
Cellular Signalling 26 (2014) 2621–2632

Contents lists available at ScienceDirect

Cellular Signalling

j ourna l homepage: www.e lsev ie r .com/ locate /ce l l s ig
The monoamine oxidase-A inhibitor clorgyline promotes a
mesenchymal-to-epithelial transition in the MDA-MB-231 breast cancer
cell line
Tamara Satram-Maharaj a, Jennifer N.K. Nyarko b, Kelly Kuski a, Kelsey Fehr a, Paul R. Pennington a, Luke Truitt c,
Andrew Freywald c, Kiven Erique Lukong b, Deborah H. Anderson b, Darrell D. Mousseau a,⁎
a Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Canada
b Department of Biochemistry, University of Saskatchewan, Canada
c Department of Pathology, University of Saskatchewan, Canada
⁎ Corresponding author at: Cell Signalling Laboratory,
107 Wiggins Avenue, University of Saskatchewan, Sas
Tel.: +1 306 966 8824.

E-mail addresses: tsatram@gmail.com (T. Satram-Mah
(J.N.K. Nyarko), kellykuski@gmail.com (K. Kuski), kdf044@
prp676@mail.usask.ca (P.R. Pennington), luke.truitt@usas
andrew.freywald@usask.ca (A. Freywald), kel232@mail.us
deborah.anderson@saskcancer.ca (D.H. Anderson), darrel
(D.D. Mousseau).

http://dx.doi.org/10.1016/j.cellsig.2014.08.005
0898-6568/© 2014 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 May 2014
Received in revised form 29 July 2014
Accepted 15 August 2014
Available online 22 August 2014

Keywords:
Monoamine oxidase
Depression
Breast cancer
Mesenchymal-to-epithelial transition
E-cadherin
Metastasis
Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depres-
sion as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although
themechanism involved remains ambiguous. For example,MAO-AmRNA is repressed across cancers, yetMAO-A
protein and levels of serotonin, a substrate ofMAO-A implicated in depression, are paradoxically increased inma-
lignancies, including breast cancer.
The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional
markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial,
oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231
cell line.
CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-
independent growth, and increased invasiveness and activemigration ofMDA-MB-231 cells. CLG induced the ex-
pression of the mesenchymal marker vimentin inMCF-7 cells, but not inMDA-MB-231 cells. In contrast, CLG in-
duced the epithelial proteinmarker E-cadherin in both cell lines, with a more robust effect inMDA-MB-231 cells
(where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical
Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the β-catenin/[phospho]GSK-
3β complex as well as the E-cadherin/β-catenin complex in both cell lines cells, but, again, the effect was more
robust inMDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial
Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT
status rather than on the cell's ER status.
These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231
cells via a non-canonical mechanism. This potentially implicates an MAO-A-sensitive step in advanced breast
cancer and should be borne inmindwhen considering pharmacological treatment options for co-morbid depres-
sion in breast cancer patients.
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1. Introduction

Serotonin, a neurotransmitter whose levels are often reduced during
the course of clinical depression, has also been implicated in the regula-
tion of breast epithelial physiology [1]. Epidemiological studies support
an association between the risk of cancer development and theuseof se-
rotoninergic antidepressants, with the patient's hormone [oestrogen/
progesterone] receptor status potentially contributing a modest influ-
ence [2,3].

Depression has been associated historicallywithmonoamine oxidase-
A (MAO-A), the enzyme that degrades serotonin, and inhibitors ofMAO-A
were the first antidepressant drugs to be used clinically. Although
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inhibitors of MAO-A can induce severe side effects, which limit the use of
these drugs in the clinic, they continue to be used when all other antide-
pressants fail to provide therapeutic effect. Alterations in MAO-A expres-
sion might represent a possible biomarker in cancers [4], yet the exact
mechanism involved is not clear. Indeed, there is indication that the inhi-
bition of MAO-A would be beneficial. For example, MAO-A activity is in-
creased in experimental breast cancer [5] and MAO-A protein
expression is increased in advanced stages of prostate cancer [6],while in-
hibition of MAO-A with clorgyline exerts anticancer properties towards
cultured prostate cancer cells [7] and resveratrol, a potent inhibitor of
MAO-A isolated from red grapes [8], induces MCF-7 breast cancer cell
death [9]. Yet in apparent contradiction, MAO-A mRNA is down-
regulated in 94% of cancers screened, including breast and prostate can-
cers [4], and epidemiological studies associate usage of antidepressants,
including inhibitors of MAO-A, with an increased risk for cancer [10,11].
Interestingly,we have demonstrated that overexpression of a catalytically
deadMAO-A variant increases proliferation and de novoDNA synthesis in
neuronal cells [12], which introduces the potential for a role for theMAO-
A protein beyond simple substrate catabolism. This also introduces the
possibility that active and inactive pools of MAO-A might exist, and that
at any given time a cell's phenotypewould be influenced by the predom-
inant pool. This simple notion could certainly be contributing to the ambi-
guity in the cancer literature regarding risk associated with MAO-A
protein expression and paradoxical substrate accumulation [13].

