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Abstract. Let Uq(g) denote the rational form of the quantized enveloping

algebra associated to a complex simple Lie algebra g. Let λ be a nonzero
dominant integral weight of g, and let V be the corresponding type 1 finite-

dimensional irreducible representation of Uq(g). Starting from this data, the

R-matrix formalism for quantum groups outputs a Hopf algebra Uλ
R(g) defined

in terms of a pair of generating matrices satisfying well-known quadratic matrix

relations. In this paper, we prove that this Hopf algebra admits a Chevalley–

Serre type presentation which can be recovered from that of Uq(g) by adding
a single invertible quantum Cartan element. We simultaneously establish that

Uλ
R(g) can be realized as a Hopf subalgebra of the tensor product of the space of

Laurent polynomials in a single variable with the quantized enveloping algebra
associated to the lattice generated by the weights of V . The proofs of these

results are based on a detailed analysis of the homogeneous components of

the matrix equations and generating matrices defining Uλ
R(g), with respect to

a natural grading by the root lattice of g compatible with the weight space

decomposition of End(V ).
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1. Introduction

This article is a sequel to the authors work [GRW1] with S. Gautam, which ad-
dressed the problem of rebuilding the quantized universal enveloping algebra Uℏ(g)
of a semisimple complex Lie algebra g, viewed as a topological Hopf algebra over
C[[ℏ]], from a solution R of the quantum Yang–Baxter equation associated to any
of its non-trivial finite-dimensional representations V. In more detail, the solution
to this problem presented in [GRW1] passes through a version of the Faddeev–
Reshetikhin–Takhtajan formalism for constructing quantum groups [FRT], which
produces a Hopf algebra UR(g) whose generators are encoded by a pair of matrices
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T+ and T− which, in particular, have the property that L± := I + ℏT± satisfy the
celebrated matrix equations

(1.1) RL±
1 L

±
2 = L±

2 L
±
1 R and RL+

1 L
−
2 = L−

2 L
+
1 R.

In Theorem 5.7 of [GRW1], it was shown that UR(g) is isomorphic to the tensor
product of the Drinfeld double of the Borel subalgebra Uℏ(b

+) ⊂ Uℏ(g) with a
commutative Hopf algebra whose definition is encoded by the space of g-invariants
of the classical limit of V. This was then used to deduce that Uℏ(g) can be recovered
both as a quotient of UR(g) by the ideal generated by the coefficients of certain
central matrices, and as the fixed-point subalgebra of UR(g) with respect to a
natural family of automorphisms; see [GRW1, Thm. 5.14].

Crucially, the proofs of these results make extensive use of deformation argu-
ments which reduce many of the key statements to simpler results for the Lie alge-
bra g itself, established in [GRW1, §3]. We note, however, that these arguments no
longer directly apply when Uℏ(g) is replaced by its rational form Uq(g) defined over
Q(q) (see Definition 2.1) and, in addition, they do not explain how to derive the
defining Chevalley–Serre relations of the quantized enveloping algebra of g from the
quadratic matrix equations at the heart of the R-matrix formalism. The main goal
of this article is to remedy this issue, with focus on the case where the underlying
representation is irreducible.

1.1. Main results. We now summarize our main results in detail. Let λ be a fixed
nonzero dominant integral weight of g and let V = V (λ) be the associated type 1
finite-dimensional irreducible representation of Uq(g); see Section 2.3. Using that
Uq(g) is nearly quasitriangular, one obtains a distinguished solution R ∈ End(V⊗V )
of the quantum Yang–Baxter equation; see (2.7). Starting from this R-matrix, we
define a Hopf algebra Uλ

R(g) over Q(q), graded by the root lattice Q of g, whose
generators are encoded by matrices

L± ∈
⊕
β∈Q±

End(V )±β ⊗Uλ
R(g),

where Q+ and Q− are the positive and negative cones in Q, respectively, and
End(V )β is the β-weight space of the Uq(g)-module End(V ). These generating
matrices are subject to the quadratic matrix equations (1.1) in addition to the
requirement that their weight zero components L+ and L− are mutual inverses.

In this article, we make the relation between Uλ
R(g) and Uq(g) precise without

relying on the deformation arguments of [GRW1]. To explain this relation, let Λ(λ)
be the submodule of the weight lattice of g generated by the weights of V . As λ
is nonzero, this is a genuine lattice containing Q, and we may thus associate to it
a quantized enveloping algebra Uλ

q (g) ⊃ Uq(g); see Definition 2.1 and Lemma 3.1.
The following theorem, which is a combination of Proposition 3.3 and Theorem 5.1,
is the main result of this article.

Theorem I. There is an embedding of Q-graded Hopf algebras

Υ : Uλ
R(g) ↪→ Uλ

q (g)⊗Q(q)[v±1]

with image Uλ
q (g) which can be identified with the unital associative Q(q)-algebra

generated by {ξ±i , x
±
i }i∈I ∪ {ξ±λ }, subject to the relations

ξ±i ξ
∓
i = 1 = ξ±λ ξ

∓
λ , [ξ±i , ξ

±
j ] = 0 = [ξ±i , ξ

±
λ ],
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ξ+i x
±
j ξ

−
i = q±(αi,αj)x±

j , ξ+λ x
±
j ξ

−
λ = q±(λ,αj)x±

j ,

[x+
i , x

−
j ] = δij

ξ+i − ξ−i
qi − q−1

i

,

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

(x±
i )

bx±
j (x

±
i )

1−aij−b = 0 for i ̸= j,

where (aij)i,j∈I is the Cartan matrix of g, {αi}i∈I is a basis of simple roots, ( , ) is
a fixed invariant form on g, and qi = qdi with di the i-th symmetrizing integer; see
Section 2.1.

The Hopf algebra Uλ
q (g) is first defined in Section 2.2, where it is also proven to

admit the Chevalley–Serre type presentation given in the statement of the above
theorem; see Definition 3.2 and Proposition 3.3. It satisfies

Uq(g)⊗Q(q)[v±1
λ ] ⊂ Uλ

q (g) ⊂ Uλ
q (g)⊗Q(q)[v±1],

where vλ = vn is the minimal positive power of v contained in Uλ
q (g); explicitly, n

is equal to the order |[λ]| of the class of λ in the quotient group Λ(λ)/Q. Moreover,
as will be explained in Proposition 3.4, one has

Uλ
q (g)/(vλ − 1) ∼= Uλ

q (g).

When λ is the first fundamental weight of g = sln, V can be identified with
the vector representation Q(q)n and Uλ

q (g) coincides with the quantized enveloping
algebra Uq(gln) of the general linear algebra gln [DF, J2]. In this case, the above
theorem reduces to the statement of Theorem 2.1 in [DF]. More generally, when g is
of classical type and V is the vector representation of Uq(g), Theorem I reduces to
the finite type counterpart of [HM, Thm. 1]; see also [JLM1,JLM2]. In these special
cases, it has been known since the foundational work [FRT] of Faddeev, Reshetikhin
and Takhtajan that there exists an invertible central element Z ∈ Uλ

R(g) such that

Uλ
R(g)/(Z− 1) ∼= Uλ

q (g).

When g is the special linear algebra sln, the element Z can be taken to be the n-fold
product of the commuting elements lµ associated to the n weights of Q(q)n; see
Remark 21 of [FRT], in addition to Theorem 8.33 of [KS] and Section 7.1 of [GRW1].
If instead g is of symplectic or orthogonal type, then it follows from Propositions
3.3 of [JLM1] and [JLM2] that there is an invertible central element Z ∈ Uλ

R(g)
and a diagonal matrix D, with entries that are integer powers of q, satisfying

D(L±)tD−1L± = L±D(L±)tD−1 = Z±1 I,

where I is the identity matrix. By Theorem 8.33 of [KS], imposing the additional
relation Z = 1 recovers Uλ

q (g); see also Theorem 12 and Remark 21 of [FRT]. An
equivalent characterization of this element Z is encoded by the constant term of
the left-hand side of [HM, (3.7)].

This story was extended to the case where V is the seven dimensional irreducible
representation of Uq(G2) in Theorem 11 of [S]. The generalization of these results
to any Cartan type and dominant integral weight λ is stated explicitly in Corollary
5.7, where a uniform expression for Z is also given.
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1.2. The inverse of Υ. The construction of the homomorphism Υ from Theorem
I follows a well-known scheme which has been applied in [DF,HM,W,GRW1], for
instance, and is inspired by [FRT, Thm. 18] and [D1, Thm. 6]. Namely, L± are sent
to certain generating matrices L± ∈ End(V )⊗Uλ

q (g) for U
λ
q (g) which play the role

of L-operators. They are constructed using V and the quasi universal R-matrix R+

of Uq(g), and satisfy the defining relations of Uλ
R(g) due to properties of R+; see

Proposition 3.5.

To prove that Υ is an isomorphism, we deviate from the approach of [GRW1]
and construct Υ−1 explicitly by carrying out a uniform, type independent, analysis
of the components in the Gauss decompositions of L+ and L−. The two results at
the heart of this analysis are Theorems 4.8 and 4.12. In Theorem 4.8, it is shown
that the weight zero component L± of L± decomposes in the diagonal form

L± =
∑
µ

IdVµ
⊗ l±1

µ ,

where the summation is taken over the finite set of weights of V , and the elements
lµ pairwise commute. We note that in all the special cases alluded to at the end of
Section 1.1, the weight spaces Vµ of V are one-dimensional and the above decompo-
sition for L± follows automatically from the fact that it is of weight zero. Theorem
4.8 provides a non-trivial generalization of this observation which, as a consequence
of the definition of L± given in Section 3.4, must hold if the identification of L±

with L± is to yield an isomorphism between Uλ
R(g) and Uλ

q (g).

The proof of Theorem 4.8 implies that if µ and γ are any two weights of V then
the ratio l−1

γ lµ only depends on the difference γ − µ ∈ Q. Since λ is nonzero,
each simple root αi arises as such a difference and, consequently, there is a unique
element ξi ∈ Uλ

R(g), for each i ∈ I, such that

ξi = l−1
µ+αi

lµ

for any weight µ of V for which µ + αi is also a weight; see Corollary 4.9. We
then prove in Theorem 4.12 that the components L+

αi
and L−

−αi
of the unipotent

matrices L+ = L−L+ and L− = L−L+ associated to a simple root αi are always
pure tensors of the form

L+
αi

= π(Ei)⊗Xi and L−
−αi

= π(Fi)⊗Yi,

where Ei and Fi are the standard Chevalley generators of Uq(g) (see Definition 2.1)
and π : Uq(g) → End(V ) is the action homomorphism. In addition, it is shown
that all coefficients of L+ and L− are contained in the subalgebras generated by
{Xi}i∈I and {Yi}i∈I, respectively.

Using these two theorems, we show in the proof of Theorem 5.1 that the assign-
ment

ξ±i 7→ ξ±1
i , ξ±λ 7→ l∓1

λ , x+
i 7→ Xi

q−1
i − qi

and x−
i 7→ Yi

qi − q−1
i

∀ i ∈ I

uniquely extends to an algebra homomorphism Uλ
q (g) → Uλ

R(g) which is in fact

equal to Υ−1. The main additional difficulty in establishing this assertion lies in
showing that the above assignment preserves the q-Serre relations of Uλ

q (g). This
is established in Corollary 5.6 using versions of the defining matrix equations of
Uλ

R(g) associated to arbitrary tensor powers of V .
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1.3. Remarks. Let us now give a few concluding remarks. Firstly, the results of
this article and their proofs are readily seen to remain valid when Q(q) is replaced
by an arbitrary field k of characteristic zero, provided q ∈ k is taken to be a
nonzero element which is not a root of unity. Part of our motivation for specifying
the choice of base field Q(q) lies in the fact that Uλ

R(g) should admit a natural
theory of integral forms over A = Q[q, q−1], consistent with the narrative for the
quantum enveloping algebra of gln from [FT, §3.1]. Though we do not endeavour to
develop this theory fully in the present article, we do wish to make a few preliminary
observations.

Let V denote the free A-submodule of V spanned by its canonical basis. Then,
by [L, Cor. 24.1.5], the R-matrix R ∈ End(V ⊗ V ) preserves V ⊗AV. We may
thus define a unital associative A-algebra AU

λ
R(g) by replacing End(V ) by the Q-

graded free A-module EndA(V) in the definition of Uλ
R(g) (see Definition 4.1). This

is a Hopf algebra over A which specializes at q = 1 to a commutative, but non-
cocommutative, Hopf algebra over Q and satisfies

AU
λ
R(g)⊗A Q(q) ∼= Uλ

R(g).

In addition, it admits a (conjecturally injective) homomorphism ı : AU
λ
R(g) →

Uλ
R(g) with image equal to the A-subalgebra of Uλ

R(g) generated by the matrix
coefficients of L±, viewed as elements of EndA(V)⊗AU

λ
R(g). Furthermore, it follows

from the explicit formulas for the universal quasi R-matrix of Uq(g) obtained in
[KR,LS] (see also [CP, §8.3]) that the composite Υ ◦ ı satisfies

(Υ ◦ ı)(AUλ
R(g)) ⊂ Aq(g)⊗A A[v±1],

where Aq(g) ⊂ Uλ
q (g) is the quantum group introduced by De Concini and Procesi

in [DCP, §12]. In more detail, it is the minimal A-subalgebra of Uλ
q (g) which is

stable under Lusztig’s braid group operators and contains the elements (qi−q−1
i )Ei

and (qi−q−1
i )Fi for each i ∈ I; see in particular Theorem 12.1 and (11.8.1) of [DCP].

