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Abstract: Historically, much of the focus on monoamine oxidases and their substrates has been in the area of depression 
and the monoamine neurotransmitters serotonin (5-hydroxytryptamine), noradrenaline, and to a lesser extent, dopamine. 
With both forms of monoamine oxidase (A and B), the production of hydrogen peroxide as a byproduct of the reaction be-
tween the monoamine oxidases and their monoamine substrates has also implicated monoamine oxidase-sensitive events 
in intrinsic cell death pathways, particularly those centered on oxidative stress and peroxyradical-mediated mechanisms. 
Consequently, and perhaps not unexpectedly, the inhibition of monoamine oxidase has been considered as adjunctive 
therapy in neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease, both of which involve a sig-
nificant oxidative stress component. Yet the literature also provides ambiguities; indeed, not all of the functions of mono-
amine oxidases are dependent on catalytic activity nor can they all be ascribed to expression levels of the monoamine oxi-
dase protein per se. Recent reports strongly suggest that the functions of monoamine oxidases also rely on post-
translational modifications, epigenetic influences, interactions with other proteins, the cell phenotype and its localization 
to specific subcellular compartments. These recent developments certainly complicate the issue, yet they need to be duly 
considered when implicating monoamine oxidases and their inhibitors in both in vitro and in vivo pathological contexts. 

Keywords: Monoamine oxidase; oxidative stress; apoptosis; phosphorylation; splice variant; catalytic independent; mitochon-
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INTRODUCTORY COMMENTS 

 Neurodegenerative diseases are progressive diseases with 
symptoms that usually manifest following profound and ir-
reversible cellular damage. In certain instances, such as with 
Huntington’s disease, family history and genetics play an 
unequivocal role in the onset of the disease. In this particular 
disease the number of the trinucleotide ‘CAG’ repeats in 
exon1 of the huntingtin gene is inversely correlated with age 
of onset, i.e. the more repeats there are, the earlier and the 
more aggressive the disease [1, 2]. In other cases, the neu-
rodegenerative diseases only emerge in the aged population, 
although there is debate as to whether the diseases, for ex-
ample Alzheimer’s Disease (AD), are ‘age-related’ or ‘ag-
ing-related’ [3]. The current review will examine the contri-
bution of the enzyme, monoamine oxidase (MAO1), to men-
tal health and to neurodegenerative disease with a particular  
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emphasis on its role in the pathology of AD. We will provide 
some of the basic information required to familiarize the 
reader with MAO and we will examine some of the evi-
dence, albeit oftentimes ambiguous, regarding the role(s) of 
MAO in neurodegeneration. We will occasionally include 
discussions of other pathologies in which MAO has been 
implicated to support or, in some cases, apparently disagree 
with our arguments. It is known that there are two isoforms 
of MAO, denoted MAO-A and MAO-B, with distinct poten-
tials for contributions to neurodegeneration. Several recent 
reviews have examined the roles of MAO-B and some of its 
selective inhibitors, including dual/multi-target (e.g. MAO 
and acetylcholinesterase) inhibitors, in Parkinson’s disease- 
and in AD-related dementias [4-7]. In addition, an overview 
with a particular focus on the contribution of cell signalling 
and pro-/anti-apoptotic pathways in MAO-A inhibitor-
mediated neuroprotection was recently published [8]. Rather 
than simply iterating the contents of these excellent reviews, 
the present review will comment on less obvious contribu-
tions by MAO-A, but the details will be contrasted and com-
pared with MAO-B-related information when appropriate. 
While some of our comments might be provocative, they are 
certainly not intended to be critical. Our objective is to con-
sider recent developments in the field, how these develop-
ments fit into the existing literature and, by extension, to 
provide novel perspectives on unintentional biases in the 
literature. We hope to highlight biases that might have 
steered the field away from a deeper understanding of MAO 
form and [patho]physiological function, and how these bi-
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ases could have led to some of the intricacy and ambiguity in 
the associated literaure.

THERE ARE TWO ISOFORMS OF MAO 

 MAO is a flavin adenine dinucleotide (FAD)-containing 
amine oxidase whose putative physiological function is the 
oxidative deamination of biogenic and xenobiotic mono-
amines. The reaction with MAO uses oxygen and results in 
the generation of the short-lived corresponding aldehyde as 
well as ammonia and hydrogen peroxide (H2O2) as reaction 
by-products. If these by-products are not detoxified, their 
accumulation is invariably toxic. For example, if H2O2 is not 
inactivated by glutathione peroxidase, then it can be con-
verted by transition metal-mediated Fenton reactions to toxic 
hydroxyl radicals that can initiate lipid peroxidation and cell 
death [9]. This is exacerbated in situations where free radical 
scavenging or buffering systems may be compromised such 
as in the elderly [10] and/or during neurodegenerative proc-
esses [11]. There is strong evidence that oxidative stress 
plays a crucial role in the initiation and progression of AD 
[12, 13]. This is supported by the observation that reactive 
oxygen species, such as H2O2, can mediate the neurotoxicity 
associated with the �-amyloid peptide [14, 15] and by the 
elevated oxidative damage in transgenic mouse models of 
AD [16, 17]. 
 MAO, initially named tyramine oxidase given its ability 
to deaminate tyramine [18], was subsequently given the 
more inclusive designation, MAO, once the biogenic mono-
amines epinephrine, norepinephrine, serotonin (5-hydroxy 
tryptamine, 5-HT) and dopamine were also identified as sub-
strates [19]. Two isoforms of MAO, i.e. MAO-A and MAO-
B, have been identified according to differences in their 
specificities for inhibitors [20-22] and substrates [22-25]. 
MAO-A is inhibited by clorgyline at low nanomolar concen-
trations and this irreversible inhibitor has been used to esti-
mate the turnover rate of MAO-A to be 2 days and recovery 
of MAO-A activity and protein levels after treatment with 
clorgyline to occur within 14 days [26]. MAO-B is inhibited 
by the irreversible inhibitor selegiline (l-deprenyl) at low 
concentrations, and studies using radiolabeled selegiline es-
timate the half-life of MAO-B in human brain to range be-
tween 30 and 40 days [27, 28]. Serotonin, noradrenaline, and 
adrenaline are preferential substrates for MAO-A, and ben-
zylamine and �-phenylethylamine for MAO-B, yet there 
appears to be a functional mismatch between the specific 
isoform and its preferred substrate. Indeed, MAO-A (mRNA 
and protein) is highly expressed in catecholaminergic neu-
rons of the locus coeruleus (and it is not found in serotoner-
gic neurons), whereas MAO-B (mRNA and protein) is pref-
erentially expressed in serotonergic neurons of the raphé 
nuclei, in histaminergic neurons and in glial cells [29-36]. 
This pattern of mismatch is conserved across species and is 
thought to be a means of mitigating off-target effects by 
amines diffusing in from adjacent regions/synapses [32, 33]. 
This notion is clearly illustrated by the fact that MAO-A is 
localized to noradrenergic nerve terminals of the rat pineal 
gland, while MAO-B is concentrated in juxtapositioned (se-
rotoninergic) pinealocytes [37]. Dopamine is a substrate for 
both isoforms in humans [38, 39] and preferentially for 
MAO-A in rats [23, 40]. In most species, dopamine, 
tyramine, and tryptamine are common substrates for both 

