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Abstract. Let g be a simple Lie algebra over the complex numbers, and let

g[u] denote its polynomial current algebra. In the mid–1980s, Drinfeld intro-

duced the Yangian of g as the unique solution to a quantization problem for
a natural Lie bialgebra structure on g[u]. More precisely, Theorem 2 of [Dokl.

Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064] asserts that g[u] admits a

unique homogeneous quantization — the Yangian of g — which is described
explicitly via generators and relations, starting from a copy of g and its adjoint

representation. Although the representation theory of Yangians has since un-

dergone substantial development, a complete proof of Drinfeld’s theorem has
not appeared. In this article, we present a proof of the assertion that g[u]

admits at most one homogeneous quantization. Our argument combines co-
homological and computational methods, and outputs a presentation of any

such quantization using Drinfeld’s generators and a reduced set of defining

relations.
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1. Introduction

1.1. Let g be a simple Lie algebra over the field of complex numbers C, and let g[u]
be the Lie algebra of polynomial maps C → g, with Lie bracket defined pointwise.
The latter Lie algebra, called the (polynomial) current algebra of g, is naturally
graded and admits a Lie bialgebra structure with cobracket

δ : g[u] → g[u]⊗ g[u]

which is obtained by using the residue and Killing forms on C[u±1] and g, respec-
tively, to identify the graded dual of g[u] with u−1g[u−1], and then setting δ to be
the transpose of the natural Lie bracket on u−1g[u−1]; see Section 2.3.

In Theorem 2 of Drinfeld’s foundational paper [Dri85], it is asserted that the
Lie bialgebra (g[u], δ) admits a unique homogeneous quantization. That is, up to
isomorphism, there is a unique graded Hopf algebra over the graded ring C[ℏ] that
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provides a flat deformation of the enveloping algebra U(g[u]), and whose coproduct
∆ recovers δ as its semiclassical limit; see Definition 3.1. Moreover, this unique
quantization — which Drinfeld called the Yangian of g — is explicitly presented in
this same theorem using generators and relations. The main goal of this article is to
make available a proof of the uniqueness assertion from Drinfeld’s theorem which,
at the same time, explains how to derive a presentation of any such quantization.

1.2. Drinfeld’s theorem. In order to motivate and precisely formulate our main
results, we begin by recalling the statement of Drinfeld’s theorem. To this end,

let {xλ}dim g
λ=1 ⊂ g be an orthonormal basis of g relative to a fixed non-degenerate,

invariant, and symmetric bilinear form (·, ·) on g. Let cνλµ = ([xλ, xµ], xν) be the

structure constants of g in this basis, so that [xλ, xµ] =
∑

ν c
ν
λµxν . The following

theorem is a restatement of Theorem 2 from [Dri85].

Theorem. The Lie bialgebra (g[u], δ) admits a unique homogeneous quantization
A. As a unital associative C[ℏ]-algebra, A is generated by elements Iλ and Jλ, for
1 ≤ λ ≤ dim(g), with defining relations

[Iλ, Iµ] =
∑
ν

cνλµIν , [Iλ, Jµ] =
∑
ν

cνλµJν ,(1.1)

[Jλ, [Jµ, Iν ]]− [Iλ, [Jµ, Jν ]] = ℏ2S0(λ, µ, ν),

[[Jλ, Jµ], [Ir, Js]]− [[Jr, Js], [Iλ, Jµ]] = ℏ2S1(λ, µ, r, s).
(1.2)

Moreover, the grading on A is given by deg(Iλ) = 0 and deg(Jλ) = 1, while its
coproduct ∆ is uniquely determined by

(1.3) ∆(Iλ) = □(Iλ) and ∆(Jλ) = □(Jλ) +
ℏ
2

∑
µ,ν

cνλµIν ⊗ Iµ,

where we have set □(x) = x⊗ 1 + 1⊗ x.

Note that the first equation of (1.1) says exactly that the linear map ι : g → A0

given by ι(xλ) = Iλ is a Lie algebra homomorphism, and the second equation then
says that J : g → A1 given by J(xλ) = Jλ is a g-module intertwiner. Thus, (1.1) is
equivalent to the assertion that A contains a copy of U(g) in degree 0, and a copy
of the adjoint representation of g in degree 1.

In (1.2), S0(λ, µ, ν) and S1(λ, µ, r, s) are certain explicitly given elements of
degrees 0 and 1 in A, respectively. Their exact expressions will not be relevant to
us, and hence have been omitted. In addition, we note that, according to Drinfeld
[Dri85], the first equation of (1.2) is redundant when g ∼= sl2, while the second is
redundant when g ≇ sl2. It is also stated in Example 3 of [Dri87b, §6] that both
of these equations arise from the relations of (1.1) and that requirement that (1.3)
determines an algebra homomorphism; see also the discussion preceding Definition
12.1.2 in [CP94].

1.3. Main results. As indicated in Section 1.1, the graded Hopf algebra A from
Theorem 1.2 (or its specialization at ℏ = 1) is the well-known Yangian of g, whose
structure and representation theory have been extensively studied over the last
forty years — we refer the reader to [CP94, Ch. 12] for a survey of some of the
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foundational results in this area. However, to the best of our knowledge, a full
proof of Drinfeld’s theorem has never appeared in the literature.

In this article, we provide a proof of the uniqueness statement of Theorem 1.2
which simultaneously establishes that any homogeneous quantization of (g[u], δ)
must admit a presentation as in Theorem 1.2, but with the relations from (1.2)
replaced by a smaller set of equations. To state this precisely, let h be a Cartan
subalgebra of g and, for each h ∈ h, define

ν(h) =
1

2

∑
α>0

α(h)x−αx
+
α ∈ U(g),

where the sum is taken over a choice of set of positive roots for g relative to h,
and x±α are root vectors for ±α with (x+α , x

−
α ) = 1; see Sections 2.1 and 2.2. The

following is the main result of this article.

Theorem. Let H be a homogeneous quantization of (g[u], δ). Then, as a unital
associative C[ℏ]-algebra, H is generated by elements ι(x) and J(x), for x ∈ g,
subject to the following relations:

(1) ι : g → H is a Lie algebra homomorphism and J : g → H is a g-module
homomorphism. That is, they are C-linear and, for each x, y ∈ g, one has

ι([x, y]) = [ι(x), ι(y)] and J([x, y]) = [ι(x), J(y)].

(2) If g ≇ sl2, then for each h1, h2 ∈ h, one has

[J(h1), J(h2)] = ℏ2ι([ν(h2), ν(h1)]).
(3) If g ∼= sl2 and e, f, h form a fixed sl2-triple in g, then

[[J(e), J(f)], J(h)] = ℏ2(ι(f)J(e)− J(f)ι(e))ι(h).

Moreover, the grading on H is given by deg(ι(x)) = 0 and deg(J(x)) = 1, while its
coproduct ∆ is uniquely determined by

(1.4) ∆(ι(x)) = □(ι(x)) and ∆(J(x)) = □(J(x)) +
ℏ
2
[ι(x)⊗ 1,Ωι],

where Ωι = (ι⊗ ι)(Ω) with Ω ∈ Sym2(g)g the Casimir tensor of g.

Here it is understood that the Lie algebra homomorphism ι : g → H from (1)
has been extended to a C-algebra homomorphism U(g) → H in (2).

Although not needed in this article, we note that the relations of (2) and (3) are
known to follow from the equations of Theorem 1.2. For instance, this has been
established in the proof of Theorem 2.6 in [GRW19]; we refer the reader to (2.20)
therein and Step 1 of [GRW19, §A] for further details.

1.4. Outline of proof. Our proof of Theorem 1.3 is divided into two main parts.
In the first part, we establish that if H is any homogeneous quantization of (g[u], δ),
then there exists a g-module homomorphism J : g → H1 as in (1) of Theorem
1.3, which satisfies the coproduct formula (1.4). This result is stated in Theorem
3.3, which provides the main conclusion of Section 3. Its proof is based on a
cohomological argument using Whitehead’s first lemma and Cartier’s computation
of the cohomology of the coalgebra complex associated to U(g); see Sections 3.6
and 3.7.
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The second part is computational, and focuses on establishing that the relations
of Theorem 1.3 necessarily hold in H. This is achieved in Section 4 by proving
that the difference between the left and right-hand sides of the identities in (2)
and (3) must be primitive elements in H, and therefore belong to ℏ2h and ℏ3h,
respectively, by Proposition 3.2. These differences are then shown to be identically
zero in Sections 4.4 and 4.6. We refer the reader to Theorem 4.1, which provides
the main result of Section 4, for further details.