Next, let us elaborate on the relationship between the results of this article and
those of [GRW1], which were briefly summarized at the beginning of Section 1.
Let V be a non-trivial indecomposable representation of the quantized enveloping
algebra Uℏ(g) which is both free and of finite rank as a C[[ℏ]]-module. Let UR(g)
be the R-matrix algebra associated V, as defined in Section 5.1 of [GRW1], with
generating matrices T+ and T−. Let J be the two-sided ideal of UR(g) topologically
generated by the coefficients of the matrices

T+ + T− + ℏT+T− and T+ + T− + ℏT−T+,

where T± is the weight zero component of T±. We note that the ideal J appears
indirectly in Remark 6.6 of [GRW1], and is engineered so that the matrices L± :=
I + ℏT± satisfy L+L− = I = L−L+ in UR(g)/J. Given these preliminaries, the
counterpart of Theorem I in the setting of [GRW1] is the assertion that there is an
isomorphism of topological Hopf algebras

(1.2) UR(g)/J ∼= Uℏ(g) ⊗̂C[z][[ℏ]],
where ⊗̂ is the topological tensor product of C[[ℏ]]-modules and the Hopf structure
on the right-hand side is uniquely determined by the conditions that Uℏ(g) is a
Hopf subalgebra and z is a primitive element. This isomorphism can be viewed as
an intermediate result between Theorems 5.7 and 5.14 of [GRW1], and is readily
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deduced from them. One significant difference between it and the identification of
Uλ

R(g) with Uλ
q (g) provided by Theorem I is that the right-hand side of (1.2) does

not depend on the lattice generated by the set of weights of V. In contrast, Uλ
q (g)

is controlled by the class of λ in the quotient group Λ(λ)/Q, and coincides with
the tensor product Uλ

q (g)⊗Q(q)[v±1] if and only if λ lies in the root lattice Q; see
Proposition 3.4. Despite these observations, the statements of Theorems 5.7 and
5.14 of [GRW1] for indecomposable V can themselves be proven using the analysis
outlined in Section 1.2, which more directly exploits the equations at the heart of
the R-matrix formalism.

Finally, whereas the main constructions of [GRW1] took as input an arbitrary
non-trivial finite-dimensional representation of Uℏ(g), we have narrowed our focus
to those non-trivial finite-dimensional representations of Uq(g) which are both irre-
ducible and of type 1. This has allowed us to develop a uniform theory labelled by
nonzero dominant integral weights which recovers all of the concrete examples that
have been considered in the literature as special cases. That being said, our expec-
tation is that Theorem I admits a generalization which takes as input any type 1
finite-dimensional representation of Uq(g) with a non-trivial irreducible summand,
shares many common features with its counterparts from [GRW1], and can be
proven using natural generalizations of Theorems 4.8 and 4.12.

1.4. Outline. In Section 2, we review a number of basic facts from the representa-
tion theory of Uq(g), including the definitions and main properties of the R-matrices
and representation spaces which feature throughout the paper. Section 3 is devoted
to introducing the quantum group Uλ

q (g) and studying its algebraic structure. Sec-
tions 4 and 5 contain the main results of this article. The former is focused entirely
on the R-matrix algebraUλ

R(g), which is first defined in Definition 4.1. The main re-
sults of this section (Theorems 4.8 and 4.12) show that the coefficients of the weight
zero and unipotent parts of the generating matrices L± are remarkably restricted,
and are used to identify Chevalley–Serre type generators in Uλ

R(g). In Section 5 we
prove Theorem 5.1, which establishes that Uλ

R(g) and Uλ
q (g) are one and the same.

In addition, we use this theorem to explain in Section 5.3 how to characterize Uq(g)

and Uq(g)⊗Q(q)[v±1
λ ] as Hopf subalgebras of Uλ

R(g); see Corollaries 5.7 and 5.8.

1.5. Acknowledgments. The authors are grateful to Alex Weekes for many in-
sightful discussions and helpful comments throughout the writing of this article.
The first author was supported by the Pacific Institute for the Mathematical Sci-
ences (PIMS) Postdoctoral Fellowship Program. The second author gratefully ac-
knowledges the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC), provided via the Discovery Grants Program (Grant RGPIN-
2022-03298 and DGECR-2022-00440).

2. Preliminaries on Uq(g)

2.1. The Lie algebra g. Let g be a simple Lie algebra over the complex numbers
equipped with an invariant, non-degenerate, symmetric bilinear form ( , ). Let
h ⊂ g be a Cartan subalgebra and {αi}i∈I ⊂ h∗ a basis of simple roots relative to
h. We normalize ( , ) so that the square length of every short simple root is 2. Let
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(aij)i,j∈I denote the Cartan matrix of g, defined by

diaij = (αi, αj) ∀ i, j ∈ I,

where di =
(αi,αj)

2 is the i-th symmetrizing integer. Let {ϖi}i∈I ⊂ h∗ denote the
fundamental weights of g, uniquely determined by (ϖi, αj) = djδij for all i, j ∈ I,
and let Q =

⊕
i∈I Zαi and Λ =

⊕
i∈I Zϖi denote the root and weight lattices of

g, respectively. In addition, we will write Q+ and Q− = −Q+ for the positive and
negative cones in the root lattice and Λ+ for the set of dominant integral weights
of g. That is, one has

Q+ :=
⊕
i∈I

Z≥0αi and Λ+ :=
⊕
i∈I

Z≥0ϖi.

Throughout the entire course of this paper, λ ∈ Λ+ will denote a fixed nonzero
dominant integral weight of g. We shall write |[λ]| for the order of the equivalence
class [λ] of λ in the quotient group Λ/Q.

Additionally, given β ∈ Q+ we will write Qβ
+ for the finite set consisting of all

ν ∈ Q+ satisfying ν ≤ β with respect to the standard partial ordering:

Qβ
+ = {α ∈ Q+ : β − α ∈ Q+}.

Similarly, for each β ∈ Q̇+ := Q+ \ {0} we define Q̇β
+ to be the finite subset of Q̇

consisting of all α ∈ Q̇+ for which β − α ∈ Q̇+.

2.2. The Hopf algebra UE
q (g). In this section we recall the definition and basic

properties of the Drinfeld–Jimbo algebra associated to g, freely drawing from the
standard references as necessary. We refer the reader to [L, J1, KS] or [CP] for
further details.

In what follows, we fix E to be a Z-submodule of the weight lattice Λ containing
the root lattice Q. In addition, we employ the standard notation for Gaussian
integers and binominal coefficients: If m,n, r ∈ Z with n ≥ r ≥ 0, then[

n
r

]
q

=
[n]q!

[r]q![n− r]q!
, [m]q! = [m]q[m− 1]q · · · [1]q,

[m]q =
qm − q−m

q − q−1
.

Definition 2.1. The quantum enveloping algebra UE
q (g) is the unital, associative

Q(q)-algebra generated by {Ei, Fi}i∈I and {K±1
µ }µ∈E, subject to the relations:

KµKγ = Kµ+γ , K0 = 1,

KµEjK
−1
µ = q(µ,αj)Ej , KµFjK

−1
µ = q−(µ,αj)Fj ,

[Ei, Fj ] = δij
Kαi

−K−αi

qi − q−1
i

,

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

Eb
iEjE

1−aij−b
i = 0,

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

F b
i FjF

1−aij−b
i = 0,



8 M. RUPERT AND C. WENDLANDT

where qi = qdi and i ̸= j in the last two relations.

The algebra UE
q (g) is a Hopf algebra over Q(q) with coproduct ∆, antipode S,

and counit ε determined by

∆(Kµ) = Kµ ⊗Kµ, S(Kµ) = K−µ, ε(Kµ) = 1,

∆(Ei) = Ei ⊗Ki + 1⊗ Ei, S(Ei) = −EiK
−1
i , ε(Ei) = 0,

∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi, S(Fi) = −KiFi, ε(Fi) = 0,

for all µ ∈ E and i ∈ I, where we have set Ki := Kαi for each i ∈ I, following the
usual conventions. Moreover, UE

q (g) admits a Q-grading compatible with this Hopf
structure, with homogeneous components given by

UE
q (g)β = {x ∈ UE

q (g) : KµxK
−1
µ = q(β,µ)x ∀ µ ∈ E} ∀ β ∈ Q.

Let Uq(n
+) and Uq(n

−) denote the (graded) subalgebras of UE
q (g) generated by

{Ei}i∈I and {Fi}i∈I, respectively, and let UE
q (h) denote the subalgebra generated

by {Kµ}µ∈E. Similarly, the subalgebra of UE
q (g) generated by UE

q (h) and Uq(n
±)

is denoted UE
q (b

±). Given this notation, the triangular decomposition for UE
q (g)

asserts that multiplication induces a Q(q)-linear isomorphism

(2.1) Uq(n
+)⊗ UE

q (h)⊗ Uq(n
−) ∼−→ UE

q (g).

To conclude this subsection, we recall two variants of the Chevalley involution on
UE
q (g) which shall feature throughout this article. Firstly, UE

q (g) admits an algebra
involution ω uniquely determined by

(2.2) ω(Kµ) = K−µ, ω(Ei) = −Fi, ω(Fi) = −Ei ∀ µ ∈ E and i ∈ I.

In this article, we shall refer to ω as the Chevalley involution on UE
q (g). It satisfies

ω(Uq(n
±)β) = Uq(n

∓)−β for all β ∈ Q, and it provides a Hopf algebra isomorphism
UE
q (g)

∼−→ UE
q (g)

cop, where UE
q (g)

cop is the co-opposite Hopf algebra to UE
q (g).

The second involution of interest to us is the anti-automorphism τ of UE
q (g)

uniquely determined by the formulas

(2.3) τ(Kµ) = Kµ, τ(Ei) = FiKi, τ(Fi) = K−1
i Ei ∀ µ ∈ E and i ∈ I.

It provides a Hopf algebra isomorphism UE
q (g)

∼−→ UE
q (g)

op, where UE
q (g)

op is the

opposite Hopf algebra to UE
q (g), and has the property that

τ(Uq(n
+)β)K

−1
β = Uq(n

−)−β and Kβτ(Uq(n
−)−β) = Uq(n

+)β

for each β ∈ Q+.

2.3. The representations V and End(V ). For the remainder of Section 2 we
shall narrow our focus to the Drinfeld–Jimbo algebra UQ

q (g), which will henceforth
be denoted simply by Uq(g).

Recall that a Uq(g)-module V is said to be of type 1 if it admits a weight space
decomposition of the form V =

⊕
µ∈Λ Vµ with

Vµ = {v ∈ V : Kβv = q(µ,β)v ∀ β ∈ Q}.
The category of finite-dimensional type 1 representations of Uq(g) is semisimple,
with the simple modules labeled by dominant integral weights via a highest weight
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theory. In particular, for any γ ∈ Λ+ there is a unique, up to isomorphism, finite-
dimensional highest weight module V (γ) of type 1 with the highest weight γ. That
is, V (γ) is generated by a nonzero vector v ∈ V (γ) with the property that

Kiv = q(γ,αi)v and Eiv = 0 ∀ i ∈ I.

The representation V (γ) is irreducible, and every finite-dimensional irreducible type
1 representation is isomorphic to a module of this form.

As we shall be solely interested in the single nonzero dominant integral weight
λ ∈ Λ+ fixed in Section 2.1, we shall set

V := V (λ)

and let π : Uq(g) → End(V ) denote the associated Q(q)-algebra homomorphism.
In addition, we will denote the set of weights of V by Λλ:

Λλ := {µ ∈ Λ : Vµ ̸= 0} ⊂ Λ.

The endomophism space End(V ) can itself be equipped with the structure of
a Uq(g)-module in the standard Hopf-theoretic way. Namely, the Uq(g)-action is
determined by the formulae

Ki ·X = π(Ki)Xπ(Ki)
−1,

Ei ·X = [π(Ei), X]π(Ki)
−1 and Fi ·X = π(Fi)X − π(Ki)

−1Xπ(Ki)π(Fi)

for all i ∈ I and X ∈ End(V ). This is a type 1 finite-dimensional representation
with set of weights laying in Q:

End(V ) =
⊕
β∈Q

End(V )β .

Moreover, this weight space decomposition is compatible with the natural Q(q)-
algebra grading on End(V ), in that

End(V )β = {X ∈ End(V ) : X(Vµ) ⊂ Vµ+β ∀ µ ∈ h∗} =
⊕
µ∈h∗

Hom(Vµ, Vµ+β).

Let t : End(V ) → End(V ) denote the transpose operator with respect to a fixed
choice of weight basis of V . This is a Q(q)-algebra anti-automorphism of End(V )
satisfying

(2.4) t(End(V )β) = End(V )−β ∀ β ∈ Q.

Let GLh(V ) =
∏

µ GL(Vµ) denote the subgroup of the general linear group

GL(V ) on the Q(q)-vector space V consisting of invertible matrices which preserve
each weight space of V . The following lemma provides a compatibility condition
between t and the anti-automorphism τ defined in (2.3).

Lemma 2.2. There is an invertible matrix A ∈ GLh(V ) which is the identity on
Vλ, is symmetric, and satisfies

A−1π(x)tA = π(τ(x)) ∀ x ∈ Uq(g).

Proof. Let v ∈ Vλ be a nonzero vector (i.e., a highest weight vector). Consider the
algebra homomorphism

π♯ := t ◦ π ◦ τ : Uq(g) → End(V ),
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and let V ♯ denote the associated Uq(g)-module structure on V . Then, by (2.3) and
(2.4), v is a also a highest weight vector of weight λ in V ♯. Indeed, we clearly have
π♯(Ki)v = q(αi,λ)v for all i ∈ I, so it suffices to show that π♯(Ei)v = 0 for all i ∈ I.
By definition of π♯, we have

π♯(Ei)v = π(FiKi)
tv = π(Ki)(π(Fi)

tv).

As π(Fi) ∈ End(V )−αi
, the property (2.4) implies that π(Fi)

tv ∈ Vλ+αi
= 0, as

desired. It now follows immediately that V and V ♯ are isomorphic Uq(g)-modules.
Let A : V ∼−→ V ♯ be an isomorphism satisfying A(v) = v. Since A(π(x)w) =
π♯(x)(A · w) = π(τ(x))tAw for all w ∈ V , A satisfies

Aπ(x)A−1 = π(τ(x))t ∀ x ∈ Uq(g).

