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Abstract. We initiate a theory of highest weight representations for twisted Yangians of types
B, C, D and we classify the finite-dimensional irreducible representations of twisted Yangians asso-
ciated to symmetric pairs of types CI, DIII and BCD0.
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1. Introduction

Yangians constitute one of the two important families of quantum groups of affine type along with the
quantum affine algebras and are of interest to both mathematicians and physicists. Their representation
theory has been studied quite a lot over the past thirty years and occasionally applications have been found
to the study of other mathematical entities, for instance to isomonodromic deformations [ChMa], slices in
affine Grassmannian [KWWY], classical centralizers [Mo4, MO, Na] and the geometry of Schubert varieties
[RTV]. The category of finite-dimensional representations of Yangians is not semisimple, so understanding
the irreducible ones does not provide a complete picture of the category, but it is nevertheless the most
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important first step that needs to be taken. Such an understanding comes first from classifying those
modules in terms of certain polynomials (see [Dr3]) and then from building realizations of those modules
[KN1, KN2, KN5, KNP], studying their behaviour under tensor products [Mo3, NaTa1, NaTa2], etc.

In theoretical physics, Yangians first appeared via their relation to rational solutions of the quantum
Yang-Baxter equation [Dr1]. It was later discovered that they are also relevant in the study of symmetries
of certain integrable systems [Be1, Be2]. In the case of integrable systems with boundaries, it turns out
that certain subalgebras of Yangians called twisted Yangians are sometimes relevant to understanding their
symmetries, see e.g. [DMS, Ma, MaRe1, MaRe2, MaSh]. In the mathematical literature, those that have
been mostly studied are the twisted Yangians of type AI and AII (corresponding to the pairs (glN , soN )
and (glN , spN )) introduced by G. Olshanskii in [Ol], further studied in [MNO] and whose representation
theory was the subject of a good number of papers by A. Molev, M. Nazarov et al., see for instance [KN3,
KN4, KN5, KNP, Mo1, Mo2, Mo4, Mo5, Na]. They are coideal subalgebras of the Yangian of glN . In
[GR], for each symmetric pair of type B, C or D (see Subsection 2.2), similar (extended) twisted Yangians
denoted Y (gN ,G)tw (resp. X(gN ,G)tw - see [AMR]) were introduced as coideal subalgebras of the (extended)
Yangians Y (gN ) (resp. X(gN )) where gN = soN or gN = spN . (See Subsection 2.2 for the definition of the
matrix G.) Some of their structural properties were determined: in particular, it was shown that Y (gN ,G)tw

can also be viewed as a quotient of X(gN ,G)tw which in turn can be defined using the reflection equation
that first appeared in [Ch] and [Sk].

The goal of this paper is to begin the study of the irreducible finite-dimensional representations of the
new twisted Yangians defined in [GR]. Our main results provide the classification of these modules in the
cases when the underlying symmetric pair is of type CI (i.e. (sp2n, gln)), DIII (i.e. (so2n, gln)) or BCD0
(i.e. (gN , gN )): see Theorems 6.2, 6.5 and 6.6, which are applicable to the extended twisted Yangians
X(gN ,G)tw and their respective Corollaries 6.3 and 6.7 which are applicable to Y (gN ,G)tw. The classification
is stated in terms of certain polynomials as in the case of Yangians of simple Lie algebras [Dr3], twisted
Yangians for symmetric pairs of type A [Mo5] and twisted q-Yangians [GM]. To obtain our classification
theorems, we follow a well established approach (see [Mo1, Mo2, Mo5, MR, AMR]). As a first step, we
prove that any finite-dimensional irreducible module is of highest weight type, hence the quotient of a
Verma module: see Theorem 4.5. The classification problem thus reduces to determining conditions on the
highest weight which hold exactly when the corresponding simple module is finite-dimensional, but there
is another question which must first be considered. In the context of the RTT-presentation which we are
using, a Verma module can sometimes be trivial (see Proposition 5.4 in [AMR]), so it is important to find
conditions which are equivalent to non-triviality: such conditions are stated in Proposition 4.17 whose proof
depends on Theorem 4.2 in [MR] and relies on Proposition 4.14 which states that a certain subspace of any
representation of X(gN ,G)tw can be made into a module over an extended reflection algebra (which is an
extension of a twisted Yangian of type AIII). The same proposition, along with Theorem 4.6 in [MR], allows
us to deduce certain conditions (see Proposition 4.18) on the highest weight which are necessary for the
irreducible quotient of a Verma module to be finite-dimensional. Similar results were already known for the
twisted Yangians Y ±(N) associated to the symmetric pairs (glN , gN ), where gN = soN or spN , with the role
of the reflection algebra played instead by the Yangian Y (n) of the general linear algebra gln (N = 2n or
N = 2n+ 1): Propositions 4.14 and 4.18 should be compared to Proposition 4.2.8 of [Mo5].

One of the key ingredients in the proof of the Classification Theorems 6.2, 6.5 and 6.6 is provided by
Lemma 4.12 and Proposition 4.13, which state that a certain subspace V+ of a X(gN ,G)tw-module V
inherits the structure of a module over a twisted Yangian associated to a symmetric pair (g′, k′), where
rankg′ = rankgN − 1. This allows us to argue by induction on the rank of the Lie algebra gN in order to
establish necessary conditions for the finite-dimensionality of V . As for the base case for the induction, it can
be deduced from the known Classification Theorem for finite-dimensional irreducible modules over twisted
Yangians of type AI or AII (see [Mo1, Mo2, Mo5]) using the isomorphisms established in [GRW]. To prove
sufficiency of the conditions in the aforementioned theorems, we build a representation of X(gN ,G)tw with
the proper highest weight from a finite-dimensional representation of X(gN ).

In the present manuscript, our results on highest weight modules of twisted Yangians in Section 4 are
valid in all Cartan types listed in Section 2 except type DI(b), however in Section 6 we fully classify finite-
dimensional irreducible modules of twisted Yangians of types BCD0, CI and DIII only. We hope to be
able to extend our classification results to twisted Yangians of other types in a future publication. Type
DI(b) is excluded from our considerations because the generators that should be used to define the notion of
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highest weight vectors are not exactly the same as in the other types. This is a consequence of the fact that
the matrix G below (see Subsection 2.2) is not diagonal in type DI(b). Furthermore, the proof of similar
classification theorems for twisted Yangians of type CII and DI(a) seems to be noticeably more complicated,
hence has also been postponed.

Once the full classification of irreducible finite dimensional modules has been achieved, we hope to investi-
gate connections of the twisted Yangians introduced in [GR] to centralizer constructions as in [Mo4, MO, Na]
and possible analogs of the functor studied in [KN3, KN4]. Furthermore, the methods of proof of this paper
should be applicable to obtain classification theorems as in [GM] for finite dimensional irreducible modules
over twisted quantum loop algebras associated to symmetric pairs of types B, C, D similar to those studied
in [MRS].

Outline. The paper is organized as follows. In Section 2 we introduce the necessary definitions and recall
the basic facts about symmetric pairs of classical types, the reflection equation and its solutions. In Section 3
we recall the definition of Yangians, twisted Yangians and reflection algebras. The main results of this paper
are presented in the remaining three sections. We initiate the highest weight theory for representations
of twisted Yangians of types B, C, D, for the cases when the matrix G is diagonal in Section 4. In the
following one, we deduce the classification theorems for finite-dimensional irreducible representations of
twisted Yangians of types CI, DIII and BCD0 when the rank is small. The last section contains the main
classifications theorems of finite-dimensional irreducible modules for twisted Yangians of types CI, DIII and
BCD0.
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Canada. The authors would like to warmly thank the referee for a very thorough review of our paper.

2. Definitions and preliminaries

2.1. Notation. Let n ∈ N and set N = 2n or N = 2n + 1. We will always assume that g = glN , g = slN
or g = gN , where gN is the orthogonal Lie algebra soN or the symplectic Lie algebra spN (only when
N = 2n). The algebra gN can be realized as a Lie subalgebra of glN as follows. We label the rows and
columns of matrices in glN by the indices {−n, . . . ,−1, 1, . . . , n} if N = 2n and by {−n, . . . ,−1, 0, 1, . . . , n}
if N = 2n + 1. Set θij = 1 in the orthogonal case and θij = sign(i) · sign(j) in the symplectic case for
−n ≤ i, j ≤ n. (It is understood that, when N is even, i = 0 and j = 0 are excluded.)

Let Fij = Eij − θijE−j,−i, where the Eij are the usual elementary matrices of glN . These matrices satisfy
the relations

(2.1) [Fij , Fkl] = δjkFil − δilFkj + θijδj,−lFk,−i − θijδi,−kF−j,l, Fij + θijF−j,−i = 0.

We may identify gN with spanC{Fij : −n ≤ i, j ≤ n} and we will use hN = spanC{Fii : 1 ≤ i ≤ n} as
Cartan subalgebra. Given a Lie algebra a its universal enveloping algebra will be denoted by Ua.

Next, we need to introduce some operators: P ∈ End(CN ⊗CN ) will denote the permutation operator on
CN ⊗ CN and we set Q = P t1 = P t2 where the transpose t is given by (Eij)

t = θijE−j,−i; explicitly,

(2.2) P =
∑

−n≤i,j≤n

Eij ⊗ Eji, Q =
∑

−n≤i,j≤n

θijEij ⊗ E−i,−j .

In the cases when both orthogonal (θij = 1) and symplectic (θij = sign(i) · sign(j)) transpositions are used
simultaneously, we will denote the former by t+ and the latter by t−. Let I denote the identity matrix.
Then P 2 = I, PQ = QP = ±Q and Q2 = NQ, which will be useful below. Here (and further in this paper)
the upper sign corresponds to the orthogonal case and the lower sign to the symplectic case. In addition, we
will also use the notation (±) and [±], which will be explained in appropriate places.

Let tensor products be defined over the field of complex numbers. For a matrix X with entries xij in an
associative algebra A we write

(2.3) Xs =
∑

−n≤i,j≤n

I ⊗ · · · ⊗ I︸ ︷︷ ︸
s−1

⊗Eij ⊗ I ⊗ · · · ⊗ I ⊗ xij ∈ End(CN )⊗k ⊗A.
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Here k ∈ N≥2 and 1 ≤ s ≤ k; it will always be clear from the context what k is.
Henceforth, we will employ the convention used above in labelling the rows and columns of N×N matrices

except in the following circumstances. When discussing symmetric pairs of type AIII (see Subsection 2.2)
and the corresponding twisted Yangians B(N, q) (see Subsection 3.6), we shall follow the notation from [MR]
and instead label the rows and columns of N ×N matrices using the ordered set {1, . . . , N}.

2.2. Symmetric pairs of classical Lie algebras. The symmetric pairs we are interested in are of the form
(g, gρ), where ρ is an involution of g and gρ denotes the ρ-fixed subalgebra of g. The involution ρ is given
by ρ(X) = GXG−1 for a particular matrix G, except that ρ(X) = −Xt for types AI and AII. We will make
well-suited choices of G for the purposes of the present paper, which agree with the ones in [MNO], [MR],
and to the ones in [GR] up to conjugation. We also introduce a further refinement of Cartan’s classification
of symmetric spaces that reflects the explicit form of G listed below and differences in the study of the
representation theory of the extended twisted Yangians.

Let p and q be such that p ≥ q > 0 and p + q = N . In the list below, for each Cartan type, we indicate
the corresponding symmetric pair and give our choice of matrix G:

• AI : (g, gρ) = (slN , soN ) and t = t+.

• AII : (g, gρ) = (slN , spN ) and t = t−.

• AIII : (g, gρ) = (slN , (glp ⊕ glq) ∩ slN ) and G =
∑p
i=1Eii −

∑N
i=p+1Eii.

• CI : N = 2n, (g, gρ) = (spN , glN
2

) and G =
∑N

2
i=1(Eii − E−i,−i).

• DIII : N = 2n, (g, gρ) = (soN , glN
2

) and G =
∑N

2
i=1(Eii − E−i,−i).

• BI(a): N = 2n+ 1, (g, gρ) = (soN , sop ⊕ soq) such that p is odd and q is even. The matrix G is

(2.4) G =

p−1
2∑

i=− p−1
2

Eii −

N−1
2∑

i= p+1
2

(Eii + E−i,−i).

In particular, the subalgebra of gρ spanned by Fij with −p−12 ≤ i, j ≤
p−1
2 is isomorphic to sop and

the subalgebra spanned by Fij with |i|, |j| ≥ p+1
2 is isomorphic to soq.

• BI(b): N = 2n+ 1, (g, gρ) = (soN , sop ⊕ soq) such that p is even and q is odd. The matrix G is

(2.5) G = −

q−1
2∑

i=− q−1
2

Eii +

N−1
2∑

i= q+1
2

(Eii + E−i,−i).

Now it is soq spanned by Fij with − q−12 ≤ i, j ≤
q−1
2 and sop is spanned by Fij with |i|, |j| ≥ q+1

2 .

• CII : N = 2n, (g, gρ) = (spN , spp ⊕ spq) such that both p and q are even. The matrix G is

(2.6) G =

p
2∑
i=1

(Eii + E−i,−i)−
N
2∑

i= p
2+1

(Eii + E−i,−i).

In this case the subalgebra of gρ spanned by Fij with −p2 ≤ i, j ≤ p
2 is isomorphic to spp and the

subalgebra of gρ spanned by Fij with |i|, |j| > p
2 is isomorphic to spq.

• DI(a): N = 2n, (g, gρ) = (soN , sop ⊕ soq) such that both p and q are even. We choose G to be
the same as for CII case, i.e. given by (2.6). Hence the subalgebras sop and soq of gρ are defined
analogously.

• DI(b): N = 2n, (g, gρ) = (soN , sop ⊕ soq) such that both p and q are odd. We choose G to be

(2.7) G = E1,−1 + E−1,1 +

p+1
2∑
i=2

(Eii + E−i,−i)−
N
2∑

i= p+3
2

(Eii + E−i,−i).

Type DI(b) is exceptional as it is the only case when G can not be chosen to be diagonal.

In addition, we will consider trivial symmetric pairs:
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• ABCD0: (g, gρ) = (g, g) and G = I.

These can be thought of as limiting cases of types AIII, CII and BDI when p = N and q = 0. For ease of
notation, we will further refer to types CI, DIII, CII, BDI and BCD0 as types B-C-D.

2.3. R-matrices, K-matrices and the reflection equation. The matrices R(u) ∈ End(CN ⊗CN )[[u−1]]
that we will need are defined by [MNO, AACFR]:

(2.8) a) R(u) = I − P

u
for glN , b) R(u) = I − P

u
+

Q

u− κ
for gN ,

where κ = N/2∓1 for g = gN . These R-matrices are rational solutions of the quantum Yang-Baxter equation
with spectral parameter,

(2.9) R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u),

and satisfy the identity R(u)R(−u) = (1 − u−2)I. Set Rt(u) = Rt1(u) = Rt2(u); here, t1 is the transpose
with respect to the first copy of End(CN ) inside End(CN ⊗ CN ) ∼= End(CN ) ⊗ End(CN ); t2 is defined
similarly.

Definition 2.1. We recall the following matrices K(u) ∈ End(CN )(u) from [GR, MR, MNO]:

• K(u) = I for symmetric pairs ABCD0, AI and AII;

• K(u) = G for symmetric pairs AIII, CI, DIII and DI, CII when p = q;

• K(u) = (I − cuG)(1− cu)−1 with c = 4
p−q for symmetric pairs BDI, CII when p > q.

When K(u) is a constant matrix, we will say that it is ‘of the first kind’; if it depends on u, it will be said
to be ‘of the second kind’.

The K(u) of types AI and AII is a (scalar) solution of the twisted reflection equation

(2.10) R(u− v)K1(u)Rt(−u− v)K2(v) = K2(v)Rt(−u− v)K1(u)R(u− v),

where t = t± and R(u) is given by a) in (2.8). In all other cases, K(u) are solutions of the reflection equation

(2.11) R(u− v)K1(u)R(u+ v)K2(v) = K2(v)R(u+ v)K1(u)R(u− v),

with R(u) given by a) in (2.8) for type AIII, or by b) in (2.8) for all the B-C-D types.

Matrix solutions of these reflection equations are often called K-matrices in the literature, which is why
we are using the notation K(u) in this subsection; however, when working with twisted Yangians in the rest
of this paper, we will write G(u) instead of K(u) to conform with the notation in [GR] and [Mo5]. The
matrix K(u) defined above satisfies the unitary relation K(u)K(−u) = I. The next lemma is automatic
when K(u) is constant; for the other cases, it follows using the same argument as in the proof of Lemma 4.3
in [GR] - see below (4.3.1) in loc. cit. Here we will use the notation (±) where the lower sign distinguishes
types CI and DIII from the other cases.

Lemma 2.2. Except in type A, the matrix K(u) satisfies the following identities:

Kt(u) = (±)K(κ− u)± K(u)−K(κ− u)

2u− κ
+

tr(K(u))K(κ− u)− tr(K(u)) · I
2u− 2κ

(2.12)

= p(u)K(κ− u)± K(u)

2u− κ
− tr(K(u)) · I

2u− 2κ
,

where

(2.13) p(u) = (±)1∓ 1

2u− κ
+

tr(K(u))

2u− 2κ
.

Moreover, p(u) satisfies

(2.14) p(u)p(κ− u) = 1− 1

(2u− κ)2
.

Next we give an additional solution K(u; a) to (2.11) parametrized by a free parameter a ∈ C which will
be used in Section 6 to construct one-dimensional representations of twisted Yangians of types CI and DIII.
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Lemma 2.3. Let a ∈ C and let G be of type CI or DIII. Then the matrix

(2.15) K(u; a) = G + au−1I

is a one-parameter solution of (2.11). Moreover, it satisfies the symmetry relation

(2.16) Kt(u; a) = −K(κ− u; a)± K(u; a)−K(κ− u; a)

2u− κ
− tr(K(u; a)) · I

2u− 2κ
.

Proof. We begin by showing that G + au−1I satisfies the reflection equation (2.11), that is

R12(u− v)(G1 + au−1I1)R12(u+ v)(G2 + av−1I2) = (G2 + av−1I2)R12(u+ v)(G1 + au−1I1)R12(u− v).

The matrices G and I are themselves solutions of (2.11), thus it suffices to show that

(2.17)
v−1R12(u− v)G1R12(u+ v) + u−1R12(u− v)R12(u+ v)G2

= u−1G2R12(u+ v)R12(u− v) + v−1R12(u+ v)G1R12(u− v).

Notice first that

(2.18)

(
1− P

u− v

)
G1
(

1− P

u+ v

)
v−1 +

(
1− P

u− v

)(
1− P

u+ v

)
G2u−1

= G2
(

1− P

u+ v

)(
1− P

u− v

)
u−1 +

(
1− P

u+ v

)
G1
(

1− P

u− v

)
v−1.

This is verified by expanding both sides. After subtracting (2.18), the left hand side of (2.17) becomes

1

u+ v − κ

(
G1Q
v
− PG1Q

(u− v)v
+
QG2
u
− PQG2

(u− v)u

)
+

1

u− v − κ

(
QG1
v
− QG1P
v(u+ v)

+
QG1Q

(u+ v − κ)v
+
QG2
u
− QPG2

(u+ v)u
+

Q2G2
(u+ v − κ)u

)
,

while the right hand side becomes

1

u− v − κ

(
G2Q
u
− G2PQ
u(u+ v)

+
G1Q
v
− PG1Q

(u+ v)v

)
+

1

u+ v − κ

(
G2Q
u
− G2QP
u(u− v)

+
G2Q2

u(u− v − κ)
+
QG1
v
− QG1P

(u− v)v
+

QG1Q
v(u− v − κ)

)
.

Multiplying both sides by (u+ v−κ)(u− v−κ)(u2− v2)uv and equating the coefficients of uivj , we see that
it suffices to establish the following relations:

κQG2 +QPG2 −Q2G2 + κQG2 + PQG2 = κG2Q+ G2QP − G2Q2 + κG2Q+ G2PQ,(2.19)

QG1 +QG2 − G1Q+QG2 = G2Q−QG1 + G2Q+ G1Q,(2.20)

−QG1P +QPG2 + PG1Q+ PQG2 = G2QP +QG1P + G2PQ− PG1Q.(2.21)

Since Q2 = NQ and PQ = QP = ±Q, (2.19) is equivalent to (2κ − N)(QG2 − G2Q) = ∓2(QG2 − G2Q),
and since κ = N/2 ∓ 1, this equality is indeed satisfied. As PG1 = G2P and Gt = −G, we have −G1Q =
(PG1)t1 = (G2P )t1 = G2Q. Similarly QG1 = −QG2, from which (2.20) follows. Relation (2.21) holds since
PG2 = G1P , PG1 = G2P and PQ = QP . This completes the proof that K(u; a) = G + au−1I is a solution
of (2.11).

By Lemma 2.2 we already know that (2.16) holds if K(u; a) is replaced with G. Thus it suffices to show
that it also does if K(u; a) is replaced with u−1I, which can be checked directly. �

3. Yangians, twisted Yangians and reflection algebras

3.1. Yangians and extended Yangians of types B-C-D. We briefly recall the algebraic structure of the
Yangian Y (gN ) and the extended Yangian X(gN ) of the Lie algebra gN . For complete details and proofs of
statements presented below, please consult [AACFR, AMR].

Fix N ∈ Z≥2 if g = spN or N ∈ Z≥3 if g = soN . We introduce elements t
(r)
ij with −n ≤ i, j ≤ n and

r ∈ Z≥0 such that t
(0)
ij = δij . Combining these into formal power series tij(u) =

∑
r≥0 t

(r)
ij u

−r, we can then

form the generating matrix T (u) =
∑
−n≤i,j≤nEij ⊗ tij(u). Let R(u) be given by b) of (2.8). The same

R-matrix will be used in Subsections 3.2 and 3.3.
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Definition 3.1. The extended Yangian X(gN ) is the unital associative C-algebra generated by elements t
(r)
ij

with −n ≤ i, j ≤ n and r ∈ Z≥0 satisfying the relation

(3.1) R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v),

or equivalently

[tij(u), tkl(v)] =
1

u− v

(
tkj(u)til(v)− tkj(v)til(u)

)
− 1

u− v − κ
∑

−n≤a≤n

(
δk,−i θia taj(u)t−a,l(v)− δl,−j θja tk,−a(v)tia(u)

)
.

The Hopf algebra structure of X(gN ) is given by

(3.2) ∆ : tij(u) 7→
∑

−n≤a≤n

tia(u)⊗ taj(u), S : T (u) 7→ T (u)−1, ε : T (u) 7→ I.

We will call the generating matrix of the extended Yangian X(gN ) the T -matrix. We will use the same
terminology for the Yangian Y (N), cf. Subsection 3.4.

Let A ∈ GL(N) be such that AAt = I and let a ∈ C be a constant. Moreover, let f(u) ∈ 1 + u−1C[[u−1]]
be an arbitrary formal power series with constant term equal to 1.

Proposition 3.2. The maps

(3.3) κa : T (u) 7→ T (u+ a), µf : T (u) 7→ f(u)T (u), αA : T (u) 7→ AT (u)At,

are automorphisms of X(gN ).

Definition 3.3. Consider the subalgebra of X(gN ) defined by

(3.4) Y (gN ) = {y ∈ X(gN ) : µf (y) = y for any f(u) ∈ 1 + u−1C[[u−1]]}.

This subalgebra is called the Yangian of the Lie algebra gN .

There exists a distinguished central series z(u) = 1 +
∑
r>0 zru

−r such that

(3.5) ∆(z(u)) = z(u)⊗ z(u), S(z(u)) = z(u)−1, T (u)−1 = z(u)−1T t(u+ κ),

Moreover, the coefficients z1, z2, . . . of z(u) are algebraically independent and generate the whole center
ZX(gN ) of X(gN ).

By [AMR, Thm. 3.1], the algebra X(gN ) is isomorphic to the tensor product of its subalgebras ZX(gN )
and Y (gN ). Since ZX(gN ) is generated by the coefficients of the series z(u), it follows that the Yangian
Y (gN ) is isomorphic to the quotient of X(gN ) by the ideal generated by z1, z2, . . . (cf. Cor. 3.2 in ibid.), or
in other words, we have that

(3.6) X(gN ) = ZX(gN )⊗ Y (gN ) =⇒ Y (gN ) ∼= X(gN )/(z(u)− 1).

Moreover, the centre of Y (gN ) is trivial. We will denote the T -matrix of Y (gN ) by T (u). Its matrix elements

will be denoted by (T (u))ij = τij(u), and hence τij(u) =
∑
r≥0 τ

(r)
ij u

−r with τ
(0)
ij = δij .

Let y(u) be the unique series in 1 + u−1ZX(gN )[[u−1]] such that z(u) = y(u)y(u + κ). By (3.5) the
automorphism µf takes y(u) to f(u)y(u) and hence the matrix y(u)−1T (u) is µf -stable. In summary, we
have that

(3.7) ∆(y(u)) = y(u)⊗ y(u), T (u) = y(u)T (u), T (u)−1 = T t(u+ κ), µf : T (u) 7→ T (u).

The Yangian Y (gN ) is a Hopf subalgebra of X(gN ) with the coproduct, antipode and counit obtained by
restricting those of X(gN ); see [AMR, Prop. 3.3].
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3.2. Twisted Yangians and extended twisted Yangians of types B-C-D. These algebras were intro-
duced in [GR]. Let us briefly recall their main algebraic properties. For complete details and proofs of the
claims below consult cit. loc. It will be convenient to call the generating matrix of a twisted Yangian (or
a reflection algebra) the S-matrix. Moreover, to be consistent with the notation in [GR] and in [Mo5], we
denote by G(u) the matrix K(u) of type B–C–D given in Definition 2.1.

Definition 3.4. The extended twisted Yangian X(gN ,G)tw is the subalgebra of X(gN ) generated by the

coefficients s
(r)
ij with −n ≤ i, j ≤ n and r ∈ Z≥0 of the entries sij(u) of the S-matrix

(3.8) S(u) = T (u− κ/2)G(u)T t(−u+ κ/2).

The algebra X(gN ,G)tw is a left coideal subalgebra of X(gN ): ∆(X(gN ,G)tw) ⊂ X(gN ) ⊗ X(gN ,G)tw.
We have that sij(u) =

∑n
a,b=−n θjb tia(u− κ/2)gab(u)t−j,−b(−u+ κ/2), where gab(u) are the matrix entries

of G(u) and, by (3.2),

(3.9) ∆(sij(u)) =
∑

−n≤a,b≤n

θjb tia(u− κ/2)t−j,−b(−u+ κ/2)⊗ sab(u).

We now recall some properties of the matrix S(u). By Lemmas 4.2 and 4.3 in [GR] we have the following.

Lemma 3.5. The S-smatrix S(u) satisfies the reflection equation

(3.10) R(u− v)S1(u)R(u+ v)S2(v) = S2(v)R(u+ v)S1(u)R(u− v),

or equivalently

(3.11)

[sij(u), skl(v)] =
1

u− v

(
skj(u)sil(v)− skj(v)sil(u)

)
+

1

u+ v

n∑
a=−n

(
δkj sia(u)sal(v)− δil ska(v)saj(u)

)
− 1

u2 − v2
n∑

a=−n
δij

(
ska(u)sal(v)− ska(v)sal(u)

)
− 1

u− v − κ

n∑
a=−n

(
δk,−i θia saj(u)s−a,l(v)− δl,−j θaj sk,−a(v)sia(u)

)
− 1

u+ v − κ

(
θj,−k si,−k(u)s−j,l(v)− θi,−l sk,−i(v)s−l,j(u)

)
+

1

(u+ v)(u− v − κ)
θi,−j

n∑
a=−n

(
δk,−i s−j,a(u)sal(v)− δl,−j ska(v)sa,−i(u)

)
+

1

(u− v)(u+ v − κ)
θi,−j

(
sk,−i(u)s−j,l(v)− sk,−i(v)s−j,l(u)

)
− 1

(u− v − κ)(u+ v − κ)
θij

n∑
a=−n

(
δk,−i saa(u)s−j,l(v)− δl,−j sk,−i(v)saa(u)

)
,

and the symmetry relation

(3.12) St(u) = (±)S(κ− u)± S(u)− S(κ− u)

2u− κ
+

tr(G(u))S(k − u)− tr(S(u)) · I
2u− 2κ

,

or equivalently

θijs−j,−i(u) = (±)sij(κ− u)± sij(u)− sij(κ− u)

2u− κ
+

tr(G(u))sij(κ− u)− δij
∑n
k=−n skk(u)

2u− 2κ
,(3.13)

where the lower sign in (±) distinguishes types CI and DIII from the other cases.

Introduce the formal power series w(u) = z(−u− κ/2)z(u− κ/2). By (3.5) and (3.8) we have that

(3.14) S(u)S(−u) = w(u) · I, w(u) = w(−u), ∆(w(u)) = w(u)⊗ w(u).
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Since the series z(u) are central in X(gN ), the same is true for the series w(u), or in other words, the even
coefficients w2, w4, . . . of w(u) are algebraically independent and central in the algebra X(gN ,G)tw. The
relation S(u)S(−u) = I (equivalently, w(u) = 1) will be called the unitary relation.