Epithelial-to-mesenchymal transition (EMT) during tumour
progression involves loss of epithelial cell adhesion following a reduction
in E-cadherin expression [14] that reflects a GSK-3-dependent, Snai1-
mediated transcriptional regulation [15]. The oestrogen receptor (ER)-
negative, mesenchymal-like MDA-MB-231 cells are a model of a post-
EMT cells that are characterized as ‘E-cadherin-null’ aswell as by reduced
adhesion and increased cell mobility. In contrast, the ER-positive,
epithelial-like MCF-7 cells are far less aggressive, express E-cadherin
and are often contrasted experimentally with the MDA-MB-231 cell line
[16].

We have examined the influence of clorgyline (CLG)— a selective in-
hibitor of MAO-A— on malignant/metastatic behaviour, on the expres-
sion of transitional markers, and on biochemical correlates inMDA-MB-
231 andMCF-7 breast cancer cells. Our study strongly supports a role for
MAO-A inhibition in triggering a mesenchymal-to-epithelial transition
in theMDA-MB-231 breast cancer cell line. The absence of a similar pat-
tern of effects in the ER-negative, epithelial Au565 breast cancer cell line
suggests that the effect of MAO-A inhibition in this context is not reliant
as much on the cell's ER status as it is on the cell's EMT status.

2. Materials and methods

2.1. Reagents and antibodies

Serotonin, 5-bromo-2′-deoxyuridine (BrdU), and the BrdU and β-
actin antibodies were purchased from Sigma-Aldrich Co. [14C]-Seroto-
nin (NEC-225) was purchased from PerkinElmer Life Sciences. The
MAO-A (H-70) antibody as well as the GSK-3β (phospho-Ser9 and
total) and vimentin antibodies were purchased from Santa Cruz Bio-
technology. The E-cadherin and β-catenin antibodies were purchased
from Cell Signalling Technology. The AlexaFluor-594 and AlexaFluor-
488 labelled donkey anti-mouse/anti-rabbit IgGs, respectively, and
IgG-HRP conjugates were obtained from Cedarlane Laboratories Ltd.
Protein-A/G sepharose and the enhanced chemiluminescence kit were
obtained from GE Healthcare Bio-Sciences Inc.

2.2. Cell culture and transfection

MCF-7 cells (ATCC: HTB-22) were cultured in α-Minimum Essential
Medium supplemented with 10% Fetal Bovine Serum (FBS), 1% L-
glutamine, 1% Pen-strep and 10 μg/μL bovine insulin. MDA-MB-231
cells (ATCC: HTB-26) were cultured in RPMI-1640 supplemented with
10% FBS and 1% Pen-Strep. Cells in log-phase (5 × 105 cells/well of a
6-well plate) were transfected (i.e. 1–2 μg plasmid/well) using Lipofec-
tamine® 2000 (Life Technologies Inc.). Cells were routinely tested 24 h
post-transfection. Treatment with CLG was kept at 1 μM (this dose is
routinely used to selectively inhibit MAO-A activity [17]).

2.3. MAO-A catalytic activity

MAO-A activity was estimated using 250 μM [14C]-serotonin and
100 μg total cell protein (homogenate) suspended in oxygenated potas-
sium buffer [18]. The 10-minute reaction (37 °C) was terminated by
acidification, and the radiolabeled metabolites were extracted into
water-saturated ethyl acetate/toluene (1:1, v/v) and quantitated using
scintillation spectrometry. Activity experiments (n ≥ 6) were per-
formed in triplicate-quintuplicate.

