

1 of 11 13/04/06 08:47 AM

Software for inhomogenous ensemble photometry
Michael Richmond

Table of contents

Introduction
The input dataset
Creating the ensemble with multipht
Finding the optimal photometric solution with solvepht
A typical example of ensemble photometry

Introduction

Astronomers often take a series of images of the same field of stars when studying a variable star. What is the
best way to measure the change in brightness of the variable object? The simplest method is to compare the
brightness of the variable to that of a single reference star. However, if that reference star turns out to be
variable itself, then its changes in brightness will contaminate the measurements of the target star. It would be
better to use a number of stars in the field as references; the more stars, the better. In many cases, images
taken at different times are not perfectly aligned, causing some stars to fall off the edges and appear only in a
subset of the entire dataset. Is there any way to include all these stars in the analysis, even those which do not
appear in all images?

Yes. The technique called inhomogeneous ensemble photometry uses a large set of stars (the "ensemble")
to create a photometric reference level. It includes as many measurements as possible, even those from stars
which don’t appear in all frames (hence "inhomogenous"). A very good reference for this technique is

CCD ensemble photometry on an inhomogeneous set of exposures by R. Kent Honeycutt, which
appears in Publications of the Astronomical Society of the Pacific vol 104, page 435 (1992)

I have written software to implement this approach to photometry of a number of stars from a number of
images. There are two pieces:

multipht which re-arranges the data into a standard format and allows the user to discard some portions
solvepht which runs the chosen data through a least-squares analysis to find the optimal photometric
solution

I will describe first some requirements on the input data, and then show how to run these two program and
interpret the results.

The input dataset

The input data is assumed to come from a set of N images. There must be a single ASCII text file per image
which must include at least four columns of data for each star:

position in X direction (or row, or RA, etc.)
position in Y direction (or col, or Dec, etc.)
magnitude
estimated uncertainty in magnitude

Common image reduction programs such as DAOPHOT or SExtractor will produce exactly this sort of data.
If you don’t have values for estimated uncertainty in magnitude for each measurement, you can create a
column with the same positive value (say, 0.001) for each star. This will give each star the same weight in the
ensemble solution.

2 of 11 13/04/06 08:47 AM

Any comment or header lines in the input files must begin with a pound sign character (#) in column 0, like
this:

Photometry of image ’M57.fts’
taken on 2004-Oct-12 02:23:05 UT
exposure time 30 seconds, R-band filter
xc yc mag magerr
 50.1 201.2 12.34 0.02
 127.8 33.9 12.85 0.04

By default, this package will give integer index values to each image to serve as "time" values: the first image
will be "time" 0, the next "time" 1, the next "time" 2, and so forth. If you wish to attach a real time value,
such as JD, to each image, create a column in each file for it. the "time" values ought to be identical for all
measurements in the file, like this:

An example showing a column for "time" value of the image
ID Julian Data row col mag magerr
#
 0 2450000.00000 13.48 16.43 10.0000 0.0500
 1 2450000.00000 18.48 36.43 10.0500 0.0500
 2 2450000.00000 23.48 56.43 10.1000 0.0500

Creating the ensemble with multipht

The multipht program takes as input a set of data files, each of which has measurements of all the objects in
one image. It produces as output a single, large ASCII text file with all the measurements, re-arranged so that
all measurments of a single star are grouped together.

The usage is:

multipht [debug] [print] x= y= mag= err= [jd=] [auto] [list=] [outfile=]
 [template=] [matchrad=] [quiet]
 [star_cut=] [image_cut=] file.pht ...

where options in brackets are optional. They are

debug
print out a great deal of diagnostic messages as the program executes

print
print messages to the screen, stopping every 20 or so lines and prompting the user to continue

x=
zero-indexed number of the column holding the position of each measurement in the X direction; thus,
the first column in each line is number zero, the next is number 1, and so forth

y=
zero-indexed number of the column holding the position of each measurement in the Y direction

mag=
zero-indexed number of the column holding the magnitude values

err=
zero-indexed number of the column holding the estimated uncertainty in magnitude values

jd=
zero-indexed number of the column holding the "time" values. The values must be integers or
floating-point numbers, not strings like "2004-Oct-18-12:54 UT". If no "jd=" argument appears, images
will be assigned "time" values of 0, 1, 2, etc.