As τ is an involution, this is equivalent to the main identity of the lemma. To
complete the proof of the lemma, it remains to see that A is symmetric. To this
end, note that At satisfies

At(π(x)w) =
(
π(x)tA

)t
w = (Aπ(τ(x)))

t
w = π(τ(x))tAtw

for all w ∈ V and x ∈ Uq(g), and is therefore an isomorphism of modules V → V ♯.
Since V and V ♯ are simple and A and At both fix the highest weight vector v, we
can conclude that A = At. □

Next, let ⟨ , ⟩ = tr ◦ m : End(V ) ⊗ End(V ) → Q(q) denote the trace form on
End(V ), where m is the usual multiplication on End(V ), given by composition.
This is a non-degenerate, symmetric bilinear form. In addition, if we view Q(q) as
a Q-graded vector space, concentrated in degree zero, then ⟨ , ⟩ is Q-graded:

⟨End(V )α,End(V )β⟩ ⊂ Q(q)α+β ∀ α, β ∈ Q.

In addition, since ⟨ , ⟩ ◦ (t⊗ t) = ⟨ , ⟩, Lemma 2.2 implies that

⟨π(x), π(y)⟩ = ⟨π(τ(x)), π(τ(y))⟩ ∀ x, y ∈ Uq(g).

2.4. R-matrices. We now turn towards recalling the construction and basic prop-
erties of the universal quasi R-matrix R+ of Uq(g) and how it gives rise to a genuine
R-matrix R ∈ End(V )⊗2.

To begin, we recall that there is an algebra automorphism Ψ of Uq(g)
⊗2 uniquely

determined by the formulas

Ψ(Ki ⊗ 1) = Ki ⊗ 1, Ψ(1⊗Ki) = 1⊗Ki,

Ψ(X±
i ⊗ 1) = X±

i ⊗K∓1
i and Ψ(1⊗X±

i ) = K∓1
i ⊗X±

i

for all i ∈ I, where X+
i = Ei and X−

i = Fi. Informally, it is just given by
Ψ(x) = Ad(q−Ωh) where Ωh ∈ h ⊗ h is the canonical tensor associated to the
restriction of the Killing form to h⊗ h. This automorphism has the property that

(2.5) π⊗2(Ψ(x)) = D−1(π⊗2(x))D ∀ x ∈ Uq(g)
⊗2

where D is the diagonal operator

D :=
∑

µ,γ∈Λλ

q(µ,γ)−(λ,λ)IdVµ⊗Vγ
∈ GLh(V ⊗2) ⊂ End(V ⊗2).

Here we note that, since Λλ ⊂ λ+ Q, the scalar (µ, γ)− (λ, λ) belongs to Z.
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With the above preliminaries at our disposal, we are now in a position to recall
the definition of R+. By [L, Thm. 4.1.2], there is a unique family of elements

R+
ν ∈ Uq(n

+)ν ⊗ Uq(n
−)−ν ,

where ν takes values in Q+, satisfying R+
0 = 1 in addition to∑

ν∈Qβ
+

(R+
ν ∆(x)β−ν −∆op

Ψ (x)β−νR
+
ν ) = 0 =

∑
ν∈Qβ

+

(R+
ν ∆(y)ν−β −∆op

Ψ (y)ν−βR+
ν )

for each β ∈ Q+, x ∈ Uq(b
+) and y ∈ Uq(b

−). Here we have set ∆Ψ := Ψ ◦∆ and
made use of the following general notation: For a Q-graded vector space U and an
element u ∈ U⊗2, we define

uγ := (1γ ⊗ Id)(u) and uγ := (Id⊗ 1γ)(u),

where 1γ : U ↠ Uγ is the idempotent associated to γ. Though it will not be
important for us to have access to an explicit formula for R+

ν for arbitrary ν ∈ Q+,
we shall frequently apply the fact that

R+
αi

= (qi − q−1
i )Ei ⊗ Fi ∀ i ∈ I.

The defining identities of R+
ν can be expressed more compactly as

(2.6) R+∆(x) = ∆op
Ψ (x)R+ ∀ x ∈ Uq(g),

in a suitable completion of Uq(g)
⊗2 containing R+ :=

∑
ν∈Q+

R+
ν . We refer the

reader to [L, §4.1.1] and [CP, §10.1.D] for a more detailed discussion of the relevant
completion of Uq(g)

⊗2 while noting that the element R+ is related to Lusztig’s

quasi R-matrix Θ by R+ := Θ−1
21 .

Crucially, if V is any finite-dimensional Uq(g)-module and πV : Uq(g) → End(V)
is the associated homomorphism, then (πV ⊗ Id)(R+

ν ) and (Id⊗ πV)(R
+
ν ) are zero

whenever ν is not one of the finitely many weights of the Uq(g)-module End(V).
Thus, the evaluations (πV ⊗ Id)(R+) and (Id⊗ πV)(R

+) are well-defined elements
of End(V)⊗ Uq(g) and Uq(g)⊗ End(V), respectively. We set

(2.7) R := D · π⊗2(R+) ∈ End(V ⊗ V ).

By (2.5) and (2.6), this element satisfies the relation

Rπ⊗2(∆(x)) = π⊗2(∆op(x))R ∀ x ∈ Uq(g).

Moreover, R is an R-matrix: it satisfies the quantum Yang–Baxter equation

R12R13R23 = R23R13R12 in End(V )⊗3 ∼= End(V ⊗3).

This is a consequence of (2.5), (2.6) and that R+ satisfies the coproduct identities

(2.8)
(∆⊗ Id)(R+) = (Id⊗ Ψ)

(
R+

13

)
·R+

23,

(Id⊗∆)(R+) = (Ψ⊗ Id)
(
R+

13

)
·R+

12,

where we have used the standard double subscript notation to indicate how to
embed elements of the tensor square of a Q(q)-vector space U into U⊗n for n ≥ 2.

To conclude this subsection, we explain how R transforms when the transpose
t from Section 2.3 is applied to both of its tensor factors. This will be applied in
Sections 4 and 5.
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Lemma 2.3. Let A ∈ GLh(V ) be as in Lemma 2.2. Then R satisfies

Rt1,t2 = Ad(A⊗A) (R21) ,

where Rt1,t2 = (t⊗ t)(R).

Proof. We first note that (τ⊗ τ)(R+
ν ) =

(
Ψ−1(R+

21)
)
ν
for each ν ∈ Q+, where τ is

the anti-automorphism defined in (2.3). Equivalently, one has

(2.9) (τ⊗ τ)(R+) := Ψ−1(R+
21).

This is essentially a consequence of Proposition 4.2 of [D2], where it was shown that
the universal R-matrix RUℏg of Uℏg satisfies (RUℏg)21 = τ⊗2(RUℏg). To prove this
rigorously in the present setting, where we do not have access to RUℏg, one first
observes that Ψ(τ⊗2(R+

21)) satisfies the equation (2.6) and, by the definitions of Ψ
and τ, is such that Ψ(τ⊗2(R+

21))0 = 1 and

Ψ(τ⊗2(R+
21))ν ∈ Uq(n

+)ν ⊗ Uq(n
−)−ν ∀ ν ∈ Q+.

It follows by uniqueness that (2.9) holds. Combining this with (2.5), we obtain

(2.10) (π ◦ τ)⊗2(R+) = D
(
π⊗2(R+

21)
)
D−1.

The assertion of the lemma now follows from the relation A−1π(x)tA = π(τ(x))
established in Lemma 2.2. Indeed, we have

Rt1,t2 = π⊗2(R+)t1,t2 D= A1A2(π ◦ τ)⊗2(R+)A−1
2 A−1

1 D

= A1A2Dπ⊗2(R+
21)D

−1A−1
2 A−1

1 D

= A1A2R21D
−1A−1

2 A−1
1 D,

where A1 = A⊗I and A2 = I⊗A. Since A1A2 preserves weight spaces, it commutes
with D, so the right-hand side above is really just A1A2R21A

−1
2 A−1

1 , as desired. □

3. The quantum enveloping algebra Uλ
q (g)

As indicated in Section 1.1, there exists a quantum group Uλ
q (g) which contains

Uq(g) as a subalgebra, admits the Chevalley–Serre presentation spelled out in The-
orem I, and which can be naturally reconstructed from the solution (2.7) of the
quantum Yang–Baxter equation. In this section, we introduce Uλ

q (g) starting from

the quantized enveloping algebra UE
q (g) associated to the lattice E = Λ(λ), defined

in Section 3.1 below, which is generated by the set of weights of V .

3.1. The lattice associated to a dominant integral weight. Recall that λ is
a fixed nonzero dominant integral weight of g, and that V is the associated finite-
dimensional irreducible Uq(g)-module with highest weight λ. Let Λ(λ) denote the
Z-submodule of Λ generated by the set of weights Λλ:

Λ(λ) := ZΛλ =
∑
µ∈Λλ

Zµ.

The following elementary lemma establishes some basic properties of Λ(λ).
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Lemma 3.1. For each i ∈ I, there exists µ, γ ∈ Λλ such that αi = µ − γ. Conse-
quently, one has Q ⊂ Λ(λ) ⊂ Λ. Moreover, the image [µ] of any weight µ in Λ(λ)/Q
coincides with [λ] and generates the group Λ(λ)/Q. In particular, one has

Λ(λ)/Q ∼= Z/|[λ]|Z.

Proof. Let V(λ) denote the finite-dimensional irreducible representation of the com-
plex simple Lie algebra g with the highest weight λ. Since λ is nonzero and g is
simple, this is a faithful representation. Moreover, the set of weights of V(λ) is
identical to the set of weights of V (λ), with dimC V(λ)γ = dimQ(q) V (λ)γ for any
weight γ; see [L, Thm. 33.1.3] or [J1, Thm. 5.15], for instance. The assertion of
the lemma now follows from a standard exercise in Lie theory; see Exercise 5 of
[H, §21.4], for instance. As the argument is brief, we include it for the sake of
completeness.

Suppose towards a contradiction that there does not exist a pair µ, γ ∈ Λλ as
in the statement of the lemma. Since the αi-root space gαi satisfies gαi · V(λ)γ ⊂
V(λ)γ+αi for all γ ∈ Λλ and γ and γ + αi are not both weights, gαi annihilates all
of V(λ). Since V(λ) is faithful, this is impossible.

The above shows that Q ⊂ Λ(λ). The remaining statements of the lemma now
follow from the fact that Λ(λ) = ZΛλ and Λλ ⊂ λ+ Q. □

3.2. The quantum algebra Uλ
q (g). Henceforth, we shall write Uλ

q (g) for the

Hopf algebra UE
q (g) associated to the lattice E = Λ(λ) from Section 3.1. We are

now prepared to introduce the algebraic structure at the heart of Section 3.

Definition 3.2. We define Uλ
q (g) to be the subalgebra of the Q(q)-algebra

Uλ
q (g)⊗Q(q)[v±1]

generated by {Ei, Fi}i∈I and {K±1
µ v∓1}µ∈Λλ

.

There is a unique Q-graded Hopf algebra structure on Uλ
q (g) ⊗ Q(q)[v±1] for

which v is a grouplike element of degree zero and the natural embedding Uλ
q (g) ↪→

Uλ
q (g) ⊗ Q(q)[v±1] is a morphism of graded Hopf algebras. Since for each weight

µ ∈ Λλ of V one has

∆(Kµv
−1) = Kµv

−1 ⊗Kµv
−1, ε(Kµv

−1) = 1, S(Kµv
−1) = vK−1

µ ,

Uλ
q (g) is a Q-graded Hopf subalgebra of Uλ

q (g)⊗Q(q)[v±1]. In particular, one has
the decomposition

Uλ
q (g) =

⊕
β∈Q

Uλ
q (g)β ,

where Uλ
q (g)β = Uλ

q (g) ∩ (Uλ
q (g)β ⊗Q(q)[v±1]) for each β ∈ Q.

The following result shows that Uλ
q (g) can be presented in terms of generators

and relations by adding a single invertible element to the realization of Uq(g) pro-
vided by Definition 2.1.

Proposition 3.3. Uλ
q (g) is isomorphic to the unital, associative Q(q)-algebra U̇λ

q (g)

generated by {ξ±i , x
±
i }i∈I ∪ {ξ±λ }, subject to the following list of relations:

ξ±i ξ
∓
i = 1 = ξ±λ ξ

∓
λ , [ξ±i , ξ

±
j ] = 0 = [ξ±i , ξ

±
λ ],(3.1)
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ξ+i x
±
j ξ

−
i = q±(αi,αj)x±

j , ξ+λ x
±
j ξ

−
λ = q±(λ,αj)x±

j ,(3.2)

[x+
i , x

−
j ] = δij

ξ+i − ξ−i
qi − q−1

i

,(3.3)

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

(x±
i )

bx±
j (x

±
i )

1−aij−b = 0,(3.4)

where qi = qdi and i ̸= j in the last relation. Explicitly, the assignment

x+
i 7→ Ei, x−

i 7→ Fi, ξ±i 7→ K±1
i , ξ±λ 7→ K±1

λ v∓1

uniquely extends to an isomorphism of Q(q)-algebras φ : U̇λ
q (g)

∼−→ Uλ
q (g).

Proof. It follows readily from the definition of Uλ
q (g) that the given assignment

extends to a homomorphism φ : U̇λ
q (g) → Uλ

q (g), which is surjective since the
lattice Λ(λ) is generated as a Z-module by the simple roots {αi}i∈I and the highest
weight λ.

Let’s now construct the inverse of φ explicitly. Since |[λ]|λ ∈ Q, we can write
|[λ]|λ =

∑
i∈I niαi with ni ∈ Z for each i ∈ I. Set

(3.5) y := (ξ−λ )
|[λ]|

∏
j∈I

(ξ+j )
nj ∈ U̇λ

q (g).

