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Abstract. Starting from a finite-dimensional representation of the Yangian Y (g) for a simple Lie algebra g

in Drinfeld’s original presentation, we construct a Hopf algebra XI(g), called the extended Yangian, whose

defining relations are encoded in a ternary matrix relation built from a specific R-matrix R(u). We prove
that there is a surjective Hopf algebra morphism XI(g) � Y (g) whose kernel is generated as an ideal by

the coefficients of a central matrix Z(u). When the underlying representation is irreducible, we show that

this matrix becomes a grouplike central series, thereby making available a proof of a well-known theorem
stated by Drinfeld in the 1980’s. We then study in detail the algebraic structure of the extended Yangian,

and prove several generalizations of results which are known to hold for Yangians associated to classical Lie
algebras in their R-matrix presentations.
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1. Introduction

To any simple Lie algebra g one can associate a Hopf algebra Y (g), called the Yangian of g, which is
a filtered deformation of the enveloping algebra for the Lie algebra g[z] of polynomial maps C → g. This
quantum group originally appeared in disguise in the work of mathematical physicists studying quantum
integrable systems and the quantum Yang-Baxter equation (see, for example, [KS1, KS2]). The definition of
Y (g) was later formalized in the pioneering paper [Dr1], where several foundational results were established.
Since the 1980’s, the study of Yangians has grown into a beautiful theory with applications to several areas,
including, for instance, the theory of classical Lie algebras [Mo1, Mo2, Na1, Na2, NT], the study of finite
W -algebras and their representations [Br, Br2, BK2, BK3, BR, Ra, RS], the theory of classical W -algebras
and affine vertex algebras [MM1, MM2, Mo3], as well as geometric representation theory [MO, FR, FKP+,
KWW+, KTW+, N, SV1, SV2, Va, YZ1, YZ2, YZ3].

Yangians admit at least three important presentations: Drinfeld’s original (or “J”) presentation, the
R-matrix (or RTT ) realization, and the Drinfeld “new” (or current) presentation [Dr1, Dr2, FRT]. Many
applications of Y (g) are specific to g = slN and employ the R-matrix realization of Y (slN ), which has
a rich history (see the monograph [Mo1]). In this setting, the evaluation morphism Y (slN ) � U(slN ),
which only exists for g = slN , is particularly simple to describe and this phenomena gives rise to many
interesting results. The R-matrix presentation of Y (g) has also been studied for orthogonal and symplectic
Lie algebras [AAC+, AMR], and this has led to a more explicit description of the relationship between
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Yangian characters, classical W -algebras, and the centers of vertex algebras at the critical level [MM1]. It
has also served as the catalyst for the study of twisted Yangians of type B-C-D and their representations
[GR, GRW1, GRW2, GRW3, IMO].

The equivalence between the J and R-matrix presentations of the Yangian was succinctly explained in
[Dr1, Theorem 6]. The idea is as follows: starting from a finite-dimensional irreducible representation V of
the Yangian Y (g) in the J-presentation, one can build a Hopf algebra called the extended Yangian (which
we denote X(g)) defined by a ternary matrix relation called the RTT -relation. Using the existence of the
universal R-matrix for Y (g) (see Theorem 3.4), one then constructs a surjective Hopf algebra morphism

Φ̃ : X(g) � Y (g). According to Drinfeld, the kernel of this morphism is generated by the coefficients
of a grouplike central series c(u) ∈ X(g)[[u−1]]. That is, the coefficients of c(u) are central elements and

∆(c(u)) = c(u)⊗ c(u), where ∆ denotes the coproduct of X(g). The quotient X(g)/KerΦ̃, which we denote
YR(g), is the so-called R-matrix realization of the Yangian.

However, this construction has only been explicitly written down and studied in the special cases alluded
to above. In these instances, g = slN , soN or spN and the underlying representation V of Y (g) is the vector
representation CN . Moreover, the proof of [Dr1, Theorem 6], which in principle should explain how to
construct the series c(u), has never appeared in the literature in full generality. We note, however, that for
the special case where g = soN or spN and V = CN a proof was given in [GRW4].

This brings us to the original motivation and first main goal of this paper: to make available a detailed
proof of [Dr1, Theorem 6]. In fact, we take a slightly more general approach. After recalling the definition
of Y (g) in its J-presentation in Section 3 and obtaining the polynomial current algebra version of [Dr1,
Theorem 6] in Section 4, we construct in Section 5 the RTT -Yangian YR(g) and its extension XI(g) for any
non-trivial finite-dimensional Y (g)-module V . Here I is an indexing set which keeps track of the dimension
of the endomorphism space EndY (g)V , and is omitted as a subscript of XI(g) when V is irreducible. We
will prove in Section 6 that, even when V is not irreducible, the Yangian YR(g) is isomorphic to Y (g): see
Theorem 6.2. As an immediate corollary to the proof of this result, one obtains Theorem 6.5, which gives a
Poincaré-Birkhoff-Witt theorem for YR(g). The actual statement and proof of Theorem 6 in [Dr1] is collected
later in Section 8, which is solely devoted to the case when V is irreducible: see Theorem 8.2. Our argument
also gives a concrete description of the series c(u) (or at least one choice for c(u)) in terms of the generating
matrix T (u) for X(g) and its image under the square of the antipode: see Corollary 8.1, where c(u) is
denoted z(u). As a disclaimer, we note that Part (2) of Theorem 8.2 does depend on the assumption that
V is irreducible. In the general setting, the formal series c(u) is replaced by a matrix C(u) which satisfies
similar properties: see Remark 8.3.

The proof of Theorem 6.2 makes use of the so-called r-matrix presentation of the current algebra g[z].
This presentation is very similar in flavour to the R-matrix realization of Y (g), except that the role played by
the universal R-matrix of Y (g) is instead played by the classical r-matrix Ω

u−v associated to the standard Lie

bialgebra structure of g[z]. Since no general treatment of this presentation seems to exist in the literature, we
have devoted Section 4 to its construction and to obtaining an analogous presentation for a certain extension
of g[z] which is closely related to XI(g). As was suggested in the previous paragraph, the equivalence of the
standard and r-matrix presentations of g[z], which is given in Propositions 4.9 and 4.16, can be viewed as
the classical version of [Dr1, Theorem 6].

Let us now describe the second main goal of this paper. When g is a classical Lie algebra and V is its
vector representation, the extended Yangian X(g) is often studied in place of its quotient YR(g). Whereas the
center of YR(g) is trivial, X(g) has a large center which is isomorphic to a polynomial algebra in countably
many variables, and which can conveniently be described using certain explicit formal series. When g = slN ,
the study of these series and their twisted Yangian analogues has led to applications in studying the centers
of U(glN ), U(soN ) and U(spN ) (see [Mo1, Chapter 7]). It is also known that one can describe YR(g) (for
g = slN , soN and spN ) not only as a quotient of X(g), but also as the subalgebra of X(g) fixed by a certain
family of automorphisms (see Subsection 8.2). These considerations naturally lead to the question of whether
or not the structure of XI(g) for general g and V can be described in more detail, and in particular if some
of the results which characterize XI(g) in the aforementioned special cases can be proven in general.



THE R-MATRIX PRESENTATION FOR THE YANGIAN OF A SIMPLE LIE ALGEBRA 3

The second goal of this paper, which is considered in Section 7, is to provide an affirmative answer to this
question with as much detail as possible. Our first result in this direction is Theorem 7.3, which proves that
XI(g) is always isomorphic to the tensor product of a polynomial algebra in countably many variables with
the Yangian YR(g). Not only does this prove that YR(g) can be identified with a subalgebra of XI(g), but it
shows that the center of XI(g) is a polynomial algebra. In Proposition 7.6, explicit algebraically independent
generators of the center are identified. Our next main result is a Poincaré-Birkhoff-Witt type theorem for
XI(g): see Theorem 7.7. This result proves that XI(g) can be viewed as a filtered deformation of the
enveloping algebra for the current algebra (g ⊕ zI)[z], where zI is a commutative Lie algebra of dimension
dim EndY (g)V . Additionally, it demonstrates that the enveloping algebra of g is always contained in XI(g)
as a subalgebra. In Subsection 7.2, we prove that the embedding YR(g) ↪→ XI(g) furnished by Theorem
7.3 is a Hopf algebra morphism and study the behaviour of the center of XI(g) with respect to its Hopf
structure: see Proposition 7.9. The last result relevant to the second main goal of our paper is Theorem
7.11, which proves that YR(g) can be realized as the subalgebra of XI(g) consisting of all elements stable
under a specific family of automorphisms. In Subsection 8.2 of Section 8, it is explained in more detail how
the results of Section 7 generalize results which are known to hold when g is a classical Lie algebra and V is
its vector representation [AAC+, AMR, Mo1].

We now give a few remarks, the first of which concerns the current presentation YD(g) of the Yangian. In
[Dr2, Theorem 1], Drinfeld established that the J and current realizations of the Yangian were isomorphic,
and also gave an an explicit formula for an isomorphism Y (g) → YD(g). A proof of this result was not
published at the time, but one was recently made available in [GRW4, Theorem 2.6], where YD(g) was
denoted Y cr(g). By composing this map with the morphism of Theorem 6.2, one obtains an isomorphism
YR(g)→ YD(g) for each finite-dimensional non-trivial Y (g)-module V . We remark that, when g is assumed
to be a classical Lie algebra and V its vector representation, such an isomorphism has also been established
using the Gauss decomposition of the generating matrix for X(g). For g = slN , this was accomplished in
[BK1], while for g = soN and g = spN this was achieved in the recent paper [JLM].

As a last remark, we note that due to deep parallels between the theories of Yangians and quantum loop
algebras [GM, GTL1, GTL2, GTL3], it is reasonable to expect that the results of this paper could be proven,
to some extent, for the quantum loop algebra associated to an arbitrary simple Lie algebra.

Acknowledgements. The author gratefully acknowledges the financial support of the Natural Sciences and
Engineering Research Council of Canada provided via the Alexander Graham Bell Canada Graduate Schol-
arship (CGS D). He would also like to thank Nicolas Guay and the anonymous reviewers for several helpful
comments.

2. Preliminaries

2.1. Simple Lie algebras and their polynomial current algebras. Throughout this paper we assume
that g is a finite-dimensional complex simple Lie algebra with symmetric non-degenerate invariant bilinear
form (·, ·). Following the notation of [Dr1], we fix an orthonormal basis {Xλ}λ∈Λ of g with respect to this
form, where Λ is an indexing set of size dim g. Let {αγλν}λ,ν,γ∈Λ be the structure constants with respect to
this basis:

[Xλ, Xν ] =
∑
γ∈Λ

αγλνXγ .

In particular, αγλν = −αγνλ and αγλν = −ανλγ for all λ, ν, γ ∈ Λ, the second of these equalities being a

consequence of the invariance of the bilinear form (·, ·).
Let Ω and ω denote the Casimir elements

Ω =
∑
λ∈Λ

Xλ ⊗Xλ ∈ g⊗ g and ω =
∑
λ∈Λ

X2
λ ∈ U(g),

and let cg denote the eigenvalue of ω in the adjoint representation. Here U(g) denotes the enveloping algebra
of g. More generally, the notation U(a) will be used to denote the enveloping algebra of an arbitrary complex
Lie algebra a, and ∆ will denote the standard coproduct on U(a).



4 CURTIS WENDLANDT

The polynomial current algebra of a complex Lie algebra a is the Lie algebra which is equal to a[z] = a⊗C[z]
as a vector space, with Lie bracket given by

[X ⊗ f(z), Y ⊗ g(z)] = [X,Y ]g ⊗ f(z)g(z) for all X,Y ∈ a and f(z), g(z) ∈ C[z].