Definition 3.6. The twisted Yangian Y (gN ,G)tw is the quotient of X(gN ,G)tw by the ideal generated by
the coefficients of the unitary relation, that is

(3.15) Y (gN ,G)tw = X(gN ,G)tw/(S(u)S(−u)− I).

By [GR, Thm. 3.1] the algebra Y (gN ,G)tw is isomorphic to the subalgebra of Y (gN ) generated by the

coefficients σ
(r)
ij with r ≥ 0 of the matrix entries σij(u) of the S-matrix Σ(u) defined by

(3.16) Σ(u) = T (u− κ/2)G(u)T t(−u+ κ/2).

Define the series q(u) = y(u− κ/2)y(−u+ κ/2). Then, by (3.7) and (3.14), we have that

(3.17) S(u) = q(u)Σ(u), w(u) = q(u)q(−u) = q(u)q(u+ κ).

Given f(u) ∈ 1 + u−1C[[u−1]], set g(u) = f(u)f(−u) and let νg denote the restriction of the automorphism
µf of X(gN ) to the subalgebra X(gN ,G)tw. Then, by (3.3) and (3.7),

(3.18) νg : S(u) 7→ g(u− κ/2)S(u), νg : w(u) 7→ g(u− κ/2)g(−u− κ/2)w(u), νg : Σ(u) 7→ Σ(u).

This implies that Y (gN ,G)tw, viewed as a subalgebra of X(gN ), is the νg-stable subalgebra of X(gN ,G)tw;
see [GR, Cor. 3.1].

Let ZX(gN ,G)tw denote the subalgebra of X(gN ,G)tw generated by the coefficients of w(u). Then, by
[GR, Cor. 3.5], the subalgebra ZX(gN ,G)tw is the whole centre of X(gN ,G)tw and the centre of Y (gN ,G)tw

is trivial.

Corollary 3.7 ([GR, Cor. 3.6]). The algebra X(gN , G)tw is isomorphic to the tensor product of its centre
and the subalgebra Y (gN ,G)tw, namely

(3.19) X(gN ,G)tw ∼= ZX(gN ,G)tw ⊗ Y (gN ,G)tw.

Remark 3.8. It was noted in [GR, Remark 3.2], that the automorphism αA of X(gN ) (see (3.3)) restricts to
an isomorphism between the algebras X(gN ,G)tw and X(gN , A

tGA)tw. Given a matrix G let A ∈ GL(N)
be such that AAt = I and AtGA = G. Then αA restricts to an automorphism of X(gN ,G)tw. The same can
be said for Y (gN ,G)tw.

Proposition 3.9. Set F ′ρij =
∑n
a=−n(Fiagaj + giaFaj) and ḡij = 0 if G(u) is of the first kind and ḡij =

(gij − δij)c−1 if G(u) is of the second kind. Then the assignment F ′ρij 7→ σ
(1)
ij − ḡij (resp. F ′ρij 7→ s

(1)
ij − ḡij)

defines an embedding UgρN ↪→ Y (gN ,G)tw (resp. UgρN ↪→ X(gN ,G)tw).

Proof. The embedding UgρN ↪→ Y (gN ,G)tw was obtained in Corollary 3.3 in [GR]. Since Y (gN ,G)tw can

be viewed as a subalgebra of X(gN ,G)tw, the assignment F ′ρij 7→ σ
(1)
ij − ḡij defines an inclusion ι : UgρN ↪→

X(gN ,G)tw. By (3.17) we have Σ(u) = q(u)−1S(u), where q(u) = y(u − κ/2)y(−u + κ/2). The coefficient

of u−1 in the expansion of q(u) is zero, thus σ
(1)
ij = s

(1)
ij for all −n ≤ i, j ≤ n. �

We end this subsection by rephrasing Theorem 3.2 in [GR] for the choice of matrix G in Subsection 2.2.
The only difference is for type BDI, in which case the matrix Σ(u) from (3.16) is related to the matrix of
generators considered in [GR] via conjugation by a suitable matrix A satisfying A−1 = At.

Corollary 3.10. Given any total ordering on the set of generators σ
(r)
ij of Y (gN ,G)tw a vector space basis

of Y (gN ,G)tw is provided by ordered monomials in the following generators (r ≥ 1):

• BD0 : σ
(2r−1)
ij with i+ j > 0.

• C0 : σ
(2r−1)
ij with i+ j ≥ 0.

• CI : σ
(2r−1)
ij with i, j > 0; and σ

(2r)
ij with i+ j ≥ 0, ij < 0.

• DIII : σ
(2r−1)
ij with i, j > 0; and σ

(2r)
ij with i+ j > 0, ij < 0.
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• BI(a) : σ
(2r−1)
ij with i+ j > 0 and |i|, |j| ≤ p−1

2 or |i|, |j| ≥ p+1
2 ;

and σ
(2r)
ij with i ≥ p+1

2 , |j| ≤ p−1
2 or j ≥ p+1

2 , |i| ≤ p−1
2 .

• BI(b) : the same as for BI(a) except p should be replaced with q.

• CII : σ
(2r−1)
ij with i+ j ≥ 0 and |i|, |j| ≤ q

2 or |i|, |j| ≥ q
2 + 1;

and σ
(2r)
ij with i ≥ q

2 + 1, |j| ≤ q
2 or j ≥ q

2 + 1, |i| ≤ q
2 .

• DI(a) : the same as for CII except i+ j ≥ 0 should be replaced with i+ j > 0.

• DI(b) : σ
(2r−1)
ij with i+ j > 0 and 2 ≤ |i|, |j| ≤ p+1

2 or |i|, |j| ≥ p+3
2 , we should also include σ

(2r−1)
1j

and σ
(2r−1)
j1 with j ≥ 2;

and σ
(2r)
ij with i ≥ p+3

2 and 2 ≤ |j| ≤ p+1
2 or j ≥ p+3

2 and 2 ≤ |i| ≤ p+1
2 , we should also include

σ
(2r)
1,−1 and σ

(2r)
1j , σ

(2r)
j1 with j ≥ 2.

Corollary 3.11 (see [GR, Cor. 3.4]). Given any total ordering on the set of generators s
(r)
ij of X(gN ,G)tw,

a vector space basis of X(gN ,G)tw is provided by the ordered monomials in the generators w2, w4, . . . and

s
(r)
ij with r, i, j satisfying the same constraints as in Corollary 3.10.

3.3. Reflection algebras of types B-C-D. It was shown in [GR, Sec. 4] that certain quotients of the
extended reflection algebra XB(G) defined by the reflection equation are isomorphic to twisted Yangians
X(gN ,G)tw and Y (gN ,G)tw. In this subsection we summarize the results obtained in loc. cit.

Let N be as in Subsection 3.1. Introduce elements s̃
(r)
ij with −n ≤ i, j ≤ n and r ∈ Z≥0 such that s̃

(0)
ij = gij

and combine them into an S-matrix S̃(u) in the same way as we did for the T -matrix T (u).

Definition 3.12. The extended reflection algebra XB(G) is the unital associative C-algebra generated by

elements s̃
(r)
ij with −n ≤ i, j ≤ n, r ∈ Z≥0 and satisfying the reflection equation

(3.20) R(u− v) S̃1(u)R(u+ v) S̃2(v) = S̃2(v)R(u+ v) S̃1(u)R(u− v),

or equivalently (3.11) with sij(u) replaced with s̃ij(u).

Let h(u) ∈ 1 + u−1C[[u−1]] and let A ∈ GL(N) be such that AAt = I and AGAt = G.

Proposition 3.13. The maps

(3.21) ν̃h : S̃(u) 7→ h(u) S̃(u), γ̃ : S̃(u) 7→ S̃(−u)−1, α̃A : S̃(u) 7→ A S̃(u)At

are automorphisms of XB(G).

Definition 3.14. The reflection algebra B(G) is the quotient of XB(G) by the ideal generated by the co-

efficients of the symmetry relation (3.12) with S(u) replaced with S̃(u), or equivalently (3.13) with sij(u)
replaced with s̃ij(u).

By [GR, Prop. 5.1 and Cor. 5.1], there exists a unique formal power series c(u) = 1 +
∑
r≥1 cru

−1 with

coefficients central in XB(G) such that

(3.22) Q S̃1(u)R(2u− κ) S̃2(κ− u)−1 = S̃2(κ− u)−1R(2u− κ) S̃1(u)Q = p(u)c(u)Q

with p(u) given by (2.13). The uniqueness of c(u) is a consequence of the invertibility of p(u) - see (2.14).
Moreover, c(u) satisfies the relation c(u)−1 = c(κ−u) and the odd coefficients are algebraically independent.
By [GR, Thm. 4.2 and Cor. 5.2], we have the following isomorphism of algebras:

(3.23) X(gN ,G)tw ∼= B(G) ∼= XB(G)/(c(u)− 1).

Combining (3.21) with (3.22) we have that ν̃h(c(u)) = h(u)h(κ−u)−1c(u). Let v(u) be the unique central
invertible power series with constant term 1 such that c(u) = v(u)2. Hence c(u) = v(u)v(κ − u)−1. Set
sij(u) = v(u)−1 s̃ij(u) and let series h(u) be such that h(u)−1 = h(κ − u). Then, by [GR, Prop. 5.2 and

Thm. 5.3], the subalgebra of XB(G) generated by the coefficients s
(r)
ij with r ∈ Z≥0 of the series sij(u) is

the ν̃h-stable subalgebra of XB(G) and is isomorphic to B(G). We will denote by ZX (G) the subalgebra of
XB(G) generated by the odd coefficients of c(u).



11

Let S(u) denote the S-matrix of B(G). By [GR, Prop. 4.1], the product S(u)S(−u) = w(u) · I is a scalar
matrix, where w(u) is an even formal power series in u−1 with coefficients central in B(G). We will denote
by ZB(G) the subalgebra of B(G) generated by the even coefficients of w(u).

Definition 3.15. The unitary reflection algebra UB(G) is the quotient of B(G) by the ideal generated by the
coefficients of the unitary relation S(u)S(−u) = I.

By [GR, Thm. 4.1], we have the following isomorphism of algebras:

(3.24) Y (gN ,G)tw ∼= UB(G) ∼= B(G)/(w(u)− 1).

It will be convenient to denote XB(G) by X̃(gN ,G)tw and ZX (G) by Z̃X(gN ,G)tw.

3.4. Yangians of type A. We briefly recall the algebraic properties of the Yangian Y (N) of the Lie algebra
glN and the Yangian SY (N) of the Lie algebra slN . For more details consult [MNO, Mo5].

Let N ≥ 2 and let the matrix T (u) be defined in the same way as in Subsection 3.1. Moreover, let R(u)
be given by a) of (2.8). This R-matrix will also be used in Subsections 3.5 and 3.6.

Definition 3.16. The Yangian Y (N) is the unital associative C-algebra generated by elements t
(r)
ij with

−n ≤ i, j ≤ n and r ∈ Z≥0 satisfying the relation (3.1), or equivalently

(3.25) [tij(u), tkl(v)] =
1

u− v

(
tkj(u)til(v)− tkj(v)til(u)

)
.

The Hopf algebra structure of Y (N) is the same as in (3.2).

All the maps listed in Proposition 3.2 are also automorphisms of Y (N), and in addition so is the map
βA : T (u) 7→ AT (u)A−1, where A ∈ GL(N) is any invertible matrix.

Definition 3.17. The special Yangian SY (N) is the subalgebra of Y (N) given by

(3.26) SY (N) = {y ∈ Y (N) : µf (y) = y for any f = f(u) ∈ 1 + u−1C[[u−1]]}.

It is also called the Yangian of slN .

There exists a distinguished central series qdetT (u), called the quantum determinant, whose coefficients
d1, d2, . . . are, by [MNO, Thm. 2.13, Cor. 2.18], algebraically independent and generate the whole centre
Z(N) of Y (N). Moreover, the quotient algebra Y (N)/(qdetT (u)− 1) is isomorphic to the Yangian SY (N)
and Y (N) ∼= Z(N)⊗ SY (N). Furthermore, the centre of SY (N) is trivial.

Let d(u) be the unique series such that qdetT (u) = d(u)d(u−1) · · · d(u−N+1). Then µf (d(u)) = f(u)d(u)
and hence the matrix T (u) = d(u)−1T (u) is stable under the action of µf , i.e. it is the T -matrix of SY (N).

Remark 3.18. In [Mo5], the algebras Y (N) and SY (N) are denoted by Y (glN ) and Y (slN ), respectively.
We will use the former notation to avoid possible confusion with the Yangians X(gN ) and Y (gN ) of the Lie
algebra gN .

3.5. Olshanskii Twisted Yangians. In this subsection we briefly recall the presentation of the twisted
Yangians Y ±(N) introduced by G. Olshanskii in [Ol] and surveyed in [MNO].

Definition 3.19. The twisted Yangian Y ±(N) is the subalgebra of Y (N) generated by the coefficients s
(r)
ij

with −n ≤ i, j ≤ n and r ∈ Z≥0 of the matrix elements sij(u) of the S-matrix

(3.27) S(u) = T (u)T t(−u).

We have that sij(u) =
∑n
a=−n θaj tia(u)t−j,−a(−u) and

(3.28) ∆(sij(u)) =
∑

−n≤a,b≤n

θjatia(u)t−j,−b(−u)⊗ sab(u),

which implies that Y ±(N) is a left coideal subalgebra of Y (N).
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Lemma 3.20. The S-matrix S(u) defined by (3.27) satisfies the twisted reflection equation

(3.29) R(u− v)S1(u)Rt(−u− v)S2(v) = S2(v)Rt(−u− v)S1(u)R(u− v),

where R(u) is given by (2.8) a). Equivalently

(3.30)

[sij(u), skl(v)] =
1

u− v

(
skj(u)sil(v)− skj(v)sil(u)

)
− 1

u+ v

(
θk,−j si,−k(u)s−j,l(v)− θi,−l sk,−i(v)s−l,j(u)

)
+

1

u2 − v2
θi,−j

(
sk,−i(u)s−j,l(v)− sk,−i(v)s−j,l(u)

)
,

and the symmetry relation

(3.31) St(u) = S(−u)± S(u)− S(−u)

2u
.

Proposition 3.21 ([MNO, Prop. 3.11]). The map ev± : Y ±(N) → UgN , sij(u) 7→ δij I +
(
u ± 1

2

)−1
Fij

is a homomorphism of algebras and the map ι : UgN → Y ±(N), Fij 7→ s
(1)
ij is an embedding of algebras.

Moreover, ev± ◦ ι = id.

There exists a distinguished central series sdetS(u), called the Sklyanin determinant, whose even coeffi-
cients are algebraically independent and generate the whole centre Z±(N) of Y ±(N). Introduce the function
γN (u) by

(3.32) γN (u) = 1 for Y +(N) and γN (u) =
2u+ 1

2u−N + 1
for Y −(N).

By [MNO, Thms. 4.7, 4.11], we have that sdetS(u) = γN (u)qdetT (u)qdetT (−u+N − 1).
Let g(u) ∈ 1 + u−2C[[u−2]] and let f(u) ∈ 1 + u−1C[[u−1]] be the unique power series with constant term

1 such that g(u) = f(u)2. Then g(u) = g(−u) ⇒ f(u)2 = f(−u)2 ⇒ f(u) = f(−u) because both have
constant term 1. Therefore, g(u) = f(u)f(−u) and we let νg denote the restriction of µf to Y ±(N). If
g(u) = f1(u)f1(−u) = f2(u)f2(−u), then f1(u) and f2(u) differ by multiplication by a series h(u) such that
h(u)h(−u) = 1.

Definition 3.22. The special twisted Yangian SY ±(N) is the subalgebra of Y ±(N) given by

(3.33) SY ±(N) = {y ∈ Y ±(N) : νg(y) = y for any g = g(u) ∈ 1 + u−2C[[u−2]]}.

Proposition 3.23 ([Mo5, Thm. 2.9.2, Cor. 2.9.3]). The algebra Y ±(N) is isomorphic to the tensor product
of its centre Z±(N) and the subalgebra SY ±(N):

(3.34) Y ±(N) ∼= Z±(N)⊗ SY ±(N).

Consequently, SY ±(N) ∼= Y ±(N)/(sdet S(u)− γN (u)) and the centre of SY ±(N) is trivial.

Set q(u) = d(u)d(−u) and Σ(u) = q(u)−1S(u). Since µf (d(u)) = f(u)d(u), we have that νg(Σ(u)) = Σ(u)
and thus Σ(u) is the S-matrix of SY ±(N).

Remark 3.24. There is an extended twisted Yangian Ỹ ±(N) which plays a role analogous to XB(G) for the
twisted Yangian Y ±(N). For the general results concerning this algebra we refer the reader to [Mo5, §2.13].

3.6. Molev-Ragoucy reflection algebras. In this subsection we recall the structure of Molev-Ragoucy
reflection algebras B(N, q) introduced in [MR]. We recall that, in this exceptional case, we label the rows and

columns ofN×N matrices from 1 toN . In particular, the generators of Y (N) are t
(r)
ij with 1 ≤ i, j ≤ N, r ≥ 0.

Definition 3.25. The reflection algebra B(N, q) is the subalgebra of Y (N) generated by the coefficients b
(r)
ij

with 1 ≤ i, j ≤ N and r ∈ Z≥0 of the matrix elements bij(u) of the matrix B(u) given by

(3.35) B(u) = T (u)GT (−u)−1,

where G is the diagonal matrix G = diag(ε1, . . . , εN ) with εi = 1 for 1 ≤ i ≤ N − q and εi = −1 for
N − q < i ≤ N .

The algebra B(N, q) is a left coideal subalgebra of Y (N) : ∆(B(N, q)) ⊂ Y (N)⊗ B(N, q).
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Lemma 3.26. The matrix B(u) defined by (3.35) satisfies the reflection equation (3.10) with R(u) = I −
u−1P , or equivalently

(3.36)

[bij(u), bkl(v)] =
1

u− v

(
bkj(u)bil(v)− bkj(v)bil(u)

)
+

1

u+ v

N∑
a=1

(
δkj bia(u)bal(v)− δil bka(v)baj(u)

)
− 1

u2 − v2
N∑
a=1

δij

(
bka(u)bal(v)− bka(v)bal(u)

)
,

and the unitary relation B(u)B(−u) = I.

There exists a distinguished central series sdetB(u), called the Sklyanin determinant, whose odd coeffi-
cients are algebraically independent and generate the whole centre Z(N, q) of B(N, q). Introduce the function
θ(u) by

(3.37) θ(u) = (−1)q
∏

1≤i≤N−q

(2u− 2N + 2i)
∏

1≤i≤q

(2u− 2N + 2i)
∏

1≤i≤N

1

2u− 2N + i+ 1
.

By [MR, Thm. 3.4], we have the identity

(3.38) sdetB(u) = θ(u)qdetT (u)(qdetT (−u+N − 1))−1.

Let g(u) ∈ 1+u−1C[[u−1]] be such that g(u)g(−u) = 1 and let f(u) ∈ 1+u−1C[[u−1]] be any power series
such that g(u) = f(u)f(−u)−1: the existence of f(u) can be established as before Definition 3.22. Such a
power series is unique up to multiplication by an invertible even series.

Definition 3.27. The special reflection algebra SB(N, q) is the subalgebra of B(N, q) given by

(3.39) SB(N, q) = {b ∈ B(N, q) : νg(b) = b for any g = g(u) ∈ 1 + u−1C[[u−1]] such that g(u)g(−u) = 1}.

Proposition 3.28. The algebra B(N, q) is isomorphic to the tensor product of its centre Z(N, q) and the
subalgebra SB(N, q):

(3.40) B(N, q) ∼= Z(N, q)⊗ SB(N, q).

Consequently, we have the isomorphism of algebras SB(N, q) ∼= B(N, q)/(sdetB(u)− θ(u)) and the centre of
SB(N, q) is trivial.

Introduce the elements b̃
(r)
ij with 1 ≤ i, j ≤ N and r ∈ Z≥0 and the matrix B̃(u) given by B̃(u) =∑

1≤i,j≤N Eij ⊗ b̃ij(u) with b̃ij(u) =
∑∞
r=0 b̃

(r)
ij u

−r and b̃
(0)
ij = εiδij .

Definition 3.29. The extended reflection algebra B̃(N, q) is the associative C-algebra generated by the ele-

ments b̃
(r)
ij for 1 ≤ i, j ≤ N , r ∈ Z≥0 subject to the reflection equation (3.10) with S(u) replaced by B̃(u).

All the maps listed in Proposition 3.13 are also automorphisms of B̃(N, q), and in addition so is the map

β̃A : B̃(u) 7→ AB̃(u)A−1, where A is any invertible matrix.

Proposition 3.30 ([MR, Prop. 2.1]). In the algebra B̃(N, q) the product B̃(u)B̃(−u) = f(u) · I where f(u)

is an even series in u−1 with coefficients central in B̃(N, q). In particular, B(N, q) ∼= B̃(N, q)/(f(u)− 1).

4. Highest Weight Representations

In this section, we develop a highest weight theory for representations of the extended twisted Yangians
X(gN ,G)tw of type B-C-D where the matrix G is assumed to be diagonal. When G is non-diagonal, the
corresponding symmetric pair (gN , g

ρ
N ) is of type DI(b), and the associated twisted Yangians possess many

exceptional features which shall be addressed in future work.

Let us begin by recalling some of the analogous results developed in [AMR] for the extended Yangians
X(gN ) of type B-C-D in their RTT -presentations.
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A representation V of X(gN ) is a highest weight representation if there exists a nonzero vector ξ ∈ V such
that V = X(gN )ξ and the following conditions are satisfied:

tij(u)ξ = 0 for −n ≤ i < j ≤ n, and

tii(u)ξ = λi(u)ξ for −n ≤ i ≤ n,

and, for each −n ≤ i ≤ n, λi(u) is a formal power series in u−1 with constant term equal to 1:

λi(u) = 1 +

∞∑
r=1

λ
(r)
i u−r, λ

(r)
i ∈ C.

The vector ξ is called the highest weight vector of V , and the N -tuple λ(u) = (λ−n(u), . . . , λn(u)) is called
the highest weight of V.

Given an N -tuple λ(u), the Verma module M(λ(u)) is defined as the quotient of X(gN ) by the left ideal
generated by all the coefficients of the series tij(u) with −n ≤ i < j ≤ n and tii(u)−λi(u) with −n ≤ i ≤ n.
The Verma module M(λ(u)) is non-trivial if and only if the components of the highest weight satisfy

(4.1)
λ−i(u)

λ−i−1(u)
=
λi+1(u− κ+ n− i)
λi(u− κ+ n− i)

for i ∈ {0, . . . , n − 1} if gN is of type B and i ∈ {1, . . . , n − 1} otherwise. (To obtain the exact relation in
[AMR, Prop. 5.14], replace i by n− j, u by u+κ− j and then take the reciprocal on both sides.) Moreover,
if M(λ(u)) is non-trivial, then it has a unique irreducible (non-zero) quotient L(λ(u)), and any irreducible
highest weight X(gN )-module with highest weight λ(u) is isomorphic to L(λ(u)). If L(λ(u)) exists (i.e. if
M(λ(u)) is non-trivial) then, by [AMR, Thm. 5.16], it is finite-dimensional if and only if there exist monic
polynomials P1(u), . . . , Pn(u) in u such that

(4.2)
λi−1(u)

λi(u)
=
Pi(u+ 1)

Pi(u)
for all 2 ≤ i ≤ n,

and in addition

λ0(u)

λ1(u)
=
P1(u+ 1/2)

P1(u)
if gN = so2n+1,(4.3)

λ−1(u)

λ1(u)
=
P1(u+ 2)

P1(u)
if gN = sp2n,(4.4)

λ−1(u)

λ2(u)
=
P1(u+ 1)

P1(u)
if gN = so2n.(4.5)

The polynomials P1(u), . . . , Pn(u) are called the Drinfeld polynomials corresponding to L(λ(u)), and they
determine the module L(λ(u)) up to twisting by an automorphism µf as given in (3.2) - see Corollary 5.19
of [AMR].

4.1. Definitions and general theory. We now turn to the representation theory of the extended twisted
Yangians X(gN ,G)tw, where the symmetric pair (gN , g

ρ
N ) is not of type DI(b). In order to treat all cases

uniformly, we introduce the following notation:

• Let IN be the indexing set {0, . . . , n} if gN is of type B, and {1, . . . , n} otherwise.
• Whenever the symbol [±] or [∓] occurs, the lower sign corresponds to the case where the pair (gN , g

ρ
N )

is of type BI(b), while the upper sign corresponds to the cases where (gN , g
ρ
N ) is of type BCD0, CI,

DIII, DI(a), BI(a), or CII.

Definition 4.1. A representation V of X(gN ,G)tw is called a highest weight representation if there exists a
nonzero vector η ∈ V such that V = X(gN ,G)twη and the following conditions are met:

sij(u)η = 0 for − n ≤ i < j ≤ n, and

sii(u)η = µi(u)η for i ∈ IN ,(4.6)

where µi(u) is a formal power series in u−1 of the following form:

µi(u) = gii +

∞∑
r=1

µ
(r)
i u−r, µ

(r)
i ∈ C.
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Set µ(u) = (µ1(u), . . . , µn(u)) if N = 2n and µ(u) = (µ0(u), . . . , µn(u)) if N = 2n + 1. We call µ(u)
the highest weight of V and η the highest weight vector. (The expression “pseudo highest weight” is also
commonly used in the literature, but we will follow the terminology of [AMR] and [Mo5].)

Given a highest weight representation V with highest weight vector η, a natural question to ask is whether
or not η is a simultaneous eigenvector for the diagonal elements s−i,−i(u) with 1 ≤ i ≤ n. This is indeed the
case. By relation (3.13) we have

(4.7) s−i,−i(u) +
1

2u− 2κ

n∑
`=1

s−`,−`(u) = p(u)sii(κ− u)± sii(u)

2u− κ
− 1

2u− 2κ

∑
`∈IN

s``(u).

Taking the sums of both sides as i goes from 1 to n we obtain:

(4.8)

(
2u− 2κ+ n

2u− 2κ

) n∑
`=1

s−`,−`(u) =

n∑
`=1

(
p(u)s``(κ− u)± s``(u)

2u− κ

)
− n

2u− 2κ

∑
`∈IN

s``(u).

Substituting this equation back into (4.7) leads to the following result.

Proposition 4.2. Let V be a highest weight representation of X(gN ,G)tw with the highest weight vector η
and the highest weight µ(u). Then η is an eigenvector for the action of s−i,−i(u) for all 1 ≤ i ≤ n. More
explicitly, for each 1 ≤ i ≤ n we have the relation:

(4.9) (2κ− 2u− n)s−i,−i(u)η =

n∑
`=1

βi,`(u)

(
p(u)µ`(κ− u)± µ`(u)

2u− κ

)
η +

∑
`∈IN

µ`(u)η,

where βi,`(u) = 1 if ` 6= i and βi,`(u) = (2κ− 2u− n+ 1) otherwise.

Given a highest weight µ(u), we shall frequently make use of the corresponding tuple µ̃(u) whose compo-
nents are given by

(4.10) µ̃i(u) = (2u− n+ i)µi(u) +

n∑
`=i+1

µ`(u),

for each i ∈ IN . The following proposition imposes one condition on µ̃0(u) which will be important later.

Proposition 4.3. Suppose (gN , g
ρ
N ) is a symmetric pair of type B0 or BI. Let V be a highest weight

representation of X(gN ,G)tw, with the highest weight vector η and the highest weight µ(u). Then the series
µ̃0(u) satisfies the relation

(4.11) µ̃0(κ− u) =
κ− u
u
· p0(u)p(u)−1µ̃0(u),

where p0(u) = 1− (2u− κ)−1 +N(2u− 2κ)−1 is equal to the rational function p(u) (see (2.13) with K(u) =
G(u)) corresponding to the symmetric pair (gN , g

ρ
N ) = (so2n+1, so2n+1).

Proof. By the symmetry relation (3.13) we have

s00(u) = p(u)s00(κ− u) +
s00(u)

2u− κ
− 1

2u− 2κ

n∑
`=−n

s``(u),

which can be rearranged to

(4.12)

(
1− 1

2u− κ
+

1

2u− 2κ

)
s00(u) +

1

2u− 2κ

n∑
`=1

s``(u) = p(u)s00(κ− u)− 1

2u− 2κ

n∑
`=1

s−`,−`(u).

Multiplying both sides of this relation by (2κ − 2u − n) and substituting in relation (4.8), the right hand
side becomes:

p(u)

(
(2κ− 2u− n)s00(κ− u) +

n∑
`=1

s``(κ− u)

)
+

(
1

2u− κ
− n

2u− 2κ

) n∑
`=1

s``(u)− n

2u− 2κ
s00(u).

