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Although not used as extensively as other antidepressants for the treatment of depression, the monoamine
oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum
with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on
MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating
that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The
non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated
neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis.
l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease,
but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demon-
strate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the
focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there
is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties.
In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the
etiology of Alzheimer's disease, diabetes and cardiovascular disease. Thesemultifaceted aspects of amine oxidase
inhibitors and some of their metabolites are reviewed herein.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Monoamine oxidase (MAO) inhibitors are not prescribed as widely
as other antidepressants (Shulman et al., 2009), but they continue to
hold an important niche in the treatment of psychiatric and neurolog-
ical disorders (Blanco et al., 2010; Bortolato et al., 2008; Holt et al.,
2004; Kennedy et al., 2009; Muller et al., 2005; Stewart, 2007). Interest
in these drugs has increased significantly in recent years following
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numerous reports of their neuroprotective/neurorescue properties
(Baker et al., 2007; Gerlach et al., 1996; Magyar and Szende, 2004;
Sowa et al., 2004; Tatton et al., 2003; Youdim et al., 2006b). Similarly,
exciting findings with primary amine oxidase [PrAO, previously called
semicarbazide-sensitive amine oxidase (SSAO)] and its inhibitors have
stimulated research on amine oxidase inhibitors and increased our
knowledge of the etiology of several neuropsychiatric disorders and
associated diabetes and cardiovascular disease (Chen et al., 2006; Yu et
al., 2003). In this review, we will provide an update on neuroprotection
by amine oxidase inhibitors, on the importance of metabolism of these
drugs and on possible future drug applications in this area.

2. Non-selective inhibitors of MAO: phenelzine
and tranylcypromine

Phenelzine (2-phenylethylhydrazine, PLZ) (Fig. 1) is an irreversible,
non-selectiveMAO inhibitor (i.e. inhibits bothMAO-A andMAO-B) that
has been used for many years as an antidepressant drug and is also
effective in treating panic disorder, social anxiety disorder, and post-
traumatic stress disorder (PTSD) (Davidson, 2006; Kennedy et al., 2009;
Zhang and Davidson, 2007). Although it is anMAO inhibitor, it also pro-
duces marked increases in brain levels of γ-aminobutyric acid (GABA)
by inhibiting GABA transaminase (GABA-T) (Baker et al., 1991; Popov
and Matthies, 1969). PLZ has been reported to be neuroprotective in
a transient cerebral ischemia model in gerbils (Wood et al., 2006) and
in the N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP)-4-induced
noradrenaline depletion rodent model (Ling et al., 2001). Several other
GABAergic agents have been reported to be neuroprotective in animal
models of ischemia (Shuaib and Kanthan, 1997), presumably due at
least in part to their ability to counteract the excitotoxic effects of in-
creased extracellular glutamate in such models (Green et al., 2000).
PLZ has also been reported to decrease K+-induced glutamate overflow
in the prefrontal cortex in rats (Michael-Titus et al., 2000), to alter glu-
tamate–glutamine cycling flux between neurons and glia (Yang and
Shen, 2005), to affect the GLUT-1 glutamate transporter in astrocytes
and neurons, and to reverse the decreased astrocytic glutamate uptake
and the alteration of the signaling kinases AKT and p38 induced by
formaldehyde (Song et al., 2010). Chronic (21 day) treatment of rats
with PLZ has been reported to increase brain-derived neurotrophic
factor (BDNF) protein expression in the frontal cortex (Balu et al., 2008)
and in the whole brain (Dwivedi et al., 2006).