Equivalently, a[z] is the space of polynomial maps C → g with Lie bracket given pointwise. If a = g is
a complex simple Lie algebra, then the enveloping algebra U(g[z]) is isomorphic to the unital associative
algebra generated by elements {Xλz

r : λ ∈ Λ, r ≥ 0} subject to the defining relations

(2.1) [Xλz
r, Xµz

s] =
∑
γ∈Λ

αγλµXγz
r+s for all λ, µ ∈ Λ and r, s ≥ 0.

The Lie algebra a[z] is graded: we have a[z] =
⊕

k≥0 az
k, with azk = a⊗ Czk. If a = g is simple, then g[z]

is generated as a Lie algebra by g and gz.

In addition to having the structure of a Lie algebra, g[z] admits the structure of a coboundary Lie bialgebra
determined by the classical r-matrix

rg = −
∑

λ∈Λ,k≥0

Xλv
k ⊗Xλu

−k−1 ∈ g[v]⊗̂g((u−1)).

That is, its Lie bialgebra cocommutator δ : g[z]→ g[z]⊗ g[z] ∼= (g⊗ g)[v, u] is given by

δ(f(z))(u, v) = [f(v)⊗ 1 + 1⊗ f(u), rg] ∀ f(z) ∈ g[z].

That the right-hand side of the above expression indeed belongs to (g⊗ g)[v, u] follows from the observation
that rg may be identified with the element

− Ω

u− v
= −

∑
k≥0

Ωvku−k−1 ∈ (g⊗ g)⊗ (C[v])[[u−1]],

together with the fact that [∆(X),Ω] = 0 for all X ∈ g. The statement that rg is an r-matrix is meant
to indicate that it is a solution of the classical Yang-Baxter equation with spectral parameter: see [ES,
Subsection 6.3.2], as well as Subsection 6.2 of loc. cit. for a more complete description of the Lie bialgebra
structure on g[z].

A deep understanding of the bialgebra (g[z], δ) will not be needed here, although the r-matrix Ω
u−v will

play a significant role. We, however, adapt the viewpoint that this element be treated as a rational function
in u− v which can be expanded as a formal series in (g⊗ g)⊗C[[v±1, u±1]] in various ways: see Remark 4.10.

2.2. Matrix, formal series, and miscellaneous notation. In what follows, all vector spaces and algebras
are assumed to be over the complex numbers C, and we will maintain this assumption for the remainder of
this paper.

Suppose that W is an arbitrary vector space and that V is a finite-dimensional vector space of dimension
N with a fixed basis {e1, . . . , eN}, and let {Eij}1≤i,j≤N denote the elementary matrices of EndV with
respect to this basis. We will often be working with spaces of the form (EndV )⊗m ⊗W , with m ≥ 1. Given

A =
∑N
i,j=1Eij ⊗ aij ∈ EndV ⊗W and 1 ≤ k ≤ m, we set

Ak =

N∑
i,j=1

1⊗(k−1) ⊗ Eij ⊗ 1⊗(m−k) ⊗ aij ∈ (EndV )⊗m ⊗W.

If W is a formal power series ring or if more generally A = A(u) depends on a formal parameter u, we will
indicate this by writing Aa(u) in place of Aa (and rather than A(u)a).

Similarly, if A is a unital algebra and B =
∑r
i=1 ai ⊗ bi ∈ A⊗A with 1 ≤ k < l ≤ m and m ≥ 2, then we

will denote by Bkl the element

Bkl =

r∑
i=1

1⊗(k−1) ⊗ ai ⊗ 1⊗(l−k−1) ⊗ bi ⊗ 1⊗(m−l) ∈ A⊗m.

We instead write Bkl(u) if B = B(u) depends on a formal parameter u.
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In Sections 5 - 7 we will consider embeddings of elements A(u) ∈ EndV ⊗A[[u−1]] into EndV ⊗(A⊗A)[[u−1]].

With this in mind, given A(u) =
∑N
i,j=1Eij ⊗ aij(u) ∈ EndV ⊗A[[u−1]] and 1 ≤ k ≤ 2, we define

A[k](u) =

N∑
i,j=1

Eij ⊗ 1⊗(k−1) ⊗ aij(u)⊗ 1⊗(2−k) ∈ EndV ⊗ (A⊗A)[[u−1]].

Now suppose that W1 and W2 are arbitrary vector spaces, and let φ : W1 → W2 be a linear map. Then,
given a(u) =

∑
r≥0 aru

−r ∈ W1[[u−1]] and b(u) =
∑
r≥0 bru

−r ∈ W2[[u−1]], we will write φ(a(u)) = b(u)

to indicate that φ(ar) = br for all r ≥ 0. Conversely, we will use expressions of the form φ(a(u)) = b(u)
(understood in the same way) to define linear maps, algebra homomorphisms and anti-homomorphisms.
Similarly, expressions of the form φ(A(u)) = (id ⊗ φ)A(u) = B(u) with A(u) ∈ EndV ⊗ W1[[u−1]] and
B(u) ∈ EndV ⊗W2[[u−1]] will be used to define and interpret transformations φ : W1 →W2.

For any two vector spaces W1 and W2, let σW1,W2
: W1 ⊗W2 → W2 ⊗W1 be the permutation operator

defined by σW1,W2
(w1 ⊗ w2) = w2 ⊗ w1 for all w1 ∈ W1 and w2 ∈ W2. In practice we will drop the

subscripts and simply write σ = σW1,W2
: the underlying vector spaces will always be clear from context.

Given R ∈W1 ⊗W2, we will write R21 for the element σ(R) ∈W2 ⊗W1.

Finally, for any unital associative algebra Awe denote by Lie(A) the Lie algebra which is equal to A as a
vector space and has Lie bracket equal to the commutator bracket: [a1, a2] = a1a2 − a2a1 for all a1, a1 ∈ A.

3. The Yangian of a simple Lie algebra

In this section we recall the definition for the Yangian of g in its J-presentation, as well as some of its
properties which will play a role in Sections 6 and 7. Aside from Proposition 3.2 and a few brief remarks,
all of the contents of this section appeared in Drinfeld’s seminal paper [Dr1].

Definition 3.1 ([Dr1]). The Yangian Y (g) is the unital associative C-algebra generated by the set of elements
{X, J(X) : X ∈ g} subject to the defining relations

XY − Y X = [X,Y ]g, J([X,Y ]) = [J(X), Y ],(3.1)

J(cX + dY ) = cJ(X) + dJ(Y ),(3.2)

[J(X), [J(Y ), Z]]− [X, [J(Y ), J(Z)]] =
∑

λ,µ,ν∈Λ

([X,Xλ], [[Y,Xµ], [Z,Xν ]]){Xλ, Xµ, Xν},(3.3)

[[J(X), J(Y )], [Z, J(W )]] + [[J(Z), J(W )], [X, J(Y )]]

=
∑

λ,µ,ν∈Λ

(([X,Xλ], [[Y,Xµ], [[Z,W ], Xν ]]) + ([Z,Xλ], [[W,Xµ], [[X,Y ], Xν ]])) {Xλ, Xµ, J(Xν)},(3.4)

for all X,Y, Z,W ∈ g and c, d ∈ C, where {x1, x2, x3} = 1
24

∑
π∈S3

xπ(1)xπ(2)xπ(3) for all x1, x2, x3 ∈ Y (g).

The algebra Y (g) is equipped with an ascending filtration FJ defined by degX = 0 and deg J(X) = 1
for all X ∈ g. For each k ≥ 0, let FJk denote the subspace of Y (g) spanned by elements of degree less

than or equal to k and denote by X̄ and J(X) the images of X and J(X), respectively, in FJ0 and FJ1 /F
J
0 ,

respectively. A proof of the following well-known result, dating back to [Dr1], was made available recently
in [GRW4].

Proposition 3.2 (Proposition 2.2 of [GRW4]). The associated graded algebra gr Y (g) is isomorphic to
U(g[z]). An isomorphism ϕJ : U(g[z])→ gr Y (g) is provided by the assignment

Xλz 7→ J(Xλ), Xλ 7→ Xλ ∀ λ ∈ Λ.

We pause momentarily to comment on the relations (3.3) and (3.4). It was pointed out in [Dr1] that

(a) when g ∼= sl2 the relation (3.3) follows from (3.1) together with (3.2), and
(b) when g � sl2 the relation (3.4) follows from the relations (3.1)–(3.3).
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One way of seeing this is to appeal to the proof of [GRW4, Theorem 2.6]. A careful reading of that proof
together with [GNW, 3(ii)] shows that if g � sl2 then the relation (3.4) can be omitted and the relation (3.3)
can even be replaced with the relation

[J(h), J(h′)] =
1

4

∑
α,β∈∆+

α(h)β(h′)[x−αx
+
α , x

−
β x

+
β ] ∀ h, h′ ∈ h,

where h denotes the Cartan subalgebra of g, ∆+ denotes the set of positive roots of g, and for each α ∈ ∆+

x±α ∈ g±α are such that (x+
α , x

−
α ) = 1. If instead g ∼= sl2, then the proof of [GRW4, Theorem 2.6] found in

Appendix A of loc. cit. shows that the relation (3.3) can be omitted and (3.4) can be replaced with

[[J(e), J(f)], J(h)] = (fJ(e)− J(f)e)h,

where {e, f, h} is the standard sl2-triple and (·, ·) has been normalized to equal the trace form.

By [Dr1, Theorem 2], Y (g) is a Hopf algebra with comultiplication ∆, counit ε, and antipode S given by

(3.5)

∆(X) = X ⊗ 1 + 1⊗X, ∆(J(X)) = J(X)⊗ 1 + 1⊗ J(X) + 1
2 [X ⊗ 1,Ω],

ε(X) = ε(J(X)) = 0,

S(X) = −X, S(J(x)) = −J(X) + 1
4cgX,

where X is an arbitrary element of g. A proof that ∆ is an algebra homomorphism may be found in [GNW].

The enveloping algebra U(g[z]) has a one parameter family of Hopf algebra automorphisms τ c, indexed
by c ∈ C, which are determined by τ c : Xzr → X(z + c)r for all r ≥ 0 and X ∈ g. The Yangian Y (g) also
possesses such a family of Hopf algebra automorphisms which can be viewed as quantizations of these shift
automorphisms. Explicitly, for each c ∈ C, there is a Hopf algebra automorphism τc of Y (g) given by the
assignment

(3.6) X 7→ X, J(X) 7→ J(X) + cX for all X ∈ g.

By replacing c ∈ C with a formal variable u, we obtain an automorphism τu of the polynomial algebra
Y (g)[u] or even of the formal power series algebra Y (g)((u−1)). Given complex numbers c, d ∈ C and formal
variables u, v, we will write τc,d = τc ⊗ τd and τu,v = τu ⊗ τv. We will also denote by ∆op the opposite
coproduct of Y (g); that is, ∆op = σ ◦∆ where σ = σY (g),Y (g). The next corollary follows immediately from
the definition of the antipode S given in (3.5).

Corollary 3.3. The square of the antipode S is given by S2 = τ− 1
2 cg

.

We are now prepared to introduce the universal R-matrix of Y (g).

Theorem 3.4 (Theorem 3 of [Dr1]). There is a unique formal series R(u) = 1 +
∑∞
k=1Rku−k ∈ (Y (g) ⊗

Y (g))[[u−1]] satisfying

(id⊗∆)R(u) = R12(u)R13(u),(3.7)

τ0,u∆op(Y ) = R(u)−1(τ0,u∆(Y ))R(u) for all Y ∈ Y (g).(3.8)

The series R(u) is called the universal R-matrix of Y (g) and it also satisfies the quantum Yang-Baxter
equation

(3.9) R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v),

as well as the relations

R12(u)R21(−u) = 1, τc,dR(u) = R(u+ d− c),(3.10)

R(u) = 1 + Ωu−1 +
∑
λ∈Λ

(J(Xλ)⊗Xλ −Xλ ⊗ J(Xλ))u−2 + 1
2Ω2u−2 +O(u−3).(3.11)

Note that (3.8) should be viewed as a relation in (Y (g) ⊗ Y (g))((u−1)) and the quantum Yang-Baxter
equation (3.9) can be interpreted as an equality in the space (Y (g)⊗ Y (g)⊗ Y (g))[[v±1, u±1]].