Therefore, on Cη, equation (4.12) can be expressed as

p(u)µ̃0(κ− u) =

(
−1 +

(2u− κ− 1)(2κ− 2u− n)

2u− κ

)
µ0(u) +

(
−1− 1

2u− κ

) n∑
`=1

µ`(u).
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By definition of µ̃0(u), in order to obtain (4.11), it remains to see that

(4.13) − 1 +
(2u− κ− 1)(2κ− 2u− n)

2u− κ
= (2u− n)p0(u)

κ− u
u

and − 1− 1

2u− κ
= p0(u)

κ− u
u

.

We have

(4.14) p0(u) = 1− 1

2u− κ
+

2κ+ 2

2u− 2κ
=

4u2 − 2uκ+ 2u

(2u− κ)(2u− 2κ)
=

u(κ− 2u− 1)

(2u− κ)(κ− u)
,

and thus

p0(u)
κ− u
u

=
κ− 2u− 1

2u− κ
= −1− 1

2u− κ
.

Additionally, we have

(2u− n)p0(u)
κ− u
u

=
(2u− κ− 1/2)(κ− 2u− 1)

2u− κ
=

(2u− κ− 1)(κ− 2u− 1/2)− 2u+ κ

2u− κ
,

which is equivalent to the first equality in (4.13). �

Remark 4.4. Let g(u) be the formal series in u−1 given by

(4.15) g(u) =

{
1 if (gN , g

ρ
N ) is of type B0,

1[±]c(`−u)
1−cu if (gN , g

ρ
N ) is of type BI.

Here we recall that if (gN , g
ρ
N ) is of type BI, then (gN , g

ρ
N ) = (soN , sop ⊕ soq) with p > q, and the constant

c is equal to 4(p − q)−1. The constant ` is then defined to be p/2 if (gN , g
ρ
N ) is of type BI(b), and q/2 if

(gN , g
ρ
N ) is of type BI(a). We claim that p0(u)p(u)−1 = g(κ−u)g(u)−1. If gN is of type B and V is a highest

weight X(gN ,G)tw-module with the highest weight µ(u), then this claim implies that the relation (4.11) for
µ̃0(u) can be rewritten in a more symmetric way:

(4.16) u · g(u) µ̃0(κ− u) = (κ− u) · g(κ− u) µ̃0(u).

Proof of the claim that p0(u)p(u)−1 = g(κ− u)g(u)−1: If (gN , g
ρ
N ) is of type B0 then we may identify p with

N and q with 0. It follows that tr(G(u)) = (N − 2q)
(

N−4u
N−2q−4u

)
. This allows us to write p(u) explicitly:

(4.17) p(u) = 1− 1

2u− κ
+

tr(G(u))

2u− 2κ
=

(2u− κ− 1)(N − 2q − 4u)(2u− 2κ) + (N − 2q)(N − 4u)(2u− κ)

(N − 2q − 4u)(2u− κ)(2u− 2κ)
.

We can now combine (4.14) and (4.17) to obtain, after simplifying, the following expression for p0(u)p(u)−1:

(4.18) p0(u)p(u)−1 =
(2u− κ+ 1)(κ+ 1− q − 2u)

(2u− κ− 1)(κ− 1 + q − 2u)
.

If (gN , g
ρ
N ) is of type B0 then q = 0 and the above expression is equal to 1, which agrees with g(κ−u)g(u)−1.

Suppose instead that (gN , g
ρ
N ) is of type BI. Then we have

g(u) = [±]

(
p+ q − 4u

p− q − 4u

)
= [±]

(
κ+ 1− 2u

κ+ 1− q − 2u

)
,

which implies that g(κ− u)g(u)−1 = p0(u)p(u)−1 as a consequence of (4.18). �

Recall the generators F ′ρij of UgρN defined in the statement of Proposition 3.9. Since the matrix G is
assumed diagonal, they are related to the generators Fij of UgN by the expression

F ′ρij = (gii + gjj)Fij for all − n ≤ i, j ≤ n.

Proposition 3.9 allows us to identify the elements F ′ρij ∈ gρN with their image in X(gN ,G)tw under the

embedding UgρN ↪→ X(gN ,G)tw, and consequentially we can use the explicit form of the reflection equation

(3.11) to compute the bracket relations [F ′ρij , sk`(u)]. We have

(4.19) [F ′ρij , sk`(v)] = (gii + gjj) (δkjsi`(v)− δi`skj(v)− δk,−iθijs−j,`(v) + δ`,−jθijsk,−i(v)) .

Observe that, by definition of gρN and of the elements F ′ρij , hρN = spanC{F
′ρ
ii |1 ≤ i ≤ n} is a Cartan

subalgebra of gρN , which is actually just the Cartan subalgebra hN of gN . Given 1 ≤ i ≤ n, let εi ∈ h∗N
be defined by εi(Fkk) = δik for all 1 ≤ k ≤ n. In addition, define auxiliary elements αk,` ∈ h∗N by
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αk,` = sign(k)ε|k| − sign(`)ε|`| for all −n ≤ k, ` ≤ n, where ε0 is the zero functional. Then from equation
(4.19) we obtain

(4.20) [F ′ρii , sk`(v)] = 2gii (δik − δi` − δi,−k + δi,−`) sk`(v) = αk,`(F
′ρ
ii )sk`(v)

for all 1 ≤ i ≤ n and −n ≤ k, ` ≤ n.
Let ∆+ be the standard set of positive roots of gN for our choice of hN (as in [AMR]), so

∆+ = {αk,` : −n ≤ k < ` ≤ n and k + ` ≥ 1
2 ±

1
2}.

We may define a partial order � on the set of weights of hN by µ1 � µ2 if and only if µ2−µ1 =
∑
k,`mk,`αk,`

with mk,` ∈ Z≥0 and αk,` ∈ ∆+.

Theorem 4.5. Every finite-dimensional irreducible representation V of X(gN ,G)tw is a highest weight
representation. Additionally, V contains a unique highest weight vector η up to scalar multiplication.

Proof. Define the subspace V 0 of V by

V 0 = {η ∈ V : sij(u)η = 0 for all − n ≤ i < j ≤ n}.

Step 1: V 0 is nonzero.

Via the embedding gρN ↪→ X(gN ,G)tw, we may view V as a gρN -module. Since V is finite-dimensional, the

F ′ρii have a mutual weight vector η. Let L be the set of all weights of the gρN -module V , so L is a nonempty
finite set. Therefore, there exists µ ∈ L such that µ+αk,` is not a weight for any −n ≤ k < ` ≤ n. Then the
µ-weight vector η must belong to V 0. Indeed, suppose there exists −n ≤ k < ` ≤ n such that sk`(u)η 6= 0.
Then from (4.20) we obtain:

F ′ρii (sk`(v)η) = (αk,` + µ) (F ′ρii )sk`(v)η

for all 1 ≤ i ≤ n. This contradicts the maximality of µ, and so we must have η ∈ V 0. Therefore V 0 is
nonzero.

Step 2: the subspace V 0 is preserved by the operators sii(u) for all i ∈ IN .

We will consider separately the cases when N is even and when N is odd.

Step 2.1: N = 2n.

By definition of V 0, we must show that sk`(u)sii(v) ≡ 0 for all k < ` and 1 ≤ i ≤ n, where ≡ denotes
equality of operators on V 0.

Claim: It suffices to show that for all 0 < k < ` and i, j > 0, sk`(u)sii(v), s−k,`(u)sii(v) and s−j,j(u)sii(v)
all are equal to the zero operator on the subspace V 0.

This claim follows from the symmetry relation (3.13).

Step 2.1.1: sk`(u)sii(v) ≡ 0 for all 0 < k < ` and i > 0.

Assume first that k < i. Then it is immediate from (3.11) (using sk`(u)sii(v) ≡ [sk`(u), sii(v)]) that
sk`(u)sii(v) ≡ 0 unless i = `. If i = `, we obtain

sk`(u)s``(v) ≡ 1

u+ v

n∑
a=`

ska(u)sa`(v),

and thus for a ≥ ` > k, (3.11) yields

ska(u)sa`(v) ≡ [ska(u), sa`(v)] ≡ 1

u+ v

n∑
b=`

skb(u)sb`(v) ≡ sk`(u)s``(v).

Therefore we obtain the relation
(

1− n−`+1
u+v

)
sk`(u)s``(v) ≡ 0 and so we must have sk`(u)s``(v) ≡ 0, as

desired.
If instead k ≥ i, then we write [sk`(u), sii(v)] = −[sii(v), sk`(u)]. Relation (3.11) then gives

[sii(v), sk`(u)] ≡ δik
v + u

n∑
a=`

sia(v)sa`(u)− 1

v2 − u2
n∑
a=`

(ska(v)sa`(u)− ska(u)sa`(v))



18

≡
(

δik
v + u

− 1

v2 − u2

) n∑
a=`

ska(v)sa`(u) +
1

v2 − u2
n∑
a=`

ska(u)sa`(v).

From the above proof that sk`(u)s``(v) ≡ 0, we see that the right-hand side of the previous line is ≡ 0. This
completes the proof that sk`(u)sii(v) ≡ 0 for all 0 < k < ` and i > 0.

Step 2.1.2: s−k,`(u)sii(v) ≡ 0 for all i > 0 and ` > k > 0.

This is an immediate consequence of relation (3.11) unless i = ` or i = k. The case i = ` is similar to
Step 2.1.1, so we concentrate on the case i = k. By (3.11) we have

(4.21) s−k,`(u)skk(v) ≡ − 1

u− v − κ

n∑
a=k

s−a,`(u)sak(v) +
1

(u+ v)(u− v − κ)

n∑
a=k

s−`,a(u)sak(v),

Since s−a,`(u)sak(v) ≡ [s−a,`(u), sak(v)], for a ≥ k, we have

s−a,`(u)sak(v) ≡ δa`
u+ v

n∑
b=k

s−a,b(u)sbk(v)− 1

u− v − κ

(
n∑
b=k

s−b,`(u)sbk(v)− 1

u+ v

n∑
b=k

s−`,b(u)sbk(v)

)

≡ δa`
u+ v

n∑
b=k

s−`,b(u)sbk(v) + s−k,`(u)skk(v).

Substituting this result back into (4.21) we obtain

s−k,`(u)skk(v) ≡ −n− k + 1

u− v − κ
s−k,`(u)skk(v).

and so we must have s−k,`(u)skk(v) ≡ 0 whenever 0 < k < `.

Step 2.1.3: s−j,j(u)sii(v) ≡ 0 for all i, j > 0.

To begin, it is an immediate consequence of (3.11) that s−j,j(u)sii(v) ≡ 0 unless i = j, so without loss of
generality we may assume i = j. We have:

[s−i,i(u), sii(v)] ≡
(

1

u+ v
+

1

(u+ v)(u− v − κ)

) n∑
a=i

s−i,a(u)sai(v)− 1

u− v − κ

n∑
a=i

s−a,i(u)sai(v).(4.22)

Let us compute s−a,i(u)sai(v) for a > i. From (3.11) we see that

s−a,i(u)sai(v) ≡ − 1

u− v − κ

n∑
b=i

s−b,i(u)sbi(v) +
1

(u+ v)(u− v − κ)

n∑
b=i

s−i,b(u)sbi(v)

≡ [s−i,i(u), sii(v)]− 1

u+ v

n∑
a=i

s−i,a(u)sai(v) by (4.22).

Substituting this result back into relation (4.22), we get(
1 +

n− i+ 1

u− v − κ

)
[s−i,i(u), sii(v)] ≡

(
1

u+ v
+

n− i+ 1

(u− v − κ)(u+ v)

) n∑
a=i

s−i,a(u)sai(v),

from which we obtain

(4.23) [s−i,i(u), sii(v)] ≡ 1

u+ v

n∑
a=i

s−i,a(u)sai(v).

By (3.11), we have that for all a > i

s−i,a(u)sai(v) =
1

u+ v

n∑
b=i

s−i,b(u)sbi(v).

Substituting this into (4.23) leads to [s−i,i(u), sii(v)] ≡ 0. This completes the proof of Step 2 when N = 2n.
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Step 2.2: N = 2n+ 1.

The argument is essentially the same in this case. By the symmetry relation (3.13), it suffices to show that
sk`(u)sii(v), s−k,`(u)sii(v), s−j,j(u)sii(v) and s0j(u)sii(v) are all equal to the zero operator on V 0, where
0 < k < `, j > 0 and i ≥ 0.

Step 2.2.1: sk`(u)sii(v), s−k,`(u)sii(v) and s−j,j(u)sii(v) all ≡ 0 when 0 < k < `, j > 0 and i ≥ 0.

The same arguments as those given for the N = 2n case show that

sk`(u)sii(v) ≡ s−k,`(u)sii(v) ≡ s−j,j(u)sii(v) ≡ 0

whenever i, j > 0 and ` > k > 0. Moreover, given the same restrictions on j, ` and k, the reflection equation
(3.11) immediately yields

s−k,`(u)s00(v) ≡ s−j,j(u)s00(v) ≡ 0.

Moreover if 0 < k < `, then sk`(u)s00(v) ≡ −[s00(v), sk`(u)] and (3.11) yields

[s00(v), sk`(u)] ≡ − 1

v2 − u2
n∑
a=`

(ska(v)sa`(u)− ska(u)sa`(v)).

By the same argument as in Step 2.1.1, the right-hand side vanishes.

Step 2.2.2: s0j(u)sii(v) ≡ 0 for all j > 0 and i ≥ 0.

Assume first i > 0. Then (3.11) implies that s0j(u)sii(v) ≡ 0 unless i = j. Moreover, the proof that
s0j(u)sjj(v) ≡ 0 proceeds identically to the proof that s−k,`(u)s``(v) ≡ 0 for all ` > k > 0.

To prove that s0j(u)s00(v) ≡ 0 for all j > 0, note first that s0j(u)s00(v) ≡ −[s00(v), s0j(u)], and by (3.11)
we have

(4.24) [s00(v), s0j(u)] ≡
(

1− 1

v − u
+

1

v − u− κ

)
B(v, u) +

1

v − u
B(u, v)− 1

v − u− κ

n∑
a=j

s−a,0(v)saj(u),

where B(u, v) = 1
u+v

∑n
a=j s0a(u)saj(v). However, since s0j(u)sjj(v) ≡ 0 by the previous step, (3.11) yields

0 ≡ s0j(u)sjj(v) ≡ 1

u+ v

n∑
a=j

s0a(u)saj(v) = B(u, v),

and the symmetry relation (3.13) gives
n∑
a=j

s−a,0(v)saj(u) ≡ p(v)(κ− v + u)B(κ− v, u)± v + u

2v − κ
B(v, u) ≡ 0.

Therefore, by (4.24) we have s0j(u)sjj(v) ≡ 0 for all j > 0.

Step 3: Viewed as operators on V 0, sii(u) and sjj(v) commute for all i, j ∈ IN .

Again, we will treat the cases N = 2n and N = 2n+ 1 separately.

Step 3.1: N = 2n.

Let us define the operator Aij(u, v) on V 0 by

(4.25) Aij(u, v) = sij(u)sji(v)− sij(v)sji(u).

As consequence of (3.11) we have:

(4.26) Aii(u, v) ≡ 1

u+ v

n∑
a=i

Aia(u, v).

On the other hand, for 0 < i < j we have sji(v)sij(u) ≡ sji(u)sij(v) ≡ 0, so can rewrite Aij(u, v) as

Aij(u, v) ≡ [sij(u), sji(v)] + [sji(u), sij(v)].

Using (3.11) to compute [sij(u), sji(v)] and [sji(u), sij(v)], we get:

(4.27) Aij(u, v) ≡ 1

u− v
([sii(u), sjj(v)] + [sjj(u), sii(v)]) +

1

u+ v

 n∑
a=i

Aia(u, v) +

n∑
a=j

Aja(u, v)

 .
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We apply (3.11) again to compute

(4.28) [sii(u), sjj(v)] ≡ − 1

u2 − v2
n∑
a=j

Aja(u, v),

from which it follows that [sii(u), sjj(v)] + [sjj(u), sii(v)] ≡ 0. Combining this with (4.26), equation (4.27)
can be rewritten as

(4.29) Aij(u, v) ≡ Aii(u, v) +Ajj(u, v).

Taking the sum as j goes from i+ 1 to n and adding Aii(u, v) to both sides we arrive at the relation
n∑
j=i

Aij(u, v) ≡ (n− i+ 1)Aii(u, v) +

n∑
j=i+1

Ajj(u, v).

However, by (4.26), the left hand side is equivalent to (u+ v)Aii(u, v), so we may rewrite the above as

(u+ v − n+ i− 1)Aii(u, v) ≡
n∑

j=i+1

Ajj(u, v)

A simple downward induction on i then proves that Aii(u, v) ≡ 0 for all i ∈ IN .
Since Aii(u, v) = [sii(u), sii(v)], this proves that sii(u) and sii(v) commute for all i ∈ IN . Moreover,

combining equations (4.28) and (4.26), we have that

(4.30) [sii(u), sjj(v)] ≡ − 1

u2 − v2
n∑
a=j

Aja(u, v) ≡ − 1

u− v
Ajj(u, v) ≡ 0

for all j > i > 0.

Step 3.2: N = 2n+ 1.

The arguments from Step 3.1 show that [sii(u), sjj(v)] ≡ 0 whenever 1 ≤ i, j ≤ n, so it suffices to show
that [s00(u), sjj(v)] ≡ 0 for all j ≥ 0. Suppose first that j > 0. Then by (3.11) and (4.30), we have

(4.31) [s00(u), sjj(v)] ≡ − 1

u2 − v2
n∑
a=j

Aja(u, v) ≡ − 1

u− v
Ajj(u, v) ≡ 0.

Hence, it remains to see [s00(u), s00(v)] ≡ 0. The same calculations as those done to obtain (4.27) give

(4.32) A0j(u, v) ≡ 1

u+ v

n∑
a=0

A0a(u, v) for any j > 0.

Summing this expression over 1 ≤ j ≤ n and adding A00(u, v) to both sides we obtain the relation

(4.33) A00(u, v) ≡ (u+ v − n)A0j(u, v) for any j > 0.

It follows from (3.11) that(
1− 1

u− v
+

1

u+ v − κ
− 1

(u− v)(u+ v − κ)

)
A00(u, v) ≡

(
1− 1

u− v
+

1

u− v − κ

)
1

u+ v − n
A00(u, v)

− 1

u− v − κ

n∑
a=0

(s−a,0(u)sa0(v)− s0a(v)s0,−a(u))− 1

(u− v − κ)(u+ v − κ)

0∑
a=−n

[saa(u), s00(v)].(4.34)

Since [saa(u), s00(v)] ≡ 0 for any a > 0, the symmetry relation implies that

(4.35) [s−a,−a(u), s00(v)] ≡ − 1

2u− 2κ

n∑
b=0

[s−b,−b(u), s00(v)].

Taking the sum of both sides as a goes from 1 to n and adding A00(u, v) we obtain

(4.36)

(
1 +

n

2u− 2κ

) n∑
b=0

[s−b,−b(u), s00(v)] ≡ A00(u, v) and (2κ− 2u− n)[s−a,−a(u), s00(v)] ≡ A00(u, v)

for any a > 0.
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On the other hand, the explicit form of the defining reflection equation (3.11) implies that

[s−a,−a(u), s00(v)] ≡ − 1

u2 − v2
n∑
b=0

A0b(u, v) +
1

(u− v)(u+ v − κ)
A0a(u, v)

− 1

u+ v − κ
(s−a,0(u)sa0(v)− s0a(v)s0,−a(u)).

Multiplying both sides by (u+ v − n) and appealing to (4.32),(4.33) and (4.36) we obtain(
u+ v − n

2κ− 2u− n
+

1

u− v
− 1

(u− v)(u+ v − κ)

)
A00(u, v) ≡ −u+ v − n

u+ v − κ
(s−a,0(u)sa0(v)− s0a(v)s0,−a(u))

for any a > 0. Taking the sum of both sides as a goes from 1 to n, adding −u+v−nu+v−κA00(u, v), and then

multiplying both sides by u+v−κ
u+v−n we get(

n(u+ v − κ)

2κ− 2u− n
+

n(u+ v − κ)

(u− v)(u+ v − n)
− n

(u− v)(u+ v − n)
− 1

)
A00(u, v)

≡ −
n∑
a=0

(s−a,0(u)sa0(v)− s0a(v)s0,−a(u)).(4.37)

Substituting (4.37) and (4.36) into (4.34), we obtain a relation of the form f(u, v)A00(u, v) ≡ 0, where
f(u, v) = 1 + α(u, v) with α(u, v) ∈ u−1C[v][[u−1]]. This implies that we must have A00(u, v) ≡ 0.

Step 4: V is a highest weight representation.

By Step 2, for all r ≥ 0 and each 0 ≤ i ≤ n, s
(r)
ii can be viewed as a linear endomorphism V 0 → V 0. By Step

3 these linear endomorphisms of V 0 all pairwise commute, and so they have a common eigenvector η ∈ V 0.

Denote the eigenvalue of s
(r)
ii corresponding to the eigenvector η by µ

(r)
i , where if r = 0 then µ

(0)
i = gii.

Set µi(u) = gii +
∑∞
r=1 µ

(r)
i u−r. Then the submodule X(gN ,G)twη is a highest weight representation, with

highest weight vector η and highest weight (µi(u))i∈IN . Moreover, since V is irreducible, we must have
V = X(gN ,G)twη. This proves that every finite-dimensional irreducible representation of X(gN ,G)tw is a
highest weight representation.

Step 5: Uniqueness of the highest weight vector.

Let µ be the weight of the gρN -module V corresponding to η, i.e. µ(F ′ρii ) = µ
(1)
i − ḡii for all 1 ≤ i ≤ n.

Since the central elements wi, i = 2, 4, 6, . . ., must act by scalar multiplication, Corollary 3.11 implies that
V is spanned by elements of the form:

(4.38) s
(r1)
j1,i1
· · · s(rm)

jm,im
η

with ja > ia, ja + ia ≥ 1
2 ±

1
2 , ra ≥ 1 for all 1 ≤ a ≤ m, and m ≥ 0. It follows by (4.20) that v ∈ V can only

belong to the µ-weight space Vµ if v ∈ C · η, thus Vµ is one dimensional, and moreover any other weight of
V is ≺ µ. �

We now determine how the coefficients of the distinguished central series w(u) (see (3.14)) act on any
highest weight representation of X(gN ,G)tw.

Proposition 4.6. Let V be a highest weight representation of X(gN ,G)tw with the highest weight µ(u).
Then the coefficients of the even series w(u) act on V by scalar operators determined by:

w(u)|V = µn(−u)µn(u).

Proof. Let η ∈ V be the highest weight vector. Since the coefficients of w(u) belong to the center ZX(gN ,G)tw

and V is spanned by elements of the form given in (4.38), the action of the 2i-th coefficient w2i of w(u) on V
is completely determined by its action on η. By (3.14) we have the relation S(u)S(−u) = w(u) · I. Applying
the (n, n)th entry of both sides to the highest weight vector η we obtain

w(u)η =

n∑
`=−n

sn`(u)s`n(−u)η = snn(u)snn(−u)η = µn(−u)µn(u)η. �
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Definition 4.7. Let µ(u) = (µi(u))i∈IN be any tuple of formal series such that µi(u) ∈ gii + u−1C[[u−1]]
and µ̃0(u) satisfies (4.11) if gN is of type B. We define the Verma module M(µ(u)) over X(gN ,G)tw as the
quotient

M(µ(u)) = X(gN ,G)tw/J,

where J is the left ideal in X(gN ,G)tw generated by all elements s
(r)
ij with i < j and s

(r)
kk − µ

(r)
k where r ≥ 1

and k ∈ IN .

We will soon see that, similarly to the Verma modules for X(gN ), some choices of µ(u) may result in
M(µ(u)) being trivial (see Proposition 4.17). If M(µ(u)) is non-trivial, then it is a highest weight module
with the highest weight µ(u) and the highest weight vector 1µ(u) equal to the image of the identity element
1 ∈ X(gN ,G)tw under the natural quotient map X(gN ,G)tw → M(µ(u)). As consequence of the Poincaré-
Birkhoff-Witt theorem for X(gN ,G)tw, M(µ(u)) is spanned by elements of the form:

s
(r1)
j1,i1
· · · s(rm)

jm,im
1µ(u)

with ja > ia, ja + ia ≥ 1
2 ±

1
2 , ra ≥ 1 for all 1 ≤ a ≤ m, and m ≥ 0. Using this fact, together with the

commutator relation (4.20), one can prove the following standard proposition.

Proposition 4.8. Suppose µ(u) = (µi(u))i∈IN is such that the Verma module M(µ(u)) is non-trivial. Then:

(1) If K is a submodule of M(µ(u)), then K =
⊕

λKλ where

Kλ = {v ∈ K : F ′ρii v = λiv ∀ 1 ≤ i ≤ n} = M(µ(u))λ ∩K.

(2) If K is a proper submodule of M(µ(u)), then K ⊆
⊕

λ6=µM(µ(u))λ where µ = (µ
(1)
i − ḡii)i∈IN .

(3) M(µ(u)) admits a unique irreducible quotient V (µ(u)).
(4) Any irreducible highest weight X(gN ,G)tw-module with the highest weight µ(u) is isomorphic to

V (µ(u)).

Since X(gN ,G)tw is a subalgebra of X(gN ), we may view any X(gN )-module L as a X(gN ,G)tw-module by
restricting the action of X(gN ). Similarly, since X(gN ,G)tw is a left coideal subalgebra of X(gN ), the tensor
product of an X(gN )-module L and an X(gN ,G)tw-module V inherits the structure of an X(gN ,G)tw-module
via the coproduct ∆. More explicitly, for all x ∈ X(gN ,G)tw, the action on L⊗ V is given by

x · w ⊗ v = ∆(x)(w ⊗ v) for all w ∈ L and v ∈ V.
In particular, we may take L = L(λ(u)) for some N -tuple λ(u) = (λ−n(u), . . . , λn(u)) satisfying (4.1), and

V = V (µ(u)), where µ(u) is such that the Verma module M(µ(u)) is non-trivial. If L(λ(u)) has the highest
weight vector ξ and V (µ(u)) has the highest weight vector η, then we may consider the X(gN ,G)tw-modules
X(gN ,G)twξ and X(gN ,G)tw(ξ ⊗ η). Our present goal is to show that both these modules are of highest
weight type, and to compute explicitly what the highest weights are. This will be achieved in Proposition
4.10 and Corollary 4.11, however, first we need to prove a lemma concerning the extended Yangian X(gN ).

In the extended twisted Yangian X(gN ) we have the relation T (u)T t(u+ κ) = z(u)I, which immediately
implies T (u)−1 = z(u)−1T t(u+ κ). Let us denote the (i, j)th entry of the inverse matrix T (u)−1 by t′ij(u).

Lemma 4.9. We have the following relations between the elements tij(u) and t′k`(v) for all −n ≤ i, j, k, ` ≤ n:

[tij(u), t′k`(v)] =
1

u− v

n∑
a=−n

(δkjtia(u)t′a`(v)− δi`t′ka(v)taj(u))

− 1

u− v − κ
(
θ−k,jti,−k(u)t′−j,`(v)− θi,−`t′k,−i(v)t−`,j(u)

)
.(4.39)

Proof. Multiplying both sides of the relation R(u−v)T1(u)T2(v) = T2(v)T1(u)R(u−v) by T2(v)−1 we obtain
the equivalent relation

T2(v)−1R(u− v)T1(u) = T1(u)R(u− v)T2(v)−1.

Expanding R(u− v) as R(u− v) = 1− P
u−v + Q

u−v−κ leads to (4.39). �

Recall that, given a tuple of series µ(u), µ̃(u) is the corresponding tuple whose components have been
defined in (4.10).
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Proposition 4.10. Let η denote the highest weight vector of the irreducible X(gN ,G)tw-module V (µ(u)),
and ξ the highest weight vector of the irreducible X(gN )-module L(λ(u)). Then X(gN ,G)tw(ξ ⊗ η) is a
highest weight X(gN ,G)tw-module with the highest weight vector ξ ⊗ η, and the highest weight γ(u) whose
components are determined by the relations

(4.40) γ̃i(u) = µ̃i(u)λi(u− κ/2)λ−i(−u+ κ/2)

for all i ∈ IN .

Proof. We will use the symbol “ ≡ ” to denote equality of operators on the spaces C(ξ⊗ η) or Cξ. We begin
by showing that sij(u) · (ξ ⊗ η) = 0 for all i < j. By the symmetry relation (3.13), it is enough to consider
the cases where i < 0 < j or 0 ≤ i < j. We have

∆(sij(u)) ≡ z(−u− κ/2)
∑

−n≤b≤a≤n

tia(u− κ/2)t′bj(−u− κ/2)⊗ sab(u).

Moreover, we have t′bj(v)ξ = 0 whenever b < j, so we can assume b ≥ j. Since i < j ≤ b ≤ a, we have

tia(u − κ/2)ξ = 0 and also a, b > 0 since j > 0. By Lemma 4.9 we have tia(u)t′bj(v) ≡ 0 unless a = b.