2.4. Cell proliferation assays

Three indices of proliferation were used. (a) Cells were seeded into
12-well culture plates at a density of 1 × 103 cells/well. Individual
wells were harvested and the cells manually counted using a
haemocytometer over a period of six days. (b) Cells were assayed for
the mitochondrial conversion of MTT (a reaction that is proportional
to cell number) (n = 4–9, each based on four to six replicates).
(c) Quantification of BrdU incorporation into newly synthesized DNA
relied on experimental means of three to four experiments, based on
counts of 500+ cells per experimental condition.

2.5. Anchorage-independent growth

A 4 ×106/ml cell suspension (in 0.36% soft agar solution) was lay-
ered onto a solid nutrient-based 0.61% agar layer and allowed to grow
for four weeks. A top agar solution supplemented with vehicle or CLG
was added to each plate every seven days.

2.6. In vitro migration and invasion assays

The migration/Boyden chamber assay [19] was performed in 48-
well chemotaxis chamber supplied with a polycarbonate membrane of
8-μm pore size (Neuroprobe). Chemotaxis assays (5 × 104 cells per
well) were performed at 37 °C for 4 h (vehicle or CLG treated). Cells
were removed from the upper side of the membrane with a cotton
swab and cells attached to the lower side were stained with crystal vio-
let. Themigration index for each experimentwas calculated as themean
difference in the number of cells that migrated toward the medium in
the bottom chamber containing 10% FBS versus the number of cells
that migrated toward the medium that contained 0.1% FBS.

In vitro invasion was also assessed using the Boyden chamber, but
with the polycarbonate membrane covered with Matrigel (a model of
the basement membrane: BD Biosciences). Cells (4 × 104) were plated
in the upper chamber in DMEM/5% FBS. The inserts were incubated at
37 °C in the presence or absence of CLG, and the number of cells that
had invaded the lower surface of the membrane was determined as
above.

In these migration and invasion experiments, cells in five random
fields were counted by two observers in a blinded fashion using a
BX71 Olympus microscope (20× magnification).

2.7. Adhesion to extracellular matrix proteins

Plates (96-well) were coated with either rat tail collagen I (GIBCO) or
fibronectin (Calbiochem) (50 μg/mL, 1 h, 37 °C), rinsed and then blocked
(0.1% BSA in PBS, 1 h, 37 °C). Cells were treatedwith CLG (24 h), and then
harvested and incubated for 30min at a density of 20,000 cells per coated
well. Unattached cells were removed bywashing and attached cells were
fixed (4% paraformaldehyde in PBS, RT), rinsed and then stained with
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Crystal violet (10 min). The stain was solubilized with 2% SDS and absor-
bancewas read at 550nm.Wells devoid of cellswere used as background.
Data from adhesion assays represent 30–36 wells per group.

2.8. Indirect immunofluorescence microscopy

CLG (24 h)-treated cells cultured on chambered slides were fixed
with 4% formaldehyde (30 min), permeabilized with 0.5% Triton-100/
PBS for 15 min, and mounted with Pro-Long Gold (Life Technologies
M
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bisecting line (e.g. 0–50)was consistent through all analyses, thus permit-
ting the averaging of pixel intensities across numerous cells (n = 166–
257 cells per group).

As differences due to sample preparation, fixation, staining and even
the lighting and imaging system used can all introduce variability, we
have attempted to avoid artefact by preparing all samples in the same
manner (e.g. each series of slides was prepared on the same day) and
image capture relied on a singlemicroscope/CCD-camera-based system.
Furthermore, lighting, contrast, gain, and magnification parameters
were all kept constant.

2.9. Quantitative real-time PCR

10 ng of cDNA, e.g. reverse-transcribed mRNA (RNeasy® Mini Kit:
Qiagen), was assayed for E-cadherin (CDH1: Integrated DNA Technolo-
gies) or MAO-A (Taqman®, Invitrogen Canada Inc.). All comparisons
[n = 3–5, in triplicate] were normalized to the vehicle-treated group.
Amplification efficiency was required to be between 90 and 110% for
both the gene-specific and housekeeping gene primers sets, and data
were normalized to vehicle-treated groups.