auto

3 of 11 13/04/06 08:47 AM

if given, the program decides cutoff values for stars and images to include in the ensemble. If not
given, the user chooses cutoff values interactively.

list=
the name of an ASCII text file which in turn contains the names of other files with the input data.
Those names must appear one per line, like so:

 image23a.dat
 image23b.dat
 image39.dat
 image43.dat

outfile=
the name of a file into which to write the re-arranged data. If not given, output is written to stdout.

template=
the name of the input file which will be used as a template for positional matches. If not given, the
image with the largest number of stars is used as the template.

matchrad=
the matching radius, in units of the input X and Y positions. If not given, the default value is given by
DEF_RADIUS in "multipht.h" (currently 5.0)

quiet
do not print out a list showing the number of stars in each field which match those in the template
image

star_cut=
require that stars appear in a certain number of images in order to be included in the ensemble. If the
given value is an integer (star_cut=12), then that is the minimum number of image in which a star
must appear. If the given value is a fraction (star_cut=0.5), then a star must appear in the given
fraction of the total number of images. This number is used only if the auto option is provided. The
default is given by the STAR_CUT #define in "multipht.h" (currently 0.25).

image_cut=
require that an image contains at least a certain number of stars in order to be included in the ensemble.
If the given value is an integer (image_cut=12), then that is the minimum number of stars which an
image must contain. If the given value is a fraction (image_cut=0.5), then an image must contain the
given fraction of the number of stars in the image with the most star; that is, if the image with the most
stars has 200 stars, and image_cut=0.5, then any image with at least 100 stars will be included in the
ensemble. This number is used only if the auto option is provided. The default is given by the
IMAGE_CUT #define in "multipht.h" (currently 0.25).

file.pht
all other arguments are taken to be the names of input data files

After reading input from each file, the program attempts to match detections of stars in different images. It
assumes that all images have the same plate scale and orientation, differing only in a possible translation.
First, the brightest MAXMATCH (defined in multipht.h) stars in each image are collected for matching
purposes; all fainter stars are ignored. The matching algorithm picks one image as the "template". Stellar
positions in all other images are compared to those in the template, one at a time. A brute-force algorithm
considers all possible shifts which bring a star in the current image into registration with one in the template;
for each possible shift, the positions of other stars are checked to see if they are within matchrad units of a
star in the template. The shift which produces the largest number of matches between each image and the
template is retained, and that shift is applied to all stars in the image. If a star matches more than one partner
in the template image, it is assigned to the closest partner.

After the matching stage has finished, the program prints to stdout a list of the shifts required to bring each
image into register with the template, like this:

4 of 11 13/04/06 08:47 AM

lists QQ_input.000 QQ_input.001 dr = 0.96000 dc = -1.20000 10 of 10
lists QQ_input.000 QQ_input.002 dr = 1.61000 dc = 3.40000 10 of 10
lists QQ_input.000 QQ_input.003 dr = -0.56000 dc = 1.72000 10 of 10
lists QQ_input.000 QQ_input.004 dr = -1.75000 dc = -1.68000 10 of 10

The second column is the name of the template image ("QQ_input.000" in this example). The third column
contains the name of the image being matched, the sixth and ninth columns the shifts required to bring the
image into register. The final columns show how many of the stars in each image matched a partner in the
template.

The next step involves choosing the stars and images to include in the ensemble. By default, the user must
make decisions interactively. The program will display a histogram of the number of stars per image:

List of #stars, #images with that many stars
 0 0
 1 0
 2 0
 3 0
 4 1
 5 0
 6 3
 7 5
 8 9
 9 8
 10 10
 11 3
 12 1
 13 0
 14 0
 15 0
 16 0
 17 0
 18 0
 19 0
Enter cutoff for number of stars an image must have:

In this example, there is one image with 4 stars, three images with 6 stars, etc., up to a single image with 12
stars. The program asks the user to choose the cutoff for the number of stars an image must contain in order
to be included in the solution.