Therefore it suffices to show that tia(u)t′aj(v) ≡ 0 for i < j and a ≥ j > 0. From Lemma 4.9 we arrive at

tia(u)t′aj(v) ≡ 1

u− v

n∑
b=j

tib(u)t′bj(v)

for all a ≥ j. This gives

(4.41)

n∑
a=j

tia(u)t′aj(v) ≡ n− j + 1

u− v

n∑
a=j

tia(u)t′aj(v),

and so tia(u)t′aj(v) = 0. This completes the proof that ∆(sij(u))(ξ ⊗ η) = 0 for all i < j.

Next, we compute ∆(sii(u))(ξ ⊗ η) for all i ∈ IN . Using computations similar to those above, we can
show that tia(u)t′bi(v)ξ = 0 whenever a > b. Thus,

(4.42) ∆(sii(u))(ξ ⊗ η) = z(−u− κ/2)

n∑
a=i

tia(u− κ/2)t′ai(−u− κ/2)ξ ⊗ saa(u)η = (ŝii(u)ξ)⊗ η,

where ŝii(u) is the operator defined by the formula

ŝii(u) = z(−u− κ/2)

n∑
a=i

µa(u)tia(u− κ/2)t′ai(−u− κ/2).

As a consequence of our work so far, it remains only to determine the eigenvalue γi(u) of the operator ŝii(u)
corresponding to the vector ξ. Define the operator Ai(u) by the formula

(4.43) Ai(u) =

n∑
a=i

z(−u− κ/2)tia(u− κ/2)t′ai(−u− κ/2).

We first show that Ai(u)ξ = µ•i (u)ξ for some scalar series µ•i (u). From Lemma 4.9 we obtain for all a > i ≥ 0:

(4.44) tia(u− κ/2)t′ai(−u− κ/2) ≡ 1

2u

(
n∑
r=i

tir(u− κ/2)t′ri(−u− κ/2)−
n∑
r=a

t′ar(−u− κ/2)tra(u− κ/2)

)
.

This implies that

Ai(u) ≡ z (−u− κ/2) tii (u− κ/2) t′ii (−u− κ/2) +
n− i
2u

Ai(u)− 1

2u

n∑
a=i+1

Ba(u),

where

Ba(u) =

n∑
r=a

z (−u− κ/2) t′ar (−u− κ/2) tra (u− κ/2) .
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Consequently, this proves that

(4.45)
2u− n+ i

2u
Ai(u) ≡ z (−u− κ/2) tii (u− κ/2) t′ii (−u− κ/2)− 1

2u

n∑
a=i+1

Ba(u).

Using the same method, one shows using Lemma 4.9 that

(4.46)
2u− n+ i

2u
Bi(u) ≡ z (−u− κ/2) tii (u− κ/2) t′ii (−u− κ/2)− 1

2u

n∑
a=i+1

Aa(u)

for all i ∈ IN . An easy downward induction then shows Bi(u) ≡ Ai(u) for all such i. Substituting this result
back into (4.45) and using that z(v)t′ii(v) = t−i,−i(v + κ) for all i, we obtain:

(4.47)
2u− n+ i

2u
Ai(u) ≡ tii (u− κ/2) t−i,−i(−u+ κ/2)− 1

2u

n∑
a=i+1

Aa(u).

It follows from downward induction on i ∈ IN that there is a tuple µ•(u) = (µ•i (u)) such that Ai(u)ξ = µ•i (u)ξ
for all i ∈ IN . Moreover, the components of µ•(u) are determined by the relations

µ̃•i (u) = 2uλi(u− κ/2)λ−i(−u+ κ/2) for all i ∈ IN .

As Bi(u) ≡ Ai(u) for all i ∈ IN , we may express (4.44) as

z(−u− κ/2)tia(u− κ/2)t′ai(−u− κ/2) ≡ 1

2u
(Ai(u)−Aa(u))

for all a > i. This gives:

ŝii(u) ≡ 1

2u

n∑
a=i+1

µa(u) (Ai(u)−Aa(u)) + µi(u)tii(u− κ/2)t−i,−i(−u+ κ/2).

Since Ai(u)ξ = µ•i (u) for each i ∈ IN , applying the above expression to ξ we obtain the identity

(4.48) γi(u) = µi(u)λi(u− κ/2)λ−i(−u+ κ/2) +
1

2u

n∑
a=i+1

µa(u) (µ•i (u)− µ•a(u)) .

We now want to obtain the formula (4.40). Since µ•i (u) =
1

2u− n + i

(
µ̃•i (u)−

∑
a≥i+1 µ

•
a(u)

)
, equation

(4.48) implies that

(2u− n+ i)γi(u) =
2u− n+ i

2u
µi(u)µ̃•i (u) +

1

2u

∑
j≥i+1

µj(u)µ̃•i (u)

− 1

2u

∑
a,j≥i+1

µj(u)µ•a(u)− 2u− n+ i

2u

∑
j≥i+1

µj(u)µ•j (u).(4.49)

A straightforward downward induction on i ∈ In then shows that∑
j≥i+1

γj(u) =
1

2u

∑
a,j≥i+1

µj(u)µ•a(u) +
2u− n+ i

2u

∑
j≥i+1

µj(u)µ•j (u).

Combining this with (4.49) proves that (4.40) holds for all i ∈ IN . �

For each matrix G, consider the corresponding finite sequence (gii)i∈IN . If (gii)i∈IN is the sequence
(1, . . . , 1), set k = n. Otherwise, let k be the unique integer in IN\{n} with the property that gkk 6= gk+1,k+1.
Set ` = n− k. In particular, if gN = so2n+1, this coincides with the constant ` defined in Remark 4.4.

Corollary 4.11. Assume L(λ(u)) exists, with the highest weight vector ξ. Then X(gN ,G)twξ is a highest
weight module with the highest weight µ(u) whose components are determined by the relations

(4.50) µ̃i(u) =

{
[∓]2uλi(u− κ/2)λ−i(−u+ κ/2) if i > k,

[∓](2`− 2u)λi(u− κ/2)λ−i(−u+ κ/2) if 0 ≤ i ≤ k,
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if G is of the first kind, while

(4.51) µ̃i(u) =


(

1[±]cu

1− cu

)
2uλi(u− κ/2)λ−i(−u+ κ/2) if i > k,(

1[±]c(`− u)

1− cu

)
2uλi(u− κ/2)λ−i(−u+ κ/2) if 0 ≤ i ≤ k.

if G is of the second kind.

Proof. By (2.11) and Lemma 2.2, the assignment S(u) 7→ G(u) defines a one-dimensional representation
of X(gN ,G)tw, which we shall denote by V (G). As X(gN ,G)tw-modules, L(λ(u)) and L(λ(u)) ⊗ V (G) are
isomorphic (see (3.8) and (3.9)). Therefore, by Proposition 4.10 it suffices to observe that for each i ∈ IN
the following relations hold:

(2u− n+ i)gii +
∑
j≥i+1

gjj =

{
[∓]2u if i > k,

[∓](2`− 2u) if 0 ≤ i ≤ k,

if G is of the first kind, while

(2u− n+ i)gii(u) +
∑
j≥i+1

gjj(u) =

2u
(

1[±]cu

1− cu

)
if i > k,

2u
(

1[±]c(`− u)

1− cu

)
if 0 ≤ i ≤ k,

if G is of the second kind. �

4.2. Producing representations of lower rank twisted Yangians. Let gN−2 denote the rank n − 1
subalgebra of gN which is of the same Dynkin type, that is, gN−2 = so2n−1 if gN = so2n+1, gN−2 = so2n−2
if gN = so2n and gN−2 = sp2n−2 if gN = sp2n. Additionally, let G′ be the (N − 2)× (N − 2) matrix obtained

from G by deleting the outermost rows and columns, i.e. G′ =
∑n−1
i,j=−n+1 gijEij , and let κ′ = κ − 1. We

will denote the standard generators of X̃(gN−2,G′)tw and X(gN−2,G′)tw by s̃′ij(u) and s′ij(u), respectively,
where −n+ 1 ≤ i, j ≤ n− 1.

As a consequence of the summations which appear in the expansion (3.11) of the defining reflection
equation, there is no natural way of viewing X(gN−2,G′)tw as a subalgebra of X(gN ,G)tw. Our present goal
is to show that, despite this fact, there is a systematic way of constructing a X(gN−2,G′)tw highest weight
module from any X(gN ,G)tw highest weight module.

For the remainder of this subsection we fix an X(gN ,G)tw-module V . Define the subspace V+ of V as:

V+ = {w ∈ V : skn(u)w = 0 for k < n}.

Note that by the symmetry relation (3.13), if w ∈ V+ then we also have s−n,`(u)w = 0 for all ` > −n. In
addition, if V contains a highest weight vector η, then η belows to V+, so in particular if V is a highest weight
module then V+ is nonempty. Define, for all −n+ 1 ≤ i, j ≤ n− 1, the elements s◦ij(u) ∈ X(gN ,G)tw by:

s◦ij(u) = sij(u+ 1/2) +
δij
2u
snn(u+ 1/2).

Lemma 4.12. V+ is stable under the action of all operators s◦ij(u) with −n + 1 ≤ i, j ≤ n − 1. Moreover,

the assignment s̃′ij(u) 7→ s◦ij(u) defines a representation of X̃(gN−2,G′)tw in the space V+.

Proof. Step 1:

Let us begin by showing that V+ is stable under the action of all operators sij(u) with −n + 1 ≤ i, j ≤
n − 1. As usual, we use “ ≡ ” to denote equality of operators on the space V+. Let i, j be such that
−n+ 1 ≤ i, j ≤ n− 1. We must show skn(u)sij(v) ≡ 0 for all k < n. Since skn(u)sij(v) ≡ −[sij(v), skn(u)],
it is enough to show [sij(v), skn(u)] ≡ 0. By (3.11),

[sij(v), skn(u)] ≡ δkj
v + u

sin(v)snn(u)− δij
v2 − u2

(skn(v)snn(u)− skn(u)snn(v))

− δk,−i
v − u− κ

θi,−ns−n,j(v)snn(u) +
δk,−i

(v + u)(v − u− κ)
θi,−js−j,n(v)snn(u).
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As a consequence of the above and the symmetry relation (3.13), it remains only to see s`n(v)snn(u) ≡ 0 for
any −n+ 1 ≤ ` ≤ n− 1. Using the expansion (3.11), we compute:

(4.52) s`n(v)snn(u) ≡ 1

v + u
s`n(v)snn(u).

Therefore, s`n(v)snn(u) ≡ 0 for all −n + 1 ≤ ` ≤ n − 1. This completes the proof that V+ is stable under
the action of all sij(u) with −n+ 1 ≤ i, j ≤ n− 1. Moreover, it shows that V+ is stable under the action of
the operator snn(u). Thus, by definition V+ is also stable under the action of all operators s◦ij(u).

Step 2:

Let us now turn to proving the second statement of the lemma. As a consequence of the first part of the
proof, we may view the operators s◦ij(u) with −n+1 ≤ i, j ≤ n−1 as elements in End(V+)[[u−1]]. We wish to

show the corresponding map X̃(gN−2,G′)tw → End(V+) is a homomorphism of algebras. First observe that

(4.53) [s−n,−n(u), snn(v)] ≡ 0, [snn(u), snn(v)] ≡ 0 and [snn(u), sij(v)] ≡ 0

for all −n+ 1 ≤ i, j ≤ n− 1. To see this, note that by (3.11) we have

[snn(u), snn(v)] ≡
(

1

u− v
+

1

u+ v
− 1

u2 − v2

)
[snn(u), snn(v)],

which implies [snn(u), snn(v)] ≡ 0. Furthermore,

[sij(u), snn(v)] ≡ − δij
u2 − v2

[snn(u), snn(v)] ≡ 0

for all −n+ 1 ≤ i, j ≤ n− 1. The symmetry relation (3.13) together with the second and third equivalences
of (4.53) then give

[s−n,−n(u), snn(v)] ≡ − 1

2u− 2κ

n∑
a=−n

[saa(u), snn(v)] ≡ − 1

2u− 2κ
[s−n,−n(u), snn(v)].

Hence, [s−n,−n(u), snn(v)] ≡ 0.
Now let i, j, k, ` be such that −n + 1 ≤ i, j, k, ` ≤ n − 1. As a consequence of the second and third

equivalences in (4.53), we have

[s◦ij(u), s◦k`(v)] ≡ [sij(ũ), sk`(ṽ)],

where ũ = u+ 1/2 and ṽ = v + 1/2. Thus, appealing to (3.11) we have:

[s◦ij(u), s◦k`(v)] ≡ 1

u− v
(skj(ũ)si`(ṽ)− skj(ṽ)si`(ũ)) +

1

ũ+ ṽ

n−1∑
a=−n+1

(δkjsia(ũ)sa`(ṽ)− δi`ska(ṽ)saj(ũ))

− δij
ũ2 − ṽ2

n−1∑
a=−n+1

(ska(ũ)sa`(ṽ)− ska(ṽ)sa`(ũ))

− 1

ũ− ṽ − κ

n−1∑
a=−n+1

(δk,−iθiasaj(ũ)s−a,`(ṽ)− δl,−jθajsk,−a(ṽ)sia(ũ))

− 1

ũ+ ṽ − κ
(θj,−ksi,−k(ũ)s−j,`(ṽ)− θi,−`sk,−i(ṽ)s−`,j(ũ))

+
θi,−j

(ũ+ ṽ)(ũ− ṽ − κ)

n−1∑
a=−n+1

(δk,−is−j,a(ũ)sa`(ṽ)− δ`,−jska(ṽ)sa,−i(ũ))

+
θi,−j

(ũ− ṽ)(ũ+ ṽ − κ)
(sk,−i(ũ)s−j,`(ṽ)− sk,−i(ṽ)s−j,`(ũ))

− θij
(ũ− ṽ − κ)(ũ+ ṽ − κ)

n−1∑
a=−n+1

(δk,−isaa(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)saa(ũ))

+
1

ũ+ ṽ
(δkjsin(ũ)sn`(ṽ)− δi`skn(ṽ)snj(ũ))(4.54)
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− δij
ũ2 − ṽ2

(skn(ũ)sn`(ṽ)− skn(ṽ)sn`(ũ))(4.55)

− 1

ũ− ṽ − κ
(δk,−iθi,−ns−n,j(ũ)sn`(ṽ)− δl,−jθ−n,jskn(ṽ)si,−n(ũ))(4.56)

+
θi,−j

(ũ+ ṽ)(ũ− ṽ − κ)
(δk,−is−j,n(ũ)sn`(ṽ)− δ`,−jskn(ṽ)sn,−i(ũ))(4.57)

− θij
(ũ− ṽ − κ)(ũ+ ṽ − κ)

(δk,−is−n,−n(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)s−n,−n(ũ))

− θij
(ũ− ṽ − κ)(ũ+ ṽ − κ)

(δk,−isnn(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)snn(ũ)) .

We now need to rewrite (4.54)-(4.57) in a way that will enable us to compare the right-hand side above with

the right-hand side of the reflection equation (3.11) for X̃(gN−2,G′)tw with s̃′∗∗(u) replaced by s◦∗∗(u).

Step 2.1: Re-expressing (4.54).

For any −n+ 1 ≤ i, ` ≤ n− 1, using the reflection equation (3.11) for [sin(ũ), sn`(ṽ)] and rearranging the
terms yields

1

ũ+ ṽ
sin(ũ)sn`(ṽ) ≡ 1

(ũ− ṽ)(ũ+ ṽ − 1)
(snn(ũ)si`(ṽ)− snn(ṽ)si`(ũ))

+
1

(ũ+ ṽ)(ũ+ ṽ − 1)

n−1∑
a=−n+1

sia(ũ)sa`(ṽ)− δi`
(ũ+ ṽ)(ũ+ ṽ − 1)

snn(ṽ)snn(ũ).(4.58)

This computation, together with (4.53), implies that the expression (4.54) can be rewritten as follows:

1

ũ+ ṽ
(δkjsin(ũ)sn`(ṽ)− δi`skn(ṽ)snj(ũ))

≡ 1

(ũ− ṽ)(ũ+ ṽ − 1)
(δkj (snn(ũ)si`(ṽ)− snn(ṽ)si`(ũ)) + δi` (snn(ṽ)skj(ũ)− snn(ũ)skj(ṽ)))

+
1

(ũ+ ṽ)(ũ+ ṽ − 1)

n−1∑
a=−n+1

(δkjsia(ũ)sa`(ṽ)− δi`ska(ṽ)saj(ũ)) .(4.59)

Step 2.2: Re-expressing (4.55).

Similarly, (4.58) and (4.53) imply that (4.55) can be expressed as:

(4.60)

− δij
ũ2 − ṽ2

(skn(ũ)sn`(ṽ)− skn(ṽ)sn`(ũ))

≡ − δij
(ũ2 − ṽ2)(ũ+ ṽ − 1)

n−1∑
a=−n+1

(ska(ũ)sa`(ṽ)− ska(ṽ)sa`(ũ)) .

Step 2.3: Re-expressing (4.56).

We would like to obtain a similar expression for (4.56). An analogous but more lengthy computation to
that used in obtaining (4.58) gives the relation

ũ− ṽ − κ+ 1

ũ− ṽ − κ
s−n,j(ũ)sn`(ṽ) ≡ − 1

ũ− ṽ − κ

n−1∑
a=−n+1

θ−n,asaj(ũ)s−a,`(ṽ) +
δ`,−j

ũ− ṽ − κ
θ−n,jsnn(ṽ)s−n,−n(ũ)

− 1

ũ+ ṽ − κ
(θj,−ns−n,−n(ũ)s−j,`(ṽ)− θ−n,−`snn(ṽ)s−`,j(ũ))

+
θ−n,−j

(ũ+ ṽ)(ũ− ṽ − κ)

n−1∑
a=−n+1

s−j,a(ũ)sa`(ṽ)

+
θ−n,−j

(ũ+ ṽ)(ũ− ṽ − κ)
s−j,n(ũ)sn`(ṽ)− θ−n,−jδ`,−j

(ũ+ ṽ)(ũ− ṽ − κ)
snn(ṽ)snn(ũ)
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+
θ−n,−j

(ũ− ṽ)(ũ+ ṽ − κ)
(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

− θ−n,j
(ũ− ṽ − κ)(ũ+ ṽ − κ)

n∑
a=−n

(saa(ũ)s−j,`(ṽ)− δ`,−jsnn(ṽ)saa(ũ)) .(4.61)

Similarly, since skn(ṽ)si,−n(ũ) ≡ −[si,−n(ũ), skn(ṽ)], we have

ũ− ṽ − κ+ 1

ũ− ṽ − κ
skn(ṽ)si,−n(ũ) ≡ − 1

ũ− ṽ − κ

n−1∑
a=−n+1

θa,−nsk,−a(ṽ)sia(ũ) +
δk,−i

ũ− ṽ − κ
θi,−ns−n,−n(ũ)snn(ṽ)

+
1

ũ+ ṽ − κ
(θ−n,−ksi,−k(ũ)snn(ṽ)− θi,−nsk,−i(ṽ)s−n,−n(ũ))

+
θin

(ũ+ ṽ)(ũ− ṽ − κ)

n−1∑
a=−n+1

ska(ṽ)sa,−i(ũ)

+
θin

(ũ+ ṽ)(ũ− ṽ − κ)
skn(ṽ)sn,−i(ũ)− θinδk,−i

(ũ+ ṽ)(ũ− ṽ − κ)
snn(ũ)snn(ṽ)

− θin
(ũ− ṽ)(ũ+ ṽ − κ)

(sk,−i(ũ)snn(ṽ)− sk,−i(ṽ)snn(ũ))

+
θi,−n

(ũ− ṽ − κ)(ũ+ ṽ − κ)

n∑
a=−n

(δk,−isaa(ũ)snn(ṽ)− sk,−i(ṽ)saa(ũ)) .(4.62)

Using the two equivalences (4.61) and (4.62), together with (4.53), we obtain the following for (4.56):

− 1

ũ− ṽ − κ
(δk,−iθi,−ns−n,j(ũ)sn`(ṽ)− δl,−jθ−n,jskn(ṽ)si,−n(ũ))

=
1

(ũ− ṽ − κ)(ũ− ṽ − κ+ 1)

n−1∑
a=−n+1

(δk,−iθiasaj(ũ)s−a,`(ṽ)− δl,−jθajsk,−a(ṽ)sia(ũ))

− θi,−j
(ũ+ ṽ)(ũ− ṽ − κ)(ũ− ṽ − κ+ 1)

n−1∑
a=−n+1

(δk,−is−j,a(ũ)sa`(ṽ)− δ`,−jska(ṽ)sa,−i(ũ))

+
θij

(ũ− ṽ − κ)(ũ+ ṽ − κ)(ũ− ṽ − κ+ 1)

n∑
a=−n

(δk,−isaa(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)saa(ũ))

+
1

(ũ+ ṽ − κ)(ũ− ṽ − κ+ 1)
δk,−i (θijs−n,−n(ũ)s−j,`(ṽ)− θi,−`snn(ṽ)s−`,j(ũ))

+
1

(ũ+ ṽ − κ)(ũ− ṽ − κ+ 1)
δ`,−j (θj,−ksi,−k(ũ)snn(ṽ)− θijsk,−i(ṽ)s−n,−n(ũ))

− θi,−jδk,−i
(ũ− ṽ)(ũ+ ṽ − κ)(ũ− ṽ − κ+ 1)

(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

− θi,−jδ`,−j
(ũ− ṽ)(ũ+ ṽ − κ)(ũ− ṽ − κ+ 1)

(sk,−i(ũ)snn(ṽ)− sk,−i(ṽ)snn(ũ))

− θi,−j
(ũ+ ṽ)(ũ− ṽ − κ)(ũ− ṽ − κ+ 1)

(δk,−is−j,n(ũ)sn,`(ṽ)− δ`,−jskn(ṽ)sn,−i(ũ)) .(4.63)

Step 2.4: Re-expressing (4.57).

If we add the last line of the above to (4.57), we obtain:

θi,−j
(ũ+ ṽ)(ũ− ṽ − κ+ 1)

(δk,−is−j,n(ũ)sn,`(ṽ)− δ`,−jskn(ṽ)sn,−i(ũ)) .

We can also re-express this using (4.58) and (4.53). This yields:

θi,−j
(ũ+ ṽ)(ũ− ṽ − κ+ 1)

(δk,−is−j,n(ũ)sn,`(ṽ)− δ`,−jskn(ṽ)sn,−i(ũ))
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=
θi,−jδk,−i

(ũ− ṽ)(ũ+ ṽ − 1)(ũ− ṽ − κ+ 1)
(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

+
θi,−jδ`,−j

(ũ− ṽ)(ũ+ ṽ − 1)(ũ− ṽ − κ+ 1)
(snn(ṽ)sk,−i(ũ)− snn(ũ)sk,−i(ṽ))

+
θi,−j

(ũ+ ṽ)(ũ+ ṽ − 1)(ũ− ṽ − κ+ 1)

n−1∑
a=−n+1

(δk,−is−j,a(ũ)sa`(ṽ)− δl,−jska(ṽ)sa,−i(ũ)).(4.64)

Step 2.5:

Next, observe that the following identities hold:

1

ũ+ ṽ
+

1

(ũ+ ṽ)(ũ+ ṽ − 1)
=

1

u+ v
,

1

(ũ− ṽ − κ)(ũ− ṽ − κ+ 1)
− 1

ũ− ṽ − κ
= − 1

u− v − κ′
,

1

(ũ+ ṽ)(ũ− ṽ − κ)
− 1

(ũ+ ṽ)(ũ− ṽ − κ)(ũ− ṽ − κ+ 1)
+

1

(ũ+ ṽ)(ũ+ ṽ − 1)(ũ− ṽ − κ+ 1)

=
1

(u− v − κ′)(u+ v)
.

Therefore, combining the new expressions (4.59), (4.60), (4.63) and (4.64) and substituting them back into
(4.54)-(4.57) gives:

[s◦ij(u), s◦k`(v)] ≡ 1

u− v
(skj(ũ)si`(ṽ)− skj(ṽ)si`(ũ)) +

1

u+ v

n−1∑
a=−n+1

(δkjsia(ũ)sa`(ṽ)− δi`ska(ṽ)saj(ũ))

− δij
u2 − v2

n−1∑
a=−n+1

(ska(ũ)sa`(ṽ)− ska(ṽ)sa`(ũ))

− 1

u− v − κ′
n−1∑

a=−n+1

(δk,−iθiasaj(ũ)s−a,`(ṽ)− δl,−jθajsk,−a(ṽ)sia(ũ))

− 1

u+ v − κ′
(θj,−ksi,−k(ũ)s−j,`(ṽ)− θi,−`sk,−i(ṽ)s−`,j(ũ))

+
θi,−j

(u+ v)(u− v − κ′)

n−1∑
a=−n+1

(δk,−is−j,a(ũ)sa`(ṽ)− δ`,−jska(ṽ)sa,−i(ũ))

+
θi,−j

(u− v)(u+ v − κ′)
(sk,−i(ũ)s−j,`(ṽ)− sk,−i(ṽ)s−j,`(ũ))

− θij
(u− v − κ′)(u+ v − κ′)

n−1∑
a=−n+1

(δk,−isaa(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)saa(ũ)) + B(u, v),

where B(u, v) is defined as the following operator on V+:

B(u, v) =
1

u2 − v2
(δkj (snn(ũ)si`(ṽ)− snn(ṽ)si`(ũ)) + δi` (snn(ṽ)skj(ũ)− snn(ũ)skj(ṽ)))

+
1

(u+ v − κ′)(u− v − κ′)
δk,−i (θijs−n,−n(ũ)s−j,`(ṽ)− θi,−`snn(ṽ)s−`,j(ũ))

+
1

(u+ v − κ′)(u− v − κ′)
δ`,−j (θj,−ksi,−k(ũ)snn(ṽ)− θijsk,−i(ṽ)s−n,−n(ũ))

− θi,−jδk,−i
(u− v)(u+ v − κ′)(u− v − κ′)

(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

− θi,−jδ`,−j
(u− v)(u+ v − κ′)(u− v − κ′)

(sk,−i(ũ)snn(ṽ)− sk,−i(ṽ)snn(ũ))
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+
θi,−jδk,−i

(u− v)(u+ v)(u− v − κ′)
(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

+
θi,−jδ`,−j

(u− v)(u+ v)(u− v − κ′)
(snn(ṽ)sk,−i(ũ)− snn(ũ)sk,−i(ṽ))

− θij
(u− v − κ′)(u+ v − κ′)

(δk,−is−n,−n(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)s−n,−n(ũ))

− θij
(u− v − κ′)(u+ v − κ′)

(δk,−isnn(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)snn(ũ)) .