MAO isoforms [22, 41, 42]. However, these substrate 
specificities are not absolute as both enzymes show broader 
substrate preference at high substrate concentrations [24]. 
This is an important consideration as MAO-B is known to 
play a central role in dopamine degradation in glia/ astro-
cytes, yet MAO-A has also been detected in glia [43]. This, 
in combination with the therapeutic potential of non-
selective MAO-A/B inhibitors [44], suggests that glial 
MAO-A could contribute to dopamine degradation when 
levels of this substrate are in excess [45]. 
 The role of MAO-B in neurodegeneration has been 
widely studied and recently discussed [4-7, 46]. In contrast, 
the degradation of serotonin, noradrenaline and dopamine 
(and any associated cellular dysfunction) by MAO-A has 
been historically associated primarily with the neurobiology, 
and treatment, of depression [44, 47, 48] rather than any neu-
rodegenerative phenotype. However, aspects of depression 
and progressive neurodegeneration could certainly rely on 
overlapping molecular mechanisms and could account for 
the recent spate of reports in the literature associating co-
morbid depression with many other disorders, including an 
increased risk of dementia and AD. 
 MAO-A and MAO-B are encoded by two different genes 
[49] located tail-to-tail on the Xp11.23-Xp 22.1 short arm 
[50, 51]. Both genes are comprised of 15 exons that span at 
least 60kb with an identical exon-intron organization that 
suggests duplication of a common ancestral gene [52]. Tis-
sue-specific differences in the regulation of MAO-B tran-
scription could rely on polymorphisms including a C-1,114T 
in the 5� region, a variable number ‘GT’ repeat in intron 2, 
and a G-to-A point mutation in intron 13 of the MAO-B gene 
[53]. A variable number tandem repeat (VNTR) polymor-
phism in the MAO-A promoter has five alleles containing 2, 
3, 3.5, 4, or 5 copies of a 30-bp tandem repeat. Of these al-
leles, only those with three or four copies of the VNTR are 
common in different human populations, and those with 3.5 
and 4 copies of the VNTR are transcribed much more effi-
ciently than the alleles with 3 and 5 repeats [54]. These dif-
ferences in transcription efficiency could account for the 
significant variability in MAO-A activity in different human 
skin fibroblast cultures [55] and could account for risk in 
Parkinson’s disease [56], AD [57], impulsivity [58] and 
other neuropsychiatric disorders [59], although there is still 
debate as to the role of VNTRs in mood and depression [60]. 
It should be noted that imaging studies have clearly demon-
strated that seemingly modest increases in MAO-A binding 
capacity (i.e. 34%) can account for the depressive phenotype 
in treatment-naive depressed patients [61] as well as the de-
pression associated with post-partum [62] and following 
smoking cessation [63]. It is interesting that prenatal expo-
sure to cigarette smoke, which has long been known to con-
tain an MAO inhibitory substance [64], is consistently asso-
ciated with increased rates of behavioural problems, irritabil-
ity, and attention-deficit/hyperactivity disorder [65], adoles-
cent onset of drug dependence [66], and risk of violent of-
fenses [67] and criminal arrest [68] in the offspring. MAO-B 
inhibition could clearly be contributing to the reduced inci-
dence of Parkinson’s disease in smokers [69] (with a possi-
ble predisposition to smoking by any one of the polymor-
phisms in the MAO-B gene already discussed [53, 70]). 
However, the neuropsychiatric and conduct disorders men-
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tioned above would be more in keeping with a reduction in 
MAO-A availability as corroborated by recent neuroimaging 
studies [63, 71]. This long-lasting effect in the offspring 
strongly suggests an epigenetic modification, as does the 
much earlier finding of a region-dependent “daily rhythm of 
MAO” in human brain extracts [72]. An epigenetic compo-
nent to the regulation of MAO function is now a strong con-
sideration in the relevant literature. Indeed, hypermethylation 
of the MAO-B promoter has recently been linked to smoking 
[73] and epigenetic regulation of the MAO-A gene has been 
associated with several behavioural phenotypes [31, 74, 75] 
including a gender-specific propensity for nicotine depend-
ence [76]. Tranylcypromine, a non-selective MAO inhibitor, 
is also a potent inhibitor of the histone demethylase, LSD1 
[77], while the deacetylation (and activation) of the MAO-A
promoter has been linked to anxiogenic behaviour in the rat 
[31] and diurnal fluctuations in mood and MAO-A appear to 
be linked to components of the circadian clock [78]. These 
transient changes in MAO-A expression associated with epi-
genetic influences are not in accord with the earlier estimates 
of turnover rates and half-life for MAO-A that fall within the 
range of days to weeks [26]. Finally, it is vital to understand 
that the MAO gene could undergo tissue-specific splicing, as 
proposed for tissue differences in imidazoline binding [79] 
and as shown to occur following insertional mutagenic dis-
ruption of the Mao-A gene in mice [80]. We will re-visit the 
potential contributions by splice variants in our subsequent 
discussion.