These two main ingredients are then combined in Section 5 to give a proof of
Theorem 1.3, which is restated in an equivalent form in Theorem 5.2. Its proof also
hinges on the fact that the relations (1)–(3) of Theorem 1.3 deform a set of defining
relations for the current algebra g[u], which is a consequence of Theorem 2.4.

1.5. Remarks. We end this introduction by emphasizing that Theorem 1.3 does
not claim to provide a proof of the existence of a homogeneous quantization of
(g[u], δ), as it does not assert that the algebra defined by the relations (1)–(3) is such
a quantization, with coproduct given by (1.4). However, this is in fact the case, and
already follows from existing results in the literature on Yangians. Crucially, the
graded algebra defined by the relations of the theorem is nothing but the Yangian
Yℏ(g), expressed in the minimalistic presentation obtained in [GNW18, Thm. 2.13]
by the second author in joint work with Guay and Nakajima, based on an earlier
work of Levendorskii [Lev93a]. In Section 5.3, we will elaborate on this point and
briefly survey the results that collectively imply that the Yangian, presented as in
Theorem 1.3 and [GNW18], is a homogeneous quantization of (g[u], δ).

1.6. Acknowledgments. The second author gratefully acknowledges the support
of the Natural Sciences and Engineering Research Council of Canada (NSERC), pro-
vided via the Discovery Grants Program (Grant RGPIN-2022-03298 and DGECR-
2022-00440).

2. Simple Lie algebras and current algebras

In this preliminary section, we recall the key properties of the classical structures
underpinning this article: the Lie algebra g and its polynomial current algebra g[u].

2.1. Simple Lie algebras. Let g be a finite-dimensional simple Lie algebra over C.
Let h ⊂ g be a Cartan subalgebra and let R ⊂ h∗ \{0} be the set of roots associated
to the pair (g, h). We will write gα ⊂ g for the root space associated to an arbitrary
root α ∈ R. Let {αi}i∈I ⊂ R be a base of simple roots, and let R+ ⊂ R be the
corresponding set of positive roots. We fix a non-degenerate, invariant, symmetric
bilinear form (·, ·) on g and, for each i ∈ I, choose elements x±i ∈ g±αi

satisfying
(x+i , x

−
i ) = 1. Note that the Cartan elements {ti}i∈I ⊂ h defined by

ti := [x+i , x
−
i ]

then satisfy (h, ti) = αi(h) for each h ∈ h. In the case where g ∼= sl2, we will simply
write e = x+i , f = x−i and h = ti, where I = {i}.
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Let Ω ∈ Sym2(g)g denote the Casimir tensor of the bilinear form (·, ·), so that

Ω =
∑
i∈I

ti ⊗ϖ∨
i +

∑
α∈R+

(x+α ⊗ x−α + x−α ⊗ x+α ),

where {ϖ∨
i }i∈I ⊂ h∗ is the basis of fundamental coweights, and x±α ∈ g±α are

chosen so that (x+α , x
−
α ) = 1.

2.2. The linear map ν : h → U(g)h. For later purposes, we introduce a linear
map ν : h → U(g)h by setting

ν(h) :=
1

2

∑
α∈R+

α(h)x−αx
+
α ∀ h ∈ h.

In addition, we define auxiliary elements {w±
i }i∈I ⊂ U(g) by the formula

w±
i := ± 1

(αi, αi)
[ν(ti), x

±
i ] ∀ i ∈ I.

The main properties of these elements, stated below, were proved in [GNW18]; see
Lemma 3.9 of loc. cit. for (1) and (2), and §4.4 (pages 890–892) for (3).

Lemma. The following relations hold in U(g).

(1) For every h ∈ h and i ∈ I, we have [ν(h), x±i ] = ±αi(h)w
±
i .

(2) For every i, j ∈ I, we have [w+
i , x

−
j ] = [x+i , w

−
j ] = δij

(
ν(ti)− 1

2 t
2
i

)
.

(3) For every h1, h2 ∈ h, we have

∆([ν(h1), ν(h2)]) = □ ([ν(h1), ν(h2)])−
1

4
[[h1 ⊗ 1,Ω] , [h2 ⊗ 1,Ω]]

where □(y) = y ⊗ 1 + 1 ⊗ y and ∆ : U(g) → U(g)⊗2 is the coproduct on
U(g), uniquely determined by ∆(x) = □(x) for all x ∈ g.

2.3. The polynomial current Lie bialgebra. Let g[u] = g ⊗ C[u] denote the
Lie algebra of polynomials in a single variable u with coefficients in g. This is an
N-graded Lie algebra over C, with n-th homogeneous component gun = g ⊗ Cun
and Lie bracket determined by

[xun, yum] = [x, y]un+m ∀ x, y ∈ g and n,m ≥ 0.

Moreover, the formula

δ(xun) =
∑

a+b=n−1

[x⊗ 1,Ω]uavb ∈ (g⊗ g)[u, v] ∼= g[u]⊗ g[u],

for all x ∈ g and n ≥ 0, defines a degree −1 Lie cobracket δ on g[u], endowing it
with the structure of an N-graded Lie bialgebra. Equivalently, the above formula
defines a graded linear map δ : g[u] → g[u] ∧ g[u] of degree −1 which satisfies the
cocycle and co-Jacobi identities

δ([f(u), g(u)]) = [δ(f(u)),∆(g(u))] + [∆(f(u)), δ(g(u))],

(Id+(1 2 3) + (1 3 2)) ◦ (δ ⊗ Id) ◦ δ = 0,

for all f(u), g(u) ∈ g[u], where in the second relation the symmetric group on three
letters acts on g[u]⊗3 by permuting its tensor factors.
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This Lie bialgebra structure arises naturally from the residue form on the loop
algebra g[u, u−1] given by

⟨xun, yum⟩ = −(x, y)Rest(t
m+n) = −δm+n,−1(x, y)

for all x, y ∈ g and n,m ∈ Z. This form identifies the Lie subalgebra u−1g[u−1] ⊂
g[u, u−1] with the graded dual of g[u], and the Lie cobracket δ on g[u] described
above is just the transpose of the Lie bracket on u−1g[u−1]. We refer the reader to
[Dri87b, §3] or [Wen25, §2.5], for instance, for further details. In addition, we note
that the Lie cobracket δ can be expressed in terms of the Casimir tensor Ω of g by

δ(f)(u, v) =

[
f(u)⊗ 1 + 1⊗ f(v),

Ω

u− v

]
∀ f(u) ∈ g[u].

2.4. A minimal presentation of g[u]. To prove the main result of this article,
we will make use of a presentation of g[u] given in terms of its degree 0 and degree
1 generators. In this subsection, we record this realization of g[u].

Let a be the Lie algebra over C with generators ı(x) and G(x), for each x ∈ g,
and the following defining relations:

(1) ı : g → a is a Lie algebra map and G : g → a is a g-module homomorphism.
That is, for all x, y ∈ g and λ, µ ∈ C, we have:

ı(λx+ µy) = λı(x) + µı(y), ı([x, y]) = [ı(x), ı(y)],

G(λx+ µy) = λG(x) + µG(y), G([x, y]) = [ı(x), G(y)].

(2) For each i, j ∈ I, one has

[G(ti), G(tj)] = 0 if g ≇ sl2

[[G(e), G(f)], G(h)] = 0 if g ∼= sl2

It is clear from this definition that a admits an N-graded Lie algebra structure,
with grading uniquely determined by deg ı(x) = 0 and degG(x) = 1 for all x ∈ g.
Moreover, the above definition is such that the relations imposed on ı(x) and G(x)
are satisfied by the elements x and xu in g[u], respectively. In fact, we have the
following theorem.

Theorem. The assignment ψ defined by

ψ(ı(x)) = x and ψ(G(x)) = xu ∀ x ∈ g

uniquely extends to an isomorphism of N-graded Lie algebras ψ : a → g[u].