Adding terms together, and applying (4.53) where necessary, we obtain the equivalence of operators:

B(u, v) ≡ 1

u2 − v2
(δkj (snn(ũ)si`(ṽ)− snn(ṽ)si`(ũ)) + δi` (snn(ṽ)skj(ũ)− snn(ũ)skj(ṽ)))

+
1

(u+ v − κ′)(u− v − κ′)
δ`,−j (θj,−ksi,−k(ũ)snn(ṽ) + θijsk,−i(ṽ)snn(ũ))

− 1

(u+ v − κ′)(u− v − κ′)
δk,−i (θi,−`snn(ṽ)s−`,j(ũ) + θijsnn(ũ)s−j,`(ṽ))

− κ′δk,−iθi,−j
(u2 − v2)(u+ v − κ′)(u− v − κ′)

(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

− κ′δ`,−jθi,−j
(u2 − v2)(u+ v − κ′)(u− v − κ′)

(snn(ṽ)sk,−i(ũ)− snn(ũ)sk,−i(ṽ)) .(4.65)

Conversely, let D(u, v) be the expression on the right-hand side of the reflection equation (3.11) for

X̃(gN−2,G′)tw with s̃′∗∗(u) replaced by s◦∗∗(u). Using the definition of the elements s◦ij(u) and again appealing
to (4.53) where necessary, we obtain the following result after a lengthy computation:

D(u, v) ≡ [s◦ij(u), s◦k`(v)]− B(u, v) +A(u, v),

where A(u, v) is the operator defined by:

A(u, v) =
1

u2 − v2
(δkj (snn(ũ)si`(ṽ)− snn(ṽ)si`(ũ)) + δi` (snn(ṽ)skj(ũ)− snn(ũ)skj(ṽ)))

+
1

(u+ v − κ′)(u− v − κ′)
δ`,−j (θj,−ksi,−k(ũ)snn(ṽ) + θijsk,−i(ṽ)snn(ũ))

− 1

(u+ v − κ′)(u− v − κ′)
δk,−i (θi,−`snn(ṽ)s−`,j(ũ) + θijsnn(ũ)s−j,`(ṽ))

+
κ′θij + θi,−j

u(u+ v − κ′)(u− v − κ′)
(δk,−isnn(ũ)s−j,`(ṽ)− δ`,−jsnn(ũ)sk,−i(ṽ))

− κ′δk,−iθi,−j
(u2 − v2)(u+ v − κ′)(u− v − κ′)

(snn(ũ)s−j,`(ṽ)− snn(ṽ)s−j,`(ũ))

− κ′δ`,−jθi,−j
(u2 − v2)(u+ v − κ′)(u− v − κ′)

(snn(ṽ)sk,−i(ũ)− snn(ũ)sk,−i(ṽ))

− θij(N − 2)

2u(u− v − κ′)(u+ v − κ′)
(δk,−isnn(ũ)s−j,`(ṽ)− δ`,−jsk,−i(ṽ)snn(ũ)) .(4.66)

Therefore, to complete the proof of the lemma it remains only to see A(u, v) ≡ B(u, v). Comparing (4.66)
with (4.65), we see that it is enough to show κ′θij + θi,−j − θij(N2 − 1) = 0, which follows from κ = N

2 ∓ 1,
N
2 − 1 = κ− 1± 1 = κ′± 1 and θi,−j = ±θi,j . Thus the family of operators {s◦ij(u)}−n+1≤i,j≤n−1 satisfy the

defining reflection equation of the algebra X̃(gN−2,G′)tw. �

It is natural to ask whether the action of the extended reflection algebra X̃(gN−2,G′)tw on the space
V+ factors through the extended twisted Yangian X(gN−2,G′)tw. We will soon see that if the symmetric
pair (gN , g

ρ
N ) is of type CI or DIII, then this is indeed the case. However, if the pair (gN , g

ρ
N ) is not of

type CI or DIII, then the operators s◦ij(u) fail to satisfy the defining symmetry relation of the algebra

X(gN−2,G′)tw. Our goal for the remainder of this subsection is to show that, in the general situation, the
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action of X̃(gN−2,G′)tw on the space V+ can be twisted by a suitable automorphism in a way which results

in the modified action of X̃(gN−2,G′)tw on V+ factoring through the extended Yangian X(gN−2,G′)tw.
Recall the rational function p(u) in u associated to the algebra X(gN ,G)tw which has been defined in

(2.13). Let p′(u) be the corresponding series for the algebra X(gN−2,G′)tw. That is,

p(u) = (±)1∓ 1

2u− κ
+

tr(G(u))

2u− 2κ
and p′(u) = (±)1∓ 1

2u− κ′
+

tr(G′(u))

2u− 2κ′
.

Proposition 4.13. Let h(u) be any series in 1 + u−1C[[u−1]] satisfying the relation

(4.67) h(u)h(κ′ − u)−1 = p(u+ 1/2)−1p′(u).

Then the assignment s′ij(u) 7→ h(u)s◦ij(u) defines a representation of X(gN−2,G′)tw in the space V+. More-
over, if V is a highest weight module with the highest weight µ(u) and the highest weight vector ξ, then the
cyclic span X(gN−2,G′)twξ is a highest weight module with the highest weight h(u)µ◦(u) = (h(u)µ◦i (u))i∈IN−2

,

where µ◦i (u) = µi(u+ 1/2) + 1
2uµn(u+ 1/2) for all i ∈ IN−2.

Proof. From Lemma 4.12, we know that V+ admits the structure of a X̃(gN−2,G′)tw-module via the as-

signment s̃′ij(u) 7→ s◦ij(u). We may consider the X̃(gN−2,G′)tw-module V ν̃h+ obtained by twisting V+ by an
automorphism ν̃h of the form (3.21). Therefore, it suffices to show that the operators h(u)s◦ij(u) satisfy the

defining symmetry relation of X(gN−2,G′)tw. That is,

θijh(u)s◦−j,−i(u) ≡(±)h(κ′ − u)s◦ij(κ
′ − u)±

h(u)s◦ij(u)− h(κ′ − u)s◦ij(κ
′ − u)

2u− κ′

+
tr(G′(u))h(κ′ − u)s◦ij(κ

′ − u)− δijh(u)
∑n−1
k=−n+1 s

◦
kk(u)

2u− 2κ′
(4.68)

for all −n+ 1 ≤ i, j ≤ n− 1, where “ ≡ ” denotes equivalence of operators on the space V+.
Suppose first that i 6= j and set ũ = u+ 1/2. Then s◦ij(u) = sij(ũ) and s◦−j,−i(u) = s−j,−i(ũ), so equation

(4.68) becomes equivalent to the relation

h(u)

(
θijs−j,−i(ũ)∓ sij(ũ)

2ũ− κ

)
≡ h(κ′ − u)sij(κ− ũ)

(
(±)1∓ 1

2u− κ′
+

tr(G′(u))

2u− 2κ′

)
.

By the defining symmetry relation in X(gN ,G)tw, the left hand side is just h(u)p(ũ)sij(κ− ũ), whereas by
definition of p′(u) the right hand side is h(κ′ − u)sij(κ− ũ)p′(u). Therefore, since h(u) satisfies the relation
(4.67), both sides are equal.

Now suppose instead that i = j. Then (4.68) is equivalent to the relation

h(u)

(
s◦−i,−i(u)∓ s◦ii(u)

2u− κ′
+

∑n−1
k=−n+1 s

◦
kk(u)

2u− 2κ′

)
≡ h(κ′ − u)s◦ii(κ

′ − u)p′(u).

Therefore, by (4.67), it suffices to show that

(4.69) p(ũ)s◦ii(κ
′ − u) ≡ s◦−i,−i(u)∓ s◦ii(u)

2u− κ′
+

∑n−1
k=−n+1 s

◦
kk(u)

2u− 2κ′
.

By definition of the operators s◦ij(u), we have

(4.70) s◦−i,−i(u)∓ s◦ii(u)

2u− κ′
+

∑n−1
k=−n+1 s

◦
kk(u)

2u− 2κ′
= s−i,−i(ũ)∓ sii(ũ)

2u− κ′
+

∑n−1
k=−n+1 skk(ũ)

2u− 2κ′
+
snn(ũ)

2u
p0(u),

where

(4.71) p0(u) = 1∓ 1

2u− κ′
+

N − 2

2u− 2κ′
=

u(2u− κ′ ± 1)

(κ′ − 2u)(κ′ − u)
.

By the symmetry relation in X(gN ,G)tw,

p(ũ)sii(κ− ũ) = s−i,−i(ũ)∓ sii(ũ)

2u− κ′
+

∑n
k=−n skk(ũ)

2u− 2κ′ − 1
,
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and this formula also holds for i = n. This implies that the left hand side of (4.69) can be expressed as

p(ũ)s◦ii(κ
′ − u) = p(ũ)sii(κ− ũ) +

p(ũ)

2κ′ − 2u
snn(κ− ũ)

= s−i,−i(ũ)∓ sii(ũ)

2u− κ′
+

∑n−1
k=−n+1 skk(ũ)

2u− 2κ′

+

(
1

2u− 2κ′ − 1
+

1

2κ′ − 2u
+

1

(2κ′ − 2u)(2u− 2κ′ − 1)

)
s−n,−n(ũ)

+

(
1

2u− 2κ′ − 1
∓ 1

(2u− κ′)(2κ′ − 2u)
+

1

(2u− 2κ′ − 1)(2κ′ − 2u)

)
snn(ũ)

= s−i,−i(ũ)∓ sii(ũ)

2u− κ′
+

∑n−1
k=−n+1 skk(ũ)

2u− 2κ′
+

(2u− κ′ ± 1)

2(κ′ − 2u)(κ′ − u)
snn(ũ),

which, by (4.70) and (4.71), is precisely the right hand side of (4.69). The second statement of the proposition
is an immediate consequence of the definition of the action of X(gN−2,G′)tw on the space V+. �

Observe that if (gN , g
ρ
N ) is equal to (gN , gln) with gN = so2n or sp2n, then tr(G(u)) = tr(G′(u)) = 0, and

so p(u+ 1/2) = p′(u). An immediate corollary of Proposition 4.13 is then that, if (gN , g
ρ
N ) is of type CI or

DIII, the action of X̃(gN−2,G′)tw on V+ provided by Lemma 4.12 factors through X(gN−2,G′)tw.
We conclude this subsection with a few comments regarding the existence of a series h(u) satisfying (4.67),

as well as an equivalent interpretation of Proposition 4.13. Let c(u) ∈ 1 + u−1C[[u−1]] be the series defined
by c(u) = p(u+1/2)p′(u)−1. Since p(u) and p′(u) satisfy (2.14), we have that c(u) = c(κ′−u)−1. Let h(u) ∈
1 +u−1C[[u−1]] be such that c(u)−1 = h(u)2; then c(u) = c(κ′−u)−1 implies that h(u)−1 = h(κ′−u), hence
c(u) = h−1(u)h(κ′ − u). In particular, this implies that there always exists a series h(u) ∈ 1 + u−1C[[u−1]]
satisfying (4.67).

Recall that we have the isomorphism X(gN−2,G′)tw ∼= X̃(gN−2,G′)tw/(c(u)−1), where c(u) is the central
series defined in (3.22). The image of c(u) under the automorphism ν̃h is h(u)h(κ′ − u)−1c(u). Since the

action of X̃(gN−2,G′)tw on V ν̃h+ factors through X(gN−2,G′)tw, the central series h(u)h(κ′ − u)−1c(u) must
act as 1 in V+. Therefore, Proposition 4.13 is equivalent to the statement that c(u) must act as the series
c(u) = p(u+ 1/2)p′(u)−1 in the representation V+ from Lemma 4.12.

4.3. Connection with representation theory of Molev-Ragoucy reflection algebras. In this sub-
section we introduce an important connection between the representation theory of the extended twisted

Yangians X(gN ,G)tw and that of the Molev-Ragoucy reflection algebras B(Ñ , q̃) for some appropriate choice

of Ñ and q̃. The definition of the latter algebras was recalled in Subsection 3.6: they are the twisted Yangians
associated to the symmetric pairs (slÑ , (glÑ−q̃ ⊕ glq̃) ∩ slÑ ) of type AIII (if q̃ > 0) and type A0 (if q̃ = 0).

We begin by recalling the classification of finite-dimensional irreducible B(Ñ , q̃)-modules obtained in [MR].

Fix 0 ≤ q̃ ≤ Ñ . A representation V of B(Ñ , q̃) is a highest weight representation if there exists a nonzero

vector ξ ∈ V such that V = B(Ñ , q̃)ξ and the following conditions are satisfied:

bij(u)ξ = 0 for 1 ≤ i < j ≤ Ñ , and

bii(u)ξ = µi(u)ξ for 1 ≤ i ≤ Ñ ,

where for each 1 ≤ i ≤ Ñ , µi(u) is a formal power series in u−1 with constant term equal to εi (see (3.35)):

µi(u) = εi +

∞∑
r=1

µ
(r)
i u−r, µ

(r)
i ∈ C.

As usual, we call µ(u) = (µ1(u), . . . , µÑ (u)) the highest weight, and the vector ξ the highest weight vector.

Given an Ñ -tuple (µ1(u), . . . , µÑ (u)), the Verma module M(µ(u)) is defined the same way as for X(gN )
and X(gN ,G)tw and, by Theorem 4.2 in [MR], is non-trivial if and only if the components of the highest
weight satisfy the relations

µÑ (u)µÑ (−u) = 1,(4.72)
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µ̃i(u)µ̃i(−u+ Ñ − i) = µ̃i+1(u)µ̃i+1(−u+ Ñ − i).(4.73)

for all i = 1, . . . , Ñ − 1, where the components of µ̃(u) are defined in (4.10).

For each Ñ -tuple µ(u) whose components satisfy (4.72) and (4.73), there is a unique irreducible module

V (µ(u)) with the highest weight µ(u). Moreover, by Theorem 4.6 (i) in [MR], if q̃ = 0 or q̃ = Ñ , then
V (µ(u)) is finite-dimensional if and only if there exist monic polynomials P2(u), . . . , PÑ (u) in u such that

Pi(−u+ Ñ − i+ 2) = Pi(u) for each i, and

(4.74)
µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1)

Pi(u)
for all 2 ≤ i ≤ Ñ .

If 0 < q̃ < N , set p̃ = Ñ − q̃. By Theorem 4.6 (ii) in [MR], V (µ(u)) is finite-dimensional if and only if there

exists γ ∈ C and monic polynomials P2(u), . . . , PÑ (u) in u such that Pi(−u+ Ñ − i+ 2) = Pi(u) for each i,
Pp̃+1(γ) 6= 0, and

µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1)

Pi(u)
for 2 ≤ i ≤ Ñ with i 6= p̃+ 1,(4.75)

while

µ̃p̃(u)

µ̃p̃+1(u)
=
Pp̃+1(u+ 1)

Pp̃+1(u)
· γ − u
γ + u− q̃

.(4.76)

Now let V be a non-trivial highest weight X(gN ,G)tw-module, and let J be the left ideal in X(gN ,G)tw

generated by the non-constant coefficients of the series s−i,j(u) and s0j(u) for all 1 ≤ i, j ≤ n. (Henceforth,
all occurrences of sij(u) with i = 0 or j = 0 should be ignored in types C and D.) We define V J to be the
subspace of V annihilated by J :

(4.77) V J = {η ∈ V : s−i,j(u)η = s0j(u)η = 0 for all 1 ≤ i, j ≤ n}.

If ξ ∈ V is the highest weight vector, then ξ belongs to V J , so in particular V J is nonzero. The idea of
considering the subspace V J comes from the proof of Proposition 4.2.8 in [Mo5]. Let k and ` be as defined
before Corollary 4.11. The following proposition will be very important to prove our main classification
theorems in Section 6.

Proposition 4.14. V J is stable under the action of all operators sij(u) with 1 ≤ i, j ≤ n. Moreover, the

assignment b̃ij(u) 7→ [±]sij(u) defines a representation of the extended reflection algebra B̃(n, `) in V J .

Proof. We begin by showing that V J is stable under the action of all operators sij(u) for 1 ≤ i, j ≤ n. We
must show that s−i,j(u)sk`(v) = 0 mod J for all 1 ≤ i, j, k, ` ≤ n, or equivalently [s−i,j(u), sk`(v)] ≡ 0,
where “ ≡ ” is used to denote equality of operators on V J . Let us first show [s−i,j(u), sk`(v)] ≡ 0. This is
immediate if k 6= i, j by (3.11). Consider the case where i = j = k. As a consequence of relation (3.11) we
have

(4.78) [s−i,i(u), si`(v)] ≡
(

1

u+ v
+

1

(u+ v)(u− v − κ)

) n∑
a=1

s−i,a(u)sa`(v)− 1

u− v − κ

n∑
a=1

s−a,i(u)sa`(v).

Computing s−a,i(u)sa`(v) for a 6= i we obtain

[s−a,i(u), sa`(v)] ≡ − 1

u− v − κ

n∑
b=1

s−b,i(u)sb`(v) +
1

(u+ v)(u− v − κ)

n∑
b=1

s−i,b(u)sb`(v)

≡ [s−i,i(u), si`(v)]− 1

u+ v

n∑
b=1

s−i,b(u)sb`(v),

where the last equivalence is a direct consequence of equation (4.78). Substituting the above result back into
(4.78), we get

[s−i,i(u), si`(v)] ≡
(

1

u+ v
+

1

(u+ v)(u− v − κ)

) n∑
a=1

s−i,a(u)sa`(v)
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− n

u− v − κ
[s−i,i(u), si`(v)] +

n− 1

(u+ v)(u− v − κ)

n∑
b=1

s−i,b(u)sb`(v)

≡
(

1 +
n

u− v − κ

)
1

u+ v

n∑
a=1

s−i,a(u)sa`(v)− n

u− v − κ
[s−i,i(u), si`(v)],

which implies that

(4.79) [s−i,i(u), si`(v)] ≡ 1

u+ v

n∑
a=1

s−i,a(u)sa`(v).

By (3.11), for all a 6= i and a ≥ 1, we have the relation

s−i,a(u)sa`(v) ≡ 1

u+ v

n∑
b=1

s−i,b(u)sb`(v) ≡ [s−i,i(u), si`(v)].

Substituting this into (4.79), we arrive at

[s−i,i(u), si`(v)] ≡ n

u+ v
[s−i,i(u), si`(v)],

which allows us to conclude that [s−i,i(u), si`(v)] ≡ 0 for all 1 ≤ i ≤ n.
Now, let us consider the case i 6= j. As a consequence of relation (3.13), it is enough to consider the case

where j = k. By (3.11) we have:

[s−i,j(u), sj`(v)] ≡ 1

u+ v

n∑
a=1

s−i,a(u)sa`(v).

However, by (4.79), the right hand side of the above is equivalent to 0, and so we obtain [s−i,j(u), sj`(v)] ≡ 0
for all 1 ≤ i, j, `,≤ n such that i 6= j. Thus, we have shown that [s−i,j(u), sk`(v)] ≡ 0 for all 1 ≤ i, j, k, ` ≤ n.
If N = 2n + 1, then we must also show [s0j(u), sk`(v)] ≡ 0 for all 1 ≤ j, k, ` ≤ n. This is immediate from
(3.11) unless j = k, and in this case we obtain

(4.80) [s0j(u), sj`(v)] ≡ 1

u+ v

n∑
a=1

s0a(u)sa`(v).

However, the same computation shows that

s0a(u)sa`(v) ≡ 1

u+ v

n∑
b=1

s0b(u)sb`(v) ≡ [s0j(u), sj`(v)],

and so (4.80) is equivalent to (
1− n

u+ v

)
[s0j(u), sj`(v)] ≡ 0.

Therefore, we must have s0j(u)sj`(v) ≡ [s0j(u), sj`(v)] ≡ 0 for all 1 ≤ j, ` ≤ n. This completes the proof
that V J is stable under the action of all operators sij(u) with 1 ≤ i, j ≤ n.

Next, observe from relation (3.11) that for all 1 ≤ i, j, k, l ≤ n we have the following equivalence of
operators on V J :

[sij(u), skl(v)] ≡ 1

u− v
(skj(u)si`(v)− skj(v)sil(u))

+
1

u+ v

n∑
a=1

(δkjsia(u)sal(v)− δilska(v)saj(u))

− 1

u2 − v2
n∑
a=1

δij (ska(u)sal(v)− ska(v)sal(u)) .

Comparing these relations with the defining relations of the reflection algebra B̃(n, `) implies the second
part of the lemma. To explain the appearance of the sign [±] in the statement of the lemma, notice that the

matrix G+ =
∑
i,j≥1 gijEij coincides with the constant matrix [±]diag(ε1, . . . , εn) associated to B̃(n, `). �
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Remark 4.15. We may view V as a Y (gN ,G)tw-module by restricting the action of X(gN ,G)tw to the
subalgebra Y (gN ,G)tw ⊂ X(gN ,G)tw. Set Σ+(u) =

∑
i,j≥1Eij ⊗ σij(u). Since Σ(u)Σ(−u) = IN , we also

have the equivalence of operators Σ+(u)Σ+(−u) ≡ In on V J . As a consequence of this fact, the above
proposition, and the definition of B(n, `), the assignment bij(u) 7→ [±]σij(u) defines a representation of
B(n, `) in the space V J .

The following simple result will be instrumental in the proof of Proposition 4.17 and also in the proofs of
the main results in Section 6.

Lemma 4.16. Let (λ(u))i∈IN be any tuple of formal series with λi(u) ∈ 1 + u−1C[[u−1]], and let ν(u) be
any series of the same form. Then:

(1) If N = 2n+ 1, then there is a unique (2n+ 1)-tuple λ(u) extending (λ(u))i∈IN with the property that
the X(gN ) Verma module M(λ(u)) is non-trivial.

(2) If N = 2n, then for each k ∈ IN there exists a unique 2n-tuple λ(u) = (λ−n(u), . . . , λn(u)) extending
(λ(u))i∈IN with the property that λ−k(u) = ν(u) and the X(gN ) Verma module M(λ(u)) is non-
trivial.

Proof. Suppose first that N = 2n + 1. Recall that the Verma module M(λ(u)) is non-trivial if and only

if the components of λ(u) satisfy (4.1). This forces us to define λ−1(u) = λ0(u−κ+n)
λ1(u−κ+n)λ0(u), and recursively

λ−i−1(u) = λi(u−κ+n−i)
λi+1(u−κ+n−i)λ−i(u) for each 1 ≤ i ≤ n−1. In this way we can associate a unique (2n+1)-tuple

λ(u) to (λ(u))i∈IN satisfying the claimed properties.
If instead N = 2n, then the condition (4.1) alone no longer uniquely determines an N -tuple λ(u) from

(λ(u))i∈IN . However, fixing k ∈ IN and setting λ−k(u) = ν(u), a simple modification of the argument used
in the N = 2n + 1 case shows that the condition (4.1) does produce a unique 2n-tuple with the desired
properties extending (λ−k(u), λ1(u), . . . , λn(u)). �

We are now prepared to make precise the sufficient and necessary conditions on the tuple µ(u) which
results in a non-trivial X(gN ,G)tw Verma module M(µ(u)).

Proposition 4.17. Let µ(u) = (µ1(u), . . . , µn(u)) or µ(u) = (µ0(u), . . . , µn(u)) be any tuple of formal series
such that the i-th component belongs to gii + u−1C[[u−1]] and u · µ̃0(κ− u) = (κ− u) · p0(u)p(u)−1µ̃0(u) (see
(4.11)). Then the X(gN ,G)tw Verma module M(µ(u)) is nontrivial if and only if

(4.81) µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i)

for all i ∈ IN \ {n}, and where the components of the series µ̃i(u) have been defined in (4.10).

Proof. Set V = M(µ(u)), and denote the highest vector of V by 1µ(u). Suppose that V is non-trivial. We
will show the components of µ(u) satisfy (4.81), first restricting ourselves to the case where N = 2n. Since
V is a non-trivial highest weight module, the subspace V J is non-zero and, by Proposition 4.14, admits the

structure of a B̃(n, `)-module. Consider the submodule W = B̃(n, `)1µ(u) ⊂ V J . Recall the even central

series f(u) defined by Proposition 3.30. Choose h(u) ∈ 1 + u−1C[[u−1]] such that h(u)h(−u) = f(u) as

operators on V J . Then the assignment B̃(u) 7→ h−1(u)B̃(u) defines an automorphism ν̃h−1 of the algebra

B̃(n, `). We have:

ν̃h−1(f(u)) = h−1(u)h−1(−u) f(u) ≡ f(u)−1f(u) = 1,

where “ ≡ ” denotes equality of operators on V J . Therefore, twisting the action of B̃(n, `) on V J by ν̃h−1 , we
get a non-trivial representation W ν̃h−1 of B(n, `) with the highest weight (h(u)−1µ1(u), . . . , h(u)−1µn(u)).
In particular, by (4.73) we have

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i)

for all 1 ≤ i ≤ n− 1, as desired.
If N = 2n+ 1, the above argument still shows that (4.81) holds for all 1 ≤ i ≤ n− 1, but does not allow

us to conclude that

(4.82) µ̃0(u)µ̃0(−u+ n) = µ̃1(u)µ̃1(−u+ n).
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That being said, the same argument as used in [MR] to establish (4.73) (see the proof of Theorem 4.2) can
be applied to show that (4.82) does hold. Let us recall the main steps of this argument. For each 0 ≤ i ≤ n
define βi(u, v) =

∑n
a=i sia(u)sai(v). Using “ ≡ ” to denote equality of operators on C1µ(u), we have

βi(u, v)− βi(v, u) =

n∑
a=i

Aia(u, v) ≡ 0,

where the definition of Aij(u, v) has been given in (4.25), and the second equivalence has been proven in
Step 3.1 of the proof of Theorem 4.5 for i > 0, and in Step 3.2 of the same proof for i = 0. As a consequence,
we have βi(u, v) ≡ βi(v, u) for all i ≥ 0. From (3.11) we obtain

βi(u, v) ≡ sii(u)sii(v) +
1

u− v

n∑
a=i+1

(saa(u)sii(v)− saa(v)sii(u)) +
1

u+ v

n∑
a=i+1

(βi(u, v)− βa(v, u)) ,

which is equivalent to
(4.83)(

u+ v − n+ i

u+ v

)
βi(u, v) ≡ sii(u)sii(v) +

1

u− v

n∑
a=i+1

(saa(u)sii(v)− saa(v)sii(u))− 1

u+ v

n∑
a=i+1

βa(v, u).

Subtracting (4.83) with i = 1 from (4.83) with i = 0 and rearranging, we obtain

u+ v − n
u+ v

(β0(u, v)− β1(u, v)) ≡ s00(u)s00(v) +
1

u− v

n∑
a=1

(saa(u)s00(v)− saa(v)s00(u))

− s11(u)s11(v)− 1

u− v

n∑
a=2

(saa(u)s11(v)− saa(v)s11(u)).

Substituting v 7→ n−u, the left hand side becomes the zero operator and, after applying both sides to 1µ(u),
we arrive at the relation

µ0(u)µ0(v) +
1

2u− n

n∑
a=1

(µa(u)µ0(v)− µa(v)µ0(u)) = µ1(u)µ1(v) +
1

2u− n

n∑
a=2

(µa(u)µ1(v)− µa(v)µ1(u)).

By expanding equation (4.82) (using the definition of µ̃i(u)), we see that it is equivalent to the above relation.
This completes the proof that the components of µ(u) must satisfy (4.82).

Conversely, suppose the components of µ(u) satisfy condition (4.81) as well as the condition (4.11) if
N = 2n+ 1 . Let h(u) be the rational function in u defined by

(4.84) h(u) =


`− u

u
if G is of the first kind,

1[±]c(`− u)

1[±]cu
if G is of the second kind.

Note that h(u) satisfies the relation h(u)h(`−u) = 1. For each i ∈ IN \{n} define fi(u) = (h(u))−δik µ̃i(u)
µ̃i+1(u)

.

Then, by (4.81) and the aforementioned property of h(u), fi(u) = fi(n−u− i)−1 for all i ∈ IN \ {n}. Thus,
for each i, there exists gi(u) ∈ 1 + u−1C[[u−1]] such that fi(u) = gi(u)gi(n − u − i)−1. We will use these
series to construct a non-trivial X(gN ) Verma module M(λ(u)) containing an X(gN ,G)tw highest weight
module with the highest weight µ(u).

If N = 2n, let λn(u), λ−n(u) ∈ 1 + u−1C[[u−1]] be any two series satisfying the relation

(4.85) µn(u) =

gnnλn(u− κ/2)λ−n(−u+ κ/2) if G is of the first kind,(
1[±]cu

1− cu

)
λn(u− κ/2)λ−n(−u+ κ/2) if G is of the second kind.

For each 1 ≤ i ≤ n− 1 define λi(u) ∈ 1 + u−1C[[u−1]] recursively in terms of λi+1(u) by

λi(u− κ/2) = gi(u)λi+1(−u− κ/2 + n− i)−1.

By Lemma 4.16, there is a unique 2n-tuple λ(u) extending (λ−n(u), λ1(u), . . . , λn(u)) with the property that
the X(gN ) Verma module M(λ(u)) is non-trivial.
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If instead N = 2n + 1, then by assumption u · g(u)µ̃0(κ − u) = (κ − u) · g(κ − u)µ̃0(u), where the
series g(u) has been defined in (4.15). Therefore there exists λ0(u) ∈ 1 + u−1C[[u−1]] such that µ̃0(u) =
2ug(u)λ0(u − κ/2)λ0(−u + κ/2). For each 0 ≤ i ≤ n − 1, define λi+1(u) ∈ 1 + u−1C[[u−1]] recursively in
terms of λi(u) by

λi+1(−u− κ/2 + n− i) = gi(u)λi(u− κ/2)−1.

Then, by Lemma 4.16, there is a unique (2n + 1)-tuple λ(u) extending (λi(u))i∈IN so that M(λ(u)) is
non-trivial.

In either case, we have produced a nontrivial X(gN ) Verma module M(λ(u)) with the highest weight λ(u)
whose components satisfy the relations

µ̃i(u)

µ̃i+1(u)
= h(u)δik

λi(u− κ/2)λi+1(−u− κ/2 + n− i)
λi+1(u− κ/2)λi(−u− κ/2 + n− i)

= h(u)δik
λi(u− κ/2)λ−i(−u+ κ/2)

λi+1(u− κ/2)λ−i−1(−u+ κ/2)

for all i ∈ IN \{n}, in addition to the relation (4.85) if N = 2n and µ̃0(u) = 2ug(u)λ0(u−κ/2)λ0(−u+κ/2)
if N = 2n+ 1.

Hence, the module X(gN ,G)tw1λ(u) ⊂ M(λ(u)) is a non-trivial highest weight module, and the above
relations together with Corollary 4.11 imply that the highest weight is equal to µ(u). Therefore the X(gN ,G)
Verma module M(µ(u)) is non-trivial. �

The following proposition is analogous to Proposition 4.2.8 in [Mo5] and gives a necessary condition for
any irreducible highest weight X(gN ,G)tw-module to be finite-dimensional.