RECENT OBSERVATIONS REVEAL AN EFFECT OF 
MAO-A THAT IS INDEPENDENT OF ITS CATA-
LYTIC ACTIVITY 

 Exon 12 is the most conserved exon between MAO-A and 
MAO-B (and across species), ostensibly because of the im-
portance of the functional domain that it encodes, i.e. a 33-
amino acid expanse that contains the Ser-Gly-Gly-Cys-Tyr 
pentapeptide that flanks the cysteine406 residue (Cys406) to 
which the cofactor FAD covalently binds [81]. It is impor-
tant to note that FAD is not an absolute requirement for full 
functionality of the MAO-A enzyme, but that it might play a 
substantive role in maintaining the structural integrity and 
stability of the enzyme [82, 83]. This seemingly minor ob-
servation has a significant impact on the interpretation of 
MAO-A function. Indeed, we have recently shown that over-
expression of an MAO-A protein bearing the Asp328Gln 
substitution (already known to inhibit MAO-A activity [84]) 
was able to alter cell proliferation and de novo DNA synthe-
sis in the human HEK293 cell line [85]. Furthermore, this 
same catalytic-dead variant was able to induce the expres-
sion of Bcl-2 and Bcl-XL, two anti-apoptotic/pro-survival 
molecules that also have been associated with pharmacologi-
cal inhibition of MAO-A [86, 87]. Interestingly, we observed 
similar effects in breast cancer cells overexpressing a cata-
lytic-dead Cys406-substituted MAO-A variant (Mousseau, 
Kuski, Pennington, unpublished data), which, as mentioned 
above, would mitigate FAD binding. These data strongly 
suggest that MAO-A-mediated events are not necessarily 
predicated solely on its catalytic activity. Until recently, the 
basic premise was that the catalytic activity of a given sam-
ple preparation was a valid reflection of the availability and 
expression of MAO-A protein within the sample. With the 

commercial availability of relatively specific antibodies, it 
has become clear that this premise is flawed. Without this 
knowledge, the effect(s) of MAO have been attributed exclu-
sively to catalytic reactions and not to any uncharacteristic 
catalytic-independent influences. This recent development 
certainly primes any debate on the exact role of MAO-A in 
physiological or pathological phenotypes. 
 Indeed, there is clear ambiguity in the relevant literature. 
For example, AD-related pathology is thought to rely pri-
marily on the MAO-B isoform [88, 89] since MAO-B activ-
ity and MAO-B mRNA have been reported to be increased in 
platelets of AD patients [90, 91], as well as in the hippocam-
pus, thalamus, and cerebral cortex, which are regions that 
undergo extensive neuronal cell death during AD [92, 93]. 
The MAO-B increase could be due to the local infiltration of 
glial cells in these areas as MAO-B is mainly expressed in 
this cell type, a significant proportion of which are found in 
the proximity of �-amyloid plaques (a hallmark of AD pa-
thology) [32, 88, 94]. MAO-A activity and MAO-A mRNA 
are also reported to be elevated in several areas of the AD 
brain including the occipital cortex, frontal lobe of neocor-
tex, parietal cortex, and locus coeruleus [93, 95, 96] as well 
as in the caudate nucleus, thalamus and white matter [97]. 
Although there are also reports of decreases in MAO-A ac-
tivity in AD brains [95, 98], it is important to realize that a 
substantial amount of MAO-A (i.e. 75-80%) needs to be 
inhibited before any effects on MAO-A-mediated cell func-
tion would be notable [99, 100]. Furthermore, the 17-31% 
decrease in MAO-A activity in the AD locus coeruleus, 
where nearly 70~80% of the neurons are lost [95, 98, 101], 
suggests that the average MAO-A activity per surviving neu-
ron is actually increased [95]. Such a localized hyperactiva-
tion of MAO-A could certainly account for the accumulation 
of toxic MAO-mediated metabolites in AD brains [102]. 
Similarly, in the earliest stages of AD, such a ‘hyperacti-
vated’ form of MAO-A in MAO-A-immunoreactive cho-
linergic neurons in the nucleus basalis of Meynert and any 
H2O2-associated increase in oxidative stress could account 
for the excessive loss of cholinergic neurons in this structure 
[98] as well as in MAO-A-expressing serotoninergic neurons 
in the dorsal raphé nucleus and noradrenergic neurons in the 
locus coeruleus [103-107]. We will re-visit the potential for a 
hyperactivated state of MAO-A in an AD-related context a 
little further on. For the moment, it is clear that estimating 
MAO-A activity without demonstrating corroborative 
changes in protein expression presents a significant bias in 
defining an MAO-A-mediated contribution to earlier stage 
disease progression based on extrapolations made using 
post-mortem, i.e. terminal stage, tissues (or any other model 
preparation, for that matter). 