Remark. When g ∼= sl2, the presentation of g[u] described by this theorem (namely,
that provided by a) is exactly that obtained from the presentation of the Yan-
gian Yℏ(g) of g established in Theorem 1.2 of [Lev93a] by reducing modulo ℏ and
using that Yℏ(g)/ℏYℏ(g) ∼= U(g[u]). For g ≇ sl2, this same observation holds
with [Lev93a, Thm. 1.2] replaced by Theorem 2.13 of [GNW18], which provides a
strengthening of the former result under the assumption that g is not of rank 1;
see also Sections 5.1 and 5.3. Thus, Theorem 2.4 is a consequence of the results of
[Lev93a, GNW18]. However, it is worth pointing out that these results for Yℏ(g)
are much more complicated than Theorem 2.4 — the arguments of [Lev93a] and
[GNW18] become much simpler when ℏ is specialized to zero.
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Henceforth, we shall identify a and g[u] without further explanation. Note that,
with respect to this realization, the Lie cobracket δ on g[u] from Section 2.3 satisfies

δ(ı(x)) = 0 and δ(G(x)) = [x⊗ 1,Ω] ∀ x ∈ g.

3. Homogeneous quantization: generators

The goal of this section is twofold. First, we review the definition and basic
properties of homogeneous quantizations of graded Lie bialgebras, with particular
focus on the Lie bialgebra (g[u], δ); see Sections 3.1 and 3.2. Second, we carry out
the first part of the proof of Theorem 1.3, as outlined in Section 1.4.

The main result of the section is Theorem 3.3, which establishes that any homo-
geneous quantization H of the Lie bialgebra (g[u], δ) admits a g-module homomor-
phism J : g → H that satisfies the coproduct relation (1.4) for J , and has image
in its degree one component.

3.1. Definition. A homogeneous quantization of the Lie bialgebra (g[u], δ) is an
N-graded Hopf algebra H =

⊕
n≥0 Hn over the graded ring C[ℏ], where deg(ℏ) = 1,

satisfying the following properties:

(H1) H is torsion free as a C[ℏ]-module.

(H2) H/ℏH is isomorphic to U(g[u]) as a graded Hopf algebra.

(H3) The cobracket δ is related to the coproduct ∆ on H by the formula

δ(x) =
∆(x̃)−∆21(x̃)

ℏ
mod ℏH⊗H

for all x ∈ g[u], where x̃ ∈ H is any element satisfying x̃ ≡ x mod ℏ.

Remark. More generally, a homogeneous quantization of an N-graded Lie bialge-
bra (b, δb) is an N-graded Hopf algebraH over C[ℏ] satisfying the axioms (H1)–(H3)
with g[u] replaced by b; see [Wen25, §2.4]. Such a quantization always has the fol-
lowing properties:

(1) H is isomorphic to U(b)[ℏ] as an N-graded C[ℏ]-module; see Corollary 2.6
of [Wen25].

(2) The ℏ-adic completion of H is a homogeneous quantization of (b, δb) over
C[[ℏ]] in the sense first defined in the context of Yangians in [Dri85]; see
[Wen25, Def. 2.12]. Moreover, any such quantization over C[[ℏ]] arises in
this way.

(3) If bk denotes the k-th homogeneous component of b and π : H ↠ U(b) is
the quotient map provided by (H2), then there is a unique embedding of
graded Hopf algebras

ȷ : U(b0)[ℏ] ↪→ H
for which π◦ȷ|U(b0) is the natural inclusion U(b0) ↪→ U(b). Indeed, by (H2)
one has H0 = (H/ℏH)0 ∼= U(b)0 = U(b0) as Hopf algebras over C. This
implies that there is a unique homomorphism ȷ : U(b0)[ℏ] → H of graded
Hopf algebras over C[ℏ] with π ◦ ȷ|U(b0) equal to the inclusion of U(b0) into
U(b). Since H is torsion free, ȷ is necessarily injective.
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3.2. Primitive elements. Now let H be a homogeneous quantization of (g[u], δ).
Then by (3) of Remark 3.1, there is an embedding of graded Hopf algebras

U(g)[ℏ] ↪→ H
which identifies the enveloping algebra U(g) with the component H0 of H. Hence-
forth, we shall use this embedding to view U(g)[ℏ] as a subalgebra of H. In par-
ticular, g ⊗C C[ℏ] ∼= C[ℏ] · g ⊂ U(g)[ℏ] is a subset of H. This fact is used in the
following proposition, which computes the Lie algebra of primitive elements in H.

Proposition. Let H be a homogeneous quantization of (g[u], δ). Then the Lie
algebra Prim(H) of primitive elements in H is equal to g⊗C C[ℏ]:

Prim(H) := {y ∈ H : ∆(y) = □(y)} = g⊗C C[ℏ].

Proof. This follows by a modification of the argument used to establish the anal-
ogous assertion for a specific filtered quantization of (g[u], δ) — the Yangian of g
defined over C — in Lemma B.1 of [GTLW21]. We will prove by induction on
k that Prim(H) ∩ Hk = g ⊗C Cℏk. The base case follows since H0 = U(g) and
Prim(U(g)) = g. Assuming the assertion for k, let y ∈ Hk+1 be an arbitrary primi-
tive element. Let ȳ be its image in H/ℏH ∼= U(g[u]). Thus, ȳ is a primitive element
of degree k+1 in U(g[u]), hence ȳ = xuk+1 for some x ∈ g. Using axiom (H3) and
that ∆(y) = ∆21(y), we obtain

δ(xuk+1) =
∆(y)−∆21(y)

ℏ

∣∣∣∣
ℏ=0

= 0.

By definition of δ (see Section 2.3), this means [x ⊗ 1,Ω] = 0, which implies that
x = 0 and hence ȳ = 0. Thus, y = ℏz for some z ∈ Prim(H)∩Hk, and we are done
by induction. □

3.3. Generators of a homogeneous quantization. Since any homogeneous
quantization H of (g[u], δ) contains U(g) as its degree 0 component, each com-
ponent Hk of H becomes a g-module under the adjoint action x · y = [x, y], for
all x ∈ g and y ∈ Hk. The following theorem, which provides the main result of
Section 3, shows that there is a distinguished g-module homomorphism J : g → H1

which is compatible with ∆, where g acts on itself via the adjoint action.

Theorem. Let H be a homogeneous quantization of (g[u], δ). Then there exists a
g-module homomorphism J : g → H1 satisfying J (x) = xu modulo ℏ and

∆(J (x)) = J (x)⊗ 1 + 1⊗ J (x) +
ℏ
2
[x⊗ 1,Ω]

for each x ∈ g. Moreover, if J ′
: g → H1 is another such map, then there is λ ∈ C

such that J (x)− J ′
(x) = ℏλx for all x ∈ g.

Proof. Let us first prove the uniqueness assertion. Let J and J ′
be two maps

satisfying the conditions of the theorem. Since they both have image in H1 and are
equal modulo ℏ, we have J (x)−J ′

(x) ∈ ℏU(g) for all x ∈ g. As H is torsion free,
it follows that there is a unique linear map B : g → U(g) satisfying

J (x)− J
′
(x) = ℏB(x) ∀ x ∈ g.
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Since each difference J (x)−J ′
(x) is a primitive element, the image ofB is contained

in the Lie algebra g of primitive elements in U(g). Moreover, as J and J ′
are both

g-module homomorphisms, we must have B ∈ Endg(g). Thus, by Schur’s lemma,

there is λ ∈ C such that B = λ Idg, and hence J (x)−J ′
(x) = ℏλx for each x ∈ g.

To prove the existence of J , we begin by choosing an arbitrary linear map

f : g → H1

whose composite with the quotient map H1 → H1/ℏH0
∼= U(g[u])1 equals the

linear map G : g → gu ⊂ U(g[u])1, given by G(x) = xu for each x ∈ g. That is, f
satisfies f(x) = xu mod ℏH0 for each x ∈ g. Now define

γ : g× g → U(g) and η : g → U(g)⊗ U(g)

by the following equations:

f([x, y]) = [x, f(y)] + ℏγ(x, y)(3.1)

∆(f(x)) = f(x)⊗ 1 + 1⊗ f(x) +
ℏ
2
[x⊗ 1,Ω] + ℏη(x)(3.2)

Claim. There exists a linear map φ : g → U(g) satisfying

γ(x, y) = [x, φ(y)]− φ([x, y]) and η(x) = □(φ(x))−∆(φ(x))

for all x, y ∈ g.

Assuming such a φ exists, it is easy to see that J (x) := f(x) + ℏφ(x) satisfies
the properties listed in the theorem. Indeed, for each x, y ∈ g, we have

J ([x, y]) = f([x, y]) + ℏφ([x, y])
= [x, f(y)] + ℏγ(x, y) + ℏ([x, φ(y)]− γ(x, y))

= [x, f(y) + ℏφ(y)]
= [x,J (y)],

and hence J ∈ Homg(g,H1). Similarly, for each x ∈ g, one has

∆(J (x)) = ∆(f(x) + ℏφ(x))

= □(f(x)) +
ℏ
2
[x⊗ 1,Ω] + ℏη(x) + ℏ(□(φ(x))− η(x))

= □(J (x)) +
ℏ
2
[x⊗ 1,Ω].