2.10. Statistical analyses

Significance was set at P b 0.05 and comparisons between experi-
mental means were assessed either by unpaired t-tests (and two-
tailed P-values) or by ANOVA with post hoc analyses relying on
Bonferroni's adjustment for multiple comparisons (GraphPad Prism
v3.01). Data are presented as mean ± standard error of the mean
(SEM) and P-values are provided as summary statistics.

3. Results

3.1. MCF-7 and MDA-MB-231 cell lines have different innate MAO-A
activities

MCF-7 cells have a significantly lower level ofMAO-A catalytic activ-
ity thanMDA-MB-231 cells (Fig. 1A). The dose-time course of CLG treat-
ment (1 μM, 24 h) effectively inhibited MAO-A activity in MCF-7 cells
[P b 0.001] and in MDA-MB-231 cells [P b 0.001] (Fig. 1B).

3.2. Inhibition of MAO-A regulates breast cancer cell proliferation

Treatment with CLG reduced MTT conversion in MCF-7 cells [P =
0.003] as well as in MDA-MB-231 cells [P = 0.029] (Fig. 1C). MTT con-
version was increased by the overexpression of MAO-A in MCF-7 cells
[P b 0.001], but not in MDA-MB-231 cultures [P = 0.074] (Fig. 1D).
Treatment (24 h) with increasing concentrations of serotonin, a major
substrate of MAO-A thought to promote cancer cell proliferation [4],
did not exert any effect on MTT conversion in either cell line (Fig. 1E).
ANOVA suggests a significant effect of 5-HT on MDA-MB-231 cells
(e.g. P = 0.0051); however, post hoc analysis reveals that this signifi-
cance is driven primarily by differences between the samples treated
with 500 nM and 100 μM (P b 0.01). Any (patho)physiological rele-
vance of this statistic is questionable.

MCF-7 cell proliferation was significant over a 6-day period
[P b 0.001], but remained unaffected by CLG treatment [P = 0.0691]
(Fig. 2A). MDA-MB-231 cell proliferation was also significant over the
6-day period [P b 0.001] and was slowed by day 6 of CLG treatment
[P b 0.001] (Fig. 2B).

Proliferation is assumed to be proportional to total de novoDNA syn-
thesis, which can bemeasured using BrdU labelling as an index. A base-
line index of 37.4± 0.1% forMCF-7 cells and an index of 29.7± 2.3% for
MDA-MB-231 cells are in keepingwith published reports [20,21]. There
was no effect of CLG on BrdU staining after the sixth day of treatment in
MCF-7 cells [P = 0.5325]. In contrast, there was a marginal — and
paradoxical — increase in BrdU staining in MDA-MB-231 cells [P =
0.0487] (Fig. 2C).

While the effect of CLG on the rate of proliferation and BrdU staining
was not as straightforward as anticipated, these data do reveal that CLG
can exert effects in these cell lines. We next examined the influence of

image of Fig.�2
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MAO-A inhibition on other indices of tumorigenicity such as anchorage-
independent growth, migration and invasion.

3.3. Inhibition of MAO-A alters anchorage-independent breast cancer cell
growth, migration, invasion and adhesion

Anchorage-independent growth of MCF-7 cells was not affected by
CLG treatment [P = 0.9170]. In contrast, a significant reduction in the
number of MDA-MB-231 colonies following treatment with CLG was
observed [P b 0.001] (Fig. 3A).

MDA-MB-231 cells are a more aggressive lineage and, not unexpect-
edly, migrated through the supporting membrane in Boyden chambers
far more readily than did MCF-7 cells [P b 0.001] (Fig. 3B). Treatment
with CLG did not change the migration rate of MCF-7 cells [P = 0.984],
but it did increase that of MDA-MB-231 cells [P = 0.001] (Fig. 3C). CLG
treatment also enhanced the invasive capacity (through Matrigel) of
MDA-MB-231 cells [P = 0.040] (Fig. 3D).

The general absence of extracellular matrix, such as collagen and fi-
bronectin, can alter a tumour cell's capacity for migration and invasion
in vivo. CLG enhanced the adhesion of MCF-7 cells to both a fibronectin
[P b 0.001] and a collagen [P b 0.001] matrix (Fig. 3E & F). In contrast, it
did not alter the adhesion of MDA-MB-231 cells to either fibronectin
[P = 0.504] (Fig. 3E) or collagen [P = 0.276] (Fig. 3F).