It follows from (3.1) and (3.2) that this is an invertible central element. Consider
now the Q(q)-algebra

Üλ
q (g) := (U̇λ

q (g)⊗Q(q)[v±1])/(y − vλ)

where vλ = v|[λ]| ∈ Q(q)[v±1]. There is a natural algebra homomorphism

ı : U̇λ
q (g) → Üλ

q (g)

induced by the inclusion U̇λ
q (g) ↪→ U̇λ

q (g) ⊗ Q(q)[v±1]. Note that ı is injective.

Indeed, if x ∈ U̇λ
q (g) satisfies x = z · (y− vλ) for some z ∈ U̇λ

q (g)⊗Q(q)[v±1], then
writing z =

∑
n∈Z znv

n (with only finitely many zn nonzero), we see that

z · (y − vλ) =
∑
n∈Z

znyv
n −

∑
n∈Z

znv
n+|[λ]| =

∑
n∈Z

(zny − zn−|[λ]|)v
n

must have degree 0 in v. In particular, zny = zn−|[λ]| for all n ̸= 0 and x =

z0y − z−|[λ]|. But then z−|[λ]| = z−2|[λ]|y
−1 = z−3|[λ]|y

−2 = . . . = z−k|[λ]|y
−k+1 for any

k > 0 (so z−|[λ]| = 0). Similarly,

z0 = z|[λ]|−|[λ]| = z|[λ]|y = z2|[λ]|y
2 = · · · = zk|[λ]|y

k

for each k ≥ 0, so we must have z0 = 0. Thus, x = z0y − z−|[λ]| = 0. This shows
that ı is injective.

Next, we construct a homomorphism Uλ
q (g) → Üλ

q (g) as follows. For each γ ∈
Λ(λ) = Q+ Zλ and decomposition γ =

∑
i∈I ciαi +mλ, set

ξ̇+γ := (ξ+λ )
mvm

∏
j∈I

(ξ+j )
cj ∈ Üλ

q (g).

Claim. The element ξ̇+γ does not depend on the choice of decomposition γ =∑
i∈I ciαi +mλ.
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Proof of claim. Suppose γ =
∑

i∈I biαi + nλ is another such a decomposition. We

must show that in Üλ
q (g), one has

(ξ+λ )
m−nvm−n

∏
j∈I

(ξ+j )
cj−bj = 1.

Since (n−m)λ =
∑

j∈I(bj − cj)αj ∈ Q, we have a|[λ]| = n−m for some a ∈ Z, and
thus (n−m)λ = a|[λ]|λ =

∑
i∈I aniαi. Therefore, bj − cj = anj for all j ∈ I and

(ξ+λ )
m−nvm−n

∏
j∈I

(ξ+j )
cj−bj = (ξ+λ )

−a|[λ]|v−a|[λ]|
∏
j∈I

(ξ+j )
−anj = va|[λ]|v−a|[λ]| = 1.

Given the claim, it follows readily that there is an algebra homomorphism ϕ :
Uλ
q (g) → Üλ

q (g) uniquely determined by

K±1
γ 7→ ξ̇±γ , Ei 7→ x+

i , Fi 7→ x−
i ∀ γ ∈ Λ(λ) and i ∈ I,

where ξ̇−γ = (ξ̇+γ )
−1. Since there is also a natural algebra homomorphism from

Q(q)[v±1] to the center of Üλ
q (g) sending v to v, we obtain a homomorphism

Φ : Uλ
q (g)⊗Q(q)[v±1] → Üλ

q (g)

which sends a simple tensor x⊗ p(v) to ϕ(x)p(v) for any Laurent polynomial p(v)
with coefficients in Q(q). Note that

Φ(K±1
λ v∓1) = ξ̇±λ v

∓1 = ξ±λ v
±1v∓1 = ξ±λ and Φ(K±1

i ) = ξ±i ∀ i ∈ I.

It follows that Φ restricts to a surjection Uλ
q (g) → ı(U̇λ

q (g))
∼= U̇λ

q (g), which is

necessarily φ−1. □

3.3. The algebraic structure of Uλ
q (g). In this subsection, we highlight a num-

ber of additional structural properties for Uλ
q (g) which follow from its definition

and Proposition 3.3.

Given ζ ∈ Q(q)×, let χ̇q,ζ be the algebra automorphism of Q(q)[v±1] uniquely
determined by χ̇q,ζ(v) = ζv. Then the tensor product

χq,ζ := IdUλ
q (g) ⊗ χ̇q,ζ

is an algebra automorphism of Uλ
q (g)⊗Q(q)[v±1]. It is easy to see that the subalge-

bra of Uλ
q (g)⊗Q(q)[v±1] consisting of all elements fixed by each χq,ζ coincides with

the quantum enveloping algebra Uλ
q (g) associated to the lattice Λ(λ). Moreover,

each χq,ζ restricts to an automorphism of Uλ
q (g). We set

Uλ
q (g)

χ :=
⋂

ζ∈Q(q)×

Uλ
q (g)

χq,ζ

where Uλ
q (g)

χq,ζ consists of all x ∈ Uλ
q (g) for each χq,ζ(x) = x. We then have the

following result.

Proposition 3.4. Let vλ := v|[λ]|. Then Uλ
q (g) has the following properties:

(1) Uλ
q (g) contains Uq(g) ⊗ Q(q)[v±1

λ ] as a subalgebra, which is proper if and
only if λ /∈ Q. Moreover, one has

Uλ
q (g) ∩Uλ

q (g) = Uq(g) and Q(q)[v±1] ∩Uλ
q (g) = Q(q)[v±1

λ ].
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(2) The subalgebra Uλ
q (g)

χ is equal to Uq(g).

(3) The restriction of the epimorphism Id⊗ ε : Uλ
q (g)⊗Q(q)[v±1] ↠ Uλ

q (g) to

Uλ
q (g) induces an isomorphism of Hopf algebras

Uλ
q (g)/(vλ − 1) ∼−→ Uλ

q (g).

We omit the proof of this result; as indicated at the beginning of the section,
it follows from Proposition 3.3, its proof, and the original definition of Uλ

q (g) as a

subalgebra of Uλ
q (g)⊗Q(q)[v±1]. We shall not apply it until Section 5.3.

3.4. The generating matrices L+ and L−. The goal of this subsection is to in-
troduce generating matrices for Uλ

q (g) which satisfy the well-known RLL quadratic
matrix relations and play the role of L-operators with respect to the underlying
representation V (see [KS, §8.5], for instance).

Let’s begin by recalling some helpful notation which frequently arises in the R-
matrix formalism for quantum groups. Suppose we are given an arbitrary unital,
associative Q(q)-algebra U. For each pair of positive integers n and k with k ≤ n,

let ı
(k)
U,n : U→ U⊗n denote the homomorphism

ı
(k)
U,n(x) = 1

⊗(k−1)
U ⊗ x⊗ 1

⊗(n−k)
U ∀ x ∈ U.

Given an additional positive integer m and T ∈ End(V )⊗ U, we set

Ti[j] := (ı
(i)
End(V ),n ⊗ ı

(j)
U,m)(F ) ∈ End(V )⊗n ⊗ U⊗m,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m are fixed. We will write T[j] for T1[j] and Ti for
Ti[1] in the special cases where n = 1 and m = 1, respectively.

We now turn towards defining L+ and L−. We introduce the matrix K by

K :=
∑
µ∈Λλ

IdVµ ⊗Kµ ∈ End(V )⊗ Uλ
q (g).

Then Kv−1 ∈ End(V )⊗Uλ
q (g) and K satisfies the relation

(3.6) (π ⊗ Id)(Ψ(x)) = K−1(π ⊗ Id)(x)K ∀ x ∈ Uq(g)
⊗2,

where Ψ is as in Section 2.4. Next, we introduce L± ∈ End(V )⊗Uλ
q (g) by setting

L+ := vK−1 · (π ⊗ ω)(R+) and L− := (π ⊗ ω)((R+
21)

−1) ·Kv−1,

where ω is the Chevalley involution on Uq(g) ⊂ Uλ
q (g) defined in (2.2), and R+ is

as in Section 2.4.

Proposition 3.5. The matrices L+ and L− have the following properties:

(1) Their coefficients generate Uλ
q (g) as a Q(q)-algebra.

(2) They satisfy the Hopf algebraic relations

∆(L±) = L±
[1]L

±
[2], S(L±) = (L±)−1 and ε(L±) = I.

(3) They satisfying the relations

RL±
1 L

±
2 = L±

2 L
±
1 R and RL+

1 L
−
2 = L−

2 L
+
1 R

in the algebra End(V )⊗2 ⊗Uλ
q (g).
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Proof. Since R+
0 = 1, R+

αi
= (qi−q−1

i )Ei⊗Fi and
(
(R+

21)
−1

)
−αi

= −(qi−q−1
i )Fi⊗

Ei, the definitions of L+ and L− yield that

L+
αi

= (q−1
i − qi)vK

−1 · π(Ei)⊗ Ei and L−
−αi

= (qi − q−1
i )π(Fi)⊗ Fi ·Kv−1

for all i ∈ I. The assertion of Part (1) now follows from the fact that Uλ
q (g) is

generated by {Ei, Fi}i∈I and the coefficients {K±1
µ v∓1}µ∈Λλ

of the End(V )0⊗Uλ
q (g)

component K±v∓1 of L±.

The relations for S and ε stated in (2) follow readily from the Hopf algebra
axioms and the relation ∆(L±) = L±

[1]L
±
[2], which itself is deduced from (2.8) using

(3.6). Similarly, the identities of (3) are deduced using (2.6), (2.8) and (3.6). We
refer the reader to [KS, Prop. 8.5.27], for example, for more details. □

4. The quantum algebra Uλ
R(g)

We now shift our attention to the algebraic structure at the heart of this article:
the Hopf algebra Uλ

R(g) output by the R-matrix formalism for quantum groups
applied to the solution (2.7) of the quantum Yang–Baxter equation.

4.1. Definition of Uλ
R(g) and first properties. In what follows, all notation is

as in Section 2.3. Consider the subalgebras

E± :=
⊕
β∈Q±

End(V )β ⊂ End(V ).

As the trace form ⟨ , ⟩ is Q-graded, it restricts to a non-degenerate bilinear form
⟨ , ⟩± : E± ⊗ E∓ → Q(q). Let Ω± ∈ E± ⊗ E∓ denote the canonical element
associated to ⟨ , ⟩±, and consider the external direct sum E := E+ ⊕ E−. Define

(4.1) L± := (1⊗ ı∓)(Ω±) ∈ End(V )⊗ T (E),

where T (E) is the tensor algebra on the Q(q)-vector space E, and ı∓ : E∓ ↪→
T (E∓) ⊂ T (E) is the natural inclusion. In what follows, we let L± denote the zero
weight component of L±:

(4.2) L± := L±
0 ∈ End(V )0 ⊗ T (E).

Definition 4.1. We define Uλ
R(g) to be the quotient of the Q(q)-algebra T (E) by

the two sided ideal generated by the relations

L+L− = I = L−L+,(4.3)

RL+
1 L

−
2 = L−

2 L
+
1 R,(4.4)

RL+
1 L

+
2 = L+

2 L
+
1 R and RL−

1 L
−
2 = L−

2 L
−
1 R(4.5)

in End(V )⊗ T (E) and End(V )⊗2 ⊗ T (E), respectively.

Remark 4.2. Let us rephrase the above definition in more familiar terms. Suppose
that {va}a∈J is any fixed basis of V , and let {Eab}a,b∈J ⊂ End(V ) be the associated
basis of matrix units in End(V ), defined by Eabvc = δbcva.

Then Uλ
R(g) is isomorphic to the Q(q)-algebra UJ

R (g) generated by elements

{l±ab}a,b∈J subject to the relations (4.3)–(4.5), with L± replaced by the matrix



18 M. RUPERT AND C. WENDLANDT

L±
J :=

∑
a,b Eab ⊗ l±ab, in addition to the triangularity relations

(4.6) L±
J =

∑
β∈Q±

L±
J ,β .

The relation (4.6) is automatically satisfied by L± from Definition 4.1, and the
assignment L±

J 7→ L± uniquely extends to an isomorphism UJ
R (g) ∼−→ Uλ

R(g). The
advantage of Definition 4.1 is that it does not depend on any choice of bases for V
or End(V ).

Remark 4.3. Henceforth, we shall always use the notation L± and L± to refer to
the images of the elements (4.1) and (4.2) in End(V )⊗Uλ

R(g). In the rare instances
where it is necessary to refer to their preimages in End(V ) ⊗ T (E) (as will be the

case in Proposition 4.4), we will write L̃± and L̃±.

Let us now turn to describing the Hopf algebra structure on Uλ
R(g). Since the

weight zero component L± of L± is invertible, L± is itself an invertible element in⊕
β∈Q±

End(V )β ⊗Uλ
R(g) ⊂ End(V )⊗Uλ

R(g).

Given this observation, it follows by a standard argument that Uλ
R(g) admits the

structure of a Hopf algebra with coproduct ∆R, antipode SR and counit εR uniquely
determined by

(4.7) ∆R(L
±) = L±

[1]L
±
[2], SR(L

±) = (L±)−1 and εR(L
±) = I.

We refer the reader to Propositions 8.32 and 9.1 of [KS], for instance, in addition
to Remark 5.8 of [GRW1] and Theorems 1 and 9 of the foundational paper [FRT]
for further details. One subtle technical point which does not arise in these sources
is that, when the weight spaces of V are not all one-dimensional, it is non-trivial
that the assignments ∆R and SR preserve the defining relation (4.3) of Uλ

R(g). For
instance, one has

∆R(L
+)∆R(L

−) = L+
[1]L

+
[2]L

−
[1]L

−
[2],

which, by (4.3), will be the unit in End(V )⊗Uλ
R(g)

⊗2 provided L+
[2]L

−
[1] = L−

[1]L
+
[2].

Since End(V )0 is not in general a commutative algebra, the latter relation is it-
self non-trivial. However, it is an immediate consequence of the first assertion of
Theorem 4.8, which more generally provides the missing ingredient needed to see
∆R and SR preserve (4.3). For the moment, we take this for granted and defer
the statement of Theorem 4.8 to Section 4.3 in order to first establish more basis
structural properties of Uλ

R(g). We further emphasize that the proof of Theorem
4.8 will depend only on the defining relations of Uλ

R(g) and properties of V itself.