In addition to those properties of R(u) listed in the above theorem, standard arguments show that

(3.12) (id⊗ S)R(u) = R(u)−1 and (id⊗ ε)(R(u)) = 1.
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We end this section by recalling a result which concerns the uniqueness and rationality ofR(u) when evaluated
on any two finite-dimensional irreducible representations. Let ρV and ρW be finite-dimensional irreducible
representations of Y (g) on the spaces V and W , respectively, and set RV,W (u) = (ρV ⊗ ρW )R(−u).

Theorem 3.5 (Theorem 4 of [Dr1] and Theorem 3.10 of [GRW4]). Up to multiplication by elements of
C[[u−1]], RV,W (u) is the unique solution R(u) ∈ End(V ⊗W )[[u−1]] of the equation

(3.13) (ρV ⊗ ρW )(τu,v∆(J(X)))R(u− v) = R(u− v)(ρV ⊗ ρW )(τu,v∆
op(J(X))) for all X ∈ g.

Additionally, there exists a formal series f(u) ∈ 1+u−1C[[u−1]] such that f(u)RV,W (u) ∈ End(V ⊗W )⊗C(u).

The negative sign which appears in the definition of RV,W (u) does not play an important role in this
result and has been included so that, up to multiplication by a formal series, RCN ,CN (u) coincides with the
R-matrix R(u) given by (8.1) if g = slN and (8.2) if g = soN or spN : see [GRW4, Proposition 3.13].

4. The r-matrix presentation of the current algebra g[z]

An important ingredient needed to prove the isomorphism between the Drinfeld Yangian Y (g) and the
RTT -Yangian YR(g) (see Section 5) is a presentation of the polynomial current algebra g[z] which is deter-
mined by the image of the Casimir element Ω, or more precisely the classical r-matrix of g[z], under a fixed
representation of the Lie algebra g. In this section we obtain such a realization of g[z] (see Corollary 4.7 and
Proposition 4.9), and also for the current algebra (g⊕ zI)[z] of a certain trivial central extension g⊕ zI of g
(see Proposition 4.16). The polynomial current algebra (g⊕ zI)[z] will play an analogous role to g[z] in the
study of the extended Yangian XI(g).

4.1. Setup. Let V be a finite-dimensional g-module with associated homomorphism ρ : g → gl(V ), set
N = dimV , and assume that V is not isomorphic to a direct sum of N copies of the trivial representation.
The following setup will be used throughout this paper, with the exception that from Subsection 4.3 onwards
V will be assumed to be a finite-dimensional Y (g)-module.

As in the preliminary section, we fix a basis {e1, . . . , eN} of V and let {Eij}1≤i j≤N denote the usual
elementary matrices with respect to this basis. Let Ωρ denote the image of Ω under ρ⊗ ρ:

Ωρ = (ρ⊗ ρ)(Ω).

Since g is simple and Ker(ρ) ( g, the homomorphism ρ is injective, and hence {X•λ = ρ(Xλ)}λ∈Λ is a linearly
independent set in gl(V ) which spans a Lie subalgebra ρ(g) isomorphic to g. The Lie algebra gl(V ) acts
on itself via the adjoint action, and we may restrict this action to g ∼= ρ(g) to obtain a finite-dimensional
representation of g. We denote the resulting g-module by adg(gl(V )), and we let % denote the corresponding
Lie algebra homomorphism:

% : g→ End(gl(V )).

We use the same notation when adg(gl(V )) is viewed as a U(g)-module.

The space span{X•λ}λ∈Λ forms a submodule of adg(gl(V )) isomorphic to the adjoint representation of g.
Accordingly, we will write

ad(g) = span{X•λ}λ∈Λ

when the space on the right-hand side is viewed as a g-submodule of adg(gl(V )).

We will extend the basis {X•λ}λ∈Λ of ad(g) to a basis {X•λ}λ∈Λ• of EndV which respects the decomposition
of adg(gl(V )) into irreducible submodules. Consider the subspace of intertwiners Eg defined by

Eg = EndgV.

This is a submodule of adg(gl(V )) isomorphic to a direct sum of copies of the trivial representation Cg of
g. As Eg intersects with ad(g) trivially, the direct sum ad(g) ⊕ Eg is also a submodule of adg(gl(V )). By
complete reducibility, there is a submodule W ′ of adg(gl(V )) complimentary to ad(g)⊕ Eg. Let

(4.1) W ′ = W1 ⊕ · · · ⊕Wm
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be its decomposition into a direct sum of irreducible g-submodules of adg(gl(V )), and set W = Eg ⊕W ′. In
summary, we have the g-module decomposition

adg(gl(V )) = ad(g)⊕W = ad(g)⊕ Eg ⊕W ′ = ad(g)⊕ Eg ⊕W1 ⊕ · · · ⊕Wm.

Note that, by definition, every trivial subrepresentation of adg(gl(V )) consists of endomorphisms which
commute with ρ(g), and hence is contained in Eg. In particular, this implies that Wi � Cg for any 1 ≤ i ≤ m.
Let J and Λi, for each 1 ≤ i ≤ m, be indexing sets such that {X•λ}λ∈J is a basis for Eg, and {X•λ}λ∈Λi is a
basis for Wi for each fixed 1 ≤ i ≤ m. We then set

Λc = J t Λ1 t · · · t Λm and Λ• = Λ ∪ Λc.

Finally, we define a family of complex scalars {cλij , aλij : λ ∈ Λ•, 1 ≤ i, j ≤ N} by

(4.2) X•λ =

N∑
i,j=1

cλijEij and Eij =
∑
λ∈Λ•

aλijX
•
λ.

4.2. The Lie algebras gJ , gρ and their polynomial current algebras. We now turn to giving a
presentation for the enveloping algebra of g which is governed by Ωρ. This naturally leads to the desired
presentation of the polynomial current algebra g[z]: see Corollary 4.7 and Proposition 4.9.

4.2.1. Uρ(g) and the extended enveloping algebra UJ (g). We begin by defining an algebra UJ (g) which can
be viewed as an extension of U(g). It will be proven in Proposition 4.6 that this algebra is isomorphic to the
enveloping algebra of the Lie algebra g⊕zJ , where zJ is a commutative Lie algebra of dimension dim EndgV .

Definition 4.1. The extended enveloping algebra UJ (g) is defined to be the unital associative C-algebra
generated by elements {FJij }1≤i,j≤N subject to the defining relation

(4.3) [FJ1 , F
J
2 ] = [Ωρ, F

J
2 ] in (EndV )⊗2 ⊗ UJ (g),

where FJ =
∑N
i,j=1Eij ⊗ F

J
ij ∈ EndV ⊗ UJ (g) and Ωρ has been identified with Ωρ ⊗ 1.

For each λ ∈ Λ•, set XJλ =
∑N
i,j=1 a

λ
ijF
J
ij (see (4.2)) so that FJ =

∑
λ∈Λ• X

•
λ ⊗ XJλ , and let K =∑N

i,j=1Eij ⊗ kij be the element of EndV ⊗ UJ (g) defined by

K =

N∑
i,j=1

Eij ⊗ kij =
∑
λ∈Λc

X•λ ⊗XJλ .

Given an arbitrary vector space U and A =
∑N
i,j=1Eij ⊗ uij ∈ EndV ⊗U, define

ω(A) =

N∑
i,j=1

ω(Eij)⊗ uij ∈ EndV ⊗U, where ω(Eij) = %(ω)(Eij),

and let ∇ : EndV ⊗ EndV → EndV denote the multiplication (or composition) map.

Lemma 4.2. K satisfies the following properties:

(1) The coefficients kij of K are central,
(2) [Ωρ,K2] = 0 = [Ωρ,K1] and ω(K) = 0,

(3) XJλ = 0 for all λ ∈ Λc \ J . In particular, K =
∑
λ∈J X

•
λ ⊗X

J
λ .

Proof. Consider first (1). After setting F = FJ −K ∈ ad(g)⊗ UJ (g), (4.3) gives

(4.4) [K1, F
J
2 ] = [Ωρ, F

J
2 ]− [F1, F

J
2 ] ∈ ad(g)⊗ EndV ⊗ UJ (g).

Since [K1, F
J
2 ] ∈W ⊗ EndV ⊗ UJ (g), both sides of this equality must vanish, which proves (1).

Proof of (2). By Part (1) and (4.4), we have

(4.5) [Ωρ,K2] = [F2,Ωρ] + [F1,F2] ∈ ad(g)⊗ ad(g)⊗ UJ (g).
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As W is a submodule of adg(gl(V )), [Ωρ,K2] ∈ ad(g) ⊗W ⊗ UJ (g). Therefore [Ωρ,K2] = 0, and applying
the permutation operator σ ⊗ 1 to both sides of this equality gives [Ωρ,K1] = 0. These two relations also
imply that

0 = (∇⊗ 1)([Ωρ,K2 −K1]) =
∑

λ∈Λ,µ∈Λc

[
X•λ, [X

•
λ, X

•
µ]
]
⊗XJµ = ω(K).

Proof of (3). On each irreducible component Wi of W ′ (see (4.1)), ω operates as multiplication by a scalar
ci. Hence, from the equality ω(K) = 0 and the fact that ω(X•µ) = 0 for all µ ∈ J , we obtain

(4.6) 0 =

m∑
i=1

ci

∑
µ∈Λi

X•µ ⊗XJµ

 =
∑

µ∈Λc\J

X•µ ⊗ cµXJµ ,

where in the second equality we have defined cµ, for each µ ∈ Λc \ J , to be equal to ci for the unique
i ∈ {1, . . . ,m} such that µ ∈ Λi. It is well known result from the classical theory of simple Lie algebras over
C that the Casimir element operates as a nonzero scalar in every non-trivial finite-dimensional irreducible
module. Therefore, ci 6= 0 for all 1 ≤ i ≤ m and (4.6) implies that XJµ = 0 for all µ ∈ Λc \ J . �

The next lemma gives two equivalent definitions of K and proves that there is a morphism U(g)→ UJ (g).

Lemma 4.3. The matrices FJ and K satisfy the identities

[Ωρ, F
J
2 ] = [FJ1 , F

J
2 ] = [FJ1 ,Ωρ],(4.7)

FJ − 2c−1
g (∇⊗ 1)[FJ1 , F

J
2 ] = K = FJ − c−1

g ω(FJ ).(4.8)

Moreover, the assignment Xλ 7→ −XJλ for all λ ∈ Λ extends to a homomorphism ιJ : U(g)→ UJ (g).

Proof. Applying the permutation operator σ⊗ 1 to [FJ1 , F
J
2 ] = [Ωρ, F

J
2 ] gives −[FJ1 , F

J
2 ] = [Ωρ, F

J
1 ]. This

implies (4.7).

By Part (2) of Lemma 4.2, FJ − c−1
g ω(FJ ) = K. Since (∇⊗ 1)[FJ1 , F

J
2 ] = (∇⊗ 1)[Ωρ, F

J
2 ], (4.7) yields

(∇⊗ 1)[FJ1 , F
J
2 ] = 1

2 (∇⊗ 1)([Ωρ, F
J
2 ]− [Ωρ, F

J
1 ]) = 1

2ω(FJ ),

which proves (4.8).

As for the second part of the lemma, we obtain from Part (2) of Lemma 4.2 and (4.5) that [F1,F2] =
[Ωρ,F2], where F = FJ −K. Expanding in terms of the basis {X•λ ⊗X•µ}λ,µ∈Λ of ad(g)⊗ ad(g) gives

[XJλ , X
J
µ ] =

∑
γ∈Λ

αµλγX
J
γ = −

∑
γ∈Λ

αγλµX
J
γ ∀ λ, µ ∈ Λ.