Given the effect of CLG onmalignant behaviour in these cell lines,we
chose to determine its ability to alter the expression of transitional
markers, namely vimentin and E-cadherin.

3.4. Inhibition of MAO-A induces the epithelial marker, E-cadherin

Semi-quantitative densitometry (i.e. line profile plots) revealed that
vimentin is diffusely distributed in MCF-7 cells, including within the nu-
cleus (although it appears to be excluded from thenucleoli) and amodest
increasewas observed in CLG-treated cultures (Fig. 4A&B). E-cadherin in
MCF-7 cells is detected in proximity of the plasma membrane and areas
of cell–cell contact, and was significantly increased by CLG treatment
(Fig. 4A & C). In MDA-MB-231 cells, CLG did not affect vimentin expres-
sion (Fig. 4D & E), but it did enhance E-cadherin immunofluorescence,
particularly within the nuclear compartment (Fig. 4D & F).

Western blot analysis and densitometry revealed an increase in
vimentin expression in CLG-treated MCF-7 cells (P = 0.0217) and fur-
ther revealed that the effect of CLG on E-cadherin immunodetection in
MCF-7 cells reflected an increase in proteolytic cleavage fragments,
e.g. bands in the 55–80 kDa range, although this was not significant
(P = 0.5838) (Fig. 5A & C). In contrast, vimentin expression was unaf-
fected by CLG treatment in MDA-MB-231 cells (P = 0.9931), whereas
the increase in E-cadherin immunofluorescence observed in these
cells (see Fig. 4) reflected increases in the inactive E-cadherin precursor
protein (135 kDa) and two other species at the very limit of detection,
e.g. themature 120 kDa form (P= 0.0327) aswell as the 55 kDa proteo-
lytic cleavage fragment (P= 0.0453) (Fig. 5B & D). Expression levels of
β-catenin,which, in conjunctionwith E-cadherin, are important for nor-
mal intercellular adhesion [22], were unchanged in both CLG-treated
MCF-7 cells (P = 0.1772) and MDA-MB-231 cells (P = 0.1577).

β-catenin co-immunoprecipitatedwith both the inactive E-cadherin
precursor protein (135 kDa) [23] and its mature form (120 kDa) [24] in
MCF-7 cells; the interaction with the mature formwasmodestly affect-
ed by CLG treatment (P = 0.0375), whereas the interaction with the
55 kDa E-cadherin species was significantly enhanced (P = 0.0256)
(Fig. 6A & C). Interestingly, a strong immunodetectable E-cadherin
band (at 130 kDa) and an almost imperceptible band at 120 kDa co-
immunoprecipitated with β-catenin in vehicle-treated MDA-MB-231
cells; the interaction between β-catenin and this 120 kDa species was
not affected by CLG (P = 0.9482: Fig. 6B & D). However, CLG did en-
hance the co-immunoprecipitation of β-catenin with the weaker E-
cadherin immunodetectable species at 55 kDa (P b 0.0001).
Immunoprecipitating for E-cadherin and probing for β-catenin revealed
a loss of the β-catenin-E-cadherin complex in MCF-7 cells (P= 0.0013:
Fig. 6A & C) as well as in MDA-MB-231 cells (P = 0.0006: Fig. 6B & D).

It is known that the degradation of β-catenin relies, in part, on its in-
corporation into a complex with GSK-3β [25]. Co-immunoprecipitation
experiments revealed that CLG disrupted the interaction between β-
catenin and phosphoSer9-GSK-3β in MCF-7 cells (P = 0.0059) and
tended to decrease the interaction with total GSK-3β, although this
was not significant (P = 0.1960). In MDA-MB-231 cells, CLG disrupted
the interaction between β-catenin and GSK-3β regardless of its phos-
phorylation status (GSK-3β: P = 0.0022, pGSK-3β: P = 0.0004:
Fig. 7). Neither the phosphorylation of GSK-3β (Fig. 7), nor that of Akt,
the upstream kinase of GSK-3β (data not shown), was altered by CLG.