As the next result illustrates, the Q-grading on End(V ) naturally induces a Q-
grading on Uλ

R(g) compatible with its Hopf algebra structure.

Proposition 4.4. There is a unique Q-grading on the Hopf algebra Uλ
R(g) with

the property that
L±
β ∈ End(V )β ⊗Uλ

R(g)β ∀ β ∈ Q.

Proof. Let us equip the vector spaces E+ and E− from the beginning of Section 4.1
with their opposite Q-gradings, in which (E±)β = End(V )−β and (E±)−β = 0 for
all β ∈ Q±. Then the tensor algebra T (E) on the Q-graded space E= E+ ⊕ E− is
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graded as an algebra and, since the trace form ⟨ , ⟩ is Q-graded, the End(V )β⊗T (E)

component L̃±
β of L̃± := (1⊗ ı∓)(Ω±) satisfies

L̃±
β ∈ End(V )β ⊗ T (E)β ∀ β ∈ Q.

In particular, if we let End(V )t denote End(V ) equipped with its opposite Q-

grading, in which End(V )tβ := t(End(V )β) = End(V )−β for all β ∈ Q, then L̃± is

a degree zero element of the Q-graded algebra End(V )t ⊗ T (E). Next, let (ϵ1, ϵ2)
take value (±,±) or (+,−). Since, the elements

L̃±L̃∓ − I and RL̃ϵ1
1 L̃ϵ2

2 − L̃ϵ2
2 L̃ϵ1

1 R

are homogeneous of degree zero in the Q-graded algebras End(V )t ⊗ T (E) and
(End(V )t)⊗2 ⊗ T (E), the ideal in T (E) generated by the relations (4.3)–(4.5) is
graded. Therefore, we may conclude that Uλ

R(g) is a Q-graded algebra with L±
β

laying in End(V )β ⊗Uλ
R(g)β for each β ∈ Q±. Moreover, since the matrices

L±, (L±)−1, L±
[1]L

±
[2] and I

are homogeneous elements of degree zero in the Q-graded algebras End(V )t⊗Uλ
R(g),

End(V )t ⊗Uλ
R(g), End(V )t ⊗Uλ

R(g)
⊗2 and End(V )t, respectively, it follows from

(4.7) that the structure maps ∆R, SR and εR are Q-graded. □

To conclude this subsection, we establish some basic properties satisfied by the
weight zero components L+ and L− of L+ and L−.

Lemma 4.5. The matrix L := L+ satisfies the relations

(4.8) L1L2 = L2L1, RL1L2 = L2L1R and L1L
±
2 L

−1
1 = D−1L±

2 D.

In particular, the coefficients of L±1 generate a commutative subalgebra of Uλ
R(g).

Proof. The second relation follows by projecting RL+
1 L

+
2 = L+

2 L
+
1 R onto the sum-

mand End(V )⊗2⊗Uλ
R(g)0, while the third relation follows by projecting that same

identity onto End(V )0 ⊗ End(V ) ⊗Uλ
R(g). As L2 commutes with D, the identity

L1L2 = L2L1 follows by taking the Uλ
R(g)0 component of the third relation of

(4.8). □

4.2. Automorphisms. We now turn towards describing a natural family of alge-
bra automorphisms of Uλ

R(g). Let GR(V ) denote the group

GR(V ) = {D ∈ GLh(V ) : Ad(D ⊗D)(R) = R},
where we recall from Section 2.3 that GLh(V ) =

∏
µ GL(Vµ) is the group of invert-

ible, degree zero linear automorphisms of the vector space V . In addition, we recall
that A ∈ GLh(V ) is the symmetric matrix defined in Lemma 2.2.

Proposition 4.6. Let D ∈ GR(V ) and ζ ∈ Q(q)×. Then there exists Q(q)-algebra
automorphisms ϑD,χζ and θ of Uλ

R(g) uniquely determined by

ϑD(L±) = DL±D−1, χζ(L
±) = L±ζ±1 and θ(L±) = A−1(L∓)tA.

Moreover, ϑD is a Hopf algebra automorphism satisfying ϑ−1
D = ϑD−1 , while θ is a

coalgebra anti-automorphism intertwining SR and S−1
R and satisfying θ−1 = θ.
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Proof. We will prove that the assignment θ(L±) = A−1(L∓)tA extends to an auto-
morphism of Uλ

R(g) with the claimed properties; we refer the reader to the proof
of Proposition 5.4 in [GRW1] for the assertions involving ϑD and χζ .

First note that, since t(End(V )β) = End(V )−β (see (2.4)) and A ∈ GLh(V ), we
have

θ(L±
β ) = A−1(L∓

−β)
tA ∀ β ∈ Q.

In particular, θ(L±) = A−1(L±)tA. We thus have

θ(L±)θ(L∓) = A−1(L±)t(L∓)tA = I,

where in the last equality we have used that, by Lemma 4.5, the coefficients of L+

and L− generate a commutative subalgebra of Uλ
R(g), and therefore (L±)t(L∓)t =

(L∓L±)t = I. Thus, the assignment θ preserves the relation (4.3).

To show that the relations (4.4) and (4.5) are preserved, suppose more generally
that S,T ∈ End(V )⊗Uλ

R(g) satisfy RS1T2 = T2S1R. Let us show θ(S) := A−1TtA

and θ(T ) := A−1StA do as well. Using that Rt1,t2
21 = A1A2RA

−1
1 A−1

2 (see Lemma
2.3), we obtain

Rθ(S)1θ(T)2 = RA−1
1 Tt

1A1A
−1
2 St2A2

= RA−1
1 A−1

2 Tt
1S

t
2A1A2

= A−1
1 A−1

2 Rt1,t2
21 Tt

1S
t
2A1A2

= A−1
1 A−1

2 (T2S1R)
t1,t2
21 A1A2

= θ(T)2θ(S)1A
−1
2 A−1

1 Rt1,t2
21 A1A2 = θ(T)2θ(S)1R,

as desired. Hence, we may conclude that the assignment θ(L±) = A−1(L∓)tA
uniquely extends to an algebra endomorphism of Uλ

R(g). Moreover, since A is
symmetric, we have

θ2(L±) = θ(A−1(L∓)tA) = A−1AtL±(A−1)tA = L±,

which shows that θ is an involution.

We are left to establish that θ is a coalgebra anti-automorphism satisfying S−1
R ◦

θ = θ ◦SR. This is equivalent to the assertion that θ is a Hopf algebra isomorphism
Uλ

R(g)
∼−→ Uλ

R(g)
cop, where Uλ

R(g)
cop is the co-opposite Hopf algebra to Uλ

R(g).
By the uniqueness of the antipode, it is sufficient to verify that

∆op
R ◦ θ = (θ ⊗ θ) ◦∆R and εR ◦ θ = εR.

The latter identity clearly holds; let’s establish the former. We have

∆op
R (θ(L±)) = ∆op

R (A−1(L∓)tA) = A−1(L∓
[2]L

∓
[1])

tA = A−1(L∓
[1])

tA ·A−1(L∓
[2])

tA,

which is precisely (θ ⊗ θ)(∆R(L
±)), as desired. □

Remark 4.7. We shall henceforth refer to θ as the Chevalley involution on Uλ
R(g).

It has the property that

θ(Uλ
R(g)β) ⊂ Uλ

R(g)−β ∀ β ∈ Q

and, as a consequence of Theorem 4.12 and the results of Section 5, it indeed
corresponds to an involution on Uλ

q (g) extending the standard Chevalley involution
ω on Uq(g).
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We now consider a particular subclass of the automorphisms ϑD related to the
Q-grading introduced in Proposition 4.4. Observe that there is an inclusion of
groups Q ↪→ GR(V ) given by

β 7→ π(Kβ) =
∑
µ

q(β,µ)IdVµ
∀ β ∈ Q.

Thus, we get an action of Q on Uλ
R(g) by Hopf algebra automorphisms, given by

β 7→ ϑβ := ϑπ(Kβ). Moreover, one has

ϑα(L
±
β ) = q(α,β)L±

β ∀ α, β ∈ Q.

It follows that the Q-grading on Uλ
R(g) introduced in the previous subsection is

precisely the simultaneous eigenspace decomposition of the family {ϑβ}β∈Q. That
is, for each β ∈ Q, one has

Uλ
R(g)β = {x ∈ Uλ

R(g) : ϑα(x) = q(α,β)x ∀ α ∈ Q}.
We note that this is entirely analogous to the situation which unfolds for the ℏ-adic
analogue of Uλ

R(g) studied in [GRW1]; see Corollary 5.9 therein.

4.3. The semisimplicity of L±. The goal of this subsection is to prove that
the matrices L+ and L− are diagonal with a single eigenvalue associated to each
weight space Vµ. To make this precise, note that since End(V )0 =

⊕
µ End(Vµ)

and L− = (L+)−1, the matrices L± admit decompositions

L± =
∑
µ

L±1
µ with Lµ ∈ End(Vµ)⊗Uλ

R(g),

where the summation is taken over all weights µ of V .

Theorem 4.8. For each weight µ of V , there exists a unique invertible element lµ
of Uλ

R(g) such that
Lµ = IdVµ

⊗ lµ.

Moreover, these elements are grouplike and satisfy

lµxβl
−1
µ = q−(µ,β)xβ ∀ xβ ∈ Uλ

R(g)β .

Proof. By projecting the third relation of (4.8) from Lemma 4.5 onto End(Vµ) ⊗
End(V )β ⊗Uλ

R(g) for any β ∈ Q and weight µ of V , we obtain

Lµ,1(L
±
β )2L

−1
µ,1 = D−1|Vµ⊗V (L

±
β )2D|Vµ⊗V = q−(µ,β)(L±

β )2,

where in the second equality we have used that D|Vµ⊗Vγ
= q(µ,γ)−(λ,λ)IdVµ⊗Vγ

. The

above identity implies that, if Lµ = IdVµ
⊗ lµ, then one has lµxβl

−1
µ = q−(µ,β)xβ

for all xβ ∈ Uλ
R(g)β . Similarly, if the first part of the theorem holds then, since

∆R(L) = L[1]L[2], each lµ will automatically be grouplike.

Hence, we are left to establish the first assertion of the theorem, which requires
a more careful treatment. To begin, fix a positive integer n and, for each n-tuple
(βj)

n
j=1 ∈ (Q+)

n, set

Rβ1,...,βn := (Rβ1)1,n+1 · · · (Rβn)n,n+1 ∈
(
⊗n

j=1End(V )βj

)
⊗ End(V )−

∑
j βj

.

Given an n-tuple of weights (µj)
n
j=1 of V and an auxiliary weight γ of V , we set

Rµ1,...,µn

β1,...,βn
(γ) := Rβ1,...,βn

|Vµ1⊗···⊗Vµn⊗Vγ
,
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Lµ1,...,µn
:= Lµ1,1 · · ·Lµn,n.

Claim. For each (βj)
n
j=1, (µj)

n
j=1 and γ, as above, we have

(4.9)
Lγ−

∑n
j=1 βj ,n+1·Rµ1,...,µn

β1,...,βn
(γ)

= L−1
µ1+β1,...,µn+βn

· Rµ1,...,µn

β1,...,βn
(γ) ·Lµ1,...,µn

·Lγ,n+1

Proof of claim. By applying the relation RL1L2 = L2L1R of Lemma 4.5 repeat-
edly (where L= L+), we deduce that for any n > 0 one has

RV ⊗n,V L1L2 · · ·Ln ·Ln+1 = Ln+1 ·L1L2 · · ·Ln RV ⊗n,V ,

where RV ⊗n,V := R1,n+1R2,n+1 · · ·Rn,n+1. Left-multiplying this relation by the
inverse of LV ⊗n := L1L2 · · ·Ln while using that the coefficients of L commute, we
obtain

L−1
V ⊗nRV ⊗n,V LV ⊗n ·Ln+1 = Ln+1 · RV ⊗n,V .

The formula (4.9) is obtained from this relation by projecting onto the weight
(β1, . . . , βn,−

∑
j βj) component of End(V )⊗(n+1) and then restricting the resulting

equality of operators to Vµ1 ⊗ · · · ⊗ Vµn ⊗ Vγ .

With the claim at our disposal, we now have the ingredients necessary to prove
the first part of the theorem. First note that since Vλ is one-dimensional, the desired
result holds for Lλ: it is of the form IdVλ

⊗ lλ for a unique, degree zero, invertible
element lλ ∈ Uλ

R(g).

Let us now take µ to be any weight of V , and write λ− µ =
∑n

j=1 αij for some

n and simple roots αi1 , . . . , αin . Taking βj = αij and γ = λ in formula (4.9), we
obtain

(4.10)
Lµ,n+1·Rµ1,...,µn

αi1
,...,αin

(λ)

= L−1
µ1+αi1 ,...,µn+αin

· Rµ1,...,µn
αi1

,...,αin
(λ) ·Lµ1,...,µn

· lλ.

Moreover, since R+
αi

= (qi − q−1
i )π(Ei) ⊗ π(Fi) and Rαi

= DR+
αi
, the operator

Rµ1,...,µn
αi1

,...,αin
(λ) is a nonzero scalar multiple of

π(Ei1)|Vµ1
⊗ · · · ⊗ π(Ein)|Vµn

⊗ π(Fi1 · · ·Fin)|Vγ
.