Thus, the assignment Xλ 7→ −XJλ , for all λ ∈ Λ, extends to a homomorphism ιJ : U(g)→ UJ (g). �

We now simultaneously define the algebra Uρ(g) as a quotient of UJ (g) and prove that it is isomorphic
to the enveloping algebra U(g).

Proposition 4.4. Let Uρ(g) be the quotient of UJ (g) by the two-sided ideal generated by the coefficients of the
central matrix K. Equivalently, Uρ(g) is the unital associative C-algebra generated by elements {Fij}1≤i,j≤N
subject to the defining relations

[F1, F2] = [Ωρ, F2],(4.9)

F = c−1
g ω(F ),(4.10)

where F =
∑N
i,j=1Eij ⊗ Fij ∈ EndV ⊗ Uρ(g).

Then Uρ(g) is isomorphic to the enveloping algebra U(g). An isomorphism φρ is given by

(4.11) φρ : Uρ(g)→ U(g), F 7→ −(ρ⊗ 1)Ω.
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Proof. Set F =
∑N
i,j=1Eij⊗Fij = −(ρ⊗1)Ω. By (4.2), the element Fij = φρ(Fij) is equal to −

∑
λ∈Λ c

λ
ijXλ.

Step 1 : φρ is a homomorphism of algebras.

Recall that [Ω,∆(X)] = 0 for all X ∈ g. This implies that, in g⊗ g⊗ g, we have the identity [Ω13,Ω23] =
−[Ω12,Ω23]. Applying the homomorphism ρ⊗ ρ⊗ 1 to both sides of this identity, we obtain the relation

[F1,F2] = [Ωρ,F2] in (EndV )⊗2 ⊗ g.

Hence, the assignment (4.11) preserves the relation (4.9).

Since we also have F = −
∑
λ∈ΛX

•
λ⊗Xλ ∈ ad(g)⊗ g, and ω acts on ad(g) as multiplication by the scalar

cg, the relation F = c−1
g ω(F) is satisfied, and thus φρ is a homomorphism.

Step 2: φρ is an isomorphism.

For each λ ∈ Λ•, define Xρ
λ to be the image of XJλ under the natural quotient map q : UJ (g) � Uρ(g).

Since q(K) = 0, Xρ
λ = 0 for all λ ∈ Λc. Let ψ = q ◦ ιJ : U(g) → Uρ(g), where ιJ : U(g) → UJ (g) is the

morphism from Lemma 4.3. Then φρ ◦ ψ = idU(g), and to see that ψ ◦ φρ = idUρ(g) it suffices to note that

{Xρ
λ}λ∈Λ generates Uρ(g), which is immediate since it is the image of the generating set {XJλ }λ∈Λ• of UJ (g).

This proves that φρ is an isomorphism with inverse ψ. �

Remark 4.5. After expanding Ωρ =
∑N
i,j,k,l=1 c

kl
ijEij ⊗ Ekl, we may rewrite the relations (4.9) and (4.10)

of Uρ(g) more explicitly in terms of the generators Fij. They are

[Fij , Fkl] =

N∑
a=1

(
ckaij Fal − calijFka

)
and Fij = 2c−1

g

N∑
a=1

[Fia, Faj ] ∀ 1 ≤ i, j, k, l ≤ N,(4.12)

where to obtain the second relation we have employed that, by (4.8), c−1
g ω(F ) = 2c−1

g (∇⊗ 1)[F1, F2].

Let gρ be the Lie subalgebra of Lie(Uρ(g)) generated by {Xρ
λ}λ∈Λ, or equivalently by {Fij}1≤i,j≤N . Then

Proposition 4.4 implies that (4.9) and (4.10) are defining relations for gρ and that φρ|gρ is an isomorphism

of Lie algebras gρ
∼−→ g. Consequently U(gρ) ∼= Uρ(g), and we will henceforth exploit this fact and denote

Uρ(g) instead by U(gρ).

We now return to the study of the algebra UJ (g). Define zJ to be the commutative Lie algebra with
basis {KJλ }λ∈J , and identify the enveloping algebra U(zJ ) with C[KJλ : λ ∈ J ]. We will denote the matrix∑
λ∈J X

•
λ ⊗K

J
λ ∈ EndV ⊗ zJ by KJ .

Proposition 4.6. The assignment FJ 7→ F + KJ extends to an isomorphism of algebras

(4.13) φJ : UJ (g)
∼−→ C[KJλ : λ ∈ J ]⊗ U(gρ).

Proof. Since KJ ∈ Eg⊗ zJ , we have [Ωρ,K
J
2 ] = 0. As the coefficients of KJ are also central and F satisfies

(4.9), F + KJ satisfies the defining relation (4.3) of UJ (g). Thus the assignment FJ 7→ F + KJ extends to
a homomorphism φJ : UJ (g)→ C[KJλ : λ ∈ J ]⊗ U(gρ).

Since the coefficients of K are central, we deduce that there is an algebra homomorphism ψzJ : C[KJλ :
λ ∈ J ] → UJ (g) given by KJ 7→ K. Let ι = ιJ ◦ φρ : U(gρ) → UJ (g). Since [ι(X), ψzJ (Y )] = 0 for all

X ∈ U(gρ) and Y ∈ C[KJλ : λ ∈ J ], there is a unique homomorphism

ψJ = ψzJ ⊗ ι : C[KJλ : λ ∈ J ]⊗ U(gρ)→ UJ (g)

satisfying ψJ (KJ ) = K and ψJ (F ) = F, where we recall that F = FJ −K. As φJ is completely determined
by φJ (K) = KJ and φJ (F) = F , it follows immediately that ψJ = φ−1

J . �

Define gJ to be the Lie subalgebra of Lie(UJ (g)) generated by the set of elements {FJij }1≤i,j≤N . Then

the restriction φJ |gJ (see (4.13)) and its composition with id⊗ φρ (see (4.11)) produce isomorphisms

(4.14) gJ
∼−→ gρ ⊕ zJ

∼−→ g⊕ zJ ,

and we have U(gJ ) ∼= UJ (g). Accordingly, we will henceforth denote UJ (g) by U(gJ ).
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4.2.2. The polynomial current algebras gρ[z] and gJ [z]. As a consequence of Proposition 4.4 and the com-
ments following Remark 4.5, the current algebras gρ[z] and g[z] are isomorphic. Similarly, Proposition 4.6
and the isomorphism (4.14) imply that gJ [z] ∼= (g⊕ zJ )[z]. The former identification leads to the so called
r-matrix realization of g[z], as we will illustrate in this subsection.

Corollary 4.7. An isomorphism φzρ : gρ[z]→ g[z] is provided by the assignment

φzρ : F (r) 7→ −(ρ⊗ 1)(Ωzr) ∀ r ≥ 0,

where, for each r ≥ 0, F (r) =
∑N
i,j=1Eij ⊗ Fijzr ∈ EndV ⊗ gρ[z] and Ωzr =

∑
λ∈ΛXλ ⊗Xλz

r ∈ g⊗ g[z].

In particular, U(g[z]) is isomorphic to the unital associative C-algebra generated by the family of elements

{F (r)
ij = Fijz

r : 1 ≤ i, j ≤ N, r ∈ Z≥0} subject to the defining relations

[F
(r)
1 , F

(s)
2 ] = [Ωρ, F

(r+s)
2 ] ∀ r, s ≥ 0,(4.15)

F (r) = c−1
g ω(F (r)) ∀ r ≥ 0.(4.16)

Proof. The corollary follows from Proposition 4.4, the three sentences following Remark 4.5, and the defini-
tion of the current algebra g[z] (see (2.1)). �

Remark 4.8. The relations (4.15) and (4.16) are, of course, just the defining relations of U(gρ[z]). Omitting
the relation (4.16) gives the definition of U(gJ [z]).

Introduce the generating matrix

F (u) =

N∑
i,j=1

Eij ⊗ Fij(u) ∈ EndV ⊗ (gρ[z])[[u
−1]], where Fij(u) =

∑
r≥0

F
(r)
ij u

−r−1 ∈ (gρ[z])[[u
−1]].

Using this notation, we can express the defining relations of g[z] (or more precisely those of gρ[z]) using the

classical r-matrix Ω
u−v associated to its standard Lie bialgebra structure.

Proposition 4.9. The defining relations (4.15) and (4.16) are equivalent to the relations

[F1(u), F2(v)] =

[
Ωρ
u− v

, F1(u) + F2(v)

]
,(4.17)

F (u) = c−1
g ω(F (u)).(4.18)

The relation (4.17) independently serves as the defining relation of U(gJ [z]).

Proof. It is clear that the relation (4.18) is equivalent to (4.16). To prove the equivalence of (4.17) with
(4.15), we will expand

(4.19) (u− v)−1 =
∑
p≥0

vpu−p−1 ∈ (C[v])[[u−1]],

view (4.17) as an equality in the space (EndV )⊗2⊗U(gρ[z])[[v
±1, u−1]], and compare the coefficient of vsu−r

on each side for s ∈ Z and r ∈ Z≥0. Note that (4.19) is not the unique expansion of (u−v)−1 in C[[v±1, u±1]],
and thus there are other equivalent ways of viewing (4.17): see Remark 4.10.

Expanding (4.17) using (4.19), we obtain

(4.20)
∑
r,s≥0

[F
(r)
1 , F

(s)
2 ]v−s−1u−r−1 =

∑
p,a,b≥0

(
[Ωρ, F

(a)
1 ]vpu−p−a−2 + [Ωρ, F

(b)
2 ]vp−b−1u−p−1

)
Comparing the coefficient of u−r−1v−s−1 in both sides, for r, s ∈ Z≥0, we obtain (4.16):

[F
(r)
1 , F

(s)
2 ] = [Ωρ, F

(r+s)
2 ] ∀ r, s ≥ 0.

We must also compare the coefficient of vsu−r (for r, s ∈ Z≥0) in both sides of (4.20) to guarantee that this
relation does not imply any additional relations which are not satisfied in U(gρ[z]). If 0 ≤ r < 2 or s > r−2,
the coefficient of u−rvs on both sides of (4.17) is zero. Otherwise, we obtain

0 = [Ωρ, F
(r−s−2)
1 ] + [Ωρ, F

(r−s−2)
2 ],
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which is also a consequence of (4.15): this can be deduced from (4.15) in the same way that the relation
(4.7) of Lemma 4.3 was deduced from (4.3). �

Remark 4.10. In the proof of Proposition 4.9 we have expanded the rational expression (u − v)−1 as an
element of (C[v])[[u−1]] and then interpreted (4.17) as an equality in (EndV )⊗2 ⊗ U(gρ[z])[[v

±1, u−1]]. As
mentioned in the proof of the proposition, this is not the only way we could have proceeded. Working in
a more general framework, (4.17) should be viewed as an equality in (EndV )⊗2 ⊗ U(gρ[z])[[v

±1, u±1]]. In
particular, (u − v)−1 can be expanded as the formal series −

∑
p≥0 u

pv−p−1 in (C[u])[[v−1]], leading to an
equivalent set of defining relations.

An alternative expansion involves multiplying both sides of (4.17) by the polynomial u − v and then
expanding both sides as elements of (EndV )⊗2 ⊗ U(gρ[z])[[u

−1, v−1]]: see for instance Subsection 1.1 of
[Mo1].

4.3. The extended Lie algebra gI and its polynomial current algebra. In this subsection we consider
an algebra UI(g) which is constructed from a fixed finite-dimensional Y (g)-module. Like U(gJ ) = UJ (g), it
is an extension of the enveloping algebra U(gρ), but the role played by EndgV is instead played by EndY (g)V .
Consequently, UI(g) encodes certain information about the underlying Y (g)-module structure which U(gJ )
does not.