 Estrogen, a neuroprotective hormone, can selectively 
decrease MAO-A activity and Mao-A mRNA levels in many 
brain areas [108, 109] and is thought to explain, in part, the 
increased risk of AD in estrogen-deficient, post-menopausal 
women. In serum withdrawal-induced neuronal apoptosis, 
MAO-A activity is selectively increased as is the activation 
of the pro-apoptotic enzyme caspase-3 [110, 111]. Paren-
thetically, impaired caspase-3/-9 expression following tar-
geted siRNA-mediated MAO-A knockdown or R1-mediated 
repression of Mao-A transcription correlates with dysregu-
lated apoptosis and disturbed neurodevelopment in an in
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vitro model of embryogenesis [112]. H2O2 generated by 
MAO induces cell apoptosis in kidney [113], while MAO-A, 
but not MAO-B, can bind with an endogenous neurotoxin to 
reduce mitochondrial membrane potential (��m), thus pro-
viding additional mechanisms linking MAO-A to apoptotic 
cell death [114]. 
 Yet, as with the discussion on AD above, the role of 
MAO-A in normal aging is equally ambiguous [96, 115-117] 
and if we examine the cancer literature, where MAO-A has 
recently been associated with disease progression, a similar 
ambiguity emerges. For example, MAO-A/Mao-A mRNA is 
decreased across all cancers (regardless of species) and this 
generalized decrease is proposed as a marker for tumour 
progression [118]. Yet our own studies reveal that the MCF-
7 cell line has virtually no MAO-A activity, but the highly 
aggressive MDA-MB-231 breast cancer cell line has very 
high MAO-A activity (Satram-Maharaj, Nyarko, Kuski, and 
Mousseau, unpublished data). MAO-A activity is also in-
creased in experimental breast cancer in rats [119]. Para-
doxical increases in serotonin (which would contradict a 
putative concurrent increase in MAO-A activity) in human 
breast cancer are thought to support tumour growth [120]. 
MAO-A protein is also induced in high-grade prostate cancer 
[121], yet, again paradoxically, serotonin is concurrently 
increased [122] to the point that it (e.g. serotonin) is also 
proposed as a valid marker for prostate tumour progression 
[123]. It is interesting that these reports base their conclu-
sions on MAO-A protein expression and do not include any 
estimate of MAO-A activity. Without any evidence to the 
contrary, the MAO-A protein detected in these reports could 
be in an inactive form and, as our work with the MAO-
A(Asp328Gln) catalytic-dead variant shows [85], could be 
promoting proliferative phenotypes via non-catalytic-based 
de novo DNA synthesis and/or induction of anti-apoptotic 
Bcl-2-related proteins. 

 Could a pool of catalytic-dead MAO-A protein influence 
brain function? While this has never been pointedly exam-
ined, there is evidence, albeit indirect, in support of this pos-
sibility. For example, our recent work demonstrates that 
mice expressing the AD-related M146V-substituted preseni-
lin-1 (PS-1) protein express significantly more cortical 
MAO-A protein than their wildtype littermates [124]; how-
ever, MAO-A activity in these mice remains comparable to 
wildtype levels, which suggests that the de novo pool of 
MAO-A protein is somehow rendered inactive. In these PS-
1(M146V) mice there is a significant disruption of cortical 
cytoarchitecture and laminar organization [124] that is a 
phenotype reminiscent of the disrupted cortical lamination 
observed in both prenatal PS-1-null mice [125] and postnatal 
PS-1 conditional knockout mice [126]. This certainly impli-
cates the PS-1 variant itself in this phenotype. Yet, similar 
permanent cytoarchitectural alterations are also evident in 
the somatosensory cortex of MAO-A-deficient mice [80], 
which, presumably, do not bear a PS-1 defect. One could 
argue that it is the hyperserotoninergic tone that is observed 
in both PS-1(M146V) [124] and MAO-A-deficient [80] mice 
that is the commonality underlying the cytoarchitectural al-
teration in these different strains of mice. This, again, is a 
reasonable assumption given the similar cortical disruptions 
associated with hyperserotoninergic (but not noradrenergic) 
tone produced by administration of the MAO-A inhibitor 

clorgyline to normal mice during their first week of life 
[127] or to the clorgyline-induced neurodevelopmental 
changes observed during in vitro embryogenesis [112]. Yet 
one could also argue that it is MAO-A in its inactive state 
that is also partly responsible for these effects. While such a 
pool is present in the PS-1(M146V) mice [124] and an inac-
tive human MAO-A protein does exert phenotypic changes 
in vitro [85], how would this mechanistically relate to the 
original Mao-A-deficient mouse generated by Cases and 
colleagues [80]? In fact, this is where it is important to recall 
that these mice were generated by insertional mutagenesis 
(i.e. the gene for interferon-� was inadvertently inserted an-
tisense into exon2 –and thus disrupting normal transcription- 
of the Mao-A gene); the authors clearly demonstrated that the 
normal, i.e. full length, Mao-A transcript was absent, but that 
there was evidence of exon skipping, resulting in four de-
tectable Mao-A splice variants. This raises the distinct possi-
bility that ‘exon-deleted’ MAO-A proteins exist and while 
any MAO-A protein expressed in these mice would clearly 
be devoid of catalytic activity (not surprising, given the loss 
of exon2 and the portion of the FAD-binding domain en-
coded by this exon), the existence of inactive MAO-A pro-
tein variant(s) based on the remaining exons could certainly 
be contributing to various phenotypes. Finally, one must 
extend these suppositions to the ‘knock-out’ mouse used by 
the Shih laboratory and generated as a result of a spontane-
ous A863T point mutation in the Mao-A gene coding se-
quence that results in a ‘TAA’ codon and a premature ‘stop’ 
during the translation of the MAO-A protein [128]. There is 
a complete loss of MAO-A catalytic activity in these mice, 
as would be expected of the truncated gene product, but the 
possibility of exon skipping has never been examined (or 
excluded). Thus, the possibility that a deletion mutant MAO-
A protein could be triggering such profound developmental 
changes in these two ‘knock-out’ mice and potentially exert-
ing some influence on the proliferation of neural stem cells, 
as observed recently in Mao-A/B ‘knockout’ mice [129], is 
certainly intriguing and warrants further investigation. Could 
similar splice variants be contributing to the behavioural and 
cognitive phenotypes in the human kindred bearing a point 
mutation in exon8 of the MAO-A gene and functional dele-
tion of the MAO-A protein [130]? This is also worthy of 
consideration. 