Proposition 4.18. Let the components of µ(u) satisfy the conditions of Proposition 4.17, so that the irre-
ducible module V (µ(u)) exists. Suppose further that V (µ(u)) is finite-dimensional. Then:

(1) If (gN , g
ρ
N ) is of type BCD0, BI with q = 1, CI or DIII, then there exist monic polynomials

P2(u), . . . , Pn(u) in u such that Pi(−u+ n− i+ 2) = Pi(u) and

(4.86)
µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1)

Pi(u)
for all 2 ≤ i ≤ n.

(2) If (gN , g
ρ
N ) is of type BDI (excluding the q = 1 case) or CII, then there exists γ ∈ C and monic

polynomials P2(u), . . . , Pn(u) in u such that Pi(−u+ n− i+ 2) = Pi(u), Pk+1(γ) 6= 0 and

µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1)

Pi(u)
for all 2 ≤ i ≤ n with i 6= k + 1,(4.87)

while

µ̃k(u)

µ̃k+1(u)
=
Pk+1(u+ 1)

Pk+1(u)
· γ − u
γ + u− `

,(4.88)

where k ∈ IN \ {n} is the unique integer such that gkk 6= gk+1,k+1, and ` = n− k.

Proof. Denote the highest weight vector of V (µ(u)) by ξ and let V (µ(u))J be as in (4.77). Then, by

Proposition 4.14, allowing b̃ij(u) to operate as [±]sij(u) for all 1 ≤ i, j ≤ n makes V (µ(u))J into a B̃(n, `)-
module. Choose h(u) ∈ 1 + u−1C[[u−1]] such that h(u)h(−u) = f(u) as operators on V J (see (3.30)).

Twisting the action of B̃(n, `) on V J by the automorphism ν̃h−1 , we obtain a non-trivial representation of
B(n, `) such that the cyclic span B(n, `)ξ is a finite-dimensional highest weight module with the highest
weight [±](h(u)−1µ1(u), . . . , h(u)−1µn(u)). The proposition now follows directly from the equations (4.74)
through (4.76) (see also [MR, Thm. 4.6]). �

5. Twisted Yangians of small rank and their representations

In this section, we use the classification results for finite-dimensional irreducible representations of Y ±(2)
[Mo2] together with the isomorphisms from [GRW] to classify all finite-dimensional irreducible representa-
tions of low rank extended twisted Yangians of type BCD0, CI, and DIII. These low rank classification results
will play a crucial role in the proofs of the main results in Section 6. We also obtain explicit formulas for
evaluation morphisms ev : X(gN , g

ρ
N )tw � UgρN , where gN = sp2, so3 or so4, and study the corresponding

evaluation modules.
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The definitions of the twisted Yangians Y ±(N) were recalled in Subsection 3.5. They are the twisted
Yangians associated to the symmetric pairs (glN , gN ), where gN = so2n or sp2n if N = 2n, and gN =
so2n+1 if N = 2n + 1. In this section we will only be concerned with Y ±(N) where N = 2. In order to
distinguish between the generators of X(gN , g

ρ
N )tw and Y ±(2), we shall follow the convention established

in [GRW] and denote the generators of Y ±(2) by s
◦(r)
ij , where i, j ∈ {±1} and r ≥ 0. These generators are

then arranged as the coefficients of the various series’ s◦ij(u), which in turn form the (i, j)th entry of the

matrix S◦(u). Similarly, the generators of the special twisted Yangian SY ±(2) are denoted by σ
◦(r)
ij , and

the corresponding series and matrix are denoted by σ◦ij(u) and Σ◦(u), respectively. We shall also denote

the R-matrix I − u−1P ∈ End(C2 ⊗ C2)[[u−1]] from a) of (2.8) by R◦(u), and the evaluation morphism

s◦ij(u) 7→ δij + Fij
(
u± 1

2

)−1
from Proposition 3.21 by ev◦±. We will make use of the following explicit

formulas for the Sklyanin determinant sdetS◦(u) (see [MNO, Sec. 4]):

sdetS◦(u) =
2u+ 1

2u± 1

(
s◦−1,−1(u− 1)s◦−1,−1(−u)∓ s◦−1,1(u− 1)s◦1,−1(−u)

)
=

2u+ 1

2u± 1

(
s◦11(−u)s◦11(u− 1)∓ s◦1,−1(−u)s◦−1,1(u− 1)

)
.(5.1)

We now recall the classification results for finite-dimensional irreducible representations of the twisted
Yangians Y ±(2).

A representation V of Y ±(2) is called a highest weight representation if there exists a nonzero vector ξ ∈ V
such that V = Y ±(2)ξ, s−1,1(u)ξ = 0, and s◦11(u)ξ = µ◦(u)ξ for some scalar series µ◦(u) ∈ 1 + u−1C[[u−1]].
As usual, we call µ◦(u) the highest weight of V , and the vector ξ the highest weight vector.

Given µ◦(u) ∈ 1 + u−1C[[u−1]], the Verma module M(µ◦(u)) is defined the same way as for X(gN ) and
X(gN ,G)tw, and is always non-trivial. It admits a unique irreducible quotient V (µ◦(u)), and any irreducible
highest weight module with the highest weight µ◦(u) is isomorphic to V (µ◦(u)). The following classification
results are restatements of Theorems 4.4 and 5.4 of [Mo2] (see also Theorems 4.3.3 and 4.4.3 of [Mo5]):

The irreducible Y −(2)-module V (µ◦(u)) is finite-dimensional if and only if there exists a monic polynomial
P (u) in u such that P (u) = P (−u+ 1) and

(5.2)
µ◦(−u)

µ◦(u)
=
P (u+ 1)

P (u)
.

In this case, the monic polynomial P (u) is unique.
On the other hand, the irreducible Y +(2)-module V (µ◦(u)) is finite-dimensional if and only if there exists

a scalar α ∈ C together with a monic polynomial Q(u) such that Q(u) = Q(−u+ 1), Q(α) 6= 0, and

(5.3)
(1− 1

2u )µ◦(−u)

(1 + 1
2u )µ◦(u)

=
Q(u+ 1)

Q(u)
· u− α
u+ α

.

In this case, the pair (Q(u), α) is unique.
Let us now briefly recall the isomorphisms from Section 4 of [GRW] which are relevant to our present

study, beginning with those concerning the twisted Yangians associated to the pairs (sp2, sp2) and (sp2, gl1).
Let K = E11 − E−1,−1 ∈ EndC2. Then the mappings

ϕ′0 : X(sp2, sp2)tw → Y −(2), S(u) 7→ S◦(u/2− 1/2),(5.4)

ϕ′1 : X(sp2, gl1)tw → Y +(2), S(u) 7→ S◦(u/2− 1/2)K,(5.5)

are isomorphisms of algebras. Moreover, they induce algebra isomorphisms Y (sp2, sp2)tw ∼= SY −(2) and
Y (sp2, gl1)tw ∼= SY +(2).

Consider now the symmetric pair (so3, so3) of type B0. Let the standard basis of C2 be given by the vectors
e−1 and e1 and let V be the three-dimensional subspace of C2⊗C2 spanned by the elements v−1 = e−1⊗e−1,
v0 = 1√

2
(e−1 ⊗ e1 + e1 ⊗ e−1), and v1 = −e1 ⊗ e1. We may identify V with C3 by regarding {v−1, v0, v1} as

the canonical basis of C3. In this way we may consider S(u) as an element of EndV ⊗X(so3, so3)tw[[u−1]].
Moreover, the operator 1

2R
◦(−1) ∈ End(C2 ⊗ C2) is a projection of C2 ⊗ C2 onto the subspace V and the

mapping

(5.6) ϕ0 : X(so3, so3)tw → Y −(2), S(u) 7→ 1
2R
◦(−1)S◦1 (2u− 1)R◦(−4u+ 1)t−S◦2 (2u)



39

is an algebra isomorphism whose restriction to the subalgebra Y (so3, so3)tw induces an isomorphism between
Y (so3, so3)tw and SY −(2).

Lastly, we recall the isomorphisms for the twisted Yangians associated to the symmetric pairs (so4, gl2)
and (so4, so4). These isomorphisms involve the tensor products SY +(2)⊗ Y −(2) and SY −(2)⊗ Y −(2). We
shall denote the corresponding generating series of SY ±(2) by σ◦ij(u) and those of Y −(2) by s•ij(u), where
in both cases i, j ∈ {±1}. These are then arranged into the matrices Σ◦(u) and S•(u), respectively. Let
V = C2⊗C2 with ordered basis given by v−2 = e−1⊗e−1, v−1 = e−1⊗e1, v1 = e1⊗e−1 and v2 = −e1⊗e1. By
identifying V with C4 equipped with canonical basis {v−2, v−1, v1, v2}, we can consider S(u) as an element
of EndV ⊗ X(so4, so

ρ
4)tw[[u−1]], where soρ4 is either gl2 or so4. The following maps are isomorphisms of

algebras:

χ
(1)
0 : X(so4, gl2)tw → SY +(2)⊗ Y −(2), S(u) 7→ Σ◦(u− 1/2)K1S

•(u− 1/2),(5.7)

χ
(1)
1 : X(so4, so4)tw → SY −(2)⊗ Y −(2), S(u) 7→ Σ◦(u− 1/2)S•(u− 1/2).(5.8)

Their restrictions to the subalgebras Y (so4, gl2)tw and Y (so4, so4)tw yield isomorphisms Y (so4, gl2)tw ∼=
SY +(2)⊗SY −(2) and Y (so4, so4)tw ∼= SY −(2)⊗SY −(2), respectively. The isomorphisms χ

(1)
0 and χ

(1)
1 can

be obtained from the embeddings

χ̃
(1)
0 : X(so4, gl2)tw → Y +(2)⊗ Y −(2), S(u) 7→ S◦(u− 1/2)K1S

•(u− 1/2),(5.9)

χ̃
(1)
1 : X(so4, so4)tw → Y −(2)⊗ Y −(2), S(u) 7→ S◦(u− 1/2)S•(u− 1/2),(5.10)

by composing with the epimorphisms Pr+ ⊗ 1 or Pr− ⊗ 1, respectively, where Pr± is the natural projection
Pr± : Y ±(2) � SY ±(2).

We now turn our attention to the finite-dimensional representation theory of the low rank twisted Yangians
of type B-C-D.

5.1. Twisted Yangians for the symmetric pairs (sp2, sp
ρ
2). We begin with the classification of the

finite-dimensional irreducible representations of the extended twisted Yangian X(sp2, sp
ρ
2)tw, where spρ2 =

gl1 or sp2.

Proposition 5.1. Let µ(u) ∈ 1 + u−1C[[u−1]]. The irreducible X(sp2, sp
ρ
2)tw-module V (µ(u)) is finite-

dimensional if and only if there exists a monic polynomial P (u) in u, in addition to a scalar γ ∈ C with
P (γ) 6= 0 if spρ2 = gl1, such that P (u) = P (−u+ 4) and

µ̃(2− u)

µ̃(u)
=
P (u+ 2)

P (u)
· 2− u

u
if spρ2 = sp2,(5.11)

µ̃(2− u)

µ̃(u)
=
P (u+ 2)

P (u)
· γ − u
γ + u− 2

if spρ2 = gl1.(5.12)

Moreover, when they exist, the polynomial P (u) and the scalar γ are uniquely determined.

Proof. The proposition follows from the classification results (5.2) and (5.3), together with the existence of
the explicit isomorphisms ϕ′0 and ϕ′1 given by (5.4) and (5.5), respectively. Due to the similarities between
these isomorphisms, we will only include a detailed proof for the case spρ2 = gl1.

The isomorphism ϕ′1 from (5.5) defines an equivalence between the highest weight representations of
X(sp2, gl1)tw and those of Y +(2). To see this, given a series µ◦(u) ∈ 1 + u−1C[[u−1]], let V (µ◦(u)) denote
the irreducible Y +(2)-module with the highest weight µ◦(u). Then, viewed as a Y +(2)-module via ϕ′1, the
irreducible X(sp2, gl1)tw-module V (µ(u)) is isomorphic to V (µ◦(u)) with µ◦(u) = µ(2u + 1). Indeed, if

ξ ∈ V (µ(u)) is the highest weight vector, then we have s◦−1,1(u) · ξ = ϕ′1
−1

(s◦−1,1(u))ξ = s−1,1(2u+ 1)ξ = 0
and

s◦11(u) · ξ = ϕ−1(s◦11(u))ξ = s11(2u+ 1)ξ = µ(2u+ 1)ξ.

The Y +(2)-module V (µ◦(u)) is finite-dimensional if and only there exists a (unique) pair (Q(u), α), where
Q(u) is a monic polynomial in u with Q(u) = Q(−u+ 1), α ∈ C is such that Q(α) 6= 0, and (5.3) holds.

Rewriting (5.3) using µ(u) and substituting u 7→ u−1
2 we obtain the expression

(5.13)
(2− u)µ(2− u)

uµ(u)
=
Q(u+1

2 )

Q(u−12 )
· 2α− (u− 1)

(u− 1) + 2α
.
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Set P (u) = 2degQ(u)Q
(
u−1
2

)
and γ = 2α + 1, so that P (u) is a monic polynomial with P (u) = P (−u + 4)

(since Q(u) = Q(−u + 1)) and P (γ) = 2degQ(u)Q(α) 6= 0. Then by (5.13), we have shown that V (µ(u)) is
finite-dimensional if and only if there exists a pair (P (u), γ) as in the statement of the proposition, satisfying

µ̃(2− u)

µ̃(u)
=
P (u+ 2)

P (u)
· γ − u
γ + u− 2

.

The uniqueness of the pair (P (u), γ) follows immediately from the uniqueness of (Q(u), α). �

Composing the isomorphisms (5.4) and (5.5) with the evaluation morphisms ev◦± from Proposition 3.21,
we obtain evaluation morphisms for X(sp2, sp

ρ
2)tw.

Proposition 5.2. Let F ′ρ =
∑
i,j=±1Eij ⊗ F

′ρ
ij where F ′ρij = (gii + gjj)Fij (see (3.9)). The mappings

ev0 : X(sp2, sp2)tw → Usp2, S(u) 7→ I + F ′ρ(u− 2)−1,(5.14)

ev1 : X(sp2, gl1)tw → Ugl1, S(u) 7→ G + F ′ρu−1,(5.15)

are surjective algebra homomorphisms.

For any µ ∈ C, let Vρ(µ) denote the irreducible highest weight representation of spρ2 with the highest
weight µ. The pull-back of Vρ(µ) via ev0 and ev1 is an irreducible X(sp2, sp

ρ
2)tw-module.

Corollary 5.3. Given µ ∈ C, Vρ(µ) is isomorphic to the irreducible X(sp2, sp
ρ
2)tw-module V (µ(u)) with

(5.16) µ(u) = 1 + (2µ)u−1 if spρ2 = gl1, and µ(u) = 1 + 2µ(u− 2)−1 if spρ2 = sp2.

5.2. Twisted Yangians for the symmetric pairs (so4, so
ρ
4). We aim to establish results for X(so4, so

ρ
4)tw,

where soρ4 = gl2 or so4, which are analogous to those obtained in the previous subsection for X(sp2, sp
ρ
2)tw.

Proposition 5.4. Let the components of µ(u) = (µ1(u), µ2(u)) satisfy the condition (4.81) so that the
irreducible X(so4, so

ρ
4)tw-module V (µ(u)) exists. Then V (µ(u)) is finite-dimensional if and only if there

exist monic polynomials P (u) and Q(u) in u, in addition to a scalar γ ∈ C with Q(γ) 6= 0 if soρ4 = gl2, such
that P (u) = P (−u+ 2), Q(u) = Q(−u+ 2) and

(5.17)
µ̃1(u)

µ̃2(u)
=
P (u+ 1)

P (u)
,

while

µ̃1(1− u)

µ̃2(u)
=
Q(u+ 1)

Q(u)
· 1− u

u
if soρ4 = so4,(5.18)

µ̃1(1− u)

µ̃2(u)
=
Q(u+ 1)

Q(u)
· γ − u
γ + u− 1

if soρ4 = gl2.(5.19)

Moreover, when they exist, the pair (Q(u), P (u)) and the scalar γ are uniquely determined.

Proof. The proposition follows from the existence of the explicit isomorphisms χ
(1)
0 and χ

(1)
1 given in (5.7)

and (5.8), respectively, together with the classification results (5.2) and (5.3). We will give details of the
proof only for the case soρ4 = gl2.

It is a general fact that any simple finite-dimensional module over a tensor product A⊗B of two associative
unital C-algebras A and B is of the form MA ⊗MB , where MA (resp. MB) is a simple, finite-dimensional
module over A (resp. overB): see Theorem 3.10.2 in [EGH+]. We show more precisely that theX(so4, gl2)tw-

module V (µ(u)), viewed as a SY +(2)⊗Y −(2)-module via the isomorphism χ
(1)
0 , is isomorphic to V (λ◦(u))⊗

V (λ•(u)), where V (λ◦(u)) denotes the irreducible highest weight SY +(2)-module of weight λ◦(u), V (λ•(u))
denotes the irreducible highest weight Y −(2)-module of weight λ•(u), and where the series λ◦(u) and λ•(u)
are completely determined by the two relations

λ•(u)λ•(u− 1)− 1
2u (λ•(u)− λ•(−u))λ•(u− 1) = µ1(−u+ 1/2)µ2(u− 1/2),(5.20)

λ◦(u) = µ2(u+ 1/2)λ•(u)−1.(5.21)

Equivalently, λ◦(u) and λ•(u) are completely determined by the two equations

(5.22) µ̃2(u) = 2u · λ◦(u− 1/2)λ•(u− 1/2) and µ̃1(u) = 2u · λ◦(u− 1/2)λ•(−u+ 1/2).
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We will need the following explicit formulas for the images of the generators sij(u) under the isomorphism

χ
(1)
0 from (5.7):

(5.23)

s−2,−2(u) 7→ −σ◦−1,−1(ũ)s•−1,−1(ũ),

s−2,−1(u) 7→ −σ◦−1,−1(ũ)s•−1,1(ũ),

s−2,1(u) 7→ σ◦−1,1(ũ)s•−1,−1(ũ),

s−2,2(u) 7→ −σ◦−1,1(ũ)s•−1,1(ũ),

s−1,−2(u) 7→ −σ◦−1,−1(ũ)s•1,−1(ũ),

s−1,−1(u) 7→ −σ◦−1,−1(ũ)s•11(ũ),

s−1,1(u) 7→ σ◦−1,1(ũ)s•1,−1(ũ),

s−1,2(u) 7→ −σ◦−1,1(ũ)s•11(ũ),

s1,−2(u) 7→ −σ◦1,−1(ũ)s•−1,−1(ũ),

s1,−1(u) 7→ −σ◦1,−1(ũ)s•−1,1(ũ),

s11(u) 7→ σ◦11(ũ)s•−1,−1(ũ),

s12(u) 7→ −σ◦11(ũ)s•−1,1(ũ),

s2,−2(u) 7→ σ◦1,−1(ũ)s•1,−1(ũ),

s2,−1(u) 7→ σ◦1,−1(ũ)s•11(ũ),

s21(u) 7→ −σ◦11(ũ)s•1,−1(ũ),

s22(u) 7→ σ◦11(ũ)s•11(ũ),

where ũ = u − 1/2. It is explained how to obtain these formulas from the assignment (5.7) at the end of
the proof of Proposition 4.8 in [GRW]. These formulas together with the expression (5.1) and the fact that
sdetΣ◦(u) = 1 give

χ
(1)
0 (s11(−ũ)s22(ũ)− s1,−2(−ũ)s−1,2(ũ))

=
(
σ◦11(−u)σ◦11(u− 1)− σ◦1,−1(−u)σ◦−1,1(u− 1)

)
s•−1,−1(−u)s•11(u− 1)

= s•−1,−1(−u)s•11(u− 1).

Letting ξ ∈ V (µ(u)) denote the highest weight vector, this gives s•−1,−1(−u)s•11(u − 1)ξ = µ1(−ũ)µ2(ũ)ξ.

Employing the defining symmetry relation of Y −(2), we can rewrite this as(
s•11(u)− 1

2u (s•11(u)− s•11(−u))
)
s•11(u− 1)ξ = µ1(−ũ)µ2(ũ)ξ.

By induction on the coefficients s
•(r)
11 of s•11(u), this implies that there exists λ•(u) ∈ 1 + u−1C[[u−1]] such

that s•11(u)ξ = λ•(u)ξ, and λ•(u) is determined by (5.20). Again appealing to the formulas (5.23), we have

χ
(1)
0 (s22(u)) = σ◦11(ũ)s•11(ũ), which implies that ξ is an eigenvector for the action of σ◦11(u) with weight λ◦(u)

determined by the relation (5.21). Notice that it now follows immediately from the explicit formulas (5.23)
that σ◦−1,1(u)ξ = s•−1,1(u)ξ = 0. Conversely, any vector η with the property that σ◦−1,1(u)η = s•−1,1(u)η = 0

and which is a weight vector for s•ii(u) must be a highest weight vector of the X(so4, gl2)tw-module V (µ(u))
by (5.23), hence a scalar multiple of ξ. Thus, by the irreducibility of V (µ(u)) we can conclude that

V (µ(u)) ∼= V (λ◦(u))⊗ V (λ•(u)).

To see that (5.20) and (5.21) are equivalent to the relations given in equation (5.22), we observe first that
relation (5.21) is clearly equivalent to µ̃2(u) = 2u · λ◦(u− 1/2)λ•(u− 1/2). Notice also that we may rewrite
(5.20) as

(5.24) λ•(u)λ•(u− 1)− 1
2u (λ•(u)− λ•(−u))λ•(u− 1) = µ1(−u+ 1/2)λ◦(u− 1)λ•(u− 1).

Since sdetΣ◦(u) = 1, by formula (5.1), we also have

1 · ξ =
(
σ◦11(−u)σ◦11(u− 1)− σ◦1,−1(−u)σ◦−1,1(u− 1)

)
ξ = λ◦(−u)λ◦(u− 1)ξ,

and thus λ◦(−u)−1 = λ◦(u− 1). Using this, we may rewrite (5.24) as

λ•(−u+ 1/2)λ◦(u− 1/2)− 1
1−2u (λ•(−u+ 1/2)λ◦(u− 1/2)− λ•(u− 1/2)λ◦(u− 1/2)) = µ1(u),

which is equivalent to

2u · λ•(−u+ 1/2)λ◦(u− 1/2) = (2u− 1)µ1(u) + µ2(u) = µ̃1(u).

As a consequence of the isomorphism of SY +(2)⊗Y −(2)-modules V (µ(u)) ∼= V (λ◦(u))⊗V (λ•(u)), we can
deduce exactly when V (µ(u)) is finite-dimensional. Indeed, due to the classification results (5.2) and (5.3),
V (λ◦(u))⊗ V (λ•(u)) is finite-dimensional if and only if there exists α ∈ C together with monic polynomials
P ′(u), Q′(u) such that P ′(u) = P ′(−u + 1), Q′(u) = Q′(−u + 1), Q′(α) 6= 0 and the following equations
hold:

(5.25)

(
1− 1

2u

)
λ◦(−u)(

1 + 1
2u

)
λ◦(u)

=
Q′(u+ 1)

Q′(u)
· u− α
u+ α

,
λ•(−u)

λ•(u)
=
P ′(u+ 1)

P ′(u)
.
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In this case the triple (Q′(u), P ′(u), γ) is unique. Since

µ̃1(u)

µ̃2(u)
=

2u · λ◦(u− 1/2)λ•(−u+ 1/2)

2u · λ◦(u− 1/2)λ•(u− 1/2)
=
λ•(−u+ 1/2)

λ•(u− 1/2)
,

the second equation in (5.25) is equivalent to

µ̃1(u)

µ̃2(u)
=
P ′(u+ 1/2)

P ′(u− 1/2)
.

Setting P (u) = P ′(u−1/2), we have P (u) = P (−u+2) and the above equality becomes that given in (5.17).
Similarly, since

µ̃1(1− u)

µ̃2(u)
=

2(1− u)λ◦(−u+ 1/2)λ•(u− 1/2)

2uλ◦(u− 1/2)λ•(u− 1/2)
=

1− u
u
· λ
◦(−u+ 1/2)

λ◦(u− 1/2)
,

we may rewrite the first equation in (5.25) as

µ̃1(1− u)

µ̃2(u)
=

1− u
u
· Q
′(u− 1/2 + 1)

Q′(u− 1/2)
·
u− 1

2 − α
u− 1

2 + α
· u

u− 1

=
Q′(u− 1/2 + 1)

Q′(u− 1/2)
·
α+ 1

2 − u
u− 1

2 + α
.

Setting γ = α + 1/2 and Q(u) = Q′(u − 1/2), we have Q(γ) 6= 0, Q(u) = Q(−u + 2), and the above
equality becomes equivalent to (5.19). Finally, we note that the uniqueness of the triple (Q(u), P (u), γ) is
immediate from the uniqueness of (Q′(u), P ′(u), α). �

We now turn to the construction of evaluation morphisms X(so4, so
ρ
4)tw � Usoρ4. The enveloping algebra

Usoρ4 is generated by the elements F ′ρij = (gii + gjj)Fij for −2 ≤ i, j ≤ 2 (see Proposition 3.9). Let Ωρ be the

Casimir element of Uso4 if soρ4 = so4, or of Usl2 if soρ4 = gl2, defined by

Ωρ =

{
F 2
11 + F 2

22 − 2F22 + 2F21F12 + 2F2,−1F−1,2 if soρ4 = so4,
1
2 (F22 − F11)2 + F12F21 + F21F12 if soρ4 = gl2.

If soρ4 = gl2, define the auxiliary central element z ∈ Ugl2 by

z = F 2
11 + F 2

22 + F12F21 + F21F12 = Ωρ + 1
2 (F11 + F22)2.

In the following proposition it will be convenient to denote the Casimir element Ωρ corresponding to the
case soρ4 = so4 simply by Ω.

Proposition 5.5. Let F ′ρ =
∑2
i,j=−2Eij ⊗ F

′ρ
ij ∈ EndC4 ⊗ Usoρ4. The mappings

ev0 : X(so4, so4)tw → Uso4, S(u) 7→ I +
F ′ρ

u− 1
+

(F ′ρ)2 − 2F ′ρ − 2Ω · I
2(u− 1)2

,(5.26)

ev1 : X(so4, gl2)tw → Ugl2, S(u) 7→ G +
F ′ρ

u
+ G (F ′ρ)2 − 2z · I

2u(u− 1)
,(5.27)

are surjective algebra homomorphisms.

Proof. Suppose first that soρ4 = gl2. Consider the Lie algebra so2 ⊕ sp2. Denote the generators of so2 in
this direct sum by F ◦ij , and those of sp2 by F •ij , where i, j ∈ {±1}. The Lie algebra so2 is one-dimensional
with basis F ◦11, while sp2 is three-dimensional with basis {F •1,1, F •−1,1, F •1,−1}. Let Φ be the isomorphism

so2 ⊕ sp2
∼−→ gl2 given by

F ◦11 7→ F11 + F22, F •11 7→ F22 − F11, F •−1,1 7→ −2F12, F •1,−1 7→ −2F21.

Φ induces an isomorphism Φ̂ : Uso2 ⊗ Usp2
∼−→ Ugl2. Therefore, the composition Φ̂ ◦ (ev◦+ ⊗ ev◦−) yields a

surjective homomorphism Y +(2) ⊗ Y −(2) � Ugl2. Writing this map explicitly and using Proposition 3.21,
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we have s◦ij(u) 7→ 0 for i 6= j, and

s◦−1,−1(u) 7→ 1− F11 + F22

u+ 1/2
,

s◦11(u) 7→ 1 +
F11 + F22

u+ 1/2
,

s•−1,−1(u) 7→ 1 +
F11 − F22

u− 1/2
, s•−1,1(u) 7→ − 2F12

u− 1/2
,

s•11(u) 7→ 1 +
F22 − F11

u− 1/2
, s•1,−1(u) 7→ − 2F21

u− 1/2
.

The proof is now completed as follows: Composing Φ̂◦ (ev◦+⊗ ev◦−) with the embedding χ̃
(1)
0 from (5.9) gives

a homomorphism ev1 : X(so4, gl2)tw → Ugl2. It remains to see that it is given by the assignment (5.27) and
that it is surjective. However, if it is indeed given by (5.27) then it must be surjective, so it remains only to
check the former claim. This can be shown by a direct calculation using the formulas (5.23). For instance,
since

χ̃
(1)
0 (s−2,−2(u)) = −s◦−1,−1(u− 1/2)s•−1,−1(u− 1/2),

we have

(5.28) ev1(s−2,−2(u)) = −
(

1− F11 + F22

u

)(
1 +

F11 − F22

u− 1

)
= −1 +

2F22

u
+
F 2
11 − F 2

22 − F11 + F22

u(u− 1)
.