In addition to these pharmacological effects, the potent ability of
PLZ, a hydrazine, to sequester reactive aldehydes may contribute to
its neuroprotective actions (Wood et al., 2006). Reactive aldehydes
Phenelzine

Tranylcypromine

Fig. 1. Structures of the non-selective, irreversible MAO inhibitors phenelzine (PLZ)
and tranylcypromine (TCP).
are formed from amines, from lipid peroxidation, in glycolytic path-
ways and through themetabolismof someamino acids. Such aldehydes,
which include 3-aminopropanal, acrolein, 4-hydroxy-2-nonenal, form-
aldehyde and aldehydemetabolites of catecholamines, are very reactive
and can covalently modify proteins, nucleic acids, lipids and carbohy-
drates and activate apoptotic pathways (Burke et al., 2004; Ivanova
et al., 1998; Lovell et al., 2001; Marchitti et al., 2007; Seiler, 2000;
Springer et al., 1997; Volkel et al., 2006; Wood, 2006). Because of its
hydrazine structure, PLZ is very effective at sequestering aldehydes
through a direct chemical reaction (Galvani et al., 2008; Wood et al.,
2006), resulting in the formation of an inert hydrazone molecule and
reduced concentrations of toxic aldehydes. Reactive aldehydes have
been implicated in the pathophysiology of a number of conditions in-
cluding Alzheimer's disease (AD) and various cardiovascular diseases
(LoPachin et al., 2008; Matveychuk et al., 2011; Singh et al., 2010;
Volkel et al., 2006; Wood, 2006). Interestingly, the reactive aldehyde
acrolein has recently been suggested to be a potential factor in oxida-
tive stress and myelin loss in multiple sclerosis (Leung et al., 2011),
and was shown to induce marked myelin damage to isolated spinal
cords in vitro (Shi et al., 2011) and to be involved in spinal cord injury
in vivo (Hamann and Shi, 2009). Furthermore, acrolein-protein adduct
levels were significantly increased in experimental autoimmune en-
cephalomyelitis (EAE), an animal model of multiple sclerosis, and se-
questration of acrolein with hydralazine improved behavioral outcomes
and reduced demyelination in the spinal cord in that model (Leung et
al., 2011). PLZ has also been shown to improve behavioral outcomes in
EAE mice (Musgrave et al., 2011a), possibly due to its multiple actions,
including its ability to increase levels of serotonin, noradrenaline and
GABA in the ventral horn of the spinal cord and some brain regions of
EAE mice (Musgrave et al., 2011a,b) and its ability to sequester acrolein
(Wood et al., 2006). In addition, acetaldehyde, produced from the me-
tabolism of ethanol, is thought to play an important role in the develop-
ment of alcoholic liver disease (Setshedi et al., 2010) and alcohol-related
cancers (Druesne-Pecollo et al., 2009; Salaspuro, 2009); thus, sequestra-
tion of acetaldehyde may be beneficial in protecting chronic alcoholics
from development or exacerbation of these alcohol-related diseases.

Despite its vast therapeutic potential, PLZ, like other hydrazine-
containing drugs, is not without adverse effects; PLZ may produce
pyridoxal phosphate depletion (Malcolm et al., 1994) [though not
all studies have supported this idea (Lydiard et al., 1989)], in which
case ongoing vitamin supplementation could be warranted (Gillman,
2011). Furthermore, overdoses of PLZ could potentially induce hepa-
totoxic and neurotoxic effects, including seizures in isolated cases
(Gomez-Gil et al., 1996; Tafazoli et al., 2008). However, this drug has
been available commercially for over fifty years and continues to be
used clinically.

Tranylcypromine (TCP) (Fig. 1), an irreversible, non-selective MAO
inhibitor, has not been investigated as extensively as some of the other
MAO inhibitorswith regard to neuroprotection. Yet several reports link
TCP treatment with an increase in the expression of messenger ribo-
nucleic acid (mRNA) for BDNF (Khundakar and Zetterstrom, 2006;
Nibuya et al., 1995) and cyclic adenosine monophosphate (cAMP) re-
sponse element binding protein (CREB) (Nibuya et al., 1996; Thome
et al., 2000) in the rat brain hippocampus—effects that could lead to
neurogenesis (Santarelli et al., 2003). It has also been reported that
TCP increases expression of the antiapoptotic factors B-cell leukemia/
lymphoma 2 (Bcl-2) and B-cell lymphoma extra large (Bcl-XL) in sev-
eral brain areas (Kosten et al., 2008; McKernan et al., 2009).