3.5. The induction of E-cadherin by CLG is independent of changes in
transcription

We questioned whether the change in E-cadherin expression in
MDA-MB-231 cells reflected changes in E-cadherin transcription. Quan-
titative real time-PCR supports the MDA-MB-231 cell line as being E-
cadherin-deficient (3.08e−4 ± 7.55e−6 arbitrary units (AU) versus
MCF-7: 15.59±0.62 AU). Treatmentwith CLG did not affect the expres-
sion of E-cadherin mRNA in either MCF-7 cells [veh: 100 ± 4.0%; CLG:
97.4 ± 0.4%; P = 0.332] or MDA-MB-231 cells [veh: 100 ± 2.5%; CLG:
97.4± 5.0%; P= 0.342]. Snai1 and its interactionwith GSK-3β are inte-
gral for the regulation of E-cadherin transcription [26], but their interac-
tion was not affected by CLG treatment (Fig. 8), thereby precluding any
influence of canonical Snai1-mediated transcription in the current
model.

In parallel experiments, basal MAO-A mRNA expression was signifi-
cantly different between MCF-7 (0.547 ± 0.60 AU) and MB-MDA-231
(0.886 ± 0.09 AU) [P = 0.0029] and reflected the difference in MAO-
A protein and activity in these cell lines (see Fig. 1). MAO-A mRNA
was not affected by CLG treatment in either MCF-7 cells [veh: 100 ±
11.0%; CLG: 96.8 ± 2.5%; P = 0.325] or MDA-MB-231 cells [veh:
100 ± 10.3%; CLG: 95.5 ± .8.9%; P = 0.599].

3.6. The effects of CLG are not reliant on the cell's oestrogen receptor (ER)
status

It is well documented that theMCF-7 cell line is ER-positive and that
theMDA-MB-231 cell line is ER-negative. To address the influence of ER
status in the response ofMDA-MB-231 cells to CLG,we examined the ef-
fect of CLG on the Au565 ER-negative breast cancer cell line. Aside from
an effect on anchorage-independent growth, CLG did not exert any ap-
preciable effect on any of the malignant behaviours, transitional
markers, and biochemical correlates assayed using Au565 cells (sum-
marized in Fig. 9). Thus, the much broader range of effects of CLG on
MDA-MB-231 cells is unlikely due to the ER-negative status of these
cells.

4. Discussion

The high incidence of depression in patients with breast cancer —
with rates of co-morbidity reaching almost 40% [27–29]— certainly im-
plicates a role for monoaminergic dysfunction and for MAO-A given the
historical association of both factors with experimental and clinical de-
pressive phenotypes [13]. This is supported by the increase in MAO-A
activity linked to malignancy in experimental breast cancer [5] and by
the increase in the risk of breast cancer associated with antidepressants
that target themonoaminergic systems [10,11]. Yet, in apparent contra-
diction, treatment with CLG, an MAO inhibitor with antidepressant po-
tential, improves prognosis in prostate cancer [6], whereas treatment
with Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants re-
duces the risk of colorectal cancer [30], but has no effect on risk of breast
cancer [31]. Clearly, the increased risk of breast cancer associated with
antidepressant usage does not rely solely on increased functional
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availability of molecules such as serotonin, which would be expected
following treatment with either SSRIs or MAO-A inhibitors (e.g. CLG).
Off-target effects of either class of drug could certainly be involved
and, in the case of MAO-A, which can exist in both catalytically active
and inactive states (both of which influence distinct phenotypic
changes), a cell's fate could be influenced by the predominating state
of MAO-A at any given time [12,13].

Escape of tumour cells from the primary mass, local invasion, and
intravasation into the circulation for transport to distal sites are pivotal
steps of metastasis. Yet it is the subsequent escape of tumour cells from
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V
eh

C
LG

Vimentin E-Cadherin

MCF-7

A

V
eh

C
LG

Vimentin E-Cadherin

MDA-231

D

Sampling points

V
im

en
tin

 d
is

tri
bu

tio
n 

(A
U

)

0

20

10

25

5

15

0 10 20 30 40 50 60

B

CLG = 
veh = 

E

Sampling points

V
im

en
tin

 d
is

tri
bu

tio
n 

(A
U

)

0

100

50

25

55

0 10 20 30 40 50 60

CLG = 
veh = 

0

40

20

10

30

0 10 20 30 40 50 60

Sampling points

E
-c

ad
he

rin
 d

is
tri

bu
tio

n 
(A

U
)

F

CLG = 
veh = 

**

***

0

40

20

10

30

0 10 20 30 40 50 60

Sampling points

E
-c

ad
he

rin
 d

is
tri

bu
tio

n 
(A

U
)