On the other hand, since F ′ρij = (gii + gjj)Fij and Fij = −F−j,−i in so4, the (−2,−2)-th entry of the right

hand side of (5.27) is given by

−1 +
2F22

u
+
−2F 2

22 − 2F12F21 + F 2
11 + F 2

22 + F12F21 + F21F12

u(u− 1)
= −1 +

2F22

u
+
F 2
11 − F 2

22 + F22 − F11

u(u− 1)
,

which coincides with (5.28). The images of the remaining generators can be verified similarly.

If instead soρ4 = so4, the argument is similar. Denote the generators corresponding to the first copy of
sp2 in the direct sum sp2 ⊕ sp2 by F ◦ij , and those corresponding to the second copy of sp2 by F •ij , where
in both cases i, j ∈ {±1}. A basis for sp2 ⊕ sp2 is then given by the union of {F ◦1,1, F ◦−1,1, F ◦1,−1} and

{F •1,1, F •−1,1, F •1,−1}. Let Φ be the isomorphism sp2 ⊕ sp2
∼−→ so4 given by

F ◦11 7→ F11 + F22, F ◦−1,1 7→ 2F−2,1, F ◦1,−1 7→ 2F1,−2

F •11 7→ F22 − F11, F •−1,1 7→ −2F12, F •1,−1 7→ −2F21.

Φ induces an isomorphism Φ̂ : Usp2 ⊗ Usp2
∼−→ Uso4, and so the composition Φ̂ ◦ (ev◦− ⊗ ev◦−) is a surjective

homomorphism Y −(2)⊗ Y −(2) � Uso4. The composition of this map with the embedding χ̃
(1)
1 from (5.10)

gives a homomorphism ev0 : X(so4, so4)tw → Uso4. If it is indeed given by the assignment (5.26) then it is
surjective, so we need only verify that this is the case. This can be shown directly by first computing the

explicit images χ̃
(1)
1 (sij(u)) (as in (5.23)), and then performing computations similar to those carried out in

the soρ4 = gl2 case. �

Given µ1, µ2 ∈ C, let Vρ(µ1, µ2) denote the irreducible soρ4-module with the highest weight (µ1, µ2)
(so, in particular, Fiiξ = µiξ for i = 1, 2). The pull-back of Vρ(µ1, µ2) via ev0 and ev1 is an irreducible
X(so4, so

ρ
4)tw-module which we call an evaluation module.

Corollary 5.6. Given µ1, µ2 ∈ C, the evaluation module Vρ(µ1, µ2) is isomorphic to the X(so4, so
ρ
4)tw-

module V (µ1(u), µ2(u)) where

µ1(u) = 1 +
2µ1

u
+
µ2
1 − µ2

2 + µ1 − µ2

u(u− 1)
, µ2(u) = 1 +

2µ2

u
+
µ2
2 − µ2

1 + µ2 − µ1

u(u− 1)
if soρ4 = gl2,

µ1(u) = 1 +
2µ1

u− 1
+
µ2
1 − µ2

2

(u− 1)2
, µ2(u) = 1 +

2µ2

u− 1
+
µ2
2 − µ2

1

(u− 1)2
if soρ4 = so4.

Proof. Consider first the case where soρ4 = gl2. We first show that z acts on Vρ(µ1, µ2) as the scalar
µ2
1 + µ2

2 + µ1 − µ2. Since z belongs to the center of Ugl2 and Vρ(µ1, µ2) is a highest weight module, z acts
by scalar multiplication. Therefore, it suffices to determine how z operates on the highest weight vector ξ.
We have

(F 2
11 + F 2

22 + F12F21 + F21F12)ξ = (F 2
11 + F 2

22 + F11 − F22)ξ = (µ2
1 + µ2

2 + µ1 − µ2)ξ.

Hence, z acts on Vρ(µ1, µ2) as the scalar µ2
1+µ2

2+µ1−µ2. Finally, applying (5.27) yields the desired formula.
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If instead soρ4 = so4, observe that the Casimir element Ω operates on Vρ(µ1, µ2) as multiplication by the
scalar µ2

1 + µ2
2 − 2µ2. The corollary now follows from the formula (5.26). �

5.3. Twisted Yangians for the symmetric pair (so3, so3). The isomorphism ϕ0 given in (5.6) allows
us to use the representation theory of the twisted Yangian Y −(2) to study the representation theory of
X(so3, so3)tw.

We will use below the following observation, which can be seen by expanding in powers of u−1: if h(u) ∈ 1+
u−1C[[u−1]] and a ∈ C, then there exists a unique series k(u) ∈ 1+u−1C[[u−1]] such that h(u) = k(u)k(u+a).

Let µ(u) = (µ0(u), µ1(u)) with µi(u) ∈ 1 + u−1C[[u−1]]. The next lemma will be used in the proof of
Proposition 5.8.

Lemma 5.7. Suppose the components of µ(u) satisfy the relations u · µ̃0(1/2 − u) = (1/2 − u) · µ̃0(u) and
µ̃0(u)µ̃0(−u+ 1) = µ̃1(u)µ̃1(−u+ 1). Then there exists µ◦(u) ∈ 1 + u−1C[[u−1]] such that

(5.29) µ̃1(u) = 2uµ◦(2u)µ◦(2u− 1) and µ̃0(u) = 2uµ◦(2u)µ◦(1− 2u).

Proof. Set f(u) = µ̃0(u)/µ̃1(u). By the observation at the beginning of this subsection, we can find a unique
series λ(u) ∈ 1 + u−1C[[u−1]] such that µ1(u) = λ(u)λ(u− 1/2). Set µ◦(u) = λ(u/2). Then

µ̃1(u) = 2uµ◦(2u)µ◦(2u− 1).

Since f(u) = f(−u+1)−1, there exists a series α(u) ∈ 1+u−1C[[u−1]] such that f(u) = α(1−2u)α(2u−1)−1.
Set g(u) = α(2u− 1)µ◦(2u− 1)−1. Then:

f(u) =
µ◦(1− 2u)g(1− u)

µ◦(2u− 1)g(u)
=

2uµ◦(2u)µ◦(1− 2u)g(1− u)g(u)−1

µ̃1(u)
,

which implies that µ̃0(u) = 2uµ◦(2u)µ◦(1− 2u)g(1−u)g(u)−1. Since u · µ̃0(1/2−u) = (1/2−u) · µ̃0(u), we
obtain

g(1− u)g(u)−1 = g(u+ 1/2)g(1/2− u)−1 =⇒ k(u+ 1/2)k(u) = g(u+ 1/2)g(u) where k(u) = g(1− u).

Setting h(u) = g(u+1/2)g(u) and applying the uniqueness of the decomposition in the observation preceding
this lemma, we obtain that g(u) = k(u) = g(1− u). Hence

µ̃0(u) = 2uµ◦(2u)µ◦(1− 2u)g(1− u)g(u)−1 = 2uµ◦(2u)µ◦(1− 2u). �

Proposition 5.8. Let µ(u) = (µ0(u), µ1(u)) satisfy the conditions of Proposition 4.17 so that the irreducible
X(so3, so3)tw module V (µ0(u), µ1(u)) exists. Then V (µ(u)) is finite-dimensional if and only if there exists
a monic polynomial P (u) in u with P (u) = P (−u+ 3/2), and

(5.30)
µ̃0(u)

µ̃1(u)
=
P (u+ 1/2)

P (u)
.

In this case the polynomial P (u) is unique.

Proof. Let us begin by listing the explicit images of the generating series sij(u) of X(so3, so3)tw under ϕ0.
Setting ũ = u− 1/2, we have

(5.31)

s−1,−1(u) 7→s◦−1,−1(2ũ)s◦−1,−1(2u)− 1
4u−1s

◦
−1,1(2ũ)s◦1,−1(2u) ,

s−1,0(u) 7→ 1√
2
s◦−1,−1(2ũ)s◦−1,1(2u) + 1√

2(4u−1)

(
4us◦−1,1(2ũ)s◦−1,−1(2u)− s◦−1,1(2ũ)s◦11(2u)

)
,

s−1,1(u) 7→ − 4u
4u−1s

◦
−1,1(2ũ)s◦−1,1(2u),

s0,−1(u) 7→ 1√
2
s◦1,−1(2ũ)s◦−1,−1(2u) + 1√

2(4u−1)

(
4us◦−1,−1(2ũ)s◦1,−1(2u)− s◦11(2ũ)s◦1,−1(2u)

)
,

s00(u) 7→ 1
8u−2

(
(4us◦−1,−1(2ũ)− s◦11(2ũ))s◦11(2u) + (4us◦11(2ũ)− s◦−1,−1(2ũ))s◦−1,−1(2u)

)
+ 1

2

(
s◦1,−1(2ũ)s◦−1,1(2u) + s◦−1,1(2ũ)s◦1,−1(2u)

)
,

s01(u) 7→ − 1√
2
s◦−1,1(2ũ)s◦11(2u)− 1√

2(4u−1)

(
4us◦11(2ũ)s◦−1,1(2u)− s◦−1,−1(2ũ)s◦−1,1(2u)

)
,

s1,−1(u) 7→ − 4u
4u−1s

◦
1,−1(2ũ)s◦1,−1(2u) ,

s10(u) 7→ − 1√
2
s◦11(2ũ)s◦1,−1(2u)− 1√

2(4u−1)

(
4us◦1,−1(2ũ)s◦11(2u)− s◦1,−1(2ũ)s◦−1,−1(2u)

)
,

s11(u) 7→s◦11(2ũ)s◦11(2u)− 1
4u−1s

◦
1,−1(2ũ)s◦−1,1(2u).
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A brief explanation for how to obtain these formulas was given in Subsection 4.4 of [GRW], see in particular
the proof of Proposition 4.7 therein. For the sake of the reader, we recall this process and provide a detailed
proof for a few of the above relations.

Recall the vector space V ∼= C3 and its basis {v−1, v0, v1} defined in the paragraph immediately pre-
ceding (5.6). The matrix S(u) is an element of EndV ⊗ X(so3, so3)tw[[u−1]], while the image ϕ0(S(u)) =
1
2R
◦(−1)S◦1 (2u−1)R◦(−4u+1)t−S◦2 (2u) belongs to EndV ⊗Y −(2)[[u−1]]. Therefore, to obtain the image of

each generating series sij(u) under ϕ0 from the assignment given in (5.6), we expand S(u)vk and ϕ0(S(u))vk,
for each −1 ≤ k ≤ 1, as linear combinations of v−1, v0 and v1 and then compare coefficients.

As an example, we consider the case where k = 1. Since S(u)v1 =
∑1
i=−1 vi ⊗ si1(u), this computation

will allow us to compute the images of s−1,1(u), s01(u) and s11(u). Since v1 = −e1 ⊗ e1, a straightforward
computation shows that

ϕ0(S(u))v1 = − 1
2R
◦(−1)S◦1 (2u− 1)R◦(−4u+ 1)t−S◦2 (2u)(e1 ⊗ e1)

= 1
8u−2

∑
i,k=±1

(ek ⊗ e1 + e1 ⊗ ek)⊗ s◦ki(2u− 1)s◦i1(2u)

− 2u
4u−1

∑
i,k=±1

(ek ⊗ ei + ei ⊗ ek)⊗ s◦k1(2u− 1)s◦i1(2u).(5.32)

From this expression we can easily compute the Y −(2)-coefficients of v−1 = e−1 ⊗ e−1 and v1 = −e1 ⊗ e1,
which must coincide with the images of s−1,1(u) and s11(u), respectively. We obtain

ϕ0(s−1,1(u)) = − 4u
4u−1s

◦
−1,1(2u−1)s◦−1,1(2u), ϕ0(s11(u)) = s◦11(2u−1)s◦11(2u)− 1

4u−1s
◦
1,−1(2u−1)s◦−1,1(2u).

Similarly, the coefficients of e−1 ⊗ e1 and e1 ⊗ e−1 in (5.32) are both equal to

1
8u−2 (s◦−1,−1(2u− 1)s◦−1,1(2u) + s◦−1,1(2u− 1)s◦11(2u))− 4u

8u−2 (s◦−1,1(2u− 1)s◦11(2u) + s◦11(2u− 1)s◦−1,1(2u)).

Since v0 = 1√
2
(e−1 ⊗ e1 + e1 ⊗ e−1), the image of s01(u) must coincide with the above expression multiplied

by
√

2. After rearranging, this gives

ϕ0(s01(u)) = − 1√
2
s◦−1,1(2u− 1)s◦11(2u)− 1√

2(4u−1) (4us
◦
11(2u− 1)s◦−1,1(2u)− s◦−1−1(2u− 1)s◦−1,1(2u)).

The remaining images can all be computed by repeating this procedure with k = 0 and k = 1.

Let us now return to the core of the proof of Proposition 5.8. Since the components of µ(u) satisfy the
conditions of Lemma 5.7 (by Proposition 4.17), we may choose µ◦(u) ∈ 1 + u−1C[[u−1]] such that

(5.33) µ̃1(u) = 2uµ◦(2u)µ◦(2u− 1) and µ̃0(u) = 2uµ◦(2u)µ◦(1− 2u).

Let V (µ◦(u)) denote the irreducible highest weight Y −(2)-module with the highest weight µ◦(u), and let ξ
denote its highest weight vector. V (µ◦(u)) may be viewed as a X(so3, so3)tw-module via the isomorphism
ϕ0. It is immediate from the explicit formulas (5.31) that we must have sij(u)ξ = 0 for all i < j. Moreover,
we have

s11(u)ξ = ϕ0(s11(u))ξ = µ◦(2u)µ◦(2u− 1)ξ = µ1(u)ξ.

Computing s00(u)ξ requires substantially more effort. First note that we have s◦−1,1(2u − 1)s◦1,−1(2u) ≡
[s◦−1,1(2u− 1), s◦1,−1(2u)] on Cξ, and by the explicit form of the defining reflection equation (3.30) we have

[s◦−1,1(2u− 1), s◦1,−1(2u)] ≡ 4u
4u−1

(
s◦11(2u)s◦−1,−1(2u− 1)− s◦11(2u− 1)s◦−1,−1(2u)

)
+ 1

4u−1
(
s◦−1,−1(2u− 1)s◦−1,−1(2u)− s◦11(2u)s◦11(2u− 1)

)
.

Substituting this into the formula for ϕ0(s00(u)) (obtained from (5.31)) and using that [s◦ii(u), s◦jj(v)] ≡ 0
for all i, j ∈ {±1}, we obtain

(5.34) ϕ0(s00(u)) ≡ 1
4u−1

(
4us◦11(2u)s◦−1,−1(2u− 1)− s◦11(2u)s◦11(2u− 1)

)
.

By the symmetry relation (3.31), s◦−1,−1(2u−1) = s◦11(1−2u)− 1
2−4u (s◦11(1−2u)−s◦11(2u−1)). Substituting

this into (5.34) and appealing to (5.33) we obtain

s00(u)ξ = 1
2u−1µ

◦(2u) (2uµ◦(1− 2u)− µ◦(2u− 1)) ξ = µ0(u)ξ.

In particular, this shows that, as an X(so3, so3)tw-module, V (µ◦(u)) is isomorphic to V (µ(u)).
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We may now employ the classification results for finite-dimensional irreducible Y −(2)-modules to de-
termine precisely when V (µ(u)) is finite-dimensional. As recalled in (5.2), the Y −(2)-module V (µ◦(u)) is
finite-dimensional if and only if there exists a monic polynomial Q(u) in u with Q(u) = Q(−u+ 1) and

(5.35)
µ◦(−u)

µ◦(u)
=
Q(u+ 1)

Q(u)
.

Moreover, if it exists (in other words, if V (µ◦(u)) is indeed finite-dimensional), the monic polynomial Q(u)
is unique.

By (5.33), the condition (5.35) is equivalent to

µ̃0(u)

µ̃1(u)
=
µ◦(1− 2u)

µ◦(2u− 1)
=

Q(2u)

Q(2u− 1)
=
P (u+ 1/2)

P (u)
,

where P (u) = 2− degQ(u)Q(2u − 1). With this definition of P (u) we have P (u) = P (−u + 3/2), and the
uniqueness of P (u) is guaranteed by the uniqueness of Q(u). Therefore, we have shown that V (µ(u)) is
finite-dimensional if and only if there exists a (uniquely determined) monic polynomial P (u) such that
P (u) = P (−u+ 3/2) and (5.30) holds. �

Let Ω denote the Casimir element Ω = F 2
11−F11+2F10F01 of the Lie algebra so3, and set Ω(u) = 4u+1

4u ·Ω.
We have the following analogue of Propositions 5.2 and 5.5:

Proposition 5.9. Let F ′ρ =
∑1
i,j=−1Eij ⊗ F

′ρ
ij ∈ EndC3 ⊗ Uso3. Then the assignment

(5.36) S(u) 7→ I +
u

u− 3/4

(
F ′ρ

u− 1/4
+

(F ′ρ)2 − 2F ′ρ − 2Ω(u) · I
2(u− 1/4)2

)
defines a surjective algebra homomorphism ev : X(so3, so3)tw � Uso3.

Proof. Let Φ : sp2
∼−→ so3 be the isomorphism of Lie algebras given by the assignment

F ◦11 7→ 2F11, F ◦−1,1 7→ 2
√

2F−1,0, F ◦1,−1 7→ 2
√

2F0,−1.

Let Φ̂ denote the corresponding isomorphism of enveloping algebras Usp2
∼−→ Uso3. Then the composition

Φ̂ ◦ ev◦− ◦ ϕ0 is a surjective homomorphism ev : X(so3, so3)tw � Uso3. To complete the proof of the first
statement of the proposition, it remains only to see that this map agrees with that given in (5.36). This

can be checked directly using the explicit images (5.31) and the formula s◦ij(u) 7→ δij +F ◦ij
(
u− 1

2

)−1
for the

map ev◦−. For example, from these formulas we obtain

s11(u) 7→
(

1 +
F11

u− 3/4

)(
1 +

F11

u− 1/4

)
− 1

2u− 1/2

(
F0,−1

u− 3/4

)(
F−1,0
u− 1/4

)
= 1 +

u

u− 3/4

(
2F11

u− 1/4
+
F 2
11 − F11 − 1

4u (F 2
11 − F11 + 2F0,−1F−1,0)

(u− 1/4)2

)
.

Conversely, since F ρij = 2Fij for all −1 ≤ i, j ≤ 1, the (1, 1)-th entry of the matrix on the right hand side of

(5.36) is

1+
u

u− 3/4

(
2F11

u− 1/4
+

2F10F01 + 2F 2
11 − 2F11 − 4u+1

4u (F 2
11 − F11 + 2F10F01)

(u− 1/4)2

)
= 1 +

u

u− 3/4

(
2F11

u− 1/4
+
F 2
11 − F11 − 1

4u (F 2
11 − F11 + 2F10F01)

(u− 1/4)2

)
.

As F10F01 = F0,−1F−1,0, this shows that ev(s11(u)) is indeed given as claimed in (5.36). The images of the
other generators can be checked similarly, or one can use (4.19) and the fact that X(so3, so3)tw is generated
by the coefficients of s11(u) and the elements Fij ∈ so3. �

The morphism ev allows us to extend so3-modules to X(so3, so3)tw-modules. As usual, modules obtained
this way are called evaluation modules. Let V (µ) denote the irreducible so3-module with the highest weight
µ ∈ C.
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Corollary 5.10. Let µ ∈ C. Then as an X(so3, so3)-module V (µ) is isomorphic to V (µ0(u), µ1(u)) where

(5.37) µ0(u) = 1 +
µ2(−u− 1/4)− µ(u− 1/4)

(u− 3/4)(u− 1/4)2
, µ1(u) = 1 +

µ2 + (2u− 1)µ

(u− 3/4)(u− 1/4)
.

Proof. Observe that the Casimir element Ω operates on V (µ) as scalar multiplication by µ2 − µ. One then
obtains the formulas for µ0(u) and µ1(u) given in (5.37) directly from the formula (5.36), as in the proof of
Corollary 5.6. �

6. Classification of finite dimensional irreducible representations

With the classification results for low rank twisted Yangians obtained in Section 5 and the machinery of
Section 4 at our disposal, we are now in a position to obtain the main results of this paper: classifications of
finite-dimensional irreducible modules for twisted Yangians of types CI, DIII and BCD0. It will be convenient
to adapt the convention used in Section 5 and employ the notation X(gN , g

ρ
N )tw and Y (gN , g

ρ
N )tw for the

twisted Yangians X(gN ,G)tw and Y (gN ,G)tw, respectively.

6.1. Twisted Yangians for symmetric pairs of type CI and DIII. We begin by focusing on the
extended twisted Yangians of types CI and DIII. That is, we have gN = so2n or gN = sp2n, and gρN = gln
in both cases, with G =

∑n
i=1(Eii − E−i,−i). The following lemma produces a family of one-dimensional

representations of X(gN , gln)tw:

Lemma 6.1. Let a ∈ C. Then the assignment

(6.1) S(u) 7→ G + au−1I

yields a one-dimensional representation V (a) of X(gN , gln)tw with the highest weight (1+au−1, . . . , 1+au−1).

Proof. This follows from Lemma 2.3 where it was shown that the matrix G + au−1I satisfies the defining
reflection equation (3.10) and symmetry relation (3.12) of the extended twisted Yangian X(gN , gln)tw. �

We are now prepared to prove our main results concerning the twisted Yangians of types CI and DIII.

Theorem 6.2. Let µ(u) = (µ1(u), . . . , µn(u)) satisfy (4.81) so that the irreducible X(gN , gln)tw-module
V (µ(u)) exists. Then V (µ(u)) is finite-dimensional if and only if there exists a scalar γ ∈ C together with
monic polynomials P1(u), . . . , Pn(u) in u with Pi(u) = Pi(−u+ n− i+ 2) for each i > 1, P1(γ) 6= 0, and

µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1)

Pi(u)
for i = 2, . . . , n,(6.2)

while

µ̃1(κ− u)

µ̃2(u)
=
P1(u+ 1)

P1(u)
· γ − u
γ + u− κ

and P1(u) = P1(−u+ n) if gN = so2n,(6.3)

µ̃1(κ− u)

µ̃1(u)
=
P1(u+ 2)

P1(u)
· γ − u
γ + u− κ

and P1(u) = P1(−u+ n+ 3) if gN = sp2n.(6.4)

Moreover, when V (µ(u)) is finite-dimensional, the associated tuple (P1(u), . . . , Pn(u), γ) is unique.

Proof. (=⇒) We begin by showing that if the X(gN , gl2n)tw-module V = V (µ1(u), . . . , µn(u)) is finite-
dimensional, then there exists γ ∈ C and monic polynomials P1(u), . . . , Pn(u) satisfying the conditions
in the statement of the theorem. We obtain immediately from Proposition 4.18 that there exists monic
polynomials P2(u), . . . , Pn(u) in u such that Pi(u) = Pi(−u + n − i + 2) and (6.2) holds for each i ≥ 2.
Therefore, to complete this direction of the proof it remains to see that there is also a scalar γ ∈ C and a
monic polynomial P1(u) with P1(γ) 6= 0, such that (6.3) and (6.4) hold. We will prove this by induction on
the rank n, taking Propositions 5.1 and 5.4 as the base for the induction. Suppose that the statement holds
whenever the rank n of gN satisfies n < m, where m ∈ N is some fixed integer with m > 2 if g2m = so2m,
and m > 1 if g2m = sp2m. Let V = V (µ1(u), . . . , µm(u)) be a nontrivial finite-dimensional irreducible
X(g2m, glm)tw-module, and denote its highest weight vector by ξ. Recall the subspace V+ of V containing
ξ defined by

V+ = {w ∈ V : skn(u)w = 0 for k < n}.
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By Proposition 4.13, V+ inherits the structure of an X(g2m−2, glm−1)tw module by letting s′ij(u) operate as

s◦ij(u) = sij(u+1/2)+
δij
2u smm(u+1/2) for all −m+1 ≤ i, j ≤ m−1. In particular, the highest weight module

V (µ◦(u)) (see Proposition 4.13 for µ◦(u)) must also be finite-dimensional, so by the induction hypothesis
there is α ∈ C and a monic polynomial Q(u) in u such that Q(α) 6= 0, Q(u) = Q(−u+m+ 1/2∓ 3/2), and

(6.5)
µ̃◦1(κ′ − u)

µ̃◦3/2±1/2(u)
=
Q(u+ 3/2∓ 1/2)

Q(u)
· α− u
α+ u− κ′

where κ′ = κ− 1.

Next observe that for any 1 ≤ i < m we have µ̃◦i (u) = µ̃i(u + 1/2). Using this, making the substitution
u 7→ u− 1/2, setting γ = α+ 1/2 and P1(u) = Q(u− 1/2), we obtain:

(6.6)
µ̃1(κ− u)

µ̃3/2±1/2(u)
=
Q(u+ 1∓ 1/2)

Q(u− 1/2)
· α+ 1/2− u
α+ u− κ+ 1/2

=
P1(u+ 3/2∓ 1/2)

P1(u)
· γ − u
γ + u− κ

.

Moreover, the relation Q(u) = Q(−u+m+ 1/2∓ 3/2) implies that P1(u) = P1(−u+m) if g2m = so2m and
P1(u) = P1(−u + m + 3) if g2m = sp2m, and since Q(α) 6= 0, P1(γ) = Q(γ − 1/2) = Q(α) 6= 0. Thus, by
induction we have established that if V = V (µ(u)) is a finite-dimensional irreducible X(gN , gln)tw-module,
then there exists a scalar γ ∈ C and monic polynomials P1(u), . . . , Pn(u) satisfying the conditions in the
statement of the theorem.

(⇐=) Conversely, suppose µ(u) = (µ1(u), . . . , µn(u)) is such that the irreducible X(gN , gln)tw-module
V (µ(u)) exists, and in addition there exists γ ∈ C and monic polynomials P1(u), . . . , Pn(u) satisfying all the
conditions outlined in the statement of the theorem. We wish to show that V (µ(u)) is finite-dimensional.
Suppose first that gN = so2n. Then, since for each i ∈ IN we have Pi(u) = Pi(−u+ n− i+ 2− δi1), there
exists monic polynomials Q1(u), . . . , Qn(u) such that

Pi(u) = (−1)degQi(u)Qi(u)Qi(−u+ n− i+ 2− δi1)

for each i ∈ IN . Now, for each i ∈ IN , define Q̂i(u) = Qi(u+ κ/2) and λi(u) ∈ 1 + u−1C[[u−1]] by

λi(u) = u−aQ̂2(u) · · · Q̂i(u)Q̂i+1(u+ 1) · · · Q̂n(u+ 1),

where a =
∑n
i=2 deg Q̂i, and let λ−1(u) ∈ 1 + u−1C[[u−1]] be given by the formula

λ−1(u) =
1

Q̂1(u)
u−aQ̂1(u+ 1)Q̂2(u)Q̂3(u+ 1) · · · Q̂n(u+ 1).

Then the λi(u) satisfy the relations

(6.7)
λ−1(u)

λ2(u)
=
Q̂1(u+ 1)

Q̂1(u)
and

λi−1(u)

λi(u)
=
Q̂i(u+ 1)

Q̂i(u)

for all i ≥ 2. Next, by Lemma 4.16 there exists a unique 2n-tuple λ(u) extending (λ−1(u), λ1(u), . . . , λn(u))
with the property that the irreducible X(so2n)-module L(λ(u)) exists. By (4.2) and (4.5) L(λ(u)) is also
finite-dimensional. Now consider the X(so2n, gln)tw-module L(λ(u)) ⊗ V (γ − κ). Let ξ ∈ L(λ(u)) be
the highest weight vector, and let η be any nonzero vector in V (γ − κ). Then by Proposition 4.10, the
module X(so2n, gln)tw ·(ξ⊗η) is a finite-dimensional highest weight X(so2n, gln)tw-module of weight µ](u) =

(µ]1(u), . . . , µ]n(u)) whose components are given by

(6.8) µ̃]i(u) = 2u(1 + (γ − κ)u−1)λi(u− κ/2)λ−i(−u+ κ/2).

By the relations (6.7), (4.1) and (6.8), for all i ≥ 2 we have:

µ̃]i−1(u)

µ̃]i(u)
=
λi−1(u− κ/2)λi(−u− κ/2 + n− i+ 1)

λi(u− κ/2)λi−1(−u− κ/2 + n− i+ 1)

=
Q̂i(u− κ/2 + 1)

Q̂i(u− κ/2)

Q̂i(−u− κ/2 + n− i+ 1)

Q̂i(−u− κ/2 + n− i+ 2)
=
Pi(u+ 1)

Pi(u)
.

Similarly, relations (6.7), (4.1) and (6.8) imply that

µ̃]1(κ− u)

µ̃]2(u)
=

λ−1(u− κ/2)λ2(κ/2− u)

λ2(u− κ/2)λ−1(−u+ κ/2)
· (κ− u)(1 + (γ − κ)(κ− u)−1)

u(1 + (γ − κ)(u)−1)
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=
Q̂1(u− κ/2 + 1)Q̂1(−u+ κ/2)

Q̂1(u− κ/2)Q̂1(−u+ κ/2 + 1)
· γ − u
γ + u− κ

=
P1(u+ 1)

P1(u)
· γ − u
γ + u− κ

.