The existence of φ satisfying the conditions of the claim follows from a cohomo-
logical argument, which we carry out in the remainder of this section. In Section
3.4, we use the axioms of a bialgebra to obtain equations satisfied by γ and η.
We view these equations as defining a cocycle in a double cochain complex, intro-
duced in Section 3.5. In Sections 3.6 and 3.7, we relate our double complex to the
well-known coalgebra and Chevalley–Eilenberg complexes. We review the standard
results (Cartier’s theorem and Whitehead’s lemma) about the cohomology of these
complexes and, in Section 3.8, we apply them to prove the claim. □

Remark. Let J be as in the statement of Theorem 3.3, and let x ∈ g. Then the
values of the counit ε and antipode S of H on J (x) are given by

ε(J (x)) = 0 and S(J (x)) = −J (x) +
ℏ
4
cgx,
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where cg is the eigenvalue of the quadratic Casimir element C ∈ U(g) on the
adjoint representation of g. Indeed, since ε is an algebra homomorphism and J is
a g-module homomorphism, we have

ε(J ([x, y])) = ε([x,J (y)]) = [ε(x), ε(J (y))] = 0 ∀ x, y ∈ g.

Since g is a perfect Lie algebra, it follows that ε(J (x)) = 0 for all x ∈ g. Similarly,
as S is the convolution inverse of the identity map IdH, we have

0 = ε(J (x)) = (m ◦ (S ⊗ IdH) ◦∆)(J (x)) = S(J (x)) + J (x) +
ℏ
2
m([Ω, x⊗ 1]),

where m is the product on H. The claimed formula for S(J (x)) then follows from
the observation that m([Ω, x ⊗ 1]) = − 1

2ρad(C)(x), where ρad : U(g) → End(g) is
the action homomorphism for the adjoint of g on itself.

3.4. Properties of γ and η. In what follows, γ : g × g → U(g) and η : g →
U(g)⊗U(g) are the functions defined by the equations (3.1) and (3.2), respectively.

Proposition. The maps γ and η satisfy the equations

γ([x, y], z)− γ(x, [y, z]) + γ(y, [x, z])− [x, γ(y, z)] + [y, γ(x, z)] = 0(3.3)

1⊗ η(x)− (∆⊗ Id)(η(x)) + (Id⊗∆)(η(x))− η(x)⊗ 1 = 0(3.4)

η([x, y])− [□(x), η(y)] +□(γ(x, y))−∆(γ(x, y)) = 0(3.5)

for each x, y, z ∈ g. Moreover, η is symmetric: η(x) = η21(x) for all x ∈ g.

Proof. The equations (3.3)–(3.5) are consequences of the Jacobi identity, the coas-
sociativity of ∆, and the fact that ∆ is an algebra homomorphism, respectively. We
begin by proving (3.3). Let x, y, z ∈ g and consider the following relation in H:

[[x, y], f(z)] = [x, [y, f(z)]]− [y, [x, f(z)]]

By definition of γ, the three terms of this equation can be rewritten as follows:

[[x, y], f(z)] = f([[x, y], z])− ℏγ([x, y], z)
[x, [y, f(z)]] = f([x, [y, z]])− ℏγ(x, [y, z])− ℏ[x, γ(y, z)]
[y, [x, f(z)]] = f([y, [x, z]])− ℏγ(y, [x, z])− ℏ[y, γ(x, z)]

Substituting these expressions back into the original identity and applying the lin-
earity of f and the Jacobi identity for g yields the relation (3.3).

Next we prove (3.4). Since ∆ is coassociative, we have

(∆⊗ Id)∆(f(x)) = (Id⊗∆)∆(f(x))

for each x ∈ g. From the definition (3.2) of η, the left-hand side of this equation
expands as

(∆⊗ Id)∆(f(x)) = ∆(f(x))⊗ 1 + 1⊗ 1⊗ f(x) + ℏ(∆⊗ Id)η(x)

+
ℏ
2
[x⊗ 1⊗ 1 + 1⊗ x⊗ 1,Ω13 +Ω23]

= □3(f(x)) +
ℏ
2
[x⊗ 1⊗ 1,Ω12 +Ω13] + ℏ η(x)⊗ 1

+
ℏ
2
[1⊗ x⊗ 1,Ω23] + ℏ(∆⊗ Id)η(x)
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where □3(a) = a⊗ 1⊗ 1 + 1⊗ a⊗ 1 + 1⊗ 1⊗ a. In a similar fashion, we have

(Id⊗∆)∆(f(x)) = □3(f(x)) +
ℏ
2
[1⊗ x⊗ 1,Ω23] + ℏ 1⊗ η(x)

+
ℏ
2
[x⊗ 1⊗ 1,Ω12 +Ω13] + ℏ(Id⊗∆)η(x).

Equating both of these expressions and simplifying outputs the identity (3.4).

Let us now turn to (3.5). As ∆ is an algebra homomorphism, we have

∆([x, f(y)]) = [∆(x),∆(f(y))]

for every x, y ∈ g. Expanding both sides using (3.1) and (3.2) gives

[∆(x),∆(f(y))] =

[
□(x), □(f(y)) +

ℏ
2
[y ⊗ 1,Ω] + ℏη(y)

]
= □(f([x, y]))− ℏ□(γ(x, y)) +

ℏ
2
[[x, y]⊗ 1,Ω] + ℏ[□(x), η(y)],

∆([x, f(y)]) = ∆(f([x, y])− ℏγ(x, y))

= □(f([x, y])) +
ℏ
2
[[x, y]⊗ 1,Ω] + ℏ η([x, y])− ℏ∆(γ(x, y)).

The equation (3.5) now follows by reinserting these expressions into the identity
∆([x, f(y)]) = [∆(x),∆(f(y))] and simplifying.

To complete the proof of the proposition, it remains to establish that η(x) =
η21(x) for each x ∈ g. To this end, note that since f : g → H1 satisfies f(x) = G(x)
mod ℏH1, the axiom (H3) for a homogeneous quantization of (g[u], δ) yields

∆(f(x))−∆21(f(x)) = ℏδ(G(x)) = ℏ[x⊗ 1,Ω].

On the other hand, the defining equation (3.2) for η gives

∆(f(x))−∆21(f(x)) =
ℏ
2
([x⊗ 1,Ω]− [1⊗ x,Ω]) + ℏ(η(x)− η21(x))

= ℏδ(G(x)) + ℏ(η(x)− η21(x))

and hence we must indeed have η(x) = η21(x). □

3.5. The double complex. We now define a bicomplex {Km,n}m≥0,n≥1 equipped

with a horizontal differential ∂H : Km,n → Km+1,n and a vertical differential ∂V :
Km,n → Km,n+1 as follows. For each m ≥ 0 and n ≥ 1, set

Km,n := Hom(∧m(g)⊗ gad, U(g)⊗n),

where gad denotes the adjoint representation of g. For ω ∈ Km,n, the horizontal
differential ∂H(ω) is given by the formula

(3.6)

∂H(ω)(x1, . . . , xm+1; v)

=
∑

1≤i<j≤m+1

(−1)i+jω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . xm+1; v)

+

m+1∑
i=1

(−1)i−1
(
xi · ω(x1, . . . , x̂i, . . . xm+1; v)

− ω(x1, . . . , x̂i, . . . xm+1;xi · v)
)
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for all x1, . . . , xm+1 ∈ g and v ∈ gad, where we have used the notation ŷ to indicate
that the variable y is omitted from the argument. By a little abuse of notation,
x ·m means the action of x ∈ g on an element m of a g–module (gad or U(g)⊗n).

The vertical differential is defined by ∂V (ω)(x; v) = δn(ω(x; v)), where δn :
U(g)⊗n → U(g)⊗n+1 is given as follows:

(3.7) δn(y) = 1⊗ y +

n∑
i=1

(−1)i
(
Id⊗i−1 ⊗∆⊗ Idn−i

)
(y) + (−1)n+1y ⊗ 1

It is a routine exercise to verify that ∂H and ∂V are commuting differentials, which
we leave to the reader.