Henceforth, we assume that V is a finite-dimensional Y (g)-module with corresponding homomorphism
ρ : Y (g) → EndV . We also assume that V contains a non-trivial irreducible submodule. This hypothesis
guarantees that V has at least one non-trivial irreducible component when viewed as a g-module (via re-
striction), and hence that we are in the situation of Subsection 4.1. In particular, all the definitions and
results of the previous subsection apply.

Going forward, we will need to specialize our basis {X•λ}λ∈J of Eg = Endg(V ). Let E ⊂ Eg denote the
subspace of Y (g)-module endomorphisms, and let Ec be a subspace of Eg complimentary to E :

E = EndY (g)V ⊂ Eg, Eg = E ⊕ Ec.
We may then partition J = I t Ic and choose {X•λ}λ∈J in such a way that {X•λ}λ∈I is a basis of E and
{X•λ}λ∈Ic is a basis of Ec.

4.3.1. The extended enveloping algebra UI(g). Following our convention of labeling X• = ρ(X) for each
X ∈ g, we will write J(X•) for the image of J(X) in EndV under ρ. In addition, we define a module
homomorphism J : ad(g)→ adg(gl(V )) by X• 7→ J(X•) for all X ∈ g.

Definition 4.11. Define UI(g) to be the quotient of U(gJ ) by the two-sided ideal generated by the relation
[K2, (1⊗J)(Ωρ)] = [K1, (J⊗1)(Ωρ)]. That is, UI(g) is the associative unital C-algebra generated by elements
{F Iij}1≤i,j≤N subject to the defining relations

[F I1 , F
I
2 ] = [Ωρ, F

I
2 ],(4.21)

[KI2 , (1⊗ J)(Ωρ)] = [KI1 , (J ⊗ 1)(Ωρ)](4.22)

where F I =
∑N
i,j=1Eij ⊗ F Iij ∈ EndV ⊗ UI(g) and KI = F I − c−1

g ω(F I).

We now work towards establishing an analogue of Proposition 4.6. For each λ ∈ Λ•, let XIλ denote the

image of XJλ in UI(g). Explicitly, XIλ =
∑N
i,j=1 a

λ
ijF
I
ij (see (4.2)) and we have F I =

∑
λ∈Λ• X

•
λ ⊗XIλ . In

fact, by Part (3) of Lemma 4.2, we have

KI =
∑
λ∈J

X•λ ⊗XIλ and F I =
∑

λ∈Λ∪J

X•λ ⊗XIλ .

As a first step, we construct for each x ∈ Eg a g-module W (x) which is either zero or isomorphic to ad(g),
but which cannot have a nonzero intersection with ad(g). Fix x ∈ Eg and let

W (x) = span{[x, J(X•λ)]}λ∈Λ.

Note that W (x) is a submodule of the g-module adg(gl(V )), and that there is a module homomorphism

ϕx : ad(g)→W (x), X•λ 7→ [x, J(X•λ)] ∀ λ ∈ Λ.
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This homomorphism is surjective and, by Schur’s lemma, it is either an isomorphism or the zero morphism.
We also have E = {x ∈ Eg : ϕx = 0} = {x ∈ Eg : W (x) = 0}.

Lemma 4.12. There does not exist x ∈ Eg such that W (x) ∩ ad(g) 6= {0}.

Proof. Suppose that x ∈ Eg satisfies W (x) ∩ ad(g) 6= {0}. Then W (x) is irreducible and, since the same is
true for ad(g), we have W (x) = ad(g). In particular, ϕx must be an isomorphism, and by Schur’s lemma,
every module homomorphism W (x)→ ad(g) is a scalar multiple of ϕ−1

x : [x, J(X•λ)] 7→ X•λ. As the identity
map provides such a homomorphism, there exists c ∈ C× such that [x, J(X•λ)] = cX•λ for all λ ∈ Λ. After
re-normalizing x if necessary, we can assume that c = 1. Consider the linear map

adx : EndV → EndV, X 7→ [x,X] ∀ X ∈ EndV.

Since adx(J(X•λ)) = X•λ and adx(X•λ) = 0 for all λ ∈ Λ, we deduce from the fact that adx is a derivation
that it restricts to a linear map

adρ,x : ρ(Y (g))→ ρ(Y (g)).

Given a monomial X in the variables {J(X•λ), X•γ}λ,γ∈Λ, we denote by `(X) the degree of this monomial
with respect to the assignment degX•γ = 0 and deg J(X•λ) = 1. For each k ≥ 0, let Hk denote the subspace

of ρ(Y (g)) which is spanned by monomials X such that `(X) ≤ k, i.e. Hk = ρ(FJk ), where FJ = {FJk}k≥0

is the filtration defined below Definition 3.1. We then have adρ,x(H0) = 0 and adρ,x(Hk) ⊂ Hk−1 for all
k ≥ 1. This follows from the facts that adρ,x(J(X•λ)) = X•λ for all λ ∈ Λ, adρ,x(X•γ ) = 0 for all γ ∈ Λ, and
that adρ,x is a derivation. We will break the remainder of our proof into two steps:

Step 1: There exists k ≥ 1 such that adkρ,x = 0.

Note that Hk−1 ⊂ Ker(adkρ,x) for all k ≥ 1. Indeed, since adρ,x(Hk−1) ⊂ Hk−2 for all k ≥ 1 (here

Ha = {0} for all a < 0), we obtain inductively that adkρ,x(Hk−1) ⊂ H−1 = {0}. Since ρ(Y (g)) ⊂ EndV
is finite-dimensional, it has a finite basis {B1, . . . , Bdim ρ(Y (g))} consisting of monomials Bi in the variables
{J(X•λ), X•γ}λ,γ∈Λ. Let ` denote the finite integer max{`(Bi) : 1 ≤ i ≤ dim ρ(Y (g))}. Then each Bi belongs

to H` and hence so does all of ρ(Y (g)). Since ad`+1
ρ,x (H`) = 0, ad`+1

ρ,x is identically zero.

Step 2: The image of adkρ,x contains ρ(g) ∼= g for every k ≥ 1.

For each k ≥ 1 and k-tuple α1, . . . , αk ∈ Λ, set

Aα1,...,αk = [J(X•α1
), [J(X•α2

), · · · , [J(X•αk−1
), J(X•αk)] · · · ]],

Yα1,...,αk = [X•α1
, [X•α2

, · · · , [X•αk−1
, X•αk ] · · · ]].

If k = 1, then it is understood that Aα = J(X•α) and Yα = X•α.

Claim: adkρ,x(Aα1,...,αk) = k!Yα1,...,αk for all k ≥ 1.

We will prove the claim by induction on k. If k = 1 then it is just the statement that adρ,x(J(X•α)) = X•α.

Suppose inductively that the claim holds whenever k = l, and consider adl+1
ρ,x (Aα1,...,αl+1

). We have

adl+1
ρ,x (Aα1,...,αl+1

) =

l+1∑
j=0

(
l + 1

j

)[
adjρ,x(J(X•α1

)), adl+1−j
ρ,x (Aα2,...,αl+1

)
]
.

Since ad2
ρ,x(J(X•α1

)) = 0 and adl+1
ρ,x (Aα2,...,αl+1

) = 0 (since Aα2,...,αl+1
∈ Hl), the only term of the sum on

the right-hand side which does not necessarily vanish corresponds to j = 1. As adρ,x(J(X•α1
)) = X•α1

and,

by induction, adlρ,x(Aα2,...,αl+1
) = l!Yα2,...,αl+1

, we have

adl+1
ρ,x (Aα1,...,αl+1

) = (l + 1)l!
[
X•α1

, Yα2,...,αl+1

]
= (l + 1)!Yα1,...,αl+1

.

This completes the proof of the claim.

To complete the proof of Step 2, it remains to note that, since ρ(g) is a simple Lie algebra, it is perfect
and thus spanned by the collection of elements {Yα1,...,αk}αi∈Λ for any fixed k ≥ 1.

We can now finish the proof of the lemma. By Step 1, there exists k ≥ 1 such that adkρ,x = 0. By Step

2, ρ(g) ⊂ adkρ,x(ρ(Y (g))) = {0}, which is a contradiction. Therefore there cannot exist x ∈ Eg such that
W (x) ∩ ad(g) 6= {0}. �
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This leads us to the following analogue of Part (3) of Lemma 4.2.

Lemma 4.13. We have XIµ = 0 for all µ ∈ Ic. In particular, KI =
∑
λ∈I X

•
λ ⊗XIλ .

Proof. Since [X•µ, J(X•λ)] = 0 for all µ ∈ I and λ ∈ Λ, (4.22) is equivalent to

(4.23)
∑

λ∈Λ,µ∈Ic

X•λ ⊗ [X•µ, J(X•λ)]⊗XIµ =
∑

λ∈Λ,µ∈Ic

[X•µ, J(X•λ)]⊗X•λ ⊗XIµ .

Let’s first show that for any fixed λ ∈ Λ, {[X•µ, J(X•λ)]}µ∈Ic is a linearly independent set. Suppose that∑
µ∈Ic

aµ[X•µ, J(X•λ)] = 0 for some {aµ}µ∈Ic ⊂ C.

Then x =
∑
µ∈Ic aµX

•
µ must belong to E , because ϕx cannot be an isomorphism as its kernel contains X•λ.

Since x also belongs to Ec, we must have x = 0. The assertion then follows from the linear independence of
the set {X•µ}µ∈Ic .

Next, we deduce that, for any fixed λ ∈ Λ, the set {X•γ , [X•µ, J(X•λ)]}γ∈Λ,µ∈Ic must also be linearly
independent. Indeed, if 0 6=

∑
µ∈Ic aµ[X•µ, J(X•λ)] ∈ ad(g), then x =

∑
µ∈Ic aµX

•
µ is such thatW (x)∩ad(g) 6=

{0}. By Lemma 4.12, no such x can exist, and hence we have shown that spanµ∈Ic{[X
•
µ, J(X•λ)]} intersects

trivially with ad(g), from which the linear independence of {X•γ , [X•µ, J(X•λ)]}γ∈Λ,µ∈Ic follows automatically
from the previous assertion and the linear independence of {X•γ}γ∈Λ.

Let {fµ}µ∈Λ• ⊂ (EndV )∗ denote the dual basis to {X•λ}λ∈Λ• ⊂ EndV . By the linear independence of
{X•γ , [X•µ, J(X•λ)]}γ∈Λ,µ∈Ic , applying fλ ⊗ id⊗ id to both sides of (4.23) for a fixed λ ∈ Λ yields∑

µ∈Ic

[X•µ, J(X•λ)]⊗XIµ = 0.

The linear independence of {[X•µ, J(X•λ)]}µ∈Ic then implies XIµ = 0 for all µ ∈ Ic. �

We define zI similarly to zJ : it is the commutative Lie algebra with basis {KIλ}λ∈I . We identify its
enveloping algebra with the polynomial ring C[KIλ : λ ∈ I], and set KI =

∑
λ∈I X

•
λ ⊗KIλ ∈ EndV ⊗ zI . We

are now prepared to state the analogue of Proposition 4.6.

Proposition 4.14. The assignment F I 7→ F + KI extends to an isomorphism of algebras

(4.24) φI : UI(g)
∼−→ C[KIλ : λ ∈ I]⊗ U(gρ).

Proof. Let π : C[KJλ : λ ∈ J ] � C[KIλ : λ ∈ I] be the surjection given by

π(KJλ ) =

{
KIλ if λ ∈ I,
0 if λ ∈ Ic.