For each 1 ≤ j ≤ n, let us now choose µj with the property that π(Eij )|Vµj
is

nonzero. Such a j exists since π(Eij ) is not the zero operator on V . In addition, we
choose fj ∈ Hom(Vµ, Vµ+αij

)∗ such that fj(π(Eij )|Vµj
) = 1. Applying f1⊗· · ·⊗fn

to the first n-tensor factors of (4.10) while evaluating the (n+ 1)-th factor on the
highest weight vector vλ yields

(4.11) Lµ · π(Fi1 · · ·Fin)vλ = π(Fi1 · · ·Fin)vλ ⊗ l
αi1 ,...,αin
µ1,...,µn lλ

where l
αi1 ,...,αin
µ1,...,µn ∈ Uλ

R(g) is determined by

(4.12)
l
αi1

,...,αin
µ1,...,µn

= (f1 ⊗ · · · ⊗ fn ⊗ IdUλ
R(g))

(
L−1

µ+α · π(Ei1)|Vµ1
⊗ · · · ⊗ π(Ein)|Vµn

·Lµ

)
,

with Lµ+α = Lµ1+αi1
,...,µn+αin

and Lµ = Lµ1,...,µn
. In particular, (4.11) implies

that each vector π(Fi1 · · ·Fin)vλ is an eigenvector for the matrixLµ with coefficients
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in Uλ
R(g), with eigenvalue l

αi1
,...,αin

µ1,...,µn lλ. Moreover, the above formula for l
αi1

,...,αin
µ1,...,µn

implies that

l
αiσ(1)

,...,αiσ(1)
µσ(1),...,µσ(n)

= l
αi1 ,...,αin
µ1,...,µn

for every permutation σ ∈ Sn. Since Vµ is spanned by all vectors of the form
π(Fi1 · · ·Fin)vλ with

∑n
j=1 αij = λ− µ, we see that every vector in Vµ is an eigen-

vector for Lµ with the same eigenvalue, which is

(4.13) lµ := l
αi1 ,...,αin
µ1,...,µn lλ

for any sequence of simple roots αi1 , . . . , αin which sum to λ − µ and weights µj

with π(Eij )|Vµj
̸= 0. This completes the proof of the theorem. □

For each i ∈ I, let Λλ,i ⊂ Λλ denote the (non-empty) set of all weights µ of V
for which µ+ αi is also a weight:

Λλ,i = {µ ∈ Λλ : µ+ αi ∈ Λλ}.
Let us now fix µ ∈ Λλ to be any weight of V . Returning to (4.12) and (4.13) with
the above theorem at our disposal, we obtain

lµ := l
αi1

,...,αin
µ1,...,µn lλ = lλ

n∏
j=1

l−1
µj+αij

lµj
,

where (αij )
n
j=1 are simple roots such that λ − µ =

∑n
j=1 αij and each µj is an

arbitrary element of Λλ,ij . In particular, if j ∈ I is fixed and µ, γ are any two
weights of V in Λλ,j , then

l−1
µ+αj

lµ = l−1
γ+αj

lγ .

This last identity can also be deduced from Theorem 4.8 by projecting the relation
RL1L2 = L2L1R of Lemma 4.5 onto Hom(Vµ, Vµ+αj

)⊗ Hom(Vγ+αj
, Vγ)⊗Uλ

R(g)
and using that the operators π(Ej)|Vµ

and π(Fj)|Vγ+αj
are nonzero for µ, γ ∈ Λλ,j .

The next corollary summarizes these observations.

Corollary 4.9. For each i ∈ I, there is a unique element ξi ∈ Uλ
R(g) with the

property that
ξi = l−1

µ+αi
lµ ∀ µ ∈ Λλ,i.

Moreover, if µ is any weight of V and λ− µ = β with β =
∑

j∈I njαj, then

lµ = lλξβ , where ξβ :=
∏
j∈I

ξ
nj

j .

To conclude this subsection, we note that, as an immediate consequence of the
second assertion of Theorem 4.8 and the above corollary, we have

(4.14) ξixβξ
−1
i = q(αi,β)xβ ∀ xβ ∈ Uλ

R(g)β and β ∈ Q.

4.4. The matrices L±. Let us now introduce the unipotent matrices L± by setting

L+ := L−1L+ and L− := L−L,

where we have set L = L+, as in the previous section. The goal of this section
is to prove Theorem 4.12, which establishes that the components L±

β of L± lay in

π(Uq(n
±)β) ⊗Uλ

R(g) and have coefficients belonging to the subalgebras generated
by the coefficients of L+

αi
and L−

−αi
for all i ∈ I. To prove this theorem we will need
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two lemmas, the first of which spells out the basic commutation relations satisfied
by L±.

Lemma 4.10. The matrices L± satisfy the relations

R+
(
DL±

1 D−1
)
L±
2 = L±

2

(
D−1L±

1 D
)
R+

R+
L1
L+
1 L

−
2 = L−

2 L
+
1 R

+
L2

where R+
Li

= L−1
i R+Li for i ∈ {1, 2}.

Proof. Both of these identities follow from the defining relations of Uλ
R(g) and

Lemma 4.5. For a proof of the first relation, we refer the reader to Lemma 5.2
below, which establishes a more general family of identities. To prove the second
relation, we apply (4.4) to obtain

R+
L1
L+
1 L

−
2 = L−1

1 D−1RL+
1 L

−
2 L2 = L−1

1 D−1L−
2 L

+
1 RL2 = L−1

1 D−1L−
2 L

+
1 DL2R

+
L2
.

The desired result now follows from Lemma 4.5 which gives D−1L−
2 D= L1L

−
2 L

−1
1

and D−1L+
1 D= L2L

+
1 L

−1
2 , and hence

L−1
1 D−1L−

2 L
+
1 DL2R

+
L2

= L−
2 L

−1
1 L2L

+
1 R

+
L2

= L−
2 L

+
1 R

+
L2
. □

To state the second lemma, recall from Section 2.1 that, for each β ∈ Q̇+, the

set Q̇β
+ consists of all α ∈ Q̇+ for which β − α ∈ Q̇+. The below result establishes

some key commutation relations satisfied by the components of L+.

Lemma 4.11. For each β ∈ Q̇+, the matrix L+
β ∈ End(V )β ⊗Uλ

R(g) satisfies the
following two identities:

[R+
αi
, (L+

β )2] = (L+
β−αi

)2(L+
αi
)1π(K

−1
i )2 − (L+

αi
)1π(Ki)2(L+

β−αi
)2,(4.15)

(L+
β )1π(K

−1
β −Kβ)2 = [R+

β , (L
+
β )2] +

∑
α∈Q̇β

+

L+
β,α,(4.16)

where L+
β,α is defined by

L+
β,α = R+

α (L
+
β−α)1π(Kβ−α)2(L+

α )2 − (L+
α )2(L

+
β−α)1π(K

−1
β−α)2R

+
α .

Proof. Taking the End(V )αi
⊗End(V )β−αi

-component of the first relation of Lemma
4.10, we obtain

R+
αi
(L+

β )2 + D(L+
αi
)1D

−1(L+
β−αi

)2 = (L+
β−αi

)2D
−1(L+

αi
)1D+ (L+

β )2R
+
αi
.

To complete the proof of (4.15), it remains to note that for any ν ∈ Q+, one has

(4.17) D(L+
ν )1D

−1 = (L+
ν )1π(Kν)2.

Let’s now turn to the relation (4.16). Taking instead the End(V )β ⊗ End(V )0-
component of the first relation of Lemma 4.10 yields

D(L+
β )1D

−1+R+
β (L

+
β )2 +

∑
α∈Q̇β

+

R+
α D(L+

β−α)1D
−1(L+

α )2

= D−1(L+
β )1D+ (L+

β )2R
+
β +

∑
α∈Q̇β

+

(L+
α )2D

−1(L+
β−α)1DR+

α .



RATIONAL FORMS VIA THE R-MATRIX FORMALISM 25

The relation (4.16) follows readily from this identity by rearranging and making
use of (4.17). □

We are now prepared to state and prove the main result of this subsection. Recall
that θ is the Chevalley involution of Uλ

R(g) defined in Proposition 4.6.

Theorem 4.12. For each i ∈ I there is an element Xi ∈ Uλ
R(g)αi

such that

L+
αi

= π(Ei)⊗Xi and L−
−αi

= π(Fi)⊗Yi,

where Yi = θ(Xi) ∈ Uλ
R(g)−αi

. Moreover, one has

L±
β ∈ π(Uq(n

±)β)⊗Uλ
R(n

±)β ∀ β ∈ Q±,

where Uλ
R(n

+) and Uλ
R(n

−) denote the subalgebras of Uλ
R(g) generated by {Xi}i∈I

and {Yi}i∈I, respectively.

Proof. We will first show by induction on the height ht(β) of β ∈ Q+ that one has

(4.18) L+
β ∈ π(Uq(n

+)β)⊗Uλ
R(g)β ∀ β ∈ Q+.

If β = 0, then this is trivial as L0 = I. Suppose now that β ̸= 0 has height
k > 0. Then, we can find a weight µ of V such that (β, µ) ̸= 0; indeed, otherwise β
annihilates the lattice Λ(λ) ⊃ Q, which is impossible. Let v ∈ Vµ be nonzero and let
f ∈ V ∗ be such that f(v) = 1. Then, applying the linear functional φ ∈ End(V )∗

defined by φ(x) = f(xv) to the second tensor factor of (4.16) yields

(4.19) L+
β (q

−(β,µ) − q(β,µ)) = φ2

(
[R+

β , (L
+
β )2]

)
+

∑
α∈Q̇β

+

φ2(L+
β,α),

where φ2 = IdV ⊗ φ ⊗ IdUλ
R(g). Since α ∈ Q̇β

+ implies that ht(β − α) < ht(β) and

R+
ν ∈ π(Uq(n

+))ν ⊗π(Uq(n
−))−ν for each ν ∈ Q+, we can conclude from the above

formula, the definition of L+
β,α (see Lemma 4.11), and the inductive hypothesis that

L+
β belongs to π(Uq(n

+)β)⊗Uλ
R(g)β . This completes the proof of (4.18).

Since π(Uq(n
+)αi

) = Q(q) · π(Ei) for each i ∈ I, it follows immediately from
(4.18) that L+

αi
is of the form L+

αi
= π(Ei)⊗Xi for some Xi ∈ Uλ

R(g)αi
.

Next, we show that for arbitrary β ∈ Q̇+, one in fact has

(4.20) L+
β ∈ π(Uq(n

+)β)⊗Uλ
R(n

+)β ,

where Uλ
R(n

+) is as in the statement of the theorem. For this, we can again induct
on the height of β, with the base case being trivial. Assume now the assertion holds
for any α ∈ Q+ of height less than k, and let β ∈ Q+ be such that ht(β) = k. Using
(4.19) and the inductive hypothesis, we see that the coefficients of L+

β will belong

to Uλ
R(n

+)β provided

[R+
β , (L

+
β )2] ∈ End(V )⊗2 ⊗Uλ

R(n
+)β .

Since R+
β ∈ End(V )⊗ π(Uq(n

−))β , this will be true provided

[π(Fi1 · · ·Fik),L
+
β ] ∈ End(V )⊗Uλ

R(n
+)β

for all (ij)
k
j=1 ∈ Ik such that β =

∑k
j=1 αij . Since R+

αi
= (qi − q−1

i )π(Ei)⊗ π(Fi),

this is now a consequence of (4.15) and the inductive hypothesis.
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To complete the proof of the theorem, we must show that L−
−αi

= π(Fi)⊗ θ(Xi)
and that the counterpart of (4.20) holds with L+ replaced by L−, Q+ by Q−, and
n+ by n−. This can be accomplished using properties of the Chevalley involution
θ, as we now explain. First, observe that

θ(L−) = θ(L−L) = A−1(L+)tAL−1,

where we have used that θ(L) = A−1(L−1)tA = L−1, which follows from the fact
that, by Theorem 4.8, L is diagonal and commutes with A. Next, using properties
of the transpose t and Theorem 4.8, we deduce that

(L+)t−β = (LL+
β )

t = (Lβ)
tπ(K−1

β )L ∀ β ∈ Q+.

Combining the above formulae, we obtain

(4.21) θ(L−
−β) = A−1(L+

β )
tA · π(K−1

β ) ∀ β ∈ Q+.

In the special case where β = αi, we may use that L+
αi

= π(Ei) ⊗ Xi and that

A−1π(x)tA = π(τ(x)) (see Lemma 2.2) to obtain

θ(L−
−αi

) = π(τ(Ei)K
−1
i )⊗Xi = π(Fi)⊗Xi.

Since θ is involutive, this yields L−
−αi

= π(Fi)⊗Yi with Yi = θ(Xi), as desired.

More generally, if β ∈ Q+ is arbitrary then from (4.20) and (4.21) we obtain

θ(L−
−β) ∈ π(τ(Uq(n

+)β)K
−1
β )⊗Uλ

R(n
+)β = π(Uq(n

−)−β)⊗Uλ
R(n

+)β ,

where we have used that τ(Uq(n
+)β)K

−1
β = Uq(n

−)−β ; see (2.3). Since θ is an

involution and θ(Uλ
R(n

+)β) = Uλ
R(n

−)−β , we may conclude that

L−
−β ∈ π(Uq(n

−)−β)⊗Uλ
R(n

−)−β ∀ β ∈ Q+. □

Remark 4.13. As an application of Corollary 4.9 and Theorems 4.8 and 4.12, we
may conclude that Uλ

R(g) is generated as a Q(q)-algebra by lλ, l
−1
λ , and the family

of elements {ξ±1
i ,Xi,Yi}i∈I. We will prove in Section 5 that these elements satisfy

the defining relations of Uλ
q (g).

5. Identifying Uλ
R(g) and Uλ

q (g)

In this section, we state and prove the main theorem of this article, which iden-
tifies the Q-graded Hopf algebras Uλ

R(g) and Uλ
q (g); see Theorem 5.1. Afterwards,

we use this theorem to recover natural characterizations of the quantum algebras
Uq(g), U

λ
q (g) and Uq(g)⊗Q(q)[v±1

λ ] within the framework of the R-matrix formal-
ism; see Corollaries 5.7 and 5.8.

5.1. The isomorphism Uλ
R(g)

∼= Uλ
q (g). Recall from Section 3.4 that L+ and L−

are the generating matrices for Uλ
q (g) defined by

L+ = vK−1 · (π ⊗ ω)(R+) and L− = (π ⊗ ω)((R+
21)

−1) ·Kv−1.