3. MAO-B inhibitors: l-deprenyl and rasagiline

l-Deprenyl (L-N-propargyl,N-methylamphetamine; selegiline)
(Fig. 2), a selective irreversible MAO-B inhibitor, was originally devel-
oped in the hope that it would be an effective antidepressant without
the pressor effect (“cheese effect”) which can occur in patients that
ingest tyramine-rich foods while taking irreversible MAO-A inhibitors.



Fig. 2. Structures of the MAO-B inhibitors l-deprenyl, rasagiline and ladostigil.

Moclobemide

Clorgyline

Fig. 3. Structures of the MAO-A inhibitors moclobemide and clorgyline.
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It turned out to be a poor antidepressant drug, except at higher doses
when its selectivity was lost and it also inhibited MAO-A [although
recent reports indicate that transdermal administration allows doses
of l-deprenyl to be used that are sufficient to inhibit brain MAO-A
and produce an antidepressant effect without substantially inhibiting
MAO-A in the gut (Frampton and Plosker, 2007)]. l-Deprenyl is used
in Parkinson's disease (Rascol et al., 2011; Riederer et al., 2004) and
has more recently been reported to be of some use in global ischemia,
Gilles de la Tourette syndrome, narcolepsy and AD (Ebadi et al., 2006);
although clinically meaningful benefit in AD continues to be a matter
of debate (Birks and Flicker, 2003). l-Deprenyl is remarkable in that
it has been demonstrated to have neuroprotective or neurorescue
properties in a wide variety of neurotoxicity tests in vivo and in vitro
(Baker et al., 2007; Gerlach et al., 1996; Magyar and Szende, 2004;
Sowa et al., 2004; Tatton et al., 2003; Xiao et al., 2011; Youdim et al.,
2006b). It has also been suggested that l-deprenyl has the potential
to be utilized as a radiolabeled biomarker for the early detection of
AD and other degenerative diseases that exhibit increased MAO-B ex-
pression (Gulyas et al., 2011).

A result of research on l-deprenyl has been the development of
rasagiline (Fig. 2), a structurally related drug (also containing an
N-propargyl group), which has now been approved for use in Parkinson's
disease in several countries (Hauser et al., 2009; Weinreb et al., 2010;
Youdim et al., 2006b). Rasagiline has an advantage over l-deprenyl
in that it is not metabolized to the potentially neurotoxic products
l-amphetamine and l-methamphetamine; in fact, its active metabo-
lite, R-(−)-aminoindan, shows neuroprotective properties that are
independent of MAO-B inhibition (Dimpfel and Hoffmann, 2011).
The neuroprotective effects of l-deprenyl are apparently lost at
high concentrations (Tatton et al., 2003; Youdim et al., 2006b), pos-
sibly due to the formation of high levels of l-amphetamine and
l-methamphetamine.
The mechanisms of neuroprotective action of these N-propargyl
drugs appear to be complex (Eliash et al., 2009; Tazik et al., 2009;
Zhu et al., 2008). Recent evidence demonstrates that l-deprenyl,
rasagiline and R-(−)-aminoindan exert concentration-dependent
neuroprotective effects in vitro by modulating glutamatergic receptor
activity in the rat hippocampus (Dimpfel and Hoffmann, 2011).
Youdim et al. (2006b) indicated that l-deprenyl and rasagiline interact
with the outer mitochondrial membrane, preventing neurotoxin-
induced collapse of mitochondrial membrane potential and permeabil-
ity transition, and the opening of the voltage-dependent anion channel;
these effects are thought to reflect the upregulation of antiapoptotic
Bcl-2 protein and the downregulation of proapoptotic proteins such
as Bcl-associated death promoter (BAD) and Bcl-associated protein X
(BAX), as well as via a mechanism dependent on the inactivation and
nuclear localization of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), an initiator of apoptotic cascades (Akao et al., 2002; Carlile
et al., 2000; Hara et al., 2006; Tatton et al., 2003; Youdim et al., 2006b).
Interestingly, a recent report suggests that the increase in Bcl-2 mRNA
in vitro induced by rasagiline is mediated by MAO-A, whereas the
upregulation of Bcl-2 mRNA by l-deprenyl is not (Inaba-Hasegawa et
al., 2012). l-Deprenyl has also been reported to increase levels of
BDNF protein in some brain areas (Gyarfas et al., 2010), and to have
anti-amyloidogenic activity in vitro (Ono et al., 2006). Furthermore,
l-deprenyl was shown to reverse both scopolamine-induced decreases
in antioxidants and increases in malondialdehyde (an important bio-
logical marker for in vivo lipid peroxidation) in a mouse model of AD,
providing additional support for the possible utility of this drug in AD
(Goverdhan et al., 2012). Indeed, increased MAO activity and expres-
sion of MAO mRNA have been reported in AD (Emilsson et al., 2002),
suggesting that MAO inhibitors should be investigated more exten-
sively as possible adjunctive drugs in this disorder. Ladostigil (Fig. 2)
combines the activities described above for rasagiline with an addi-
tional anticholinesterase component and is a promising drug for AD
(Bar-Am et al., 2009; Weinstock et al., 2006; Yogev-Falach et al., 2006;
Youdim et al., 2006a,b).