By assumption, the components of the n-tuple µ(u) also satisfy the relations (6.2) and (6.3) for the same
scalar γ and monic polynomials P1(u), . . . , Pn(u). This yields that

(6.9)
µ̃1(κ− u)

µ̃2(u)
=
µ̃]1(κ− u)

µ̃]2(u)
and

µ̃i−1(u)

µ̃i(u)
=
µ̃]i−1(u)

µ̃]i(u)

for all i ≥ 2. From the second set of equalities above, we deduce that, setting g(u) = µn(u)µ]n(u)−1, we have

µi(u) = g(u)µ]i(u) for all i ∈ IN . From this and the first equality in (6.9), we deduce that g(u) = g(κ− u).
Set h(u) = g(u+κ/2). Using g(u) = g(κ−u) we deduce that h(−u) = g(κ/2−u) = g(u+κ/2) = h(u), and

so h(u) ∈ 1 + u−2C[[u−2]]. Let V (µ](u))νh denote the (irreducible) module obtained by twisting V (µ](u))
by the automorphism νh (see (3.18)). Since V (µ(u)) and V (µ](u))νh are both irreducible and share the
same highest weight, they are isomorphic. Moreover, since the module V (µ](u)) is an irreducible quotient
of the finite-dimensional module X(so2n, gln)tw(ξ ⊗ η), it is itself finite-dimensional. Therefore the module
V (µ](u))νh , and thus V (µ(u)), is also finite-dimensional.

If instead gN = sp2n, then we need only make minor adjustments in the above proof to account for the
subtle differences between (6.3) and (6.4) and the symmetry P1(u) = P1(−u+n+3) of P1(u). Since for each
i ∈ IN we have Pi(u) = Pi(−u+ n− i+ 2 + 2δi1), there exists monic polynomials Q1(u), . . . , Qn(u) with

Pi(u) = (−1)degQiQi(u)Qi(−u+ n− i+ 2 + 2δi1)

for all i ∈ IN . As before, we define the shifted polynomials Q̂1(u), . . . , Q̂n(u) by the formula Q̂i(u) =
Qi(u+ κ/2). We then define λ−1(u), λ1(u), . . . , λn(u) ∈ 1 + u−1C[[u−1]] by the formulas

λ−1(u) =
1

Q̂1(u)
u−aQ̂1(u+ 2)Q̂2(u+ 1)Q̂3(u+ 1) · · · Q̂n(u+ 1),

and
λi(u) = u−aQ̂2(u) · · · Q̂i(u)Q̂i+1(u+ 1) · · · Q̂n(u+ 1)

for all i ∈ IN , where a =
∑n
i=2 deg Q̂i. As in the proof for gN = so2n, Lemma 4.16 implies that there is

a unique 2n-tuple λ(u) extending (λ−1(u), . . . , λn(u)) in such a way that the irreducible X(sp2n)-module
L(λ(u)) exists. By construction L(λ(u)) is also finite dimensional. Let ξ ∈ L(λ(u)) be the highest weight
vector, and let η be any nonzero vector in the one dimensional X(sp2n, gln)tw-module V (γ − κ). The
X(sp2n, gln)tw-module X(sp2n, gln)tw(ξ⊗ η) ⊂ L(λ(u))⊗V (γ−κ) is then a highest weight module with the
highest weight µ](u) whose components are determined by (6.8). The irreducible module V (µ](u)) is then
isomorphic to a quotient of the cyclic span X(sp2n, gln)tw(ξ ⊗ η), and so in particular is finite-dimensional.
Similar computations to those carried out for the case gN = so2n then show that the components of µ](u)
satisfy the relations (6.2) and (6.4). It follows that there exists an even series h(u) ∈ 1 + u−2C[[u−2]] such
that V (µ(u)) is isomorphic to the module V (µ](u))νh obtained by twisting the module V (µ](u)) by the
automorphism νh. Therefore, since V (µ](u)) is finite-dimensional, so is V (µ](u))νh , and thus V (µ(u)) is
finite-dimensional.

It remains to show the uniqueness of the tuple (P1(u), . . . , Pn(u), γ). Suppose that (Q1(u), . . . , Qn(u), α)
and (P1(u), . . . , Pn(u), γ) are two tuples as in the statement of the theorem, both associated to the same

finite-dimensional module V (µ(u)). Define rational functions f2(u), . . . , fn(u) in u by fi(u) = Qi(u)
Pi(u)

for

each i ≥ 2. Then, by (6.2), each fi(u) satisfies fi(u) = fi(u + 1) and so is periodic with period 1, which
is impossible unless fi(u) ∈ C. Since Pi(u) and Qi(u) are assumed to be monic, this forces fi(u) = 1
giving (Q2(u), . . . , Qn(u)) = (P2(u), . . . , Pn(u)). The equality (Q1(u), α) = (P1(u), γ) can now be proven by
induction on the rank n of gN taking the uniqueness statements of Propositions 5.1 and 5.4 for X(sp2, gl1)tw

and X(so4, gl2)tw, respectively, as the base for induction. Indeed, by the arguments given at the beginning
of the proof (see (6.5) and (6.6)), if (P (u), γ) and (Q(u), α) are both associated to the X(g2n, gln)tw module
V (µ(u)), then (P1(u+1/2), γ−1/2) and (Q1(u+1/2), α−1/2) are both associated to the X(g2n−2, gln−1)tw

module V (µ◦(u)). Therefore, by induction (P1(u), γ) = (Q1(u), α). �

The decomposition X(gN , gln)tw ∼= ZX(gN , gln)tw ⊗ Y (gN , gln)tw recalled in (3.19) allows us to deduce
the following corollary of Theorem 6.2:
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Corollary 6.3. The isomorphism classes of finite-dimensional irreducible representations of the twisted
Yangians Y (gN , gln)tw are parametrized by families (P1(u), . . . , Pn(u), γ) where γ ∈ C and the Pi(u) are
monic polynomials in u such that Pi(u) = Pi(−u+ n− i+ 2) for all i > 1, while

(6.10) P1(γ) 6= 0 and P1(u) =

{
P1(−u+ n) if gN = so2n,

P1(−u+ n+ 3) if gN = sp2n.

Proof. The proof is similar to that of Corollary 5.19 in [AMR]. Let P(gN , gln) be the subset of C[u]n × C
consisting of all tuples (P1(u), . . . , Pn(u), γ) satisfying the conditions of the corollary. Suppose first that
V is a finite-dimensional irreducible Y (gN , gln)tw-module. Recall that the center ZX(gN , gln)tw is gen-
erated by the coefficients of the even series w(u) (see (3.14)). By (3.19) we have the decomposition
X(gN , gln)tw ∼= ZX(gN , gln)tw ⊗ Y (gN , gln)tw and therefore V can be extended to an irreducible repre-
sentation of X(gN , gln)tw where the central elements act as scalars. In particular, we may let w(u) operate
as 1. By Theorem 4.5 and Proposition 4.8, V ∼= V (µ(u)) for some highest weight µ(u). Since V (µ(u)) is
finite-dimensional, Theorem 6.2 allows us to associate an element of P(gN , gln) to V (µ(u)), and thus to V .
The uniqueness statement of Theorem 6.2 ensures that this gives a well-defined function F ◦ from the space
of isomorphism classes of finite-dimensional irreducible Y (gN , gln)tw-modules to P(gN , gln).

Conversely, if (P1(u), . . . , Pn(u), γ) ∈ P(gN , gln), then we can find µ(u) = (µ1(u), . . . , µn(u)) such that
the conditions of Theorem 6.2 are satisfied. The proof of the theorem shows that the corresponding module
V (µ(u)) is determined uniquely up to twisting by an automorphism νh: see (6.9) and the lines below
it. However, the elements of the subalgebra Y (gN , gln)tw are all stable under automorphisms of the form
νh, so the Y (gN , gln)tw-module V obtained by restriction is uniquely (up to isomorphism) determined by
the n + 1 tuple (P1(u), . . . , Pn(u), γ). Since the elements of the center ZX(glN , gln)tw must operate by
scalar multiplication, the decomposition (3.19) implies that V is irreducible. Hence, we obtain a well-
defined function F • from P(gN , gln) to the space of isomorphism classes of finite-dimensional irreducible
Y (gN , gln)tw-modules, and moreover F • and F ◦ are mutual inverses. �

Let α ∈ C, and let L(i : α) denote the irreducible highest weight representation of Y (gN ) with Drinfeld
polynomials (P1(u), . . . , Pn(u)) determined by Pj(u) = 1 if j 6= i, and Pi(u) = u − α. These are the
so-called fundamental representations of Y (gN ). The module L(i : α) can be obtained from any X(gN )
module L(λ(u)) with the Drinfeld polynomials P1(u), . . . , Pn(u) by restricting to the subalgebra Y (gN )
(see Definition 3.3). For an explanation of why this procedure is well-defined, see the proof of Corollary
5.19 in [AMR]. The problem of explicitly constructing fundamental representations for Y (gN ) in the RTT-
presentation was treated in Subsection 5.4 of [AMR] (see also Subsection 12.1.D in [CP]). The significance of
the fundamental representations can be summarized by the following fact which is a restatement of Lemma
5.17 in [AMR]: If L and L◦ are two finite-dimensional highest weight X(gN )-modules with the highest
weight vectors ξ and ξ◦, respectively, then the cyclic span of ξ⊗ξ◦ in L⊗L◦ is a highest weight module with
the Drinfeld polynomials (Q1(u)Q◦1(u), . . . , Qn(u)Q◦n(u)), where (Q1(u), . . . , Qn(u)) is the Drinfeld tuple
associated to L and (Q◦1(u), . . . , Q◦n(u)) is the Drinfeld tuple associated to L◦. In particular, this implies
that any finite-dimensional irreducible representation of Y (gN ) is isomorphic to a subquotient of a tensor
product of fundamental representations (this is formulated precisely in Corollary 12.1.13 of [CP]).

Corollary 6.4. Let V be a finite-dimensional irreducible representation of Y (gN , gln)tw. Then there exists
m ∈ N, i1, . . . , im ∈ {1, . . . , n} and a, αi1 , . . . , αim ∈ C, such that V is isomorphic to a subquotient of the
Y (gN , gln)tw-module

L(i1 : αi1)⊗ · · · ⊗ L(im : αim)⊗ V (a).

Proof. By Corollary 6.3 we may associate a tuple (P1(u), . . . , Pn(u), γ) to V satisfying certain conditions.
These conditions imply that there exists monic polynomials Q1(u), . . . , Qn(u) satisfying the relations

Pi(u) = (−1)degQi(u)Qi(u− κ/2)Qi(−u+ n− i+ 2 + δi1( 1∓3
2 )− κ/2) for all 1 ≤ i ≤ n.

Let L(Q(u)) denote the finite-dimensional irreducible Y (gN ) module associated to the Drinfeld polynomials
Q1(u), . . . , Qn(u). By the facts just recalled before the statement of the Corollary, there exists m ∈ N,
i1, . . . , im ∈ {1, . . . , n} and αi1 , . . . , αim ∈ C, such that L(Q(u)) is isomorphic to a subquotient of the
Y (gN )-module L = L(i1 : αi1) ⊗ · · · ⊗ L(im : αim). For each 1 ≤ j ≤ m let ξj denote the highest weight
vector of L(ij , αij ) and set ξ = ξ1⊗ . . .⊗ξm. Then the cyclic span of ξ in L is a highest weight Y (gN )-module
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with Drinfeld Polynomials Q1(u), . . . , Qn(u) and its unique irreducible quotient is isomorphic to L(Q(u)).
Set a = γ − κ and let η ∈ V (a) be any nonzero vector. We may view V (a) as a Y (gN , gln)tw-module by
restriction. Then, by the same argument as used in the proof of Theorem 6.2, we see that the Y (gN , gln)tw-
module Y (gN , gln)tw(ξ⊗η) ⊂ L⊗V (a) is a finite-dimensional highest weight module associated to the tuple
(P1(u), . . . , Pn(u), α). Since V is the unique (up to isomorphism) finite-dimensional irreducible Y (gN , gln)tw-
module corresponding to this tuple, it is isomorphic to the irreducible quotient of Y (gN , gln)tw(ξ⊗η). Hence,
we have shown that V is isomorphic to a subquotient of the Y (gN , gln)tw-module

L(i1 : αi1)⊗ · · · ⊗ L(im : αim)⊗ V (a). �

6.2. Twisted Yangians for symmetric pairs of type BCD0. Now let (gN , g
ρ
N ) be a symmetric pair of

type B0, C0, or D0.

Let V be a X(gN , gN )tw-module, and recall the subspace V+ = {w ∈ V : skn(u)w = 0 for k < n}. By
Proposition 4.13, if h(u) ∈ 1 + u−1C[[u−1]] satisfies the relation h(u)h(κ′ − u)−1 = p(u+ 1/2)−1p′(u), then

the assignment s′ij(u) 7→ h(u)s◦ij(u), where s◦ij(u) = sij(u+ 1/2) +
δij
2u snn(u+ 1/2), defines a representation

of X(gN−2, gN−2)tw in the space V+. Let us begin by finding an explicit series h(u) satisfying (4.67). Setting
κ′ = κ− 1, since N = 2κ± 2, we have

p(u) = 1∓ 1

2u− κ
+

N

2u− 2κ
=

u(2u− κ± 1)

(κ− 2u)(κ− u)
and p′(u) = 1∓ 1

2u− κ′
+

N − 2

2u− 2κ′
=

u(2u− κ′ ± 1)

(κ′ − 2u)(κ′ − u)
.

Thus,

(6.11) p(u+ 1/2)−1p′(u) =
2κ′ − 2u+ 1

2κ′ − 2u
· 2u

2u+ 1
.

Consider the series h(u) defined by

(6.12) h(u) =
2u− 2κ′ − 1

2u− 2κ′
.

We may view h(u) as an element of C[[u−1]]. Then h(u) has constant term 1 and, as a consequence of
relation (6.11), h(u)h(κ′ − u)−1 = p(u+ 1/2)−1p′(u). Therefore the assignment s′ij(u) 7→ h(u)s◦ij(u) defines

a representation of X(gN−2, gN−2)tw in the space V+.
We are now prepared to prove classification theorems for finite-dimensional irreducible modules of extended

twisted Yangians of the type X(gN , gN )tw. Suppose first that N = 2n.

Theorem 6.5. Let µ(u) = (µ1(u), . . . , µn(u)) satisfy (4.81) so that the irreducible X(gN , gN )tw-module
V (µ(u)) exists. Then V (µ(u)) is finite-dimensional if and only if there exist monic polynomials Pi(u) in u
for 1 ≤ i ≤ n with Pi(u) = Pi(−u+ n− i+ 2) for each i > 1, and

µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1)

Pi(u)
for i = 2, . . . , n,(6.13)

while

µ̃1(κ− u)

µ̃2(u)
=
κ− u
u
· P1(u+ 1)

P1(u)
and P1(u) = P1(−u+ n) if gN = so2n,(6.14)

µ̃1(κ− u)

µ̃1(u)
=
κ− u
u
· P1(u+ 2)

P1(u)
and P1(u) = P1(−u+ n+ 3) if gN = sp2n.(6.15)

Moreover, when V (µ(u)) is finite-dimensional, the associated tuple (P1(u), . . . , Pn(u)) is unique.

Proof. (=⇒) Suppose first that the X(gN , gN )tw-module V = V (µ1(u), . . . , µn(u)) is finite-dimensional. By
Proposition 4.18 there exists monic polynomials P2(u), . . . , Pn(u) in u such that Pi(u) = Pi(−u+n−i+2) and
(6.13) holds. Thus it suffices to prove the statement that there there exists a monic polynomial P1(u) in u such
that (6.14) holds if gN = soN and (6.15) holds if gN = spN . We do this by induction on n, taking Propositions
5.1 and 5.4 as the induction base. Suppose inductively that the statement holds for n < m, where m ∈ N is
fixed (with m > 2 if g2m = so2m, m > 1 if g2m = sp2m). Let (µ1(u), . . . , µm(u)) be such that the irreducible
X(g2m, g2m)tw-module V = V (µ1(u), . . . , µm(u)) exists and is finite-dimensional. Denote its highest weight
vector by ξ. Let h(u) be the series defined in (6.12), corresponding to N = 2m. By Proposition 4.13, the
space V+ is an X(g2m−2, g2m−2)tw-module and the cyclic span X(g2m−2, g2m−2)twξ has the structure of a
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highest weight module with the highest weight h(u)µ◦(u) = (h(u)µ◦1(u), . . . , h(u)µ◦m−1(u)). Moreover, V+ is
finite-dimensional and also non-trivial as ξ ∈ V+. It follows that the irreducible X(g2m−2, g2m−2)tw-module
V (h(u)µ◦(u)) exists and is finite-dimensional. Thus, by induction there is a monic polynomial Q(u) with

h(κ′ − u)µ̃◦1(κ′ − u)

h(u)µ̃◦3/2±1/2(u)
=
κ′ − u
u
· Q(u+ 3/2∓ 1/2)

Q(u)
and Q(u) = Q(−u+m+ 1/2∓ 3/2).

By definition of the series h(u) (see (6.12)), the first equality on the previous line is equivalent to:

µ̃◦1(κ′ − u)

µ̃◦3/2±1/2(u)
=

h(u)

h(κ′ − u)
· κ
′ − u
u
· Q(u+ 3/2∓ 1/2)

Q(u)
=
κ− u− 1/2

u+ 1/2
· Q(u+ 3/2∓ 1/2)

Q(u)
.

As in the proof of Theorem 6.2, we can observe that µ̃◦i (u) = µ̃i(u + 1/2) for any i < m. Therefore,
substituting u 7→ u− 1/2 and setting P1(u) = Q(u− 1/2) we obtain

µ̃1(κ− u)

µ̃3/2±1/2(u)
=
κ− u
u
· P1(u+ 3/2∓ 1/2)

P1(u)
.

Moreover, since Q(u) = Q(−u + m + 1/2 ∓ 3/2), we have P1(u) = P1(−u + m + 3/2 ∓ 3/2). Therefore by
induction we have shown that there exists P1(u) satisfying (6.14) in the orthogonal case and (6.15) in the
symplectic case.

(⇐=) Now suppose that (µ1(u), . . . , µn(u)) satisfies (4.81) and that there exists P1(u), . . . , Pn(u) as in
the statement of the theorem. We wish to show that V = V (µ1(u), . . . , µn(u)) is finite-dimensional. This
portion of the proof will be proven analogously to the corresponding direction in the proof of Theorem 6.2.

Suppose first that gN = so2n. Since Pi(u) = Pi(−u+ n− i+ 2− δi1) for all 1 ≤ i ≤ n, we can find monic
polynomials Qi(u) such that

Pi(u) = (−1)degQi(u)Qi(u)Qi(−u+ n− i+ 2− δi1)

for each i. Set Q̂i(u) = Qi(u + κ/2) for all i, and choose λ−1(u), λ1(u), . . . , λn(u) ∈ 1 + u−1C[[u−1]] such
that

λi−1(u)

λi(u)
=
Q̂i(u+ 1)

Q̂i(u)
for all i ≥ 2 and λ−1(u) =

Q̂1(u+ 1)

Q̂1(u)
λ2(u).

By Lemma 4.16 there is a unique way of extending (λ−1(u), . . . , λn(u)) to a 2n-tuple λ(u) such that the
X(so2n)-module L(λ(u)) exists. Moreover, by (4.2) and (4.5) L(λ(u)) must be finite-dimensional. Let
ξ ∈ L(λ(u)) be the highest weight vector. By Corollary 4.11 and (4.1), X(so2n, so2n)twξ is a highest weight

X(so2n, so2n)tw-module with highest weight µ](u) = (µ]1(u), . . . , µ]n(u)) whose components satisfy

µ̃]i(u)

µ̃]i+1(u)
=
Pi+1(u+ 1)

Pi+1(u)
for i = 1, . . . , n− 1, while

µ̃]1(κ− u)

µ̃]2(u)
=
κ− u
u
· P1(u+ 1)

P1(u)
.

(See the proof of Theorem 6.2 for more details.) Since µ(u) and µ](u) both satisfy conditions (6.13) and
(6.14), it follows that there exists an even series h(u) ∈ 1 + u−2C[[u−2]] with the property that V (µ(u)) is
isomorphic to the module obtained by twisting V (µ](u)) by the automorphism νh (cf. proof of Theorem 6.2).
As V (µ](u)) is isomorphic to the irreducible quotient of X(so2n, so2n)ξ, it is finite dimensional, and therefore
so is V (µ(u)).

If instead gN = sp2n, we need only make some minor adjustments. Since for each 1 ≤ i ≤ n we have
Pi(u) = Pi(−u+ n− i+ 2 + 2δi1), there exists monic polynomials Q1(u), . . . , Qn(u) with

Pi(u) = (−1)degQiQi(u)Qi(−u+ n− i+ 2 + 2δi1)

for all 1 ≤ i ≤ n. As before we define the polynomials Q̂1(u), . . . , Q̂n(u) by the formulas Q̂i(u) = Qi(u+κ/2).
Choose λ−1(u), λ1(u), . . . , λn(u) ∈ 1 + u−1C[[u−1]] satisfying

λi−1(u)

λi(u)
=
Q̂i(u+ 1)

Q̂i(u)
for all 2 ≤ i ≤ n and λ−1(u) =

Q̂1(u+ 2)

Q̂1(u)
λ1(u).

Extend (λ−1(u), . . . , λn(u)) to the unique 2n-tuple λ(u) so that the X(sp2n)-module L(λ(u)) exists. The
proof that V (µ(u)) is finite dimensional in the sp2n-case can be completed as in the so2n-case above.
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To complete the proof of the Theorem, note that the uniqueness of (P1(u), . . . , Pn(u)) can be proven the
exact same way as the uniqueness of (P1(u), . . . , Pn(u), γ) in Theorem 6.2. �

We now consider the case when N = 2n+ 1, that is when gN = so2n+1.

Theorem 6.6. Let µ(u) = (µ0(u), . . . , µn(u)) satisfy (4.81) and u · µ̃0(κ − u) = (κ − u) · µ̃0(u) so that
the irreducible X(gN , gN )tw module V (µ(u)) exists. Then V (µ(u)) is finite-dimensional if and only if there
exists monic polynomials P1(u), . . . , Pn(u) in u with Pi(u) = Pi(−u + n − i + 2) for each i > 1, P1(u) =
P1(−u+ n+ 1/2) and

(6.16)
µ̃i−1(u)

µ̃i(u)
=
Pi(u+ 1− δi1

2 )

Pi(u)
for i = 1, . . . , n.

Moreover, when V (µ(u)) is finite-dimensional, the associated tuple (P1(u), . . . , Pn(u)) is unique.

Proof. (=⇒) Suppose first that the X(gN , gN )tw-module V = V (µ0(u), . . . , µn(u)) is finite-dimensional. By
Proposition 4.18 there exists monic polynomials P2(u), . . . , Pn(u) in u such that Pi(u) = Pi(−u+ n− i+ 2)
and (6.16) holds for 2 ≤ i ≤ n. As in the proof of Theorem 6.5, it suffices to prove that there exists a monic
polynomial P1(u) with P1(u) = P1(−u + n + 1/2) and (6.16) holds for i = 1. We do this by induction on
n, taking Proposition 5.8 as the induction base. Suppose inductively that the statement holds for n < m
for some fixed m > 2. Let V = V (µ0(u), . . . , µm(u)) be a nontrivial finite-dimensional X(g2m+1, g2m+1)tw-
module, and denote its highest weight vector by ξ. The same argument as in the proof of Theorem 6.5 shows
that the irreducible module V (h(u)µ◦(u)) is finite-dimensional. Therefore, by induction there exists a monic
polynomial Q(u) such that Q(u) = Q(−u+m− 1/2) and

h(u)µ̃◦0(u)

h(u)µ̃◦1(u)
=
µ̃◦0(u)

µ̃◦1(u)
=
Q(u+ 1/2)

Q(u)
.

Since µ̃◦i (u) = µ̃i(u+ 1/2), substituting u 7→ u− 1/2 and setting P1(u) = Q(u− 1/2) we obtain

µ̃0(u)

µ̃1(u)
=
P1(u+ 1/2)

P1(u)
,

which is exactly (6.16) with i = 1. Moreover, since Q(u) = Q(−u + m − 1/2), P1(u) = P1(−u + m + 1/2).
Therefore by induction we have shown that there exists P1(u) satisfying the conditions of the theorem.

(⇐=) Now suppose that (µ0(u), . . . , µn(u)) satisfies u · µ̃0(κ − u) = (κ − u) · µ̃0(u), condition (4.81),
and that there exists P1(u), . . . , Pn(u) as in the statement of the theorem. We wish to show that V =
V (µ0(u), . . . , µn(u)) is finite-dimensional. This portion of the proof will be proven analogously to the cor-
responding direction in the proofs of Theorems 6.2 and 6.5. Since Pi(u) = Pi(−u + n − i + 2 − δi1

2 ) for all
1 ≤ i ≤ n, we can find monic polynomials Qi(u) such that

Pi(u) = (−1)degQi(u)Qi(u)Qi(−u+ n− i+ 2− δi1
2 )

for each i. Set Q̂i(u) = Qi(u+ κ/2) for all i, and choose λ0(u), λ1(u), . . . , λn(u) ∈ 1 + u−1C[[u−1]] such that

λi−1(u)

λi(u)
=
Q̂i(u+ 1)

Q̂i(u)
for all 2 ≤ i ≤ n and λ0(u) =

Q̂1(u+ 1/2)

Q̂1(u)
λ1(u).

By Lemma 4.16 there is a unique N -tuple λ(u) extending (λ0(u), . . . , λn(u)) with the property that the
X(so2n+1)-module L(λ(u)) exists. Moreover, by (4.2) and (4.3), L(λ(u)) must be finite-dimensional. Let
ξ ∈ L(λ(u)) be the highest weight vector. By Corollary 4.11 and (4.1), X(gN , gN )twξ is a highest weight

X(gN , gN )tw-module with highest weight µ](u) = (µ]0(u), . . . , µ]n(u)) whose components satisfy

µ̃]i(u)

µ̃]i+1(u)
=
Pi+1(u+ 1)

Pi+1(u)
for i = 1, . . . , n− 1, while

µ̃]0(u)

µ̃]1(u)
=
P1(u+ 1/2)

P1(u)
.

Since µ(u) and µ](u) both satisfy conditions (6.16), it follows that there exists an even series h(u) ∈ 1 +
u−2C[[u−2]] with the property that V (µ(u)) is isomorphic to the module obtained by twisting V (µ](u)) by
the automorphism νh. To see this, note first that since u · µ̃0(κ− u) = (κ− u) · µ̃0(u), the i = 1 statement
of (6.16) is equivalent to

µ̃0(κ− u)

µ̃1(u)
=
κ− u
u
· P1(u+ 1/2)

P1(u)
.
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One then repeats the same argument as given in detail in Theorem 6.2. As V (µ](u)) is isomorphic to the
irreducible quotient of X(gN , gN )twξ, it is finite dimensional, and therefore so is V (µ(u)).

For a proof of the uniqueness of the tuple (P1(u), . . . , Pn(u)), see the proof of Theorem 6.2. �

The decomposition X(gN , gN )tw ∼= ZX(gN , gN )tw ⊗ Y (gN , gN )tw recalled in (3.19) allows us to deduce
the following corollary of Theorems 6.5 and 6.6:

Corollary 6.7. The isomorphism classes of finite-dimensional irreducible representations of the twisted
Yangians Y (gN , gN )tw are parametrized by families (P1(u), . . . , Pn(u)) where the Pi(u) are monic polynomials
in u such that Pi(u) = Pi(−u+ n− i+ 2) for all i > 1, while

(6.17) P1(u) =


P1(−u+ n+ 1/2) if gN = so2n+1,

P1(−u+ n) if gN = so2n,

P1(−u+ n+ 3) if gN = sp2n.

Proof. This is proved identically to Corollary 6.3. �

Given 1 ≤ i ≤ n and α ∈ C, let L(i : α) be the fundamental representation of the Yangian Y (gN ) as
defined above Corollary 6.4. Our last corollary can be proved in the same way as Corollary 6.4.

Corollary 6.8. Let V be a finite-dimensional irreducible representation of Y (gN , gN )tw. Then there exists
m ∈ N, i1, . . . , im ∈ {1, . . . , n} and αi1 , . . . , αim ∈ C, such that V is isomorphic to a subquotient of the
Y (gN , gN )tw-module

L(i1 : αi1)⊗ · · · ⊗ L(im : αim).
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[AACFR] D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, R-matrix presentation for super-Yangians Y (osp(m|2n)),

J. Math. Phys. 44 (2003), no. 1, 302–308. arXiv:math/0111325.
[AMR] D. Arnaudon, A. Molev, E. Ragoucy, On the R-matrix realization of Yangians and their representations, Ann. Henri
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