In addition, we recall from Proposition 3.3 that ξ±λ denotes the element K±1
λ v∓1 of

Uλ
q (g). The following theorem provides the main result of this section.
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Theorem 5.1. The assignment L± 7→ L± uniquely extends to an isomorphism of
Q-graded Hopf algebras

Υ : Uλ
R(g)

∼−→ Uλ
q (g).

The inverse Υ−1 of Υ is given by the following formulae for i ∈ I :

Υ−1(K±1
i ) = ξ±1

i , Υ−1(ξ±λ ) = l∓1
λ ,

Υ−1(Ei) =
Xi

q−1
i − qi

and Υ−1(Fi) =
Yi

qi − q−1
i

.

Proof. It follows directly from Proposition 3.5 that the assignment L± 7→ L± ex-
tends to a Hopf algebra homomorphism Υ : Uλ

R(g) → Uλ
q (g). Moreover, since L±

are degree zero elements of the Q-graded algebra End(V )t ⊗Uλ
q (g) (see the proof

of Proposition 4.4), Υ respects the underlying Q-gradings.

Hence, we are left to verify that Υ is invertible with inverse as specified in
the statement of the theorem. We will do this by explicitly showing the stated
formulas for Υ−1 determine a Q(q)-algebra homomorphism Uλ

q (g) → Uλ
R(g), and

then explain why it is necessarily Υ−1.

Claim. The assignment

K±1
i 7→ ξ±1

i , ξ±λ 7→ l∓1
λ , Ei 7→

Xi

q−1
i − qi

and Fi 7→
Yi

qi − q−1
i

∀ i ∈ I

extends to an algebra homomorphism Υ♯ : Uλ
q (g) → Uλ

R(g).

Proof of claim. By Proposition 3.3, this amounts to showing that the elements l∓1
λ ,

ξ±1
i , (q−1

i − qi)
−1Xi and (qi − q−1

i )−1Fi satisfy the relations (3.1)–(3.4) for ξ±λ , ξ
±
i ,

x+
i and x−

i , respectively.

The first identity of (3.1) is trivially satisfied, while the second holds since
{ξ±1

i }i∈I and l±1
λ belong to the commutative subalgebra of Uλ

R(g) generated by
the coefficients of L and L−1; see Lemma 4.5 and Corollary 4.9. The commutation
relations of (3.2) are a consequence of Theorem 4.8, the identity (4.14), and that,
by Theorem 4.12, the elements Xj and Yj have degree αj and −αj , respectively.

The relations (3.3) and (3.4) for {Xi,Yi}i∈I are more subtle. They are equivalent
to the relations

[Xi,Yj ] = δij(q
−1
i − qi)

(
ξi − ξ−1

i

)
,(5.1)

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

Xb
iXjX

1−aij−b
i = 0,(5.2)

1−aij∑
b=0

(−1)b
[
1− aij

b

]
qi

Yb
iYjY

1−aij−b
i = 0,(5.3)

where qi = qdi and i ̸= j in the last two relations. To prove (5.1) recall that,
by Lemma 4.10, we have R+

L1
L+
1 L

−
2 = L−

2 L
+
1 R

+
L2

where R+
La

= L−1
a R+La for

a ∈ {1, 2}. Taking the End(V )αi
⊗End(V )−αj

⊗Uλ
R(g) component of this relation

and rearranging, we obtain

(5.4)
[
(L+

αi
)1, (L−

−αj
)2

]
= δij

(
(R+

L2
)αi

− (R+
L1
)αi

)
.
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To see that this is equivalent to (5.1), note that, for each β ∈ Q+ and x ∈ End(V )±β ,
one has

L−1xL=
∑
µ

(IdVµ±β
◦x ◦ IdVµ

)⊗ l−1
µ±βlµ =

∑
µ

(IdVµ±β
◦x ◦ IdVµ

)⊗ξ±1
β = x⊗ξ±1

β

where ξβ is as in Corollary 4.9 (in particular, ξαi
= ξi). Since R+

αi
= (qi −

q−1
i )π(Ei)⊗ π(Fi), this implies that (5.4) is equivalent to

π(Ei)⊗ π(Fi)⊗ [Xi,Yj ] = π(Ei)⊗ π(Fi)⊗ δij(q
−1
i − qi)

(
ξi − ξ−1

i

)
,

where we have used that, by Theorem 4.12, we have L+
αi

= π(Ei)⊗Xi and L−
−αj

=

π(Fj)⊗Yj . The relation (5.1) now follows immediately.

We are left to verify that the q-Serre relations (5.2) and (5.3) are satisfied. By
Theorem 4.12, Yk = θ(Xk) for all k ∈ I, so it is sufficient to establish that (5.2)
holds for all i, j ∈ I with i ̸= j. This is proven in detail in Section 5.2 below.

Now let us explain why Υ♯ is the inverse of Υ. By Remark 4.13, the elements
l±1
λ , ξ±1

i , Xi and Yi (i ∈ I) generate Uλ
R(g). Hence, it is sufficient to show that

Υ ◦ Υ♯ = IdUλ
q (g)

. This is a consequence of the following claim.

Claim. For each i ∈ I, one has

(5.5)
Υ(lλ) = ξ−λ = K−1

λ v,

Υ(ξi) = Ki, Υ(Xi) = (q−1
i − qi)Ei, Υ(Yi) = (qi − q−1

i )Fi,

Proof of claim. Since Υ(L) = L+
0 = vK−1 and L=

∑
µ IdVµ⊗lµ, we have Υ(lµ) =

vK−1
µ for each weight µ of V . This immediately gives Υ(lλ) = ξ−λ , while also

implying
Υ(ξi) = Υ(l−1

µ+αi
lµ) = Kµ+αi

v−1vK−1
µ = Ki ∀ i ∈ I.

Next, by the relations at the beginning of the proof of Proposition 3.5, we have

Υ(L+
αi
) = Υ(L−1)L+

αi
= (q−1

i − qi)π(Ei)⊗ Ei,

Υ(L−
αi
) = L−

αi
Υ(L) = (qi − q−1

i )π(Fi)⊗ Fi,

from which it follows immediately that Υ(Xi) = (q−1
i − qi)Ei and Υ(Yi) = (qi −

q−1
i )Fi for each i ∈ I. This completes the proof of the claim. □

5.2. The q-Serre relations. In this section, we will prove that the elements
{Xi}i∈I satisfy the q-Serre relations (5.2); see Corollary 5.6. This is essentially
a consequence of the first relation of Lemma 4.11. However, to make this pre-
cise we will need to enlarge our underlying representation V by introducing the
Uq(g)-representation

V :=
⊕
n∈N

V ⊗n.

Let πV : Uq(g) → End(V) denote the associated Q(q)-algebra homomorphism. An
important property, which we will exploit in (5.9) below, is that V is a faithful
Uq(g)-module (equivalently, πV is injective). This property can be deduced from
its well-known classical analogue (for the enveloping algebra U(g)) via a standard
specialization argument. Two different proofs of the assertion for U(g) may be
found in [P, Thm. 4.10] and [GRW2, Thm. A.1].
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To simplify notation, we shall henceforth write L for L+ and L for L+. In
addition, we set

LV ⊗n := L1L2 · · ·Ln ∈ End(V )⊗n ⊗Uλ
R(g),

RV ⊗n,V := R1,n+1R2,n+1 · · ·Rn,n+1 ∈ End(V ⊗n)⊗ End(V ),

RV,V ⊗n := R1,n+1R1,n · · ·R1,2 ∈ End(V )⊗ End(V ⊗n).

Note that RV ⊗n,V has already appeared in the proof of Theorem 4.8. The above
definitions imply that

(5.6)
RV ⊗n,V LV ⊗nLV = LV LV ⊗nRV ⊗n,V ,

RV,V ⊗nLV LV ⊗n = LV LV ⊗nRV,V ⊗n ,

in End(V ⊗n) ⊗ End(V ) ⊗Uλ
R(g) and End(V ) ⊗ End(V ⊗n) ⊗Uλ

R(g), respectively.
These two spaces are of course isomorphic, but for the sake of notation it is con-
venient to view them as distinct; in particular LV = Ln+1 in the first equality and
LV = L1 in the second.

Let LV ⊗n , DV ⊗n,V and DV,V ⊗n be the weight zero blocks of LV ⊗n , RV ⊗n,V and
RV,V ⊗n , respectively, and set

LV ⊗n := L−1
V ⊗nLV ⊗n ,

R+
V ⊗n,V := D−1

V ⊗n,V RV ⊗n,V and R+
V,V ⊗n := D−1

V,V ⊗nRV,V ⊗n .

Lemma 5.2. For each n > 0, the matrix LV ⊗n satisfies the relations

R+
V,V ⊗n

(
DV,V ⊗nLV D−1

V,V ⊗n

)
LV ⊗n = LV ⊗n

(
D−1

V,V ⊗nLV DV,V ⊗n

)
R+

V,V ⊗n ,

R+
V ⊗n,V

(
DV ⊗n,V LV ⊗n D−1

V ⊗n,V

)
LV = LV

(
D−1

V ⊗n,V LV ⊗n DV ⊗n,V

)
R+

V ⊗n,V .

Proof. These are both generalizations of the first identity of Lemma 4.10. The first
relation in (5.6) is equivalent to

DV ⊗n,V R
+
V ⊗n,V LV ⊗nLV ⊗nLV LV = LV LV LV ⊗nLV ⊗n DV ⊗n,V R

+
V ⊗n,V .

The right-hand side is

LV LV ⊗n(L−1
V ⊗nLV LV ⊗n)LV ⊗n DV ⊗n,V R

+
V ⊗n,V

= LV LV ⊗n(DV ⊗n,V LV D−1
V ⊗n,V )LV ⊗n DV ⊗n,V R

+
V ⊗n,V

= LV LV ⊗n DV ⊗n,V · LV

(
D−1

V ⊗n,V LV ⊗n DV ⊗n,V

)
R+

V ⊗n,V ,

where we have used that DV ⊗n,V LV D−1
V ⊗n,V = L−1

V ⊗nLV LV ⊗n . Similarly, the left-

hand side is

DV ⊗n,V R
+
V ⊗n,V LV ⊗nLV

(
L−1

V LV ⊗nLV

)
LV

= DV ⊗n,V R
+
V ⊗n,V LV ⊗nLV

(
DV ⊗n,V LV ⊗n D−1

V ⊗n,V

)
LV

= DV ⊗n,V LV LV ⊗n · R+
V ⊗n,V

(
DV ⊗n,V LV ⊗n D−1

V ⊗n,V

)
LV .

Comparing these two computations yields the first relation of the lemma. The
second relation is proven similarly. □
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Let us now define R
β
V ∈ End(V ⊗V), VRβ ∈ End(V⊗V ) and LV

β ∈ Hom(V,V⊗
Uλ

R(g), for any β ∈ Q+, by

LV
β :=

∑
n∈N

(LV ⊗n)β ◦ 1V ⊗n ,

R
β
V :=

∑
n∈N

(R+
V,V ⊗n)β ◦ 1V,V ⊗n and VRβ :=

∑
n∈N

(R+
V ⊗n,V )β ◦ 1V ⊗n,V ,

where 1V ⊗n : V → V ⊗n is the natural projection, 1V,V ⊗n = IdV ⊗ 1V ⊗n and

1V ⊗n,V = 1V ⊗n ⊗ IdV . The elements Rβ
V and VRβ are defined precisely so that the

statement of the following lemma holds.

Lemma 5.3. For each β ∈ Q+, the elements R
β
V and VRβ satisfy

R
β
V = (π ⊗ πV)(R

+
β ) and VRβ = (πV ⊗ π)(R+

β ),

where R+
β ∈ Uq(n

+)β ⊗ Uq(n
−)−β is as in Section 2.4.

Proof. This follows from repeated application of the coproduct identities (2.8) and
the relation (2.5). □

Next, we establish a variant of Lemma 4.11 and Theorem 4.12 which holds for
the matrices LV

β . Recall that Uλ
R(n

+) denotes the subalgebra of Uλ
R(g) generated

by {Xi}i∈I.

Proposition 5.4. For each β ∈ Q+, we have

LV
β ∈ πV(Uq(n

+)β)⊗Uλ
R(n

+)β

with LV
αi

= πV(Ei)⊗Xi for each i ∈ I. Moreover, these elements satisfy

(5.7)
[Rαi

V ,LV
β ]

= LV
β−αi

(Lαi
)1πV(K

−1
i )− q(αi,β−αi)(Lαi

)1LV
β−αi

πV(Ki)

in π(Uq(n
+))⊗ πV(Uq(g))⊗Uλ

R(g).

Proof. The proof that (5.7) is satisfied follows the same argument as used to es-
tablish the relation (4.15) in Lemma 4.11. Taking the End(V )αi

⊗ End(V ⊗n)β−αi

component of the first relation of Lemma 5.2 yields

(R+
V,V ⊗n)αi

(LV ⊗n)β +
(
DV,V ⊗n(LV )αi

D−1
V,V ⊗n

)
(LV ⊗n)β−αi

= (LV ⊗n)βi−αi

(
D−1

V,V ⊗n(LV )αi
DV,V ⊗n

)
+ (LV ⊗n)β(R

+
V,V ⊗n)αi

.

Since D−1
V,V ⊗n(LV )αi DV,V ⊗n coincides with (LV )αiπV ⊗n(K−1

i ), this is equivalent to

[(R+
V,V ⊗n)αi

, (LV ⊗n)β ]

= (LV ⊗n)βi−αi(LV )αiπV ⊗n(K−1
i )− q(αi,β−αi)(LV )αi(LV ⊗n)β−αiπV ⊗n(Ki).

As this holds for all n, we can conclude that (5.7) is satisfied.