 Finally, one has to wonder whether a catalytic-dead
MAO-A protein could affect other neurodegenerative dis-
eases with a MAO-based causative mechanism. For exam-
ple, Parkinson’s disease has been historically associated with 
an MAO-B-sensitive etiology as well as therapies based on 
the putative MAO-B-selective inhibitors selegiline and 
rasagiline [5]. Rasagiline can also prevent the caspase activa-
tion and oxidative stress associated with an in vitro �-
synuclein model of parkinsonism [131]. Recent work, how-
ever, has suggested that not all of the pathology in rodent 
models of Parkinson’s disease can be ascribed solely to 
MAO-B [132]. Indeed, some of the neuroprotective effects 
of rasagiline, particularly its ability to induce anti-apoptotic 
proteins such as Bcl-2-related proteins [133], might reflect 
MAO-A-mediated mechanisms in human SH-Sy5y neuro-
blastoma cells [8, 87]. In fact, there is a reasonable evidence 
that the N-propargyl moiety (found in many MAO inhibitors, 
e,g, pargyline, clorgyline, selegiline, rasagiline, ladostigil) 
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can exert effects and activate cellular signalling cascades 
(particularly those associated with neuroprotection/rescue) 
independent of any catalytic inhibition of the targeted MAO 
enzyme [5, 44, 134, 135]. Although it remains to be deter-
mined whether non-catalytic properties of an off-target inhi-
bition of MAO-A might be responsible for any Parkinson’s 
disease-modifying effects of rasagiline or selegiline, our 
work on the catalytic-dead MAO-A(Asp 328Gln) variant 
and its ability to induce Bcl-2-related proteins [85] certainly 
support this possibility. 

FIRST-GENERATION (IRREVERSIBLE) VERSUS 
NEWER REVERSIBLE INHIBITORS OF MAO 

 The substrate binding site is similar in MAO-A and 
MAO-B, suggesting that substrate and inhibitor specificities 
rely on additional influences, including the size of the recog-
nition site itself, which is smaller in MAO-B [20]. The re-
gion contained within residues 120-220 and residues 50-400 
determines substrate preference of rat liver MAO-A and 
MAO-B, respectively, while the region flanked by residues 
220-400 appears to contribute to the relative catalytic activ-
ity towards their respective substrates [136]. Furthermore, 
crystal structures of the cavity-shaping loop at residues 210-
216 in human MAO-A and 201-206 in human MAO-B [137] 
implicate these regions in substrate recognition, while resi-
dues 89-219 and 295-399 of human MAO-A may contribute 
to substrate/inhibitor-binding domains [137]. This is sup-
ported by the loss of catalytic activity associated with the 
deletion of carboxy-terminal amino acids in human MAO-A 
[138, 139] and explains why substitution of the carboxy-
terminal amino acids of MAO-B with those of MAO-A im-
parts MAO-A activity and inhibitor specificity to the chi-
meric MAO-B/A protein [140]. 
 The mechanism-based inhibition by irreversible ‘suicide’ 
inhibitors, such as clorgyline or selegiline, occurs following 
their binding to the FAD cofactor [141]. This binding trig-
gers MAO to process clorgyline and selegiline as if they 
were substrates. As the catalytic reaction proceeds, a reactive 
intermediate covalently alkylates FAD, which effectively 
and irreversibly (hence ‘suicide’) blocks subsequent access 
by substrate(s). The so-called ‘cheese effect’ is a well-
documented, noxious side-effect of irreversible inhibition of 
gut wall MAO-A, the resulting in the elevation in circulating 
levels of dietary sympathomimetic amines such as tyramine 
and, ultimately, tyramine-induced release of noradrenaline. 
Symptoms that can range from headache to a hypertensive 
crisis were first associated with MAO inhibitors and high 
tyramine content foods such as certain red wines and aged 
cheeses (hence ‘cheese effect’). Concern about hypertensive 
crises led to the development of reversible inhibitors of 
MAO-A (RIMAs). Because tyramine still has competitive 
access to the active site on MAO-A and the ‘cheese effect’ is 
thus avoided, RIMAs such as moclobemide are better toler-
ated by at-risk populations, particularly the elderly, including 
those with cognitive deficits [142, 143]. RIMAs have a fur-
ther advantage over irreversible inhibitors in that there is 
usually full recovery of brain MAO within 24 hours after 
cessation of treatment [144], which is an important consid-
eration if transferring a patient onto a drug regimen that may 
be contraindicated with elevated levels of biogenic amines.

 MAO-A expression could be a risk factor for AD [57, 93, 
145, 146]. Depression, perhaps by virtue of its capacity to 
promote cognitive impairment, is now thought to represent a 
prodrome for AD-related dementia in certain patients [147-
149]. This suggests that MAO inhibitors could be useful ad-
junctive drug therapies in AD. RIMAs are particularly effi-
cacious in treating depression [142] and cognitive disorders 
[143] in the elderly, and are potential anti-apoptotic agents 
[150]. The selective MAO-A inhibitor clorgyline inhibits 
glutamate-induced excitotoxicity [151] as well as apoptosis 
induced by serum starvation [110, 150] and by the AD-
related �-amyloid peptide in vitro [15], and protects against 
damage caused by the mitochondrial toxin malonate in vivo 
[152]. While selegiline is often used in Parkinson’s disease 
[5], its benefit in AD patients remains a matter of debate 
[153, 154]. However, dual inhibitor drugs, i.e. those that 
target MAO and acetylcholinesterase simultaneously, have 
been proposed as therapeutics in AD [155], and ladostigil, 
which combines the activity of rasagiline and anticho-
linesterase activity, provides some benefit in the context of 
AD [156]. 
 Depression is also a prodrome in Parkinson’s disease 
[157] and appears to reflect reductions of noradrenaline in 
the locus coeruleus and of serotonin in the raphé nucleus 
[158]. While the combination of the older, irreversible MAO 
inhibitors, e.g. clorgyline and selegiline, with the Parkin-
son’s therapeutic dopamine precursor, l-dopa, had raised 
some clinical concern [159, 160], the same does not hold for 
the newer generation MAO inhibitors. It is clear that the 
RIMAs moclobemide [161], brofaromine [162], and befloxa-
tone [163], because they can be competitively displaced from 
the MAO-A enzyme by excess dopamine, also allow any 
excess dopamine (and other biogenic amine substrates) to be 
degraded [164]. Thus, Parkinson’s patients tolerate mo-
clobemide because of a limited ‘cheese effect’[165]; because 
it improves motor functions [166]; and because it benefits 
the significant proportion of this patient population who suf-
fer from depression [158, 167]. 