Next, the program displays a similar histogram of the number of images in which each star appears:

List of #images, #stars that appear in that many images
 0 0
 1 5
 2 0
 3 2
 4 0
 5 0
 6 3
 7 4
 8 7
 9 9
 10 10
 11 5
 12 6
 13 0
 14 2
 15 0
 16 0
 17 0
 18 0
 19 0
Enter cutoff for number of images in which a star must appear:

In this example, there are five stars which occur in just a single image; in other words, there are give
detections which cannot be matched to any other detections. Once again, the user must provide a cutoff value.
Any stars which have fewer instances will be discarded from the ensemble.

If the user chooses the auto option, the program will pick cutoff values itself; see the STAR_CUT and
IMAGE_CUT values in "multiweight.c". They are by default 25 percent of the maximum value. In other

5 of 11 13/04/06 08:47 AM

words, if the most commonly appearing star occurs in 40 images, then any stars appearing in fewer than 10
images (40*0.25) will be discarded.

Finally, if the auto flag has not been given, the program asks the user

do you wish to eliminate all saturated stars (y/n)?

Any measurement with an estimated uncertainty which is negative is assumed to be saturated. If the user
replies "y" to this question, all such measurements are discarded from the ensemble. Otherwise, the negative
sign is reversed and the measurement treated normally.

The output of the multipht program is a single file which contains all the measurements in the ensemble. The
file has a three-part structure:

a single line which gives the number of stars and images in the ensemble
a section describing the images, with one line per image
a section describing the stars, with one stanza per star; a stanza consists of one line with position
information, followed by N lines, one per magnitude measurement

A very small ensemble might produce the following output. For clarity, I have added comments to delineate
the sections; such comments do NOT appear in actual output.

first comes the one-line header
 2 images 3 stars
next, a section describing the images
 0 image0.dat 1.0 0.00000 3 3
 1 image1.dat 1.0 1.00000 3 3
now, a section describing the stars. Each star gets a line with
its index value, X and Y coordinates, and number of measurements;
then one line per measurement
 0 13.48000 16.43000 2
 0 0 13.48000 16.43000 0 10.0000 400.0
 0 1 13.48000 16.43000 0 10.1000 400.0
 1 18.48000 36.43000 2
 1 0 18.48000 36.43000 0 10.0500 400.0
 1 1 18.48000 36.43000 0 10.1897 400.0
 2 23.48000 56.43000 2
 2 0 23.48000 56.43000 0 10.1000 400.0
 2 1 23.48000 56.43000 0 10.2000 400.0

The columns in the "image" section give the image index number, the name of the file with data for the
image, the exposure time for each image (a dummy value, always 1.0), the "time" value for the image, the
number of stars in the image which will be included in the ensemble, and the number of stars which matched
a detection on the template (note that only a subset of all stars are used in the matching process -- see the
value of MAXMATCH in multipht.h). The columns in the first line of each star stanza are the star index
number, X and Y coordinate on the template, and the number of instances to follow; the columns on each
subsequent line are the star index number, the image index number, the X and Y coordinates after having
been shifted to best match the template, a flag to mark saturation (0 = not saturated, 1 = saturated), the
magnitude value, and a weight based on the estimated magnitude uncertainty. Small uncertainties produce
large weights.

This single file will serve as the input to the second stage of this package, the solvepht program.

Finding the optimal photometric solution with solvepht

The solvepht program takes as input a single large datafile with information on all images and measurements
in the ensemble; it finds the optimal photometric solution and creates three output files with the results.

What does "optimal photometric solution" mean? We make several assumptions:

most of the stars are constant, with some well defined true magnitude. Let us denote the true magnitude
of star i by the symbol M(i)

6 of 11 13/04/06 08:47 AM

each image may have some zero-point offset in its magnitude value, but there are no more complicated
systematic errors. Let us use e(j) to stand for the zero-point offset in image j. If image 2 has zero-point
offset 0.05, that means that all the stellar magnitude values in the image are too large by 0.05 mag.