Next, let us establish that LV
αi

= πV(Ei)⊗Xi for each i ∈ I. By definition of V,
it is enough to show that

(LV ⊗n)αi
= πV ⊗n(Ei)⊗Xi ∀ n ∈ N and i ∈ I.
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For each 1 ≤ j ≤ n, set Lj+1,...,n := Lj+1 · · ·Ln ∈ End(V )⊗n ⊗ Uλ
R(g), with the

understanding that Lj+1,...,n = 1 if j = n. Then the definition of LV ⊗n yields that

(LV ⊗n)αi =

n∑
j=1

L−1
j+1,...,n(Lj)αiLj+1,...,n

=

n∑
j=1

(Lj)αi
π(Ki)j+1 · · ·π(Ki)n

=

n∑
j=1

π(Ei)jπ(Ki)j+1 · · ·π(Ki)n ⊗Xi = πV ⊗n(Ei)⊗Xi.

The proof that, more generally, one has LV
β ∈ πV(Uq(n

+)β) ⊗ Uλ
R(n

+)β for any
β ∈ Q+ now proceeds following a simple generalization of the argument given in
the proof of Theorem 4.12. To begin, taking the End(V ⊗n)β⊗End(V )0 component
of the second relation in Lemma 5.2 yields

DV ⊗n,V (LV ⊗n)βD
−1
V ⊗n,V + (R+

V ⊗n,V )β(LV )β

+
∑

α∈Q̇β
+

(R+
V ⊗n,V )α

(
DV ⊗n,V (LV ⊗n)β−αD

−1
V ⊗n,V

)
(LV )α

= D−1
V ⊗n,V (LV ⊗n)βDV ⊗n,V + (LV )β(R

+
V ⊗n,V )β

+
∑

α∈Q̇β
+

(LV )α

(
D−1

V ⊗n,V (LV ⊗n)β−αDV ⊗n,V

)
(R+

V ⊗n,V )α,

where we recall that Q̇β
+ is defined at the end of Section 2.1. This implies that in

Hom(V⊗ V,V⊗ V ⊗Uλ
R(g)) one has

(5.8)

LV
β πV (Kβ −K−1

β ) = [(LV )β , VRβ ]−
∑

α∈Q̇β
+

LV
β,α,

LV
β,α := VRα · LV

β−απV (Kβ−α)(LV )α − (LV )αLV
β−απV (K

−1
β−α) · VRα.

By Lemma 5.3 and Theorem 4.12, we have VRα ∈ πV(Uq(n
+)α)⊗π(Uq(n

−)−α) and
(LV )α ∈ π(Uq(n

+)α)⊗Uλ
R(n

+)α for each α ∈ Q+. Using these facts and induction
on the height of β, one deduces from (5.8) that LV

β ∈ πV(Uq(n
+)β)⊗Uλ

R(n
+)β for

all β ∈ Q+, as desired. □

For each i ∈ I, introduce a degree αi linear endomorphism adq,i of U
λ
R(g) by

adq,i(y) = yXi − q(αi,β)Xiy ∈ Uλ
R(g)β+αi

∀ y ∈ Uλ
R(g)β .

Since πV is injective, the triangular decomposition (2.1) for Uq(g) implies that there
is a unique Q(q)-linear map ε+V : πV(Uq(g)) → πV(Uq(n

+)) satisfying

(5.9) ε+V (πV(xy)) = πV(x)ε(y) ∀ x ∈ Uq(n
+), y ∈ Uq(b

−),

where ε : Uq(g) → Q(q) is the counit. We then have the following result.

Proposition 5.5. For each i ∈ I, k ≥ 1 and β ∈ Q+, we have

ε+V · ad(πV(Fi))
k
(
LV
β

)
=

1

(qi − q−1
i )k

adkq,i
(
LV
β−kαi

)
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in πV(Uq(n
+))⊗Uλ

R(g). Moreover, if β = kαi +αj for some j ̸= i and k = 1− aij,
then the left-hand side of the above equality vanishes and therefore

ad
1−aij

q,i (Xj) = 0.

Proof. For elements x ∈ Uλ
R(g)α and y ∈ Uλ

R(g)β , let us introduce the q-bracket

[x, y]q := xy − q(α,β)yx ∈ Uλ
R(g)β+α.

By Lemma 5.3 we have Rαi

V = (qi − q−1
i )π(Ei) ⊗ πV(Fi) and hence the main

identity of the proposition is equivalent to the following relation in π(Uq(n
+))⊗k ⊗

πV(Uq(g))⊗Uλ
R(g):

(5.10)

ε+V
[
(Rαi

V )1,k+1,
[
(Rαi

V )2,k+1, · · ·
[
(Rαi

V )k,k+1,LV
β

]
· · ·

]]
=

[
· · ·

[[
LV
β−kαi

, (Lαi)1
]
q
, (Lαi)2

]
q
, . . . , (Lαi)k

]
q

.

We prove this identity by induction on k using the relation (5.7) established in the
previous proposition. When k = 1, that relation implies immediately that

ε+V [R
αi

V ,LV
β ]

= LV
βi−αi

(Lαi
)1 − q(αi,β−αi)(Lαi

)1LV
β−αi

= [LV
β−αi

, (Lαi
)1]q,

as desired. Suppose now that (5.10) holds for some fixed k. As Ker(ε+V ) is preserved
by ad(πV(Fi)), to establish (5.10) for k + 1 it suffices to show that

ε+V

[
(Rαi

V )1,k+2,

[
· · ·

[[
LV
β−kαi

, (Lαi)2
]
q
, (Lαi)3

]
q
, . . . , (Lαi)k+1

]
q

]

=

[
· · ·

[[
LV
β−(k+1)αi

, (Lαi
)1

]
q
, (Lαi

)2

]
q

, . . . , (Lαi
)k

]
q

.

Since the left-hand side is

ε+V

[
· · ·

[[
[(Rαi

V )1,k+2,LV
β−kαi

], (Lαi
)2
]
q
, (Lαi

)3

]
q
, . . . , (Lαi

)k+1

]
q

,

this follows by again applying (5.7). Thus, we may conclude that (5.10), and
therefore the main identity of the proposition, holds for all k ≥ 1.

Suppose now that j ∈ I is such that j ̸= i, and set β = (1 − aij)αi + αj . To
complete the proof of the proposition, we must explain why

ε+V · ad(πV(Fi))
1−aij

(
LV
β

)
= 0.

Since πV(Uq(n
+)β) is spanned by the elements πV(E

r
i EjE

1−aij−r
i ) for 0 ≤ r <

1− aij , the above equality is a consequence of the following more general claim:

Claim. Given i ̸= j in I and k ≥ 1, set E
(r)
i,j := Er

i EjE
k−r
i ∈ Uq(g). Then

ad(Fi)
k(E

(r)
i,j ) ∈ Ker(ε+) ∀ 0 ≤ r < k,

where ε+ : Uq(g) → Uq(n
+) is the unique linear map satisfying πV ◦ ε+ = ε+V ◦ πV.
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Proof of claim. First note that for each ℓ ∈ I, we have

FℓEi = δℓ,i
K−1

i −Ki

qi − q−1
i

+ EiFℓ ∈ Ker(ε+).

Since Ker(ε+) is invariant under ad(Fi), we obtain

ad(Fi)
k(E

(r)
i,j ) = ad(Fi)

k(XEi) = ad(Fi)
k(X)Ei mod Ker(ε+)

for all 0 ≤ r < k, where X = Er
i EjE

k−r−1
i . Note that ad(Fi)

k(X) has degree
αj − αi, and so belongs to the subspace Uq(b

+)⊗Ji of Uq(g), where Ji is the two
sided ideal of Uq(n

−) generated by Fi. Since FℓEi ∈ Ker(ε+) for all ℓ ∈ I, we can
conclude that ad(Fi)

k(X)Ei ∈ Ker(ε+). This implies the statement of the claim,
and thus completes the proof of the proposition. □

The q-Serre relation (5.2) can now be deduced as a simple corollary of the second
assertion of Proposition 5.5.

Corollary 5.6. Let i, j ∈ I with i ̸= j. Then Xi and Xj satisfy the relation (5.2):

1−aij∑
r=0

(−1)r
[
1− aij

r

]
qi

Xr
iXjX

1−aij−r
i = 0.

Proof. This follows from the relation ad
1−aij

q,i (Xj) = 0 of Proposition 5.5 and the
following identity, which is a simple application of the q-analogue of Pascal’s identity
(see [J1, §0.2]): For each i, j ∈ I with i ̸= j and k ≥ 0, we have

adkq,i(Xj) =

k∑
r=0

(−1)rq
−r(1−aij−k)
i

[
k
r

]
qi

Xr
iXjX

k−r
i . □

5.3. Recovering Uq(g). By Theorem 5.1, the subalgebra of Uλ
R(g) generated by

{ξ±1
i ,Xi,Yi}i∈I is isomorphic to the Drinfeld–Jimbo algebra Uq(g). In this section,

we provide equivalent characterizations of this subalgebra which are natural from
the point of view of the R-matrix formalism. To begin, following (3.5), we define

Z := (lλ)
|[λ]|ξ|[λ]|λ = (lλ)

|[λ]|
∏
j∈I

ξ
nj

j ∈ Uλ
R(g),

where nj = d−1
j (ϖj , |[λ]|λ) for each j ∈ I. By Theorem 4.8 and (4.14), this element

belongs to the center of Uλ
R(g). In fact, it follows readily from this definition that

Υ(Z) = vλ = v|[λ]|.

Next, mimicking the notation from Section 3.3, we introduce the subalgebra

Uλ
R(g)

χ := {x ∈ Uλ
R(g) : χζ(x) = x ∀ ζ ∈ Q(q)×} ⊂ Uλ

R(g),

where χζ is as in Proposition 4.6. From the definition of the isomorphism Υ given
in Theorem 5.1, we see that

χq,ζ ◦ Υ = Υ ◦ χζ ∀ ζ ∈ Q(q)×,

where χq,ζ is the automorphism of Uλ
q (g) defined in Section 3.3. In particular, Υ

restricts to an isomorphism betweenUλ
R(g)

χ and the subalgebra ofUλ
q (g) consisting

of elements fixed by each χq,ζ . This discussion, combined with Parts (2) and (3) of
Proposition 3.4, admits the following corollary.
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Corollary 5.7. Υ gives rise to Hopf algebra isomorphisms

Υ|Uλ
R(g)χ : Uλ

R(g)
χ ∼−→ Uq(g) and Ῡ : Uλ

R(g)/(Z− 1) ∼−→ Uλ
q (g).

In particular, Uλ
R(g)

χ is generated by the set of elements {ξ±1
i ,Xi,Yi}i∈I. An-

other system of generators can be obtained by normalizing L+ and L− so that they
act as the identity operators on the highest and lowest weight spaces of V , respec-
tively. In more detail, let w denotes the longest element of the Weyl group of g,
and set

L+ := l−1
λ L+ and L− := L−lw(λ).

Then L+|Vλ
= IdVλ

, L−|Vw(λ)
= IdVw(λ)

, and it is not difficult to see that the

coefficients of L± generate Uλ
R(g)

χ ∼= Uq(g) as an algebra.

The larger subalgebra Uq(g) ⊗ Q(q)[v±1
λ ] of Uλ

q (g) considered in Part (1) of

Proposition 3.4 also admits a natural characterization within Uλ
R(g), as we now

explain. Set n := |[λ]|, and define

L±
V ⊗n := L±

1 L
±
2 · · ·L±

n ∈ End(V )⊗n ⊗Uλ
R(g)

so that L+
V ⊗n coincides with LV ⊗n defined above (5.6). Similarly, we define KV ⊗n

in End(V )⊗n ⊗ Uq(g) by

KV ⊗n := K1K2 · · ·Kn =
∑
µ

Id(V ⊗n)µ ⊗Kµ,

where the sum is taken over the set of weights of V ⊗n, which is a subset of the root
lattice Q since n = |[λ]|. We then have the following corollary, which is deduced
from the definitions of Z and Υ with the help of the relations (2.8) and (3.6); see
also Lemma 5.3 and the computation of (LV ⊗n)αi

in the proof of Proposition 5.4.

Corollary 5.8. Let U̇nλ
R (g) denote the subalgebra of Uλ

R(g) generated by the coef-
ficients of L+

V ⊗n and L−
V ⊗n . Then Υ restricts to an isomorphism

Υ|U̇nλ
R (g) : U̇

nλ
R (g) ∼−→ Uq(g)⊗Q(q)[v±1

λ ].

Moreover, the coefficients of the normalized matrices L±V ⊗n := Z∓1L±
V ⊗n generate

Uλ
R(g)

χ ∼= Uq(g) and one has

Υ(L+V ⊗n) = K−1
V ⊗n · (πV ⊗n ⊗ ω)(R+), Υ(L−V ⊗n) = (πV ⊗n ⊗ ω)((R+

21)
−1) ·KV ⊗n .

Remark 5.9. Since nλ is a nonzero dominant integral weight, we may consider
the quantum group Unλ

R (g) obtained from Definition 3.2 by replacing V by the
irreducible summand V (nλ) of V ⊗n. Since, by Part (1) of Proposition 3.4, one has
Unλ

q (g) ∼= Uq(g) ⊗ Q(q)[v±1
λ ], Theorem 5.1 outputs an isomorphism of Q-graded

Hopf algebras
Υnλ : Unλ

R (g) ∼−→ Uq(g)⊗Q(q)[v±1
λ ].

The composite Υ|−1

U̇nλ
R (g)

◦ Υnλ then provides an isomorphism Unλ
R (g) ∼−→ U̇nλ

R (g)

which satisfies

(Υ|−1

U̇nλ
R (g)

◦ Υnλ)(L
±
V (nλ)) = 1V (nλ) ◦ L±

V ⊗n ◦ ıV (nλ),

where L±
V (nλ) are the generating matrices L± for Unλ

R (g), 1V (nλ) ∈ EndUq(g)(V
⊗n)

is the projection onto the summand V (nλ) of V ⊗n, and ıV (nλ) : V (nλ) ↪→ V ⊗n is
the inclusion map.
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