4. MAO-A and its inhibitors

Much of the work on neuroprotection provided by MAO inhibitors
has focused on selective MAO-B inhibitors such as L-deprenyl and
rasagiline, but selective MAO-A inhibitors may also exert protective
effects (Naoi et al., 2006). Moclobemide (Fig. 3), a reversible MAO-A
inhibitor, has been reported to have anti-Parkinson activity and neuro-
protective effects in a model of cerebral ischemia, but these effects ap-
pear to be independent of MAO-A inhibition (Youdim et al., 2006b).

image of Fig.�3
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Fig. 4. Structures of ß-phenylethylidenehydrazine (PEH).
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It has also been suggested that moclobemide may facilitate selected
differentiation of stem cells into functional neurons (Egan, 2006).
Verleye et al. (2007) reported that moclobemide reduced anoxia- and
glutamate-induced neuronal damage in neuronal–astroglial cultures
from rat cerebral cortex via amechanism independent of its interaction
with glutamate receptor subtypes. The irreversible MAO-A inhibitor
clorgyline (Fig. 3) has been reported to be neuroprotective in vitro
(protective against apoptosis induced by serum starvation) (Egan,
2006) and in vivo (protective against damage caused by the mitochon-
drial toxin malonate) (Malorni et al., 1998). As with l-deprenyl and
rasagiline, clorgyline contains an N-propargyl group. Recent research
has also suggested that MAO-A may have a role in the induction and
regulation of apoptosis (Chiou et al., 2006; Egan, 2006; Jiang et al.,
2008; Maragos et al., 2004; Naoi et al., 2006, 2011; Ou et al., 2006)
and thatMAO-A activity and function could rely on its physical interac-
tion with certain AD-related presenilin-1 variants (Wei et al., 2012).