We have a large set of actual measurements m(i,j) of a number of stars in a number of images. Assuming that
our model of the system is accurate, the error in each measurement must be

 error(i,j) = m(i,j) - [M(i) - e(j)]

Our task is to find the image offsets e(j) and true magnitudes M(i) which minimize the remaining errors. The
program uses standard least-squares techniques to find these parameters, then applies them to correct all
measurements to the ensemble solution.

One invokes the solvepht program like so:

solvepht [debug] [infile=] [mconst=] [outfile=] [imfile=] [sigfile=]
 [badim=] [badstar=] [varstar=] [min=] [max=]
 [nsigma=] [niter=] [mrange[=low,high]]

The arguments in brackets are optional; those ending in equals signs require a value.

debug
print diagnostic messages as the program executes

infile=
name of a file with input data (created by multipht); if not provided, data is read from stdin

mconst=
the overall zeropoint of the photometric solution is a free parameter. By default, the true stellar
magnitude values are shifted so that the brightest star has true magnitude 0.0. If the user supplies a
value for mconst=, then the brightest star will be set to that magnitude on output.

outfile=
the name of the first output file, with corrected magnitudes for all stars on all images. The default value
is solvepht.out.

imfile=
the name of the second output file, with solution parameters for each image. The default value is
solvepht.img.

sigfile=
the name of the third output file, with true magnitudes and estimated uncertainties for all stars. The
default value is solvepht.sig.

badim=
signals that the image with the given index number (as listed in the multipht output file) is "bad", and
should not be included in the solution. This option may appear multiple times in the command line,
once per bad image:

 solvepht infile=multipht.out badim=3 badim=7 badim=23

badstar=
signals that the star with the given index number (as listed in the multipht output file) is "bad", and
should not be included in the solution. This option may appear multiple times in the command line,
once per bad star:

 solvepht infile=multipht.out badstar=8 badstar=12

varstar=
signals that the star with the given index number (as listed in the multipht output file) is "variable".

7 of 11 13/04/06 08:47 AM

This means that it should not be used in finding the photometric solution, but that it SHOULD appear
in the output, with image zero-point offsets applied to its values. This option may appear multiple times
in the command line, once per variable star:

 solvepht infile=multipht.out varstar=32 varstar=1

min=
ignore all input magnitudes which are less than the given value

max=
ignore all input magnitudes which are greater than the given value

nsigma=
stars which are at least this many times the typical scatter above the average "sigma-vs-mag" line will
be marked as variable (see below). The default is given the #define SCATTER_NSIGMA value in
"solvepht.h" (current value 3.0).

niter=
number of additional times to run the ensemble solution after identifying some stars as variable and
marking them so they won’t affect the next round of the solution. The default is given by the #define
NUM_ITERATIONS in "solvepht.h" (currently 0).

mrange[=low,high]
by default, the output magnitude values produced by the ensemble solution start at zero, for the
brightest star in the ensemble. This option shifts the output magnitudes so that they are close to the
input magnitudes. If given with no values,

 mrange

then all non-variable stars between default values given by #define MRANGE_LOW and
MRANGE_HIGH in "solvepht.h" (currently 1.0 and 2.5) magnitudes below the brighest star are used
to define a shift; that shift is applied to all magnitudes on output. If the user supplies values like so

 mrange=2.0,5.0

the all non-variable stars with mean ensemble solution magnitudes between these limits are used to
define the shift in magnitudes.

After the ensemble solution has been found, the program calculates at the scatter of each individual star from
its mean solution magnitude. In general, this scatter is small for bright stars and large for faint ones, due to
photon statistics. This shows clearly in the "sigma-vs-mag" plot used as a diagnostic for photometry:

8 of 11 13/04/06 08:47 AM

The program fits a simple parabola to the locus of points in the diagram by dividing the stars into bins by
magnitude, calculating the median "sigma" value in each bin, and fitting a parabola to those median values. It
also calculates the average width of this locus around the parabola; my simple tests indicate that the width
does not change greatly from bright stars to faint stars for some datasets.

