UCLES Thorium-Argon Atlas with the MITLL CCD

Stuart Ryder, AAO

May 21, 2000

With the advent of larger-format array detectors at the AAO (e.g., the MIT/LL 4K×2K CCDs), the process of arc line identification and spectrograph setup has in some ways become more complicated than before, owing to the bewildering number of arc lines and spectral orders captured in one image. Although a variety of arc line atlases are available for the ThAr lamp (e.g., D'Odorico et al. 1987, Bessell and Pettini 1991, Meurer et al. 1991, and Lipman et al. 1993), most of them are out of print, every arc lamp produces slightly different line ratios, and even the line ratios from any given lamp will change with time. This atlas (and its on-line counterpart) is not intended to replace these useful references, but rather to serve as a complement, particularly when using UCLES with the MITLL CCDs.

The data was obtained on 1999 October 22, using the MITLL2 CCD. This detector suffered a catastrophic failure in January 2000, but was re-born as the MITLL2A detector in March 2000, by switching to the opposite readout amplifier. The only significant difference between MITLL2 and MITLL2A images is that they are reversed laterally relative to one another. The detector was binned $\times 2$ in the spatial direction, and 2 settings of the 31.6 grooves mm⁻¹ grating were used: one centred on 3946.0 Å covering 3522-4653 Å (orders 160-123), and the other on 6182.6 Å covering 4824–9386 Å (orders 61–117). Note that the detector was not centred on the peak of any one order, but since the extent of each order recorded in one MITLL CCD image extends way beyond the free spectral range, there is still almost complete wavelength coverage throughout. The exposure time in the blue was 10 seconds, and 2 seconds in the red (which unavoidably results in some extremely saturated lines beyond 7000 Å). The line identification and fitting was carried out using ecidentify within IRAF, relying mainly on the line identifications in Lipman et al. (1993) and the IRAF line list in linelists\$thar.dat. Generally a 4th order fit in x should be sufficient to remove any trend in the residuals with pixel number, and a 5th order fit in y should remove any trend with order number.

A list of the orders identified in each image, together with the wavelength ranges covered by the detector (which is generally much greater than the FSR

1

listed in Appendix A.2 of the UCLES manual), is given in Tables 1 and 2, after which plots are presented with most of the prominent lines marked. The images in Figures 1 and 2 show the raw XMEM display for the MITLL2A detector (MITLL3 images have the same orientation), which has wavelength increasing (order number decreasing) going from left to right, and redder wavelengths at the bottom of each order. Note that this is the **reverse of the Tek CCD orientation**, and when the files are saved in FITS format, they will then be reversed about the x-axis. Thus, *it is not necessary to flip MITLL CCD images prior to reduction* (as is usually done with Tek CCD images) if you wish to have wavelength increasing with pixel number along each order.

References

- Bessell, M. S., & Pettini, M. 1991, UCLES Spectrum of the Thorium-Argon Hollow-Cathode Lamp. I. 79 grooves mm⁻¹ echelle grating and IPCS detector, AAO User Manual 28.1 (Sydney: AAO).
- D'Odorico, S., Ghigo, M., & Ponz, D. 1987, An Atlas of the Thorium-Argon Spectrum for the ESO Echelle Spectrograph in the 3400-9000 Å region, ESO Scientific Report No. 6 (Garching: ESO).
- Lipman, K., Pettini, M., Wall, M., & Walton, N. 1993, UES Spectrum of Thorium-Argon Hollow-Cathode Lamp, ING La Palma Technical Note No. 91 (Cambridge: RGO).
- Meurer, G. R., Pettini, M., & Stathakis, R. A. 1991, UCLES Spectrum of the Thorium-Argon Hollow-Cathode Lamp. II. 31.6 grooves mm⁻¹ echelle grating and Thomson CCD, AAO User Manual 34.1 (Sydney: AAO).

Ordor) range (Å)	Ordor	λ range (λ)
61	$\frac{7 \text{ range (A)}}{0241 0386}$		6268 6365
62	9241 9380	90 01	6200 6207
62	9092-9234	91	6132 6220
03 64	8948-9088	92 03	0132 - 0229
04 65	8672 8809	90	6002 6007
00 66	8073-8808	94 05	5020 6021
67	0042-0074 0715 0575	90	5959-0051 5877 5060
60	0410-0040 0001 0401	90 07	5877-5909 5817 5000
08 60	8291-8421	97	0817-0909 E7E0 E040
09 70	8171-8298	98	0708-0848 5700 5700
70	8055-8180	100	5700-5790
(1	7942-8067	100	5043-5730
72	7832-7954	101	5587-5674
73	7725-7845	102	5532-5619
74	7621-7741	103	5479-5564
75	7519–7636	104	5426 - 5511
76	7421 - 7538	105	5375 - 5460
77	7324 - 7439	106	5324 - 5406
78	7231 - 7343	107	5274 - 5356
79	7139 - 7251	108	5226 - 5308
80	7050 - 7160	109	5178 - 5260
81	6963 - 7073	110	5131 - 5211
82	6879–6986	111	5084 - 5164
83	6796 - 6903	112	5039 - 5119
84	6715 - 6820	113	4995 - 5072
85	6636 - 6741	114	4951 - 5028
86	6559 - 6661	115	4908 - 4985
87	6484 - 6586	116	4866 - 4943
88	6411 - 6511	117	4824 - 4899
89	6339 - 6439		

Table 1: List of order numbers captured by the red wavelength setting, and the respective wavelength ranges shown in the plots.

Figure 1: Raw XMEM display (stretched by a factor of 2 in the x direction) when the grating is set to 6182.6 Å. The leftmost order which does not run off the edge of this image is order 117 the rightmost complete order is 61. The most heavily saturated line is at 8115 Å in order 70.

Order	λ range (Å)	Order	λ range (Å)
123	4581 - 4653	142	3969 - 4031
124	4544 - 4616	143	3941 - 4003
125	4508 - 4578	144	3914 - 3976
126	4472 - 4542	145	3887 - 3949
127	4437 - 4507	146	3861 - 3921
128	4402 - 4472	147	3834 - 3894
129	4368 - 4438	148	3808 - 3868
130	4335 - 4402	149	3783 - 3843
131	4302 - 4369	150	3758 - 3818
132	4269 - 4336	151	3733 - 3793
133	4237 - 4304	152	3708 - 3768
134	4206 - 4273	153	3684 - 3741
135	4175 - 4240	154	3660 - 3717
136	4144 - 4209	155	3636 - 3693
137	4114 - 4179	156	3613 - 3670
138	4084 - 4149	157	3590 - 3647
139	4055 - 4120	158	3567 - 3624
140	4026 - 4088	159	3544 - 3599
141	3997 - 4059	160	3522 - 3577

Table 2: List of order numbers captured by the blue wavelength setting, and the respective wavelength ranges shown in the plots.

Figure 2: Raw XMEM display (stretched by a factor of 2 in the x direction) when the grating is set to 3946.0 Å. The leftmost order which does not run off the edge of this image is order 160; the rightmost complete order is 123.