Consider the tensor product π ⊗ id : C[KJλ : λ ∈ J ] ⊗ U(gρ) � C[KIλ : λ ∈ I] ⊗ U(gρ). Its kernel is

precisely the ideal generated by {KJλ }λ∈Ic , which is the image of the ideal generated by {XJµ }µ∈Ic under
the isomorphism φJ of Proposition 4.6. By Lemma 4.13 and the definition of UI(g), this ideal is contained
in the two-sided ideal I of UJ (g) generated by the relation [K2, (1 ⊗ J)(Ωρ)] = [K1, (J ⊗ 1)(Ωρ)], hence
Ker((π⊗ id)◦φJ ) ⊂ I. Since [KI2 , (1⊗J)(Ωρ)] = [KI1 , (J⊗1)(Ωρ)] trivially holds in C[KIλ : λ ∈ I]⊗U(gρ),
we indeed have the equality Ker((π ⊗ id) ◦ φJ ) = I. Thus (π ⊗ id) ◦ φJ induces an isomorphism φI :

UI(g)
∼−→ C[KIλ : λ ∈ I]⊗ U(gρ) which is given by F I 7→ F + KI . �

We conclude our discussion of UI(g) by emphasizing that Proposition 4.14 can be naturally interpreted
at the level of Lie algebras. Letting gI denote the Lie subalgebra of Lie(UI(g)) generated by {F Iij}1≤i,j≤N ,
we find that φI |gI and its composition with id⊗ φρ induce isomorphisms

(4.25) gI
∼−→ gρ ⊕ zI

∼−→ g⊕ zI ,

and moreover that U(gI) ∼= UI(g). With this in mind, UI(g) will be denoted U(gI) from this point on.
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4.3.2. The extended polynomial current algebra gI [z]. By (4.21), (4.22) and (4.25), the enveloping algebra

U(gI [z]) is isomorphic to the unital associative C-algebra generated by elements {F(r)
ij = F Iijz

r : 1 ≤ i, j ≤
N, r ∈ Z≥0} subject to the defining relations

[F
(r)
1 ,F

(s)
2 ] = [Ωρ,F

(r+s)
2 ] ∀ r, s ≥ 0,(4.26)

[K
(r)
2 , (1⊗ J)(Ωρ)] = [K

(r)
1 , (J ⊗ 1)(Ωρ)] ∀ r ≥ 0,(4.27)

where F(a) =
∑N
i,j=1Eij ⊗ F

(a)
ij ∈ EndV ⊗ U(gI [z]) and K(a) = F(a) − c−1

g ω(F(a)) for all a ≥ 0.

Following (4.2.2), let us define

F(u) =

N∑
i,j=1

Eij ⊗ Fij(u) ∈ EndV ⊗ (gI [z])[[u−1]], where Fij(u) =
∑
r≥0

F
(r)
ij u

−r−1 ∈ (gI [z])[[u−1]].

Recall that, for each λ ∈ Λ•, XIλ =
∑
i,j a

λ
ijF
I
ij ∈ gI , where the family of scalars {aλij} is defined in (4.2). To

every λ ∈ Λ• we associate the series Xλ(u) =
∑
r≥0X

(r)
λ u−r−1 ∈ (gI [z])[[u−1]], where X

(r)
λ = XIλ z

r.

Finally, we set K(r)
λ = KIλzr−1, so that U(zI [z]) ∼= C[K(r)

λ : λ ∈ I, r ≥ 1], and define

K(u) =
∑
λ∈I

X•λ ⊗Kλ(u), where Kλ(u) =
∑
r≥1

K(r)
λ u−r.

We can now state the polynomial current algebra version of Proposition 4.14:

Proposition 4.15. The assignment F(u) 7→ F (u) + K(u) extends to an isomorphism of algebras

(4.28) φzI : U(gI [z])
∼−→ C[K(r)

λ : λ ∈ I, r ≥ 1]⊗ U(gρ[z]).

Proof. The isomorphism gI
∼−→ gρ⊕zI furnished by Proposition 4.14 (see (4.25)) extends to an isomorphism

gI [z]
∼−→ (gρ ⊕ zI)[z] ∼= gρ[z]⊕ zI [z], which induces the desired isomorphism φzI between the corresponding

enveloping algebras. �

Setting K(u) =
∑
r≥0K

(r)u−r−1, we have φzI(K(u)) = K(u) and K(u) = F(u)− c−1
g ω(F(u)). By Lemma

4.13, K(u) can be equivalently defined by K(u) =
∑
λ∈I X

•
λ ⊗Xλ(u).

We will end this section by rewriting the defining relations of U(gI [z]) using the classical r-matrix for-
malism, which is achieved with the use of Proposition 4.9.

Proposition 4.16. The defining relations (4.26) and (4.27) are equivalent to the relations

[F1(u),F2(v)] =

[
Ωρ
u− v

,F1(u) + F2(v)

]
,(4.29)

[K2(u), (1⊗ J)(Ωρ)] = [K1(u), (J ⊗ 1)(Ωρ)],(4.30)

where K(u) = F(u)− c−1
g ω(F(u)).

5. The R-matrix presentation of the Yangian Y (g)

We have now reached the second and main part of this paper, where we will focus on establishing the
Yangian version of the results of Section 4 and studying them in more detail. In this section specifically,
we define the extended Yangian XI(g), the RTT -Yangian YR(g), and we then study some of their basic
properties.

We continue to assume that V is a fixed finite-dimensional Y (g)-module with corresponding homomor-
phism ρ, and that V has a non-trivial (not necessarily proper) irreducible submodule. We let R(u) denote
the image of the universal R-matrix R(−u) (see Theorem 3.4) under ρ⊗ ρ:

R(u) = (ρ⊗ ρ)R(−u) ∈ End(V ⊗ V )[[u−1]].

We adapt all of the notation from Section 4. In particular, we fix a basis {e1, . . . , eN} of V and we let
{Eij}1≤i,j≤N denote the usual elementary matrices with respect to this basis.
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5.1. The extended Yangian XI(g). In this subsection we define and study a Hopf algebra XI(g) larger
than Y (g) which we will eventually prove (in Section 7) is a filtered deformation of U(gI [z]).

5.1.1. Definition of the extended Yangian. We begin with the definition of XI(g) as an algebra.

Definition 5.1. The extended Yangian XI(g) is the unital associative C-algebra generated by elements

{t(r)ij : 1 ≤ i, j ≤ N, r ≥ 1} subject to the defining RTT -relation

(5.1) R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v) in (EndV )⊗2 ⊗XI(g)[[v±1, u±1]],

where T (u) =
∑N
i,j=1Eij ⊗ tij(u) with tij(u) = δij +

∑
r≥1 t

(r)
ij u

−r for all 1 ≤ i, j ≤ N , and R(u − v) has

been identified with R(u− v)⊗ 1.

Remark 5.2. An equivalent definition is obtained by replacing R(u) by f(u)R(u) for any fixed f(u) ∈
1 + u−1C[[u−1]]. In particular, if V is irreducible then, by Theorem 3.5, R(u) can be replaced with a rational
R-matrix.

Since no explicit description of the coefficients Rk of R(u) is known, R(u) cannot be computed directly
by evaluating R(−u). In practice, R(u) is obtained by instead solving the equation (3.13). By Theorem 3.5,
this determines R(u) up to multiplication by elements of C[[u−1]], provided V is irreducible. See for example
[GRW4, Proposition 3.13].

Note that XI(g) comes equipped with a natural action on the underlying Y (g)-module V . Namely, there
is an algebra homomorphism

XI(g)→ EndV, T (u) 7→ R(u).

A standard argument (see [Mo1, Theorem 1.5.1] and [FRT]) shows that XI(g) is a Hopf algebra with
coproduct ∆I , antipode SI , and counit εI given by

∆I(T (u)) = T[1](u)T[2](u), SI(T (u)) = T (u)−1, εI(T (u)) = I,

respectively. Expressing ∆I in terms of the generating series tij(u) and the generators t
(r)
ij , we have

∆I(tij(u)) =

N∑
a=1

tia(u)⊗ taj(u) and ∆I(t
(r)
ij ) =

N∑
a=1

r∑
b=0

t
(b)
ia ⊗ t

(r−b)
aj ,

where t
(0)
kl = δkl for all 1 ≤ k, l ≤ N .

5.1.2. Automorphisms of XI(g). The extended Yangian XI(g) has at least two important families of auto-
morphisms. The first family we will discuss turns out to be closely tied to the Yangian YR(g), as we will
make precise in Subsection 7.2.

Recall that E = EndY (g)V ⊂ EndV , and consider the tensor product E ⊗ u−1C[[u−1]]. This space can be

identified with
∏
λ∈I(u−1C[[u−1]])λ, i.e. the collection of all tuples (fλ(u))λ∈I ⊂ u−1C[[u−1]], the identification

being given by

(5.2) (fλ(u))λ∈I ∈
∏
λ∈I

(u−1C[[u−1]])λ 7→ f◦(u) =
∑
λ∈I

X•λ ⊗ fλ(u) ∈ E ⊗ u−1C[[u−1]].

Here (u−1C[[u−1]])λ just denotes a copy of u−1C[[u−1]] associated to λ. The following lemma shows that the
extended Yangian XI(g) admits a family of automorphisms indexed by

∏
λ∈I(u−1C[[u−1]])λ.

Lemma 5.3. Let (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ and set f(u) = I + f◦(u). Then the assignment

(5.3) mf : T (u) 7→ f(u)T (u)

extends to an automorphism mf of XI(g).

Proof. Using that f(u) ∈ E ⊗ C[[u−1]] and R(u) ∈ (ρ(Y (g)) ⊗ ρ(Y (g)))[[u−1]], we can conclude that f(u)
satisfies the defining RTT -relation of XI(g). Indeed, by definition E is the centralizer of ρ(Y (g)) in EndV ,
which implies R(u − v)fa(u) = fa(u)R(u − v) for a ∈ {1, 2}. Moreover, [f1(u), f2(v)] = 0, from which the
assertion follows easily.
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Applying this observation in conjunction with [f1(u), T2(v)] = 0 = [f2(v), T1(u)], we deduce that mf

extends to an algebra endomorphism of XI(g). The invertibility of mf follows from the invertibility of f(u)
as an element E [[u−1]]. �

The second family of automorphisms is indexed by the complex numbers. For each c ∈ C, the assignment

(5.4) T (u) 7→ T (u− c)
extends to an automorphism of XI(g). These automorphisms are closely related to the automorphisms τc
of Y (g) defined in (3.6).

5.1.3. The associated graded algebra grXI(g). By (3.11), the R-matrix R(u) admits an expansion

(5.5) R(u) = I +
∑
k≥1

R(k)u−k = I − Ωρu
−1 +

(
(J ⊗ 1− 1⊗ J)(Ωρ) + 1

2Ω2
ρ

)
u−2 +

∑
k≥3

R(k)u−r

with R(k) = (−1)k(ρ⊗ ρ)(Rk) for each k ≥ 1. Setting T ◦(u) = T (u)− I, the defining relation (5.1) can be
rewritten as

[T ◦1 (u), T ◦2 (v)] =
1

u− v
([Ωρ, T

◦
1 (u)] + [Ωρ, T

◦
2 (v)] + ΩρT

◦
1 (u)T ◦2 (v)− T ◦2 (v)T ◦1 (u)Ωρ)

+
∑
k≥2

1

(u− v)k

(
[T ◦2 (v), R(k)] + [T ◦1 (u), R(k)] + T ◦2 (v)T ◦1 (u)R(k) −R(k)T ◦1 (u)T ◦2 (v)

)
,

(5.6)

where Ωρ and R(k) have been identified with Ωρ ⊗ 1 and R(k) ⊗ 1, respectively.

The degree assignment deg t
(r)
ij = r − 1 for all 1 ≤ i, j ≤ N and r ≥ 1 equips XI(g) with the structure

of a filtered algebra. Let Fk(XI(g)) (or FIk for brevity) denote the subspace spanned by elements of degree

less than or equal to k, and set t̄
(r)
ij to be the image of t

(r)
ij in FIr−1/F

I
r−2 ⊂ grXI(g).