Stars which vary will appear as outliers in this "sigma-vs-mag" diagram: there is one in the example above
near magnitude 2.6, with a scatter of about 0.24 magnitudes around its mean value. The program attempts to
identify variable candidates by calculating the distance of each star from the parabolic fit, in units of the
scatter around the fit. In the example above, the scatter around the fit is about 0.05 mag, and the outlier is
about 0.24 mag above the fit; it therefore has a "variability score" of about (0.24/0.5) = 5. Any star with a
score larger than given by the nsigma= option (default value 3.0) will be marked as variable.

If the user supplies a value of niter= larger than zero, then the ensemble solution will be run more than once.
Between each iteration, stars with high variability scores will be marked as "variable" and excluded from the
ensemble calculations. In practice, a single extra iteration appears to suffice to remove the effects of clear
outliers from the calculations.

The solvepht program creates three output files after a successful run:

the solvepht.out file contains corrected magnitudes for all stellar measurements:

 corrected mag = m(i,j) - e(j)

the solvepht.img file contains information on each image in the solution (for example, its zero-point
offset)
the solvepht.sig file contains information on each star in the solution: its true magnitude and an
estimate of the uncertainty therein

A very small sample of the solvepht.out file looks like this:

0 35.32486 7.03099 72 2452263.62176 13.193 13.312 0.163 0 0.25
0 35.32486 7.03099 75 2452263.62706 13.193 13.322 0.171 0 0.25
0 35.32486 7.03099 104 2452263.67998 13.193 13.180 0.165 0 0.25
1 35.33325 6.72861 52 2452263.58649 11.360 11.333 0.079 0 -0.26
1 35.33325 6.72861 53 2452263.58825 11.360 11.351 0.081 0 -0.26
1 35.33325 6.72861 54 2452263.59001 11.360 11.350 0.081 0 -0.26
1 35.33325 6.72861 378 2453322.71022 11.360 11.491 0.065 0 -0.26
2 35.33335 7.18730 52 2452263.58649 12.190 12.202 0.104 0 -0.75
2 35.33335 7.18730 53 2452263.58825 12.190 12.196 0.101 0 -0.75

The columns are:

star index number1.
X coordinate, shifted (*) to match template position2.
Y coordinate, shifted (*) to match template position3.
image index number4.
"time" value5.
true (or mean) magnitude of star6.
corrected magnitude in this particular image7.

9 of 11 13/04/06 08:47 AM

estimated uncertainty in this measurement, based on the ensemble solution8.
variability flag: 0="not variable", 1="variable"9.
"variability score": how much above or below the typical amount (for stars of similar brightness) did
this star vary?

10.

(*) During the matching procedure in multipht, the program calculates the mean shift in the X- and Y-directions which brings star
into best registration with the template image. This shift is applied to each input position in the image and appears here.

A small sample of the solvepht.img file looks like this:

0 ./QQ_input.000 1.0 2450000.00000 10.000 0.009 0.002
1 ./QQ_input.001 1.0 2450000.01000 10.100 0.010 0.002

The columns in this file are

image index number1.
name of file with measurements from this image2.
exposure time for image (currently a dummy value)3.
"time" value for image4.
zero-point offset value for this image5.
z1 = RMS of zero-point offset (see below)6.
z2 = ditto, divided by square root of number of stars in the image (see below)7.

After finding the least-squares solution for zero-point values, the program judges them by calculating
weighted sums for each image: given i=1..N stars in the image, it calculates two measures the degree to
which all the stars in an image can be brought to match their true magnitudes.

 let z = corrected_mag(i,j) - true_mag(i)

 w = weight given to m(i,j) based on input mag uncertainty

 [sum (z*z*w)]
 z1 = [------------]
 [sum (N*w)]

 z1
 z2 = --------------
 sqrt (N)

The smaller the values of z1 and z2, the more closely the (corrected) measurements on this image match the
overall ensemble measurements.

A small sample of the solvepht.sig file looks like this:

 0 13.193 0.158 0 0.25 35.32486 7.03099
 1 11.360 0.073 0 -0.26 35.33325 6.72861
 2 12.190 0.078 0 -0.75 35.33335 7.18730
 3 13.695 0.137 0 -0.84 35.34351 6.66053

The columns in this file are

star index number1.
"true" magnitude in the ensemble solution2.
uncertainty in the "true" magnitude3.
variability flag: 0="not variable", 1="variable"4.
"variability score": how much above or below the typical amount (for stars of similar brightness) did
this star vary?