Remarks. Let us gather a few important preliminary observations about the above
bicomplex:

(1) If we keep m fixed, the resulting cochain complex (Km,•, ∂V ) is nothing
but Hom(∧m(g)⊗ gad,−) applied to the coalgebra complex (T •(U(g)), δ•)
— also called the cobar complex — whose cohomology was computed by
Cartier in [Car56]. We review Cartier’s theorem below in Section 3.6.

(2) Keeping n fixed, the cochain complex (K•,n, ∂H) is isomorphic, via Hom-
tensor adjointness, to the Chevalley–Eilenberg complex valued in the g-
module g∗ad⊗U(g)⊗n. The computation of its first and second cohomology
groups, called Whitehead’s lemma, is recalled in Section 3.7.

(3) The equations for γ ∈ K1,1 and η ∈ K0,2 obtained in Proposition 3.4 can
be expressed equivalently as

∂H(γ) = 0, ∂V (η) = 0, ∂V (γ) = ∂H(η),

and η = η21. Moreover, the claim from the proof of Theorem 3.3 which
we aim to prove (see below (3.2)) is equivalent to the assertion that there
is φ ∈ Hom(gad, U(g)) = K0,1 satisfying ∂H(φ) = γ and ∂V (φ) = η; see
Figure 1 below.

K0,1

∈φ
K1,1

∈

γ

K0,2η ∈ K1,2

K2,1

K0,3

∂H

//
∂H

//

∂V

OO

∂V

OO

∂V

OO
∂H

//

Figure 1. Bicomplex K•,•

(4) One can generalize this bicomplex K•,• by replacing gad by an arbitrary
g-module V , and U(g) by Sym(W ) where W is another g-module. Recall
that U(g) and Sym(g) are isomorphic as coalgebras with g-action.
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3.6. Cartier’s theorem. Let (C,∆, ε) be a cocommutative coalgebra over an
arbitrary field k. The coalgebra complex associated to C is (T •(C), δ•), where
Tn(C) = C⊗n and δn : Tn(C) → Tn+1(C) is given by (3.7) above. Define an
involution σ ∈ Aut(Tn(C)) by the formula

σ(x1 ⊗ · · · ⊗ xn) = (−1)
n(n+1)

2 xn ⊗ · · · ⊗ x1.

Then, σ commutes with δ• and the complex decomposes into ±1 eigenspaces
T •(C) = T •

+(C)⊕ T •
−(C), where

Tn
±(C) = {y ∈ Tn(C) : σ(y) = ±y}.

The following theorem is a corollary of a result established by Cartier in [Car56]
which identifies the cohomology of the complex (T •(Sym(V )), δ•) with the exterior
algebra Λ(V ). This theorem may also be found in [Dri89, Prop. 3.11] and [Kas95,
Thm. XVIII.7.1], where two alternative proofs of Cartier’s result are given.

Theorem. Let C = (Sym(V ),∆, ϵ), where V is a finite dimensional vector space
over k, and ∆ and ϵ are the algebra homomorphisms determined by

∆(v) = □(v) and ϵ(v) = 0

for every v ∈ V . Then H2n(T •
−(C), δ•) = 0 for each n ≥ 0.

Below, we state the specific corollary of this theorem that is relevant to us. By
applying equation (6.2) from [Kas95, XVIII.6.2] and using the fact that δn is a
g-intertwiner, we deduce that Hom(gad, T

•
−(U(g))) decomposes as a direct sum of

the following subcomplexes (with differentials omitted for brevity):

Homg(gad, T
•
−(U(g))) and gHom(gad, T

•
−(U(g))).

Since Hom(gad,−) is an exact functor, it follows that Homg(gad,−) is exact as
well. The corollary then becomes an immediate consequence of the n = 1 instance
of Cartier’s theorem.

Corollary. H2(Homg(gad, T
•
−(U(g)), ∂V ) = 0.

3.7. Chevalley–Eilenberg complex. Let M be an arbitrary g-module. Recall
that the Chevalley–Eilenberg complex associated to the pair (g,M) is defined as
follows. For each n > 0, we let Cn(g,M) = Hom(∧ng,M) denote the space of all
alternating n-linear maps from g toM , and we set C0(g,M) :=M . The differential
dCE : Cn(g,M) → Cn+1(g,M) is given by the same formula as (3.6), except now
the second term has only a g-action on M :

dCE(f)(x1, . . . , xn+1) =
∑

1≤i<j≤n+1

(−1)i+jω([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xn+1)

+

n+1∑
i=1

(−1)i−1xi · ω(x1, . . . , x̂i, . . . , xn+1)

This data defines a cochain complex with n-th cohomology group denotedHn(g,M).
The following result, known as Whitehead’s lemma, asserts that these groups are
trivial when M is finite-dimensional and n = 1 or 2. We refer the reader to [Kas95,
§18.3] for a proof.

Theorem. If M is finite–dimensional, then H1(g,M) = H2(g,M) = 0.
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As noted in (2) of the remarks at the end of Section 3.5, we are interested
in the infinite-dimensional g-module M = g∗ad ⊗ U(g)⊗n. As it decomposes into
a direct sum of finite-dimensional g-modules, Whitehead’s lemma applies to give
H1(g,M) = H2(g,M) = 0. We will only need the vanishing of the first cohomology
group, which we restate below in terms of the bicomplex of Section 3.5.

Corollary. H1(K•,n, ∂H) ∼= H1(g, g∗ad ⊗ U(g)⊗n) = 0.

3.8. Proof of the claim. We are now prepared to prove the claim appearing below
(3.2) in the proof of Theorem 3.3, which will complete the proof of the theorem.
Recall from (3) of the remarks at the end of Section 3.5 that this claim is equivalent
to the assertion that there is φ ∈ Hom(gad, U(g)) = K0,1 satisfying

(3.8) ∂H(φ) = γ and ∂V (φ) = η,

where γ ∈ K1,1 and η ∈ K0,2 are as in (3.1) and (3.2), respectively. Moreover, as
pointed out in the same remark, the relations for γ and η obtained in Proposition
4.2 are equivalent to

∂H(γ) = 0, ∂V (η) = 0, ∂V (γ) = ∂H(η),

and η = η21. Note that the latter identity says exactly that η ∈ Hom(gad, T
2
−(U(g)),

in the notation of Section 3.6 above.

Since ∂H(γ) = 0, Corollary 3.7 implies that there is a linear map ψ : gad → U(g)
satisfying γ = ∂H(ψ). Let us define

η1 := η − ∂V (ψ) : gad → U(g)⊗2.

Since ∂V (ψ) is given by ∂V (ψ(x)) = (□ − ∆)(ψ(x)), we have η1 = η211 and hence
η1 ∈ Hom(gad, T

2
−(U(g)). Furthermore, as ∂H and ∂V commute, we have

∂H(η1) = ∂H(η)− ∂H(∂V (ψ))

= ∂H(η)− ∂V (∂H(ψ))

= ∂H(η)− ∂V (γ)

and hence ∂H(η1) = 0. Note that this implies that η1 is a g-module homomorphism.
Indeed, for any ω ∈ Hom(gad,M), ∂H(ω) : g⊗gad →M is given by ∂H(ω)(x⊗y) =
x · ω(y)− ω([x, y]) and hence ∂H(ω) = 0 if and only if ω is a g–intertwiner. Thus,
we obtain

η1 ∈ Homg(gad, T
2
−(U(g))).

Moreover, as ∂V (η) = 0, we have ∂V (η1) = ∂V (η)− ∂V (∂V (ψ)) = 0. We are now in
a position to use Corollary 3.6 to conclude that there exists θ ∈ Homg(gad, U(g))
(that is, ∂H(θ) = 0) so that η1 = ∂V (θ). It is then immediate that φ = ψ+ θ is the
desired element of Hom(gad, U(g)), satisfying the equations (3.8).

4. Homogeneous quantization: relations

Our main goal in this section is to prove Theorem 4.1, which outputs a set of
relations satisfied by the g-module homomorphism J : g → H1 constructed in
Theorem 3.3, where H is an arbitrary homogeneous quantization of (g[u], δ). These
relations will be applied in Section 5.2 to obtain a presentation of H and prove the
main result of this article.
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4.1. Relations of a homogeneous quantization. Recall from Section 2.2 that
ν : h → U(g)h is the linear map defined by the formula ν(h) := 1

2

∑
α∈R+

α(h)x−αx
+
α .