DO THE NEUROPROTECTIVE EFFECTS OF MAO 
INHIBITORS RELY SOLELY ON CATALYTIC IN-
ACTIVATION OF THE ENZYME? 

 While it is assumed that MAO inhibitors are usually quite 
selective and specific, in fact there are many reports that 
MAO inhibitors interact with other amine oxidases, various 
transaminases, decarboxylases, dehydrogenases, cyto-
chromes, cytochrome P450s, biogenic amine receptors and 
transporters, imidazoline binding sites, and even sigma re-
ceptors (see reviews [168, 169]). All of these off-target in-
teractions could certainly contribute to the therapeutic and/or 
adverse effect profiles of MAO inhibitors. Interestingly, the 
selective serotonin reuptake inhibitor (SSRI) antidepressants 
fluoxetine and its active metabolite nor-fluoxetine have been 
shown to have MAO-A inhibitory properties in the rat [170] 
and preliminary investigations (Mousseau, Holt and Baker, 
unpublished data) indicate that the same may hold true for 
human MAO-A, which could be part of the reason that the 
use of these SSRIs is contraindicated in patients already on 
an MAO inhibitor regimen. 
 Selegiline and rasagiline have been reported to prevent 
apoptotic phenotypes by up-regulating the anti-apoptotic 
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Bcl-2 and by down-regulating the pro-apoptotic Bad and 
Bax, and preventing nuclear translocation of glyceraldehyde-
3-phosphate dehydrogenase [44]. Selegiline also has been 
reported to inhibit the accumulation and fibrillar behaviour 
of �-amyloid [171] and can reverse age-related memory im-
pairment [172]. Furthermore, pretreatment with selegiline or 
pargyline (also an irreversible inhibitor of MAO-B) protects 
dopaminergic neurons against MPTP-mediated neurotoxicity 
in vivo [173, 174] and Mao-B knock-out mice are resistant to 
MPTP-induced neurotoxicity [35]. Yet the effects of MAO-
B inhibitors in some of the examples mentioned above might 
not rely specifically on MAO-B itself since neuroprotection 
was often associated with concentrations of the drug that 
were too low to inhibit the enzyme [175, 176]. Phenelzine, 
an irreversible inhibitor of MAO-A and MAO-B, also ele-
vates brain levels of GABA, alanine and ornithine, seques-
ters toxic aldehydes such as 3-aminopropanal, acrolein and 
formaldehyde, and inhibits the enzyme primary amine oxi-
dase [168, 177-180]); some of these actions could well be 
contributing to its reported neuroprotective effects [181]. 
Both tranylcypromine (also an irreversible inhibitor of 
MAO-A and MAO-B) [182] and phenelzine [183] have been 
shown to induce the expression of brain-derived neurotro-
phic factor in rat brain. Furthermore, the (S)-isomer of 
rasagiline (TVP1022), which possesses the N-propargyl 
moiety, but does not inhibit MAO-B, is neuroprotective 
[184], whereas rasagiline can induce both GDNF mRNA and 
protein expression, but an analogue devoid of the N-
propargyl moiety cannot [185]. This suggests actions of 
these MAO inhibitors that could rely on an innate action of 
this moiety (as we had already discussed above), rather than 
on any catalytic-dependent mechanism. In addition, N-
propargyl-containing compounds, such as selegiline and 
rasagiline, have been found to activate Bcl-2 family mem-
bers, elevate superoxide dismutase and glutathione levels, 
up-regulate tyrosine hydroxylase and aromatic amino acid 
decarboxylase [134, 135, 186, 187], and interact with the 
mitochondrial pore complex and modulate amyloid precursor 
protein cleavage [44, 188, 189]. More recently, tranyl-
cypromine has been shown to be a potent inhibitor of the 
histone demethylase, LSD1 [77], which implicates epige-
netic regulation in its range of mechanism of action(s). Any 
of these mechanisms of action would certainly provide for 
elements of neuroprotection. 
 The use of the clorgyline in our recent characterization of 
the physical interaction between the AD-related PS-1 
(M146V) protein and MAO-A revealed a surprising observa-
tion. It is known that AD-related mutations can exert 
changes in the PS-1 protein that, in turn, influence the con-
formation of the PS-1-substrate complex [190]. Perhaps by 
virtue of the direct interaction between PS-1(M146V) and 
MAO-A, a concomitant change in the structure of MAO-A 
could be occurring that could account for the increased po-
tency of clorgyline we observed in the PS-1(M146V) mouse 
brain samples. Specific residues in MAO-A have been asso-
ciated with conformational stability and access to the cata-
lytic cleft [191]. It is therefore not unreasonable to posit that 
a PS-1-induced conformational change in the MAO-A pro-
tein could alter the accessibility of clorgyline to its binding 
site and would suggest partially interconvertible states of a 
single clorgyline binding site. Yet, perhaps more impor-

tantly, the increased potency of clorgyline, as a mechanism-
based inhibitor, implies that the MAO-A protein in the PS-
1M(146V) brain is in actual fact far more active, but is pre-
sumably being maintained in a latent, inactive state by the 
PS-1 protein. If cellular events could disrupt the physical 
interaction between PS-1 and this hyperactive MAO-A, then 
could a localized surge in MAO-A/H2O2-mediated oxidative 
stress ensue that could overwhelm free radical-scavenging 
coping mechanisms? Such a scenario could certainly con-
tribute to the average increase in MAO-A activity per surviv-
ing neuron in vulnerable AD brain regions [95] and, as al-
ready suggested above, could certainly contribute to both the 
accumulation of toxic MAO-mediated metabolites in AD 
brains [102] as well as the loss of MAO-expressing neurons 
in the dorsal raphé nucleus, the locus coeruleus and the nu-
cleus basalis of Meynert [98, 103-107]. 