C

CLG = 
veh = 

*
***

***

Fig. 4. CLG induces E-cadherin immunoreactivity in MCF-7 and MDA-MB-231 cultures. (A) MCF-7 cells were probed for Vimentin and E-cadherin expression using indirect immunoflu-
orescence. The distribution of (B) Vimentin (VEH: n = 171 cells; CLG: n = 166 cells) and (C) E-cadherin (VEH: n = 202 cells; CLG: n = 169 cells) in MCF-7 cells was quantitated using
densitometry, with the nucleus centred at ‘50’ on the X-axis. (D)MDA-MB-231 cells were probed for Vimentin and E-cadherin expression and the distribution of (E) Vimentin (VEH: n=
173 cells; CLG: n= 199 cells) and (F) E-cadherin (VEH: n=225 cells; CLG: n=257 cells) inMBA-MD-231 cells was presented as plot profiles. The grey bars represent the average radius
of (B, C) MCF-7 cells and (E, F) MDA-MB-231 cells. The plasma membrane in MCF-7 cells is situated between ‘10’ and ‘20’ on the X-axis, and in MDA-MB-231 cells is situated at approx-
imately ‘20’ along the X-axis. *P b 0.05; **P b 0.01; ***P b 0.001 versus corresponding sampling point in the vehicle (Veh)-treated cultures.

2627T. Satram-Maharaj et al. / Cellular Signalling 26 (2014) 2621–2632
the circulation (extravasation) that is a major rate-limiting step in me-
tastasis. While EMT is required for cancer cell intravasation, the extrav-
asation phase and establishment at the secondary site requires
reverting to the epithelial phenotype. In advanced breast cancer, this
mesenchymal-to-epithelial (reverting) transition (ME(r)T) reflects the
re-induction of E-cadherin and other factors back to their ‘normal’ levels
[32]. Invasiveness and migration are critical for both intravasation and
extravasation. However, the MDA-MB-231 cell line is a post-EMT cell
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line [33], which strongly suggests that the decrease of anchorage-
independent growth and increased invasiveness following CLG-
induced MAO-A inhibition are behaviours which would be more likely
associated with extravasation. This is supported by the significant in-
duction of E-cadherin in CLG-treatedMDA-MB-231 cultures and corrob-
orates the increased expression of cadherin genes in CLG-treated
prostate cancer cells [34].

Our ability to detect smaller fragments (i.e. 55 kDa) in CLG-treated
MDA-MB-231 cells could potentially be implicating matrix metallopro-
teinase and/or γ-secretase-mediated proteolysis [35], both of which
have been linked to E-cadherin shedding [36] as well as to E-cadherin
fragment-induced cancer cell invasion [37]. CLG did not affect either
the phosphorylation of GSK-3β(Ser9), a signalling molecule known to
stimulate the transcription factor Snai1 and to repress E-cadherin
mRNA expression [15], or the interaction between GSK-3β and Snai1,
which strongly suggests that any change in E-cadherin expression in
CLG-treated cells does not result from a canonical Snai1-mediated tran-
scriptional mechanism.

Levels of β-catenin, a known interactor of E-cadherin [38], were not
affected by CLG-treatment. The β-Catenin-GSK-3β complex facilitates
the phosphorylation of β-catenin and its degradation via the
ubiquitin-proteosomal pathway [39]. A release of β-catenin from this
complex (as we've observed herein) would promote β-catenin stability
[22] and stabilization of an E-cadherin-β-catenin complex would be
necessary for binding to the cytoskeleton, formaintaining cell adhesive-
ness and for diminishing invasive potential; this could explain the poor
invasiveness of MCF-7 cells.We noticed that CLG treatment promoted a
significant cleavage of E-cadherin and also promoted an association of a
smaller 55 kDa E-cadherin species with β-catenin. This would presum-
ably alter the normal course of E-cadherin-β-catenin signalling and
could potentially facilitate oncogenic signalling, as suggested elsewhere
[35,40]. Thus, the post-EMT status of the MDA-MB-231 cell line in
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combination with the potential of a CLG-induced loss of a complex be-
tween E-cadherin (120 kDa) and β-catenin, or the enhanced interaction
between E-cadherin (55 kDa) and β-catenin, could have bearing on
their high metastatic potential.