5.

X coordinate, shifted to match template position6.
Y coordinate, shifted to match template position7.

Recall that by default, the output magnitudes are shifted so that the "true" magnitude of the brightest star is

10 of 11 13/04/06 08:47 AM

exactly zero. In the example above, the user must have used the mrange or mconst options to re-set them to
larger values, closer to the input values.

A typical example of ensemble photometry

In practice, using this package isn’t all the complicated. I use it myself to analyze photometry of fields
containing variable stars for the Center for Backyard Astrophysics. For example, let me explain in some
detail the results for one particular night: Oct 5, 2004.

http://spiff.rit.edu/richmond/ritobs/oct05_2004/oct05_2004.html

I took a series of 115 images of the cataclysmic variable star ASAS 002511 and its neighbors. After the usual
dark subtraction and flatfielding, I extracted positions and instrumental magnitudes for every object detected
in every frame; that added up to 6211 detections.

The raw instrumental magnitudes for each image were stored in a series of 115 files; here’s a sample of one:

 1 4.28 461.12 3325 13.48 14.836 0.049 14.818 0.057 4
 2 11.53 32.51 3339 13.88 15.330 0.076 15.287 0.086 0
 3 36.66 240.87 3335 14.65 14.648 0.041 14.626 0.048 0

I created a file with the names of these files, one per line. I ran multipht with a command line like this:

 multipht list=asas.lst x=1 y=2 mag=6 err=7 outfile=multipht.out

I answered the questions to select cutoffs for the number of stars required in an image (10) and number of
detections required for a star (10) to be included in the solution. The result was a big output file, multipht.out.

The second stage of the analysis is more complicated; it usually takes me several passes through the dataset. I
ran the solvepht program an initial time to get a feeling for the overall properties of the images and stars. I
first examined the solvepht.img file, plotting the zero-point value versus "time". I saw that the zeropoints of
most of the images followed a gradual trend (due to the changing airmass of the field), but there were
occasional outliers. Some of these were due to poor tracking (on a trailed image, all the stars look fainter than
normal), others due to passing clouds. I wrote down the index numbers of the bad images so that I could
remove them from the solution during the next pass.

I also looked at the solvepht.sig file, plotting the uncertainty in ensemble magnitude versus true magnitude.
You can see a version of this graph on the web page describing this night’s results. Most stars fall in a line
which curves gently upward to the right: fainter stars have larger scatter in magnitude. On the first pass, a
number of objects appeared far above this normal locus: one of them was a real variable star, but others were
stars with bad measurements: some close to the edge of the frame, others part of close pairs, others falling
near defects on the chip, etc. I noted the index numbers of these objects, dividing them into "obviously bad
objects" and "possibly true variables".

I then made a second pass, running solvepht again with extra arguments. Here’s the command line:

 solvepht infile=multipht.out outfile=solvepht.out imfile=solvepht.img
 sigfile=solvepht.sig varstar=13 badim=15 badstar=32
 badstar=29 badstar=38 badstar=49

This indicates that I removed one image and four stars from the solution, and marked one star as "variable."
That star (which was the known variable ASAS 002511) was not used in deriving the ensemble solution, but
it was retained in the output.

In most cases, I make three or four passes through the dataset, gradually placing more and more stringent
requirements on the stars and images. It helps to make a small shell script with the command line for
solvepht so that one can quickly add or subtract a few more bad stars and images.

After I was satisfied with the results, I finally looked at the solvepht.out file. I picked out individual stars by
choosing all lines which started with a particular value, then made a graph showing each star’s corrected

11 of 11 13/04/06 08:47 AM

magnitudes versus time. You can see a light curve of four objects in the field near the bottom of the web page
describing this night’s results. The three non-variable stars are indeed not changing relative to each other, and
the faintest in the group has the largest scatter. The fourth object, shown as green crosses, is the variable star.
It is clearly varying more than one would expect for a star of its apparent brightness, just as the plot of
scatter-versus-magnitude indicates.

Last modified by MWR 3/1/2005