Theorem. Let H be a homogeneous quantization of (g[u], δ), and let J : g → H1

be as in Theorem 3.3. Then, for each i, j ∈ I, one has

[J (ti),J (tj)] = ℏ2[ν(tj), ν(ti)] if g ≇ sl2(4.1)

[[J (e),J (f)],J (h)] = ℏ2(fJ (e)− J (f)e)h if g ∼= sl2(4.2)

The proof of this theorem will occupy the rest of Section 4. The relation (4.1)
will be established in Sections 4.2–4.4 — note that this still holds for g ∼= sl2, but
reduces to a trivial relation. The identity (4.2) is then established in Sections 4.5
and 4.6, under the hypothesis that g ∼= sl2.

4.2. Proof of (4.1) I. We begin by showing that the difference between the left
and right-hand sides of (4.1) is of the form ℏ2g(ti, tj) for an antisymmetric function
g on h⊗ h with values in h.

Proposition. There is an antisymmetric linear map g : h⊗ h → h satisfying

[J (ti),J (tj)] + ℏ2[ν(ti), ν(tj)] = ℏ2g(ti, tj) ∀ i, j ∈ I.

Proof. We claim that [J (ti),J (tj)]+ℏ2[ν(ti), ν(tj)] is a primitive element inH. In
view of Proposition 3.2, this will imply that it belongs to ℏ2g. As it also commutes
with h and is antisymmetric in i and j, it must therefore be of the form ℏ2g(ti, tj)
for some g : h ∧ h → h, as desired. To establish the claim, we apply Theorem 3.3
and that ∆ is an algebra homomorphism to obtain

∆([J (ti),J (tj)]) = [∆(J (ti)),∆(J (tj))]

=

[
□J (ti) +

ℏ
2
[ti ⊗ 1,Ω],□J (tj) +

ℏ
2
[tj ⊗ 1,Ω]

]
= □([J (ti),J (tj)]) +

ℏ2

4
[[ti ⊗ 1,Ω], [tj ⊗ 1,Ω]]

+
ℏ
2

(
[□J (ti), [tj ⊗ 1,Ω]]− [□J (tj), [ti ⊗ 1,Ω]]

)
.

Since J is a g-module homomorphism, the term [□J (ti), [tj ⊗ 1,Ω]] is symmetric
in i and j. Indeed, we have

[□J (ti), [tj ⊗ 1,Ω]] =
∑

α∈∆+

α(ti)α(tj)(J ⊗ Id− Id⊗ J )(x+α ⊗ x−α + x−α ⊗ x+α ).

Therefore, the expression for ∆([J (ti),J (tj)]) obtained above reduces to

∆([J (ti),J (tj)]) = □([J (ti),J (tj)]) +
ℏ2

4
[[ti ⊗ 1,Ω], [tj ⊗ 1,Ω]] .

On the other hand, by Part (3) of Lemma 2.2, we have

ℏ2∆([ν(ti), ν(tj)]) = ℏ2□([ν(ti), ν(tj)])−
ℏ2

4
[[ti ⊗ 1,Ω], [tj ⊗ 1,Ω]] ,

and hence [J (ti),J (tj)] + ℏ2[ν(ti), ν(tj)] is indeed a primitive element of H, as
claimed. □
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4.3. Proof of (4.1) II. Our next step is to show the linear map g : h ∧ h → h of
Proposition 4.2 is identically zero. To this end, let us introduce an auxiliary linear
map T : h → H1 by the formula

T (h) := J (h)− ℏν(h) ∀ h ∈ h.

The main identity of Proposition 4.2 may then be expressed equivalently as

(4.3) [T (ti), T (tj)] = ℏ2g(ti, tj) ∀ i, j ∈ I.

Indeed, this follows from the observation that the bracket [J (ti), ν(tj)] is symmetric
in i and j. Explicitly, one has

[J (ti), ν(tj)] =
∑

α∈∆+

α(ti)α(tj)
(
x−αJ (x+α )− J (x−α )x

+
α

)
= [J (tj), ν(ti)].

Due to (4.3), our task is reduced to showing that [T (ti), T (tj)] = 0 for all i, j ∈ I.
To achieve this, we will make use of the following lemma.

Lemma. For each i ∈ I, define x±i,1, ξi,1 ∈ H1 by

x±i,1 := ± 1

(αi, αi)
[T (ti), x

±
i ] and ξi,1 := T (ti) +

ℏ
2
t2i .

Then, for each h ∈ h and i, j ∈ I, we have

[T (h), x±i ] = ±αi(h)x
±
i,1 and [x+i,1, x

−
j ] = δi,jξi,1 = [x+i , x

−
j,1].

Proof. As J is a g-module homomorphism, we have

[T (h), x±i ] = [J (h), x±i ]− ℏ[ν(h), x±i ] =
αi(h)

(αi, αi)
[J (ti), x

±
i ]− ℏ[ν(h), x±i ].

By Part (1) of Lemma 2.2, [ν(h), x±i ] = ±αi(h)w
±
i , where w

±
i = ± 1

(αi,αi)
[ν(ti), x

±
i ],

so the above coincides with ±αi(h)x
±
i,1. Similarly, since x+i,1 = J (x+i ) − ℏw+

i , we
have

[x+i,1, x
−
j ] = J ([x+i , x

−
j ])− ℏ[w+

i , x
−
j ] = δi,jJ (ti)− ℏ[w+

i , x
−
j ].

By Part (2) of Lemma 2.2, [w+
i , x

−
j ] = δi,j(ν(ti)− ℏ

2 t
2
i ) and hence the above becomes

[x+i,1, x
−
j ] = δi,j(T (ti) +

ℏ
2
t2i ) = δi,jξi,1.

Finally, applying ad(T (tj)) to [x+i , x
−
j ] = δi,jti gives

(αi, αj)[x
+
i,1, x

−
j ] = (αj , αj)[x

+
i , x

−
j,1]

and therefore we must also have [x+i , x
−
j,1] = δi,jξi,1. □

4.4. Proof of (4.1) III. With (4.3) and Lemma 4.3 at our disposal, we are now
prepared to complete the proof of (4.1) by proving that linear map g : h∧ h → h of
Proposition 4.2 vanishes.

Proposition. For each i, j ∈ I, we have [T (ti), T (tj)] = ℏ2g(ti, tj) = 0, and thus
g is identically zero.
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Proof. By (4.3) we have [T (ti), T (tj)] = ℏ2g(ti, tj) for all i, j ∈ I, and hence the
equality from the statement of the proposition trivially holds when i = j. Suppose
instead that i, j ∈ I are such that i ̸= j. Then by applying ad(x+i ) to both sides of
(4.3) while using the first identity of Lemma 4.3, we obtain

−αi(ti)[x
+
i,1, T (tj)]− αi(tj)[T (ti), x

+
i,1] = −ℏ2αi(g(ti, tj))x

+
i ,

which is equivalent to

[T (αi(tj)ti − αi(ti)tj), x
+
i,1] = ℏ2αi(g(ti, tj))x

+
i .

Since αi(tj)ti − αi(ti)tj ∈ Ker(αi), applying −ad(x−i ) to both sides of this identity
yields

[T (αi(tj)ti − αi(ti)tj), ξi,1] = ℏ2αi(g(ti, tj)) ti.

As ξi,1 = T (ti) +
ℏ
2 t

2
i and t2i commutes with T (h), the above is equivalent to

αi(tj)g(ti, ti)− αi(ti)g(tj , ti) = αi(g(ti, tj)) ti.

Since g(ti, ti) = 0, this is equivalent to

g(tj , ti) = −αi(g(ti, tj))

αi(ti)
ti ∈ Cti.

As we also have g(tj , ti) = −g(ti, tj) ∈ Ctj , this is only possible if g(ti, tj) = 0. □

4.5. Proof of (4.2) I. We now shift our focus to establishing the identity (4.2)
of Theorem 4.1. Throughout Sections 4.5 and 4.6, we assume that g = sl2. In
particular, the Casimir tensor Ω takes the form

Ω =
1

2
h⊗ h+ e⊗ f + f ⊗ e

and thus, by Theorem 3.3, we have

(4.4)

(∆−□)(J (h)) = ℏ(e⊗ f − f ⊗ e)

(∆−□)(J (e)) =
ℏ
2
(h⊗ e− e⊗ h)

(∆−□)(J (f)) =
ℏ
2
(f ⊗ h− h⊗ f)

Our first main step towards establishing (4.1) is to prove the following analogue of
Proposition 4.2.

Proposition. There exists a ∈ h = Ch such that

[[J (e),J (f)] ,J (h)]− ℏ2(fJ (e)− J (f)e)h = ℏ3a.