The role of GSK-3β in cancer progression is complicated as it can exert
effects independently of any canonical change in phosphorylation status.
Indeed, it may function as a “tumour suppressor” in some cases, but pro-
mote growth and development in others [25]. Clearly, CLG/MAO-A has a
non-canonical influence on GSK-3β since the phosphorylation of both
GSK-3β and Akt are unaltered, yet CLG had an unpredictable effect on
β-catenin expression and its ability to interact with E-cadherin. While
the nature of CLG's effects in the current context remains unclear, it
has been shown to induce the transcription of oncogenic genes, including
β-catenin in prostate cancer cells [7].

In MDA-MB-231 cells, we observed a very faint 120 kDa E-cadherin
immunoreactive band in complex with β-catenin, which seems to
have been replaced with a 55 kDa E-cadherin band (note, both of these
E-cadherin species were at the very limit of detection in these cells). In
corresponding cells, E-cadherin immunofluorescence appears to have in-
creased primarily in the nucleus. Such an observation is not unique.
Indeed, the proteolysis (cleavage) of E-cadherin is known to promote
its nuclear localization, but work using colorectal as well as breast cancer
cells reveals that nuclear E-cadherin is not necessarily associated with
the anticipated metastatic phenotypes, e.g. reduced invasiveness, foci
formation and proliferation [41,42]. The functional implication(s) of nu-
clear E-cadherin expression in primary tumours andmetastases remains
unclear, but it has been suggested that any associated phenotype un-
doubtedly reflects the proportion of pools of full-length versus cleaved
E-cadherin species, and contributions to non-canonical environment-
dependent regulation of malignant behaviour [41].

Aside from the (post)translational regulation of signalling com-
plexes discussed above, another mechanism contributing to our obser-
vations might reside with a role for MAO-A which is independent of its
catalytic activity. Indeed, we have reported that a catalytic-dead variant
of MAO-A affects BrdU incorporation and cell proliferation in neuronal
cultures [12]. Furthermore, a related amine oxidase, e.g. the vascular ad-
hesion protein-1, also has a dual function depending on its localization.
For example, within the cytoplasm it acts as a catalytic enzyme, but
upon relocation to the cell surface it promotes endothelial adhesion
and the spread of cancer [43,44]. Preliminary cross-linking studies
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reveal the existence of a significant pool of active MAO-A on the surface
of MCF-7 as well asMDA-MB-231 cells, with a greater proportion of the
cell's MAO-A protein being expressed on the surface of MBA-MD-231
cells. Perhaps different stages of cancer progression (extravasation?)
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Snai1-dependent repression of E-cadherin and the induction of an EMT
inMCF-7 cells has recently been associatedwith overexpression of lysyl
oxidase-like 2, a copper-dependent amine oxidase [45].

Our investigation did reveal a reduction in proliferation and a con-
current increase in BrdU staining in CLG-treated MDA-MB-231 cells.
While seemingly paradoxical, the only explanation we can provide
comes from a recent report that found BrdU uptake in pancreatic β-
cells can indicate de novo DNA synthesis as well as a DNA damage re-
sponse, albeit in a context-dependent manner [46].

Finally, the lack of similarity in the response of MDA-MB-231 and
Au565 cells (both being ER-negative) to treatment with CLG strongly
suggests that the cell's ER statusmight not be a primary factor in our ob-
servations. However, an interaction between CLG/MAO-A and ER status
in breast carcinomas cannot be discounted absolutely and is certainly
worthy of further examination.

5. Conclusions

While it is unclear whether manipulation of theMAO-A system (de-
pression-related or otherwise) could be predisposing to breast cancer
metastasis in the clinic, our observations certainly do support this trou-
bling possibility. Comparing the broad range of effects of CLG on MDA-
MB-231 (ER-negative, mesenchymal) cells to the limited effects of CLG
on MCF-7 (ER-positive, epithelial) and Au-565 (ER-negative, epithelial)
cells leads us to propose that inhibition of MAO-A on breast cancer pro-
gression is dependentmore on the cell's EMT status than on its ER status.
This notion could help in resolving some of the ambiguity surrounding
the fundamental role of MAO-A in malignant behaviour—with a subtle
role for MAO-A in extravasation — and could provide fundamental in-
sight into new strategies for diagnosis, prognosis, and prevention of
metastatic cancers.
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