±0.0 48.1±2.8 1465.8±109.7 98.4±0.0
1.0 1007.3±130.6 6.0±0.2 1.0±0.0 60.0±6.5 2667.7±711.9 97.5±0.0
2.9 739.0±68.6 5.6±0.3 0.9±0.0 47.2±3.8 1502.0±390.1 98.4±0.0

F0-exposed

9.5 712.0±99.0 4.8±0.8 0.9±0.1 46.2±8.0 1264.9±193.3 98.5±0.0
0 745.3±52.6 5.9±0.3 1.0±0.0 41.1±2.6 1434.3±188.6 98.5±0.0

1.0 919.3±103.2 5.9±0.0 1.0±0.0 51.3±5.0 2326.7±526.0 97.8±0.0
2.9 747.3±103.4 5.8±0.3 1.0±0.0 43.8±7.0 1582.8±441.5 98.4±0.0

F0-depurated

9.5 783.3±95.5 5.0±0.7 0.9±0.1 47.7±7.2 1829.4±405.9 98.1±0.0
0 581.3±47.2 3.6±0.5 0.8±0.0 35.2±3.1 993.4±142.0 98.9±0.0

1.0 889.0±141.6* 5.2±0.8* 0.9±0.1* 52.1±7.4* 2088.8±579.5 97.9±0.0
2.9 585.0±25.2 3.6±0.2 0.8±0.0 34.6±1.1 997.1±31.3 98.8±0.0

F1

9.5 818.7±95.5 5.7±0.3* 0.9±0.0* 50.6±6.9 1880.3±385.1 98.1±0.0

a Values represent the mean ± SEM of three replicates;
b indicative of bacterial community diversity;
c indicative of bacterial community richness;
d indicative of bacterial sequencing coverage;
*P <0.05 indicates significant difference between exposure groups and the control 
group.