MOLECULAR BIOLOGY HAS IDENTIFIED AMINO 
ACID RESIDUES AND DOMAINS THAT ARE 
CRITICAL FOR MAO FUNCTION 

 The study of the three-dimensional structure of MAO has 
advanced due, in large part, to investigations using selective 
irreversible inhibitors [192]. There is much similarity be-
tween human MAO-A and MAO-B, although a major differ-
ence is that human MAO-B is dimeric, whereas human 
MAO-A crystallizes as a monomer [193]. Also, the cavity-
shaping loop is larger in human MAO-A than in human 
MAO-B or rat MAO-A (note: rat MAO-A crystallizes as a 
homodimer), suggesting that this cavity-shaping loop is in-
volved in the process of dimerization [137]. A single amino 
acid residue, e.g. Ile335 in MAO-A and Tyr326 in MAO-B, 
dictates substrate specificity and sensitivity to selective in-
hibitors in the corresponding enzymes [84, 194]. Phe208 in 
rat MAO-A and Ile199 in rat MAO-B are also reported to 
contribute to substrate and inhibitor specificities [195], al-
though mutations of these two corresponding residues in 
human MAOs do not alter substrate specificity [196]. Ser209 
in human MAO-A also contributes to MAO-A function, but 
the same does not hold true for the analogous residue in 
MAO-B (i.e. Ser200) [197]. Other studies have identified 
specific lysine, tryptophan and tyrosine residues [198] and 
cysteine residues [199, 200] that may contribute either to 
FAD binding or to stabilizing the protein’s conformation, 
access to the catalytic cleft and its substrate binding capacity 
[191, 198]. 

NON-MITOCHONDRIAL LOCALIZATIONS OF 
MAO PROTEINS HAVE BEEN OVERLOOKED 

 Recently, crystallography has revealed that the carboxy-
terminal amino acids 463-506 in human MAO-A are respon-
sible for membrane anchoring [137]. Studies on the mem-
brane insertion region in rat liver MAO-B reveal that dele-
tion of the 28 carboxy-terminal amino acids blocks the local-
ization of MAO-B to mitochondria. The cytochrome b5 pro-
tein fused with the carboxy-terminal 28 amino acids of rat 
MAO-B is found expressed in mitochondria instead of re-
maining in cytoplasm [201], suggesting that the mitochon-
drial targeting signal of rat MAO-B is located within this 
region [201]. The identical region in human MAO-B appears 
to determine mitochondrial localization [138, 202]. It is quite 
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possible that these regions contain the ubiquitination site 
necessary for insertion of both MAO-A and MAO-B into the 
mitochondrial membrane [203, 204]. 

 It is interesting that a catalytically active conformation of 
MAO-A is detected immediately upon interacting with the 
mitochondrial outer membranes, but prior to its ubiquitin-
dependent insertion into the membrane [203], which sug-
gests transient, but distinct pools of MAO-A and/or a con-
formational reconfiguration of the MAO-A by virtue of an 
interaction with a molecule already present on the outer 
membrane of the mitochondrion. The notion of pools of 
MAO-A is not novel; indeed, mitochondria are thought to 
contain approximately 70% of the total cellular MAO activ-
ity, whereas the microsomal fraction accounts for approxi-
mately 25% and the balance is thought to be present in a 
‘soluble’ form [205, 206]. This distribution is not a consis-
tent, however, as the heart seems to have a disproportionally 
high level of microsomal and ‘soluble’ MAO relative to that 
detected in mitochondria [207]. 
 It should be noted that MAO activity in the lysosomal 
fraction was significantly lower under control conditions 
than when rats were treated with 14C-pargyline, which indi-
cated that the lysosomes rapidly accumulated labeled MAO 
[208]. These authors also noted that the rate of return of 
MAO was much more rapid in the microsomal fraction than 
in the corresponding mitochondrial fraction, suggesting that 
the lysosomal pool of MAO could be a ‘precursor’ for the 
mitochondrial pool, although this was never firmly estab-
lished. These same authors observed that the yields of pro-
tein obtained in various fractions were not similar to the re-
coveries of enzyme activity or radioactivity. In retrospect, 
this mismatch of MAO protein and catalytic activity was 
perhaps the first indication of a possible post-translation 
regulation of MAO function. 
 An immunohistochemical study clearly showed that par-
gyline-sensitive pools of MAO could be detected in several 
subcellular compartments, including the rough endoplasmic 
reticular membranes, mitochondrial outer membranes, within 
the nuclear envelope and along parts of the plasma mem-
branes in diverse tissues [209]. MAO activity has also been 
associated earlier with the nuclear membrane [210] and more 
recently the MAO-A protein, although having significantly 
lower catalytic activity, was found to re-locate to the nuclear 
fraction during pre-eclampsia/eclampsia [211]. The reduc-
tion in MAO-A activity in pre-eclampsia was confirmed, but 
the relocalization to the nucleus was not [212]. Pools of syn-
aptic and extrasynaptic MAO have also been confirmed and, 
according to the authors, studies using total homogenates 
could provide misleading information because a substantial 
reduction of activity within a specific cellular location (e.g. 
in the synaptic terminals) could be masked by measurement 
of the total activity in tissue homogenates [213]. Although 
the evidence for expression of MAO proteins in diverse sub-
cellular compartments exists, this simple, yet critical, fact is 
often overlooked in the interpretation of results. Indeed, 
MAO is now conveniently referred to as the ‘mitochondrial 
enzyme’ and this is such a commonly accepted fact that 
MAO is often used as a marker of mitochondrial fraction 
purity. While interpreting results based on a purely ‘mito-
chondrial’ localization is ‘convenient’, it certainly biases our 

understanding of the true role, and localization, of MAO in 
normal and pathological cell function. 