5. Primary amine oxidase and its inhibition

PrAO, an enzyme containing copper and quinine as cofactors and
located on the outer membrane of vascular smooth muscles and en-
dothelial cells, catalyzes the oxidation of several primary amines to
produce the corresponding aldehyde as well as hydrogen peroxide
and ammonia. Methylamine and aminoacetone are examples of PrAO
substrates, and their metabolism results in the production of the reac-
tive aldehydes formaldehyde and methylglyoxal, respectively. Both
aldehydes have been shown to facilitate the conversion of β-amyloid
to the hydrophobic β-sheet conformation and subsequent fibrillogenesis
in vitro (Chen et al., 2006; Yu et al., 2003), suggesting an involvement
with the etiology of AD. In addition, increased serum PrAO activity, rela-
tive to control subjects, has been reported in various vascular disorders,
including complications of diabetes and in congestive heart failure,
atherosclerosis, multiple cerebral infarctions and AD (Chen et al., 2006;
Yu et al., 2003). Jiang et al. (2008) reported a strong expression of PrAO
co-localized with β-amyloid deposits on blood vessels of postmortem
brain samples from patients with AD. Interestingly, PLZ, in addition to
its ability to inhibitMAOandGABA-T and to sequester reactive aldehydes,
is a relatively potent inhibitor of PrAO (Holt et al., 2004;MacKenzie, 2009;
Wang et al., 2006),which could certainly contribute to its neuroprotective
effects. Several specific PrAO inhibitors have beendeveloped and itwill be
interesting to determine their efficacy in the clinical setting in the future
(Elovaara et al., 2011).

6. Metabolism of amine oxidase inhibitors and its relevance

The possible importance of metabolites of N-propargyl drugs
should be taken into consideration with regard to contributions to
neuroprotective properties and adverse effects. Two metabolites of
l-deprenyl (l-amphetamine and l-methamphetamine) are potentially
neurotoxic, whereas another metabolite, N-propargylamphetamine,
may have neuroprotective properties, although the latter conclusion
remains contentious (Magyar and Szende, 2004). l-Amphetamine has
been reported to interfere with the neuroprotective action of l-deprenyl,
whereas aminoindan and hydroxyaminoindan, major metabolites of
rasagiline and ladostigil, are neuroprotective themselves (Bar-Am et al.,
2004, 2007, 2010). MAO inhibitors such as aliphatic propargylamines
were synthesized because they are not metabolized to amphetamines
(Yu et al., 1992). PLZ is metabolized to β-phenylethylidenehydrazine
(PEH) (Fig. 4), (MacKenzie, 2009; MacKenzie et al., 2010) and this me-
tabolite appears to contribute significantly to the neurochemical and
pharmacological effects of the parent drug, including elevation of brain
GABA (MacKenzie et al., 2010; Parent et al., 2002; Paslawski et al.,
2001), sequestration of reactive aldehydes (MacKenzie, 2009), inhibition
of PrAO (MacKenzie, 2009) and conferring neuroprotection in amodel of
transient cerebral ischemia (Tanay et al., 2002; Todd et al., 1999).
7. Other effects of MAO inhibitors

As discussed herein, MAO inhibitors may be useful in treating psy-
chiatric and neurologic disorders other than depression, including
panic disorder, social anxiety disorder, PTSD, Parkinson's disease, Gille
de la Tourette's syndrome, and possibly AD (Ling et al., 2001; Naoi et
al., 2011; Rubinstein et al., 2006; Wood et al., 2006). MAO inhibitors
have also been reported to be useful in treating bulimia nervosa and
various pain disorders (Kennedy et al., 2009). Pharmacologically, both
PLZ and TCP can affect the uptake and release of neurotransmitter
amines as well as alter the metabolism of a number of drugs through
inhibition of cytochrome P450 (CYP) enzymes (Baker et al., 2000 for
review; London and Milne, 1962; Salsali et al., 2004; Smith et al.,
1980). Both of these MAO inhibitors can also alter the activity of a
number of other enzymes (Baker et al., 2000; Holt et al., 2004). TCP
has been reported to alter levels of endogenous ligands of the
endocannabinoid system and to increase CB1 receptor binding in var-
ious rat brain regions (Hill et al., 2008). There is a close association be-
tween imidazoline binding sites and MAO binding sites (although the
nature of this association is still a matter of debate), and some amine
oxidase inhibitors also appear to interact with sigma receptors (Holt,
2003; Holt et al., 2004). It is well known that MAO inhibitors can
cause a marked increase in brain levels of the so-called “trace amines”
β-phenylethylamine, tyramine, octopamine, and tryptamine (Boulton
et al., 1984; Sabelli and Mosnaim, 1974), all of which can alter uptake
and release and receptor sensitivity of the classical biogenic amine
neurotransmitters. Interest in the trace amines has increased marked-
ly in the last few years with the discovery of a family of G-protein
coupled receptors, some of which appear to be selectively activated
by trace amines (Berry, 2007; Borowsky et al., 2001; Holt et al., 2004;
LindemannandHoener, 2005); these receptors have since been termed
“trace amine-associated receptors”. It has been proposed that the am-
phetamines exert their effects, at least in part, through these receptors
(Bunzow et al., 2001), and given the structural similarities between the
amphetamines and TCP, PLZ and l-deprenyl, it is conceivable that these
MAO inhibitors may also act on these receptors directly in addition to
indirect effects caused by their ability to dramatically elevate brain
levels of the trace amines.