Proof. Again, we will show that the left-hand side is primitive. Since it of weight
zero, it will then follow automatically from Proposition 3.2 that it is of the form
ℏ3a for some a ∈ h. We break this computation into four main steps.

Step 1. J (e) and J (f) satisfy the identity

(∆−□) [J (e),J (f)] = ℏ(J ⊗ Id+ Id⊗J )(e⊗ f − f ⊗ e)− ℏ2

2
□(h)Ω.
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To establish this identity, we first apply the formulas (4.4) to obtain

(∆−□) [J (e),J (f)] =
ℏ
2
([h⊗ f − f ⊗ h,□(J (e))] + [h⊗ e− e⊗ h,□(J (f))])

− ℏ2

4
[h⊗ e− e⊗ h, h⊗ f − f ⊗ h] .

Now, we use the fact that J is an sl2-intertwiner to get

[h⊗ f − f ⊗ h,□(J (e))] = 2J (e)⊗ f − 2f ⊗ J (e)− h⊗ J (h) + J (h)⊗ h,

[h⊗ e− e⊗ h,□(J (f))] = 2e⊗ J (f)− 2J (f)⊗ e+ h⊗ J (h)− J (h)⊗ h.

Therefore, the coefficient of ℏ in the above expression for (∆ − □) [J (e),J (f)] is
(J ⊗ Id+ Id⊗J )(e ⊗ f − f ⊗ e), as claimed. To see that the coefficient of ℏ2 is
(−1/2)□(h)Ω, observe that

[h⊗ e− e⊗ h, h⊗ f − f ⊗ h] = h2 ⊗ h+ h⊗ h2 − hf ⊗ eh+ fh⊗ he

− eh⊗ hf + he⊗ fh

= h2 ⊗ h+ h⊗ h2 + 2hf ⊗ e+ 2f ⊗ he

+ 2e⊗ hf + 2he⊗ f

= 2□(h)Ω,

which outputs the desired result and completes our first step.

Step 2. Let A = [[J (e),J (f)] ,J (h)]. Then A satisfies

(∆−□)(A) = ℏ2C +
ℏ3

4
□(h) [[h⊗ 1,Ω] ,Ω] ,

where C is given by the formula

C =
1

2
□(h) [□(J (h)),Ω] + [(J ⊗ Id+ Id⊗J )(e⊗ f − f ⊗ e), e⊗ f − f ⊗ e] .

This step of our proof follows from the identity obtained in Step 1, together with
the formula (∆ − □)(J (h)) = ℏ(e ⊗ f − f ⊗ e) = ℏ

2 [h ⊗ 1,Ω] from (4.4), and the
fact that □(h) commutes both with □(J (h)) and Ω. In more detail, using these
results we obtain

∆(A) = □(A) + ℏC0 + ℏ2C +
ℏ3

4
□(h) [[h⊗ 1,Ω] ,Ω] ,

where C0 is the element

C0 = [(J ⊗ Id+ Id⊗J ) (e⊗ f − f ⊗ e),□(J (h))]

+ [□ ([J (e),J (f)]) , e⊗ f − f ⊗ e] .

Thus, it remains to see that C0 = 0. This is a consequence of the following easy to
verify identities:

[J (e)⊗ f + e⊗ J (f),□(J (h))] = [J (e),J (h)]⊗ f + e⊗ [J (f),J (h)]

[J (f)⊗ e+ f ⊗ J (e),□(J (h))] = [J (f),J (h)]⊗ e+ f ⊗ [J (e),J (h)]

[[J (e),J (f)]⊗ 1, e⊗ f − f ⊗ e] = [J (h),J (e)]⊗ f + [J (f),J (h)]⊗ e

[1⊗ [J (e),J (f)] , e⊗ f − f ⊗ e] = f ⊗ [J (e),J (h)] + e⊗ [J (h),J (f)]
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Step 3. Let B = (fJ (e)− J (f)e)h. Then B satisfies

(4.5) (∆−□)(B) = 1

2
[□(J (h)),L] + ℏ

4
□(h) [[h⊗ 1,Ω] ,Ω] ,

where L = (∆−□)(feh).

First observe that B can be expressed as B = 1
2 [J (h), feh]. Therefore, applying

∆ to B while using that ∆(feh) = □(feh) + L yields the formula

∆(B) = 1

2

[
□(J (h)) +

ℏ
2
[h⊗ 1,Ω],∆(feh)

]
= □(B) + 1

2
[□(J (h)),L] + ℏ

4
[[h⊗ 1,Ω] ,∆(feh)] .

Now let us write ∆(feh) = ∆(fe)□(h). Since both □(h) and ∆(fe) commute with
Ω, and □(h) also commutes with h⊗ 1, we have

[[h⊗ 1,Ω] ,∆(feh)] = [[h⊗ 1,Ω] ,∆(fe)]□(h) = [[h⊗ 1,∆(fe)],Ω]□(h).

Therefore, Step 3 follows from the observation that [h⊗ 1,∆(fe)] = [h⊗ 1,Ω].

Step 4. The elements A and B from Steps 2 and 3 satisfy (∆−□)(A− ℏ2B) = 0.
Equivalently, one has

[[J (e),J (f)] ,J (h)]− ℏ2(fJ (e)− eJ (f))h ∈ Prim(H).

To prove this, we combine the identities from Steps 2 and 3 to obtain

(∆−□)(A− ℏ2B) = ℏ2
(
C − 1

2
[□(J (h)),L]

)
,

where C and L are as in the statements of Steps 2 and 3, respectively. Next, observe
that we can rewrite L as

L = ∆(feh)−□(feh)

= ∆(fe)□(h)−□(fe)□(h) + fe⊗ h+ h⊗ fe

= (e⊗ f + f ⊗ e)□(h) + fe⊗ h+ h⊗ fe,

which gives [□(J (h)),L] = [□(J (h)),Ω□(h) + fe⊗ h+ h⊗ fe]. Therefore, by
definition of the element C, we have

C − 1

2
[□(J (h)),L] = [(J ⊗ Id+ Id⊗J ) (e⊗ f − f ⊗ e), e⊗ f − f ⊗ e]

− 1

2
[□(J (h)), h⊗ fe+ fe⊗ h]

which is easily seen to be zero, by a direct verification. This completes Step 4, and
thus the proof of Proposition 4.5. □

4.6. Proof of (4.2) II. Armed with Proposition 4.5, we are now prepared to com-
plete the proof of Theorem 4.1 by establishing the relation (4.2). Recall that we
are given a homogeneous quantization H of (sl2[u], δ), equipped with J : sl2 → H1

as in Theorem 3.3. By Proposition 4.5, there is an element a ∈ Ch satisfying

[[J (e),J (f)] ,J (h)]− ℏ2

2
[J (h), feh] = ℏ3a.

We wish to show that a = 0. To this end, observe that Ch ⊂ sl2 is contained
in the eigenspace for T = ad(f) ◦ ad(e) with eigenvalue 2, and hence T (a) = 2a.
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We will now verify that if a ̸= 0, then it is an eigenvector for this same operator
with eigenvalue 6, which is impossible. We begin by computing the action of T on
[[J (e),J (f)] ,J (h)]:

T ([[J (e),J (f)] ,J (h)]) =
[
f, [[J (e),J (h)] ,J (h)]− 2 [[J (e),J (f)] ,J (e)]

]
= 4 [[J (e),J (f)] ,J (h)] + 2 [[J (e),J (h)] ,J (f)]

+ 2 [[J (h),J (f)] ,J (e)] + 6 [[J (e),J (f)] ,J (h)]

= 6 [[J (e),J (f)] ,J (h)] .

In order to apply T to [J (h), feh], it is convenient to replace fe by κ, where κ is
half of the quadratic central Casimir element in U(sl2):

κ =
1

4
h2 +

1

2
h+ fe.

Since J (h) commutes with h, we then have [J (h), feh] = [J (h), κ]h. Applying
ad(e) to this element then gives

ad(e)([J (h), κ]h) = −2 [J (e), κ]h− 2 [J (h), κ] e.

Applying now ad(f) to this, we find that

T ([J (h), κ]h) = 4 [J (h), κ]h− 4 [J (e)f + J (f)e, κ] .

Since J (e)f +J (f)e is of weight zero, we may replace κ by fe in the last bracket.
That T ([J (h), κ]h) = 6 [J (h), κ]h then follows immediately from the identity

[J (e)f + J (f)e, fe] = (J (f)e− fJ (e))h = −1

2
[J (h), κ]h

which is easily verified directly. Thus, we have proven that T (a) = 6a, and hence
that a = 0. This completes the proof of (4.2).