Proposition 5.4. The assignment

(5.7) ϕI : F
(r−1)
ij 7→ t̄

(r)
ij ∀ 1 ≤ i, j ≤ N, r ≥ 1

extends to a surjective morphism of algebras ϕI : U(gI [z]) � grXI(g).

Proof. Let T(u) =
∑
k≥1T

(k)u−k, where T(k) =
∑N
i,j=1Eij ⊗ t̄

(k)
ij .

Step 1 : The relation [T1(u),T2(v)] =
[

Ωρ
u−v ,T1(u) +T2(v)

]
is satisfied.

For each k > 0, we expand (u− v)−k as an element of (C[v])[[u−1]]:

(5.8) (u− v)−k =
∑
s≥0

(
k + s− 1

s

)
vsu−s−k.

Note the following simple fact: if A(u, v) =
∑
a,b≥1Aa,bu

−av−b with Aa,b ∈ (EndV )⊗2 ⊗ FIa+b−c, then

(5.9)
1

(u− v)k
A(u, v) =

∑
a∈Z≥k+1,b∈Z

Ba,bu
−av−b with Ba,b ∈ (EndV )⊗2 ⊗ FIa+b−c−k ∀ a, b ≥ 0,

where FI−l = {0} for all l ∈ N. Here c is assumed to be a fixed positive integer depending on A(u, v).

For each l ≥ 0, set

Fl(u, v) = (EndV )⊗2 ⊗
∏

a∈Z≥0,b∈Z
FIa+b−lu

−av−b ⊂ (EndV )⊗2 ⊗XI(g)[[v±1, u−1]],

and note that Fl(u, v)/Fl+1(u, v) can be naturally identified with

(EndV )⊗2 ⊗
∏

a∈Z≥0,b∈Z
(gra+b−lXI(g))u−av−b ⊂ (EndV )⊗2 ⊗ (grXI(g))[[v±1, u−1]],

where grkXI(g) denotes the k-th graded component of grXI(g), which is understood to equal zero if k < 0.
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We will simultaneously show both sides of (5.6) belong to F2(u, v) and compute their images in the quotient
F2(u, v)/F3(u, v). By the above observation this yields an identity in (EndV )⊗2 ⊗ (grXI(g))[[v±1, u−1]].

If A(u, v) = ΩρT
◦
1 (u)T ◦2 (v) or A(u, v) = T ◦2 (v)T ◦1 (u)Ωρ, then the integer c (see (5.9)) is equal to 2 and

hence (u− v)−1A(u, v) ≡ 0 mod F3(u, v).

If instead A(u, v) is equal to one of the terms that appears within the parentheses on the second line of
the right-hand side of (5.6) (i.e. a term involving R(k) with k ≥ 2), then c = 1 or 2 but k ≥ 2. Therefore
the observation (5.9) yields that (u− v)−kA(u, v) ≡ 0 mod F3(u, v).

Since both [T ◦1 (u), T ◦2 (v)] and [
Ωρ
u−v , T

◦
1 (u) + T ◦2 (v)] belong to F2(u, v) with images [T1(u),T2(v)] and

[
Ωρ
u−v ,T1(u) +T2(v)] in F2(u, v)/F3(u, v), respectively, we obtain the relation

[T1(u),T2(v)] =

[
Ωρ
u− v

,T1(u) +T2(v)

]
.

Note that Step 1 implies that there is a surjective algebra homomorphism U(gJ [z]) � grXI(g). To verify
that it factors through U(gI [z]) we must show that the assignment ϕI preserves the relation (4.30). In order

to state this more precisely we define, for each λ ∈ Λ• and k ≥ 1, t̄
(k)
λ =

∑N
i,j=1 a

λ
ij t̄

(k)
ij (see (4.2)). Then the

statement that ϕI preserves (4.30) is equivalent to the statement that, for each k ≥ 1, D(k) =
∑
λ∈J X

•
λ⊗ t̄

(k)
λ

satisfies

(5.10) [D
(k)
2 , (1⊗ J)(Ωρ)] = [D

(k)
1 , (J ⊗ 1)(Ωρ)].

Step 2: the relation (5.10) is satisfied for every k ≥ 1.

We will divide this step of the proof into a few smaller steps.

Step 2.1: The relation

(5.11) [T
(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] = −[T

(k)
1 , (J ⊗ 1− 1⊗ J)(Ωρ)]

holds in grXI(g) for all k ≥ 1.

We will prove (5.11) by expanding (5.6) in two different ways. First, we compute for each k ≥ 1 the
v0u−k−2 coefficient of both sides of (5.6) modulo FIk−2, using the expansion (5.8). Using (5.9), it is not

difficult to deduce that no term on the right-hand side of (5.6) involving R(k) with k ≥ 3 makes a contribution,
and the same is true for the terms T ◦2 (v)T ◦1 (u)R(2) and R(2)T ◦1 (u)T ◦2 (v). As the coefficient of v0u−k−2 in
[T ◦1 (u), T ◦2 (v)] is zero, we are left with the equivalence

0 ≡[Ωρ, T
(k+1)
1 ] + [Ωρ, T

(k+1)
2 ]

+

k∑
a=1

(ΩρT
(k+1−a)
1 T

(a)
2 − T (a)

2 T
(k+1−a)
1 Ωρ) + [T

(k)
1 , R(2)] + (k + 1)[T

(k)
2 , R(2)] mod FIk−2.

(5.12)

Next, we compute the u0v−k−2 coefficient of both sides of (5.6) modulo FIk−2 after expanding (u − v)−r

as an element of (C[u])[[v−1]] and viewing (5.6) as an equality in (EndV )⊗2 ⊗ XI(g)[[u±1, v−1]]. Using the
symmetry and skew-symmetry between u and v in the relation (5.6), we deduce from (5.12) the equivalence

0 ≡− [Ωρ, T
(k+1)
1 ]− [Ωρ, T

(k+1)
2 ]

−
k∑
b=1

(ΩρT
(b)
1 T

(k+1−b)
2 − T (k+1−b)

2 T
(b)
1 Ωρ) + (k + 1)[T

(k)
1 , R(2)] + [T

(k)
2 , R(2)] mod FIk−2.

(5.13)

Adding (5.12) and (5.13) and dividing by k + 2, we obtain

[T
(k)
2 , R(2)] ≡ −[T

(k)
1 , R(2)] mod FIk−2 =⇒ [T

(k)
2 , R(2)] = −[T

(k)
1 , R(2)] in grXI(g).

Recall from (5.5) that R(2) = (J ⊗ 1− 1⊗ J)(Ωρ) + 1
2Ω2

ρ. Substituting this into the above equality gives

(5.14) [T
(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] + 1

2 [T
(k)
2 ,Ω2

ρ] = −[T
(k)
1 , (J ⊗ 1− 1⊗ J)(Ωρ)]− 1

2 [T
(k)
1 ,Ω2

ρ].
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Since T(k) is a homomorphic image of FJ zk−1 ∈ U(gJ [z]), Lemma 4.3 yields [T
(k)
2 ,Ωρ] = −[T

(k)
1 ,Ωρ], from

which the identity
1
2 [T

(k)
2 ,Ω2

ρ] = − 1
2 [T

(k)
1 ,Ω2

ρ]

follows directly. Therefore the relation (5.14) implies the relation (5.11).

Step 2.2: We have

(5.15) [D
(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] = −[D

(k)
1 , (J ⊗ 1− 1⊗ J)(Ωρ)].

for each k ≥ 1.

For each k ≥ 1, set L(k) = T(k)−D(k), so that L(k) =
∑
λ∈ΛX

•
λ⊗ t̄

(k)
λ . Using that J : ad(g)→ adg(gl(V ))

is a morphism of g-modules, it is straightforward to derive from the relation [Ωρ,L
(k)
2 ] = −[Ωρ,L

(k)
1 ] that

(5.16) [L
(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] = −[L

(k)
1 , (J ⊗ 1− 1⊗ J)(Ωρ)].

Subtracting (5.16) from (5.11) yields (5.15).

Since D(k) is a homomorphic image of
∑N
i,j=1Eij ⊗Kijz

k−1 ∈ EndV ⊗U(gJ [z]), Lemma 4.2 implies that

[Ωρ,D
(k)
2 ] = 0 = [Ωρ,D

(k)
1 ]. We thus also have

[D
(k)
2 , (J ⊗ 1)(Ωρ)] = 0 = [D

(k)
1 , (1⊗ J)(Ωρ)].

Subtracting this identity from (5.15) leaves us with the equality (5.10).

By Step 1, Step 2 and Proposition 4.16, the assignment (5.7) extends to an epimorphism ϕI : U(gI [z]) �
grXI(g). �

We will prove that ϕI is in fact an isomorphism, but this will be delayed until Subsection 7.1.

5.2. The RTT -Yangian YR(g). Our present goal is to give an exposition of YR(g) analogous to that given
for XI(g) in the previous subsection.

5.2.1. Definition of the RTT -Yangian. Let us begin with the definition of the Yangian YR(g):

Definition 5.5. The RTT -Yangian YR(g) is the quotient of XI(g) by the two-sided ideal generated by the

elements z
(r)
ij , for 1 ≤ i, j ≤ N and r ≥ 1, defined by

(5.17) Z(u) =

N∑
i,j=1

Eij ⊗ zij(u) = S2
I(T (u))T (u+ 1

2cg)−1,

where zij(u) = δij +
∑
r≥1 z

(r)
ij u

−r for each pair of indices 1 ≤ i, j ≤ N .

The ideal of XI(g) generated by {z(r)
ij : 1 ≤ i, j ≤ N, r ≥ 1} will be conveniently denoted by (Z(u)− I).

Note that it is not obvious that this ideal is a Hopf ideal, and hence that YR(g) inherits the structure of a
Hopf algebra from XI(g). This will, however, be a consequence of Lemma 6.1 and Theorem 6.2, which will
be proven in the next section.

We will denote the images of t
(r)
ij , tij(u) and T (u) in YR(g) by τ

(r)
ij , τij(u) and T (u), respectively.

For each c ∈ C the automorphism (5.4) factors through the Yangian YR(g) yielding an automorphism
given by the assignment T (u) 7→ T (u− c). We will prove in Subsection 7.2 that each automorphism mf of
XI(g) (see Lemma 5.3) also induces an automorphism of YR(g), but that these turn out to all be equal to
the identity map. This fact will be used to give an equivalent characterization of YR(g).
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5.2.2. The associated graded algebra grYR(g). The RTT -Yangian YR(g) inherits an algebra filtration from

XI(g) via the quotient filtration; this is equivalent to assigning deg τ
(r)
ij = r − 1. Let τ̄

(r)
ij denote the image

of τ
(r)
ij in Fr−1(YR(g))/Fr−2(YR(g)) = grr−1YR(g).

Proposition 5.6. The assignment

ϕ : F
(r−1)
ij 7→ τ̄

(r)
ij ∀ 1 ≤ i, j ≤ N, r ≥ 1

extends to a surjective algebra morphism ϕ : U(gρ[z]) � grYR(g).

Proof. We will take a slightly more explicit route than taken in the proof of Proposition 5.4 and work directly

with the generators τ̄
(r)
ij of grYR(g). By (4.12), Corollary 4.7 and Proposition 5.4 it suffices to show that

(5.18) 1
2 τ̄

(r)
ij = c−1

g

N∑
a=1

[τ̄
(r)
ia , τ̄

(1)
aj ] ∀ r ≥ 1.

In YR(g) we have, by (5.17), the relation T (u+ 1
2cg) = S2

I(T (u)) where S2
I(T (u)) is understood to equal the

image of S2
I(T (u)) in YR(g) under the natural quotient map. Since(

u+ 1
2cg
)−k

=
∑
s≥0

(
k + s− 1

s

)(
− 1

2cg
)s
u−s−k ∀ k ≥ 1,

the u−r−1 coefficient of τij(u+ 1
2cg) is equal to

(5.19) τ
(r+1)
ij − r

2cgτ
(r)
ij mod Fr−2(YR(g)).