8. Future applications and drug development

Several MAO inhibitors and structurally similar drugs are “in the
pipeline” and are undergoing preclinical or clinical testing (see
Kennedy et al., 2009; Youdim et al., 2006b for review). Some of these
are propargylamines, and theymay also prove to be useful for treatment
of several neurodegenerative disorders. For example, rasagiline and
CGP 3466 (a propargylamine which does not inhibit MAO) have been
reported to be beneficial in an animal model of amyotrophic lateral
sclerosis (Youdim et al., 2006b). A series of aliphatic propargylamines
have also been reported to be excellent neuroprotective agents in sev-
eral toxicity models in vivo and in vitro (Berry and Boulton, 2002). The
aldehyde-sequestering actions of PLZ suggest that various analogs of
this drug should be investigated as possible neuroprotective agents.
By changing the length of the alkyl chain, the GABA-T-inhibiting activ-
ity and/or theMAO-inhibiting activity of PLZ can be altered (Popov and
Matthies, 1969) while still retaining aldehyde-sequestering properties.
Studies addressing the structure–activity relationships could then be
conducted in vivo to determine the relative importance of sequestering
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aldehydes on neuroprotection in models such as the transient cerebral
ischemia model. The utility of MAO inhibitors in drug withdrawal has
been considered; recent work has suggested that MAO-A inhibitors
may be useful in the early stages of withdrawal from heavy cigarette
smoking (Bacher et al., 2011). In addition, Gatch et al. (2006) found
that several MAO inhibitors modulated the discriminative stimulus ef-
fects of cocaine and suggested that theymay be useful for the treatment
of cocaine abuse. GABAergic drugs have also been suggested as poten-
tially useful drugs in management of cocaine and methamphetamine
dependence (DeMarco et al., 2009; Karila et al., 2008; Peng et al.,
2008), and PLZ and PEH should be tested in this regard. PEH has been
reported to reduce epileptiform activity in rat hippocampal slices
(Duffy et al., 2004), and studies on its potential as an anticonvulsant
are warranted. Galvani et al. (2008) have suggested that hydrazines,
including PLZ, could be useful therapeutic agents for atherosclerosis
and its cardiovascular complications becauseof their ability to neutralize
reactive carbonyl components like reactive aldehydes.

9. Conclusion

The amine oxidase inhibitors continue to be of considerable inter-
est and the subject of extensive research. Some of them may prove
useful for treating specific neurodegenerative disorders, stroke and
drug abuse, either alone or in combination with other drugs. In fact,
their multifaceted nature may be an advantage, making them suitable
for treating several disorders. Investigations to date have demonstrat-
ed that the neuroprotective actions of such drugs are complex and,
in many, but not all, cases are independent of MAO inhibition. They
continue to be valuable pharmacological tools that have done much
to increase our knowledge of mechanisms involved in neuroprotection
and have provided important clues for future development of neuro-
protective drugs.
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