5. Uniqueness of homogeneous quantization

In this section, we combine Theorem 2.4 with the main results of Sections 3 and
4 — Theorems 3.3 and 4.1 — in order to obtain a proof of Theorem 1.3, which
is reformulated as Theorem 5.2 below. We conclude in Section 5.3 by providing
a brief literature review, which connects our results to the theory of Yangians by
expanding on the remarks made in Section 1.5.

5.1. The graded algebra U . Let U be the unital associative C[ℏ]-algebra gener-
ated by {ι(x), J(x)}x∈g, with the following defining relations:

(1) ι : g → U is a Lie algebra map and J : g → U is a g-module homomorphism.
That is, for all x, y ∈ g and λ, µ ∈ C, we have:

ι(λx+ µy) = λι(x) + µι(y), ι([x, y]) = [ι(x), ι(y)],

J(λx+ µy) = λJ(x) + µJ(y), J([x, y]) = [ι(x), J(y)].

In particular, we may extend ι to a C-algebra homomorphism U(g) → U .
(2) For each i, j ∈ I, one has

[J(ti), J(tj)] = ℏ2ι([ν(tj), ν(ti)]) if g ≇ sl2

[[J(e), J(f)], J(h)] = ℏ2(ι(f)J(e)− J(f)ι(e))ι(h) if g ∼= sl2
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It follows from this definition that U is an N-graded algebra over the graded ring
C[ℏ], with grading determined by deg ι(x) = 0 and deg J(x) = 1, for all x ∈ g.
Furthermore, by Theorem 2.4, the assignment

(5.1) ι(x) 7→ x and J(x) 7→ G(x) = xu ∀ x ∈ g

extends to a surjective homomorphism of graded C[ℏ]-algebras U ↠ U(g[u]) with
kernel ℏU , where ℏ is understood to act trivially on U(g[u]). Thus, U is an N-graded
algebra deformation of U(g[u]) over C[ℏ].

5.2. The uniqueness theorem. The following theorem, coupled with the formu-
las for ∆(J (x)) from Theorem 3.3 and the definition of U given in Section 5.1,
immediately implies Theorem 1.3.

Theorem. Let H be a homogeneous quantization of (g[u], δ). Then H is isomorphic
to U as an N-graded C[ℏ]-algebra. An isomorphism ΨH : U ∼−→ H is given by

ΨH(ι(x)) = x and ΨH(J(x)) = J (x) ∀ x ∈ g,

where J : g → H1 is as in Theorem 3.3. Moreover, if H′ is any other homogeneous
quantization of (g[u], δ), then the composition

ΨH′ ◦Ψ−1
H : H ∼−→ H′

is an isomorphism of graded Hopf algebras over C[ℏ].

Proof. The second assertion of the theorem, concerning the composition ΨH′ ◦
Ψ−1

H , is a consequence of the first assertion and the formulas for the coproduct ∆,
counit ε, and antipode S of H given in Theorem 3.3 and Remark 3.3. It is thus
sufficient to establish that first statement.

By Theorems 3.3 and 4.1, the elements {x,J (x)}x∈g ⊂ H satisfy the defining
relations (1) and (2) of U from Section 5.1. Therefore, there is a graded algebra
homomorphism

ΨH : U → H
given as in the statement of the theorem. Since U and H are N-graded C[ℏ]-modules
and H is torsion free, to see that ΨH is an isomorphism it suffices to prove that
its classical limit ψH : U/ℏU → H/ℏH, obtained by reducing modulo ℏ, is an
isomorphism. Using the identifications of H/ℏH and U/ℏU with U(g[u]) provided
via (H2) of Definition 3.1 and (5.1), respectively, we may view ψH as an algebra
homomorphism

ψH : U(g[u]) → U(g[u]).

Since the images of J (x) and J(x) in U(g[u]) both coincide with G(x) = xu ∈ g[u]
and ψH is the identity on g, we have ψH = IdU(g[u]). This proves that ΨH is an
isomorphism. □

5.3. Concluding remarks. We now give a number of remarks closely related to
the existence portion of Drinfeld’s Theorem 1.2, which expand upon the comments
from Section 1.5 and serve to position our results within the theory of Yangians.

Suppose first that g ≇ sl2. Then, as noted in Section 1.5, the graded algebra U
introduced in Section 5.1 is precisely the Yangian Yℏ(g) of the simple Lie algebra g,
expressed in the presentation obtained in Theorem 2.13 of [GNW18]. This theorem
of [GNW18] improves upon the presentation for Yℏ(g) obtained by Levendorskii in
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[Lev93a, Thm. 1.2], by showing that one can omit its degree 3 defining relation
[Lev93a, (1.6)], provided g is of rank at least two. Here we note that the results of
[GNW18, Lev93a] are written in terms of the degree 1 elements

h̃i,1 = J(ti)− ℏι(ν(ti)) and x±i,1 = ± 1

(αi, αi)
[h̃i,1, ι(x

±
i )],

which play the roles of T (ti) and x±i,1 from Lemma 4.3, rather than the g-module
homomorphism J from the definition of U . If instead g ∼= sl2, then U is the Yangian
Yℏ(sl2) expressed in a well-know variation of Levendorskii’s realization [Lev93a],
using the elements J(e), J(f) and J(h); see [Mol03, §2.9], for instance. We refer
the reader to [GRW19, §A] for a detailed proof of the equivalence of the relation
from (2) in the Definition of U and the degree 3 relation [Lev93a, (1.6)].

An important consequence of these identification of U with Yℏ(g), and established
results from the theory of Yangians, is that U is in fact a homogeneous quantization
of (g[u], δ). Although this fact has not played a direct role in our results, it is worth
highlighting a few crucial ingredients that make up its proof:

(1) The main obstruction to establishing that U is a graded Hopf algebra lies
in showing that the formulas

∆(ι(x)) = □(ι(x)) and ∆(J(x)) = □(J(x)) +
ℏ
2
[ι(x)⊗ 1,Ωι],

for all x ∈ g, determine a C[ℏ]-algebra homomorphism ∆ : U → U ⊗ U ,
where Ωι = (ι ⊗ ι)(Ω). For g ≇ sl2, a proof of this was given in Theorem
4.9 of [GNW18]; see also Remark 4.10 and Proposition 4.24 therein.

For g ∼= sl2, it is unclear to the authors if a direct proof of this fact has
appeared in the literature, using the defining relations of U . That being
said, it is straightforward to see that the defining relations (1) for U are
preserved by ∆. That the relevant relation of (2) is also preserved is in fact
a consequence of the computations carried out in the proof of Proposition
4.5. Indeed, these computations show that the element

[[∆(J(e)),∆(J(f))],∆(J(h))]

− ℏ2
(
∆(ι(f))∆(J(e))−∆(J(f))∆(ι(e))

)
∆(ι(h))

coincides with

□
(
[[J(e), J(f)], J(h)]− ℏ2(ι(f)J(e)− J(f)ι(e))ι(h)

)
,

which vanishes as a consequence of (2).

(2) Given the above, it follows by Remark 3.3 that the counit ε and antipode
S of U are uniquely determined by the formulas

ε(ι(x)) = ε(J(x)) = 0, S(ι(x)) = −ι(x), S(J(x)) = −J(x) + ℏ
4
cgι(x),

for all x ∈ g, where cg is the eigenvalue of quadratic Casimir element C ∈
U(g) on the adjoint representation of g, as in Remark 3.3. It follows easily
from the definition of U that these formulas indeed define a graded algebra
homomorphism ε : U → C[ℏ] and anti-algebra homomorphism S : U → U .
By construction, they satisfy the counit and antipode anxioms of a Hopf
algebra.
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(3) Finally, it follows from the above remarks and the formulas for δ(x) and
δ(G(x)) given in Section 2.4 that U will satisfy all of the conditions of Def-
inition 3.1 provided it is torsion free as a C[ℏ]-module. That the Yangian
Yℏ(g) has this property is a consequence of its Poincaré–Birkhoff–Witt the-
orem, which was first established by Levendorskii in [Lev93b] in Drinfeld’s
new or loop presentation [Dri87a]; see also Proposition 2.2 of [GRW19] and
Theorem B.2 of [FT19]. Since this presentation of Yℏ(g) is isomorphic to
U by the results of [GNW18] and [Lev93a], we can conclude that U is a
homogeneous quantization of (g[u], δ).
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