POST-TRANSLATIONAL REGULATION OF MAO-A 
FUNCTION 

 This commentary would not be complete without an ex-
amination of post-translational regulation of MAO-A in dis-
ease. The induction of MAO-A mRNA and MAO-A protein 
and activity are known to correlate in the human encephalo-
pathic brain [214]. This is not necessarily the case for the 
normal aging human brain [215] or for the AD brain, as 
mentioned above, and a discrepancy between MAO transcript 
levels in certain human and rodent cell lines has also been 
observed [216]. MAO-A, but not MAO-B, responds to ma-
nipulation of calcium (Ca2+) either directly in rat brain ho-
mogenates [217] or by in vivo treatment with the Ca2+-
channel blocker nimodipine [218]. It is also known that Ca2+

selectively enhances MAO-A activity in mouse hippocampal 
HT-22 cells [15] and that the bacterial-derived toxin 
staurosporine can induce MAO-A-sensitive apoptosis in hu-
man neuronal SH-Sy5y cells [219], and that both of these 
latter effects occur independently of any change in MAO-A
mRNA. This suggests the potential for post-translational 
regulation of MAO-A function. Although activation of the 
p38(MAPK) (p38 mitogen activated protein kinase) pathway 
has been associated with the induction of Mao-A mRNA and 
an MAO-A-sensitive apoptotic phenotype in PC12 and SK-
N-BE(2)-C cells [110, 220], other studies [111, 216] clearly 
demonstrated that the effects of the p38(MAPK) protein it-
self on MAO-A-mediated events occur independently of 
changes in MAO-A/Mao-A transcript levels, respectively. We 
have identified Ser209 in overexpressed human MAO-A as a 
possible phosphorylation target for p38(MAPK) [197], al-
though studies based on human MAO-A protein overex-
pressed in Pichia pastoris were not as conclusive [221]. It 
should be noted that human MAO-B has a homologous Ser-
ine residue (e.g. Ser200), but its cavity shaping loop is in a 
more compact conformation and there are no adjacent ani-
onic groups near the hydroxyl of the Ser200 side chain to 
elicit a conformational change were it to be phosphorylated. 
These structural considerations might explain why 
p38(MAPK) could regulate MAO-A, but not MAO-B, in
vitro. It remains to be seen if p38(MAPK) can be associated 
with the regulation of MAO proteins in human tissue prepa-
rations. 
 While any inhibitory effect of p38(MAPK) on MAO-A 
function would initially appear quite paradoxical, high basal 
activity of p38(MAPK) in healthy adult mouse brain has 
been observed, which suggests that this signalling protein, 
which is more often associated with a pro-apoptotic pheno-
type, might also contribute to normal brain cell physiology 
and survival [222, 223]. A pro-survival adaptive response to 
transient stress is suggested by the fact that H2O2, the by-
product of MAO reactions, can actually activate p38(MAPK) 
[224] and inhibit MAO-A activity [225], apparently via a 
Ca2+-dependent mechanism [226]. The PI3K/Akt pro-
survival pathway might also be involved in regulating as-
pects of MAO-A function, but its effect does not include any 
influence on the Ca2+-mediated regulation of MAO-A func-
tion [216]. Valproic acid was found to induce MAO-A pro-
moter function as well as catalytic activity via an Akt-FoxO1 
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(transcription)-sensitive mechanism [227]. In addition, the 
Jun N-terminal kinase [228, 229], Ras/ERK (p44/42) [216, 
230] and TGF-�/Smad3 [231] signalling cascades have been 
implicated in the regulation of MAO expression, function 
and/or inhibition. Given the acknowledged role of these cas-
cades in regulating both transient (post-translational) and 
long-term (genetic/epigenetic) effects of cell signalling and 
responses to extracellular cues, a closer examination of the 
influence of signalling pathways on the regulation of the 
MAO-A and MAO-B systems is clearly needed. 
 As we draw this review to a close we acknowledge that 
our discussion on the therapeutic targeting of MAOs has 
focused primarily on pharmaceutical inhibitors. It is clear 
that there is a broad range of naturally occurring regulators 
of MAO function that have been omitted herein, including, 
but clearly not limited to, caffeine and analogues [232], 
kaempferol [233], and dietary components and associated 
metabolites [234, 235]. We do apologize a priori for not 
having expanded upon this very important topic. 

CONCLUDING REMARKS 

 MAO is often described as an ubiquitous, membrane-
bound enzyme that is expressed on the outer membrane of 
the mitochondria. Our current understanding of the contribu-
tion of MAO proteins to neurodegenerative processes is very 
often centered on the production of hydrogen peroxide as a 
byproduct of the reaction between MAO and biogenic sub-
strates. The interpretation of results invariably attempts to 
satisfy a convenient model that is predicated on the assump-
tions (a) that MAO is a passive enzyme (i.e. it simply waits 
for a substrate to metabolize), (b) that only the expression of 
MAO protein dictates catalytic activity in a given tissue, and 
(c) that MAO proteins are only expressed in the outer mito-
chondrial membrane. Given that MAO is anchored to the 
membrane through a very short C-terminal trans-membrane 
helix, much of the protein is presumably left exposed for 
potential modification(s) by, and/or interactions with, other 
proteins (either circulating or juxtaposed on adjacent mem-
branes). Fluctuations in MAO function might reflect protein 
levels that are influenced by both polymorphisms and epige-
netic influences. Furthermore, the potential for effects of 
MAO that are not solely dependent on its catalytic activity 
might be a strategy that has evolved to satisfy different func-
tional requirements for the MAO enzymes in a context- or 
cell-dependent manner. In other words, it is possible that 
MAO proteins display a behaviour that lies between catalyti-
cally active and inactive states, and that at any given time a 
cell’s phenotype would be influenced by the dominating 
state. Thus, simply using an estimate of MAO activity as an 
outcome, without a concurrent evaluation of MAO expres-
sion levels and/or its localization within different cellular 
compartments, could bias the interpretation of the experi-
mental outcomes. Although this might initially be viewed as 
an unnecessary increase in workload, in the long-term this 
would provide for more information and would surely help 
to clear up some, if not a substantial portion, of the ambigu-
ity that surrounds the role(s) of MAO proteins in 
[patho]physiological contexts. 
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