Let T̂ (r) =
∑N
i,j=1Eij ⊗ t̂

(r)
ij denote the u−r coefficient of T (u)−1. In particular, T̂ (r) can be determined

inductively from the relation T̂ (r) = −
∑r
b=1 T

(b)T̂ (r−b) = −
∑r
b=1

∑N
i,j=1Eij ⊗

(∑N
a=1 t

(b)
ia t̂

(r−b)
aj

)
. By

definition of the antipode SI , we thus have

S2
I(t

(r+1)
ij ) = −SI(

r+1∑
b=1

N∑
a=1

t
(b)
ia t̂

(r+1−b)
aj ) = −

r+1∑
b=1

N∑
a=1

SI(t̂
(r+1−b)
aj )t̂

(b)
ia .

Expanding the right-hand side and using that SI is a filtration preserving map with SI(t
(s)
kl ) = t̂

(s)
kl ≡ −t

(s)
kl

mod FIs−2 for each s ≥ 1, we obtain

S2
I(t

(r+1)
ij ) =

r+1∑
b=1

N∑
a=1

SI(t̂
(r+1−b)
aj )(t

(b)
ia +

b−1∑
d=1

N∑
c=1

t
(d)
ic t̂

(b−d)
ca )

≡ t(r+1)
ij −

r∑
b=1

N∑
a=1

t̂
(r+1−b)
aj t

(b)
ia +

r∑
d=1

N∑
c=1

t
(d)
ic t̂

(r+1−d)
cj mod FIr−2

≡ t(r+1)
ij +

r∑
b=1

N∑
a=1

[t
(r+1−b)
aj , t

(b)
ia ] mod FIr−2.

Combining this with the relation [T
(r)
1 ,T

(s)
2 ] = [Ωρ,T

(r+s)
2 ] of grXI(g) (which holds by Proposition 5.4), we

arrive at the relation

S2
I(t

(r+1)
ij ) ≡ t(r+1)

ij + r

N∑
a=1

[t
(1)
aj , t

(r)
ia ] mod FIr−2.

As the same relation must hold in YR(g)/Fr−2(YR(g)) with each generator t
(s)
kl replaced by τ

(s)
kl , equating

the resulting expression with (5.19) and subtracting τ
(r+1)
ij from both sides gives (5.18). �

We conclude this section by noting a simple, but rather useful, corollary of Proposition 5.6.

Corollary 5.7. The algebra YR(g) is generated by the elements τ
(r)
ij with 1 ≤ i, j ≤ N and 1 ≤ r ≤ 2.
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Proof. Since U(gρ[z]) is generated by {F (0)
ij , F

(1)
ij }1≤i,j≤N and ϕ : U(gρ[z]) → grYR(g) is surjective, the

associated graded algebra grYR(g) is generated by {τ̄ (1)
ij , τ̄

(2)
ij }1≤i,j≤N . If r > 2, then we may write τ̄

(r)
ij as

a homogeneous polynomial Q in the variables {τ̄ (1)
kl , τ̄

(2)
kl }1≤i,j≤N of degree r − 1. Let P be the polynomial

in {τ (1)
kl , τ

(2)
kl }1≤i,j≤N obtained from Q by replacing τ̄

(s)
kl with τ

(s)
kl for s = 1, 2 and 1 ≤ k, l ≤ N . Then

P ∈ Fr−1(YR(g)) and τ
(r)
ij − P ∈ Fr−2(YR(g)). The result thus follows by a straightforward induction on

r ≥ 1. �

6. Equivalence of the two definitions of the Yangian

In this section we prove that, irrespective of the choice of V , we always have YR(g) ∼= Y (g). In the process
we prove that the surjection ϕ : U(gρ[z]) � grYR(g) from Proposition 5.6 is an isomorphism, yielding a
Poincaré-Birkhoff-Witt theorem for YR(g): see Theorem 6.5. This in turn implies that the center of YR(g)
is trivial, as will be explained in Corollary 6.6.

The first step in proving the equivalence of the two Yangians is the construction of a surjective Hopf
algebra homomorphism XI(g) � Y (g), and this is the content of the next lemma.

Lemma 6.1. The assignment

(6.1) Φ̃ : T (u)→ (ρ⊗ 1)(R(−u))

extends to a surjective homomorphism of Hopf algebras Φ̃ : XI(g) � Y (g).

Proof. The lemma follows from the same kind of arguments as used to prove [GRW4, Theorem 3.16]. By
(3.9), R(u) satisfies

R12(v − u)R13(−u)R23(−v) = R23(−v)R13(−u)R12(v − u).

Applying the homomorphism ρ ⊗ ρ ⊗ 1 to both sides of this relation we obtain that Φ̃(T (u)) satisfies the

defining RTT -relation (5.1). Therefore, Φ̃ extends to a homomorphism Φ̃ : XI(g)→ Y (g). By (3.11),

(6.2) R(−u) = 1− Ωu−1 +
∑
λ∈Λ

(J(Xλ)⊗Xλ −Xλ ⊗ J(Xλ))u−2 + 1
2Ω2u−2 +O(u−3).

After applying ρ⊗ 1 to both sides, we obtain that

(6.3) Φ̃(t
(1)
ij ) = Fij and Φ̃(t

(2)
ij ) ≡ J(Fij) mod FJ0 for all 1 ≤ i, j ≤ N,

where we recall that the elements Fij ∈ g, which were defined in the proof of Proposition 4.4, are determined

by
∑N
i,j=1Eij ⊗Fij = −(ρ⊗ 1)Ω.

Since FJ0 = U(g) is generated by {Fij}1≤i,j≤N , this shows that Φ̃ is surjective. The proof that Φ̃ is a
coalgebra morphism commuting with the antipodes of XI(g) and Y (g) follows from the relations (3.7) and
(3.12): see the proof of [GRW4, Theorem 3.16]. �

We are now prepared to prove that YR(g) and Y (g) are isomorphic.

Theorem 6.2. The homomorphism Φ̃ factors through the quotient algebra YR(g) = XI(g)/(Z(u) − I) to

yield an isomorphism of algebras Φ : YR(g)
∼−→ Y (g) which sends T (u) to (ρ⊗ 1)(R(−u)).

Proof. By Corollary 3.3 the relation S2 = τ− 1
2 cg

is satisfied in Y (g) and by the second identity of (3.10) we

have (1⊗ τ− 1
2 cg

)(R(−u)) = R(−u− 1
2cg). This shows that (1⊗ S2)(R(−u))R(−u− 1

2cg)−1 = 1. Applying

ρ⊗1 to both sides of this equality and using that Φ̃ is a morphism of Hopf algebras, we arrive at the relation

Φ̃(Z(u)) = Φ̃(S2
I(T (u)))Φ̃(T (u+ 1

2cg))−1 = I.

This proves that (Z(u)−I) ⊂ KerΦ̃ and hence that Φ̃ factors through YR(g) to yield an algebra epimorphism
Φ : YR(g) � Y (g) determined by T (u) 7→ (ρ⊗ 1)(R(−u)).

By (6.3), Φ(τ
(1)
ij ) = Fij for all 1 ≤ i, j ≤ N and Φ(τ

(2)
ij ) ≡ J(Fij) modU(g) for all 1 ≤ i, j ≤ N . Since,

by Corollary 5.7, YR(g) is generated by {τ (1)
ij , τ

(2)
ij }1≤i,j≤N , this shows that Φ is a filtered homomorphism.
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To conclude that Φ is an isomorphism, it is enough to show that the associated graded morphism grΦ :
grYR(g)→ grY (g) is an isomorphism.

Set ϕ• = (φzρ)
−1 ◦ ϕ−1

J ◦ grΦ : grYR(g) → U(gρ[z]), where ϕJ is the isomorphism U(g[z])
∼−→ grY (g) of

Proposition 3.2 and φzρ : U(gρ[z])
∼−→ U(g[z]) is the isomorphism of Corollary 4.7. This morphism sends

τ̄
(r)
ij to F

(r−1)
ij = Fijz

r−1 for all 1 ≤ r ≤ 2 and 1 ≤ i, j ≤ N . Consider the composition ϕ• ◦ ϕ where

ϕ : U(gρ[z]) � grYR(g) is the epimorphism of Proposition 5.6. This composition sends F
(r)
ij to F

(r)
ij for

r = 0, 1 and hence is equal to the identity morphism. Therefore grΦ, and thus Φ, is an isomorphism. �

In particular, we have shown that the ideal (Z(u)− I) is the kernel of the Hopf algebra morphism Φ̃, and
hence is a Hopf ideal. The Yangian YR(g) thus inherits from XI(g) the unique Hopf algebra structure such
that Φ becomes an isomorphism of Hopf algebras. Explicitly, it has coproduct ∆R, antipode SR, and counit
εR given by

(6.4) ∆R(T (u)) = T[1](u)T[2](u), SR(T (u)) = T (u)−1, εR(T (u)) = I.

As was noted in Remark 5.2, the coefficients Rk of the universal R-matrix R(u) have not been explic-

itly written down, and consequently the elements Φ(τ
(r)
ij ) do not in general admit an explicit description.

Nonetheless, such a description does exist for the images of the elements {τ (1)
ij , τ

(2)
ij }1≤i,j≤N which, by Corol-

lary 5.7, do generate YR(g). Since the J-presentation Y (g) of the Yangian is defined only in terms of degree
one and degree zero generators, it is perhaps more natural to rephrase this observation by stating that Φ−1

can be concretely described, which is the purpose of the next corollary.

Corollary 6.3. For each 1 ≤ i, j ≤ N let {b(ij)kl }1≤k,l≤N ⊂ C be defined by (J ⊗ 1)(F) =
∑N
i,j=1Eij ⊗

(
∑N
k,l=1 b

(ij)
kl Fkl). Then Φ−1 is determined on the generating set {Fij , J(Fij)}1≤i,j≤N of Y (g) by

(6.5) Fij 7→ τ
(1)
ij , J(Fij) 7→ τ

(2)
ij − 1

2

N∑
a=1

τ
(1)
ia τ

(1)
aj +

N∑
k,l=1

b
(ij)
kl τ

(1)
kl ∀ 1 ≤ i, j ≤ N.

Proof. For each r ≥ 1, set T (r) =
∑N
i,j=1Eij ⊗ τ

(r)
ij and define J(F) =

∑N
i,j=1Eij ⊗ J(Fij) ∈ EndV ⊗ Y (g).

Then, using the expansion (6.2) we find that Φ(T (1)) = F and Φ(T (2)) = J(F)− (J ⊗ 1)(F) + 1
2F

2. Thus,

Φ−1(J(F)) = T (2) − 1
2 (T (1))2 + (J ⊗ 1)(T (1)), which implies (6.5). �

Remark 6.4. When g is a symplectic or orthogonal Lie algebra and V is its vector representation, it
was proven in Proposition 3.19 of [GRW4] directly that the assignment (6.5) extends to an isomorphism

Y (g)
∼−→ YR(g). In that case, and more generally in any case where ρ(J(X)) = 0 for all X ∈ g, the term

involving the coefficients b
(ij)
kl in (6.5) vanishes and we have J(Fij) 7→ τ

(2)
ij − 1

2

∑N
a=1 τ

(1)
ia τ

(1)
aj .

In the process of proving Theorem 6.2 we have also shown that the homomorphism ϕ of Proposition 5.6
is injective. We thus obtain the following Poincaré-Birkhoff-Witt type theorem for YR(g):

Theorem 6.5. The surjective homomorphism ϕ : U(gρ[z]) � grYR(g) of Proposition 5.6, which is given by

F
(r−1)
ij → τ̄

(r)
ij , is an isomorphism of algebras. Consequently, the assignment

Fij 7→ τ
(1)
ij ∀ 1 ≤ i, j ≤ N

defines an embedding U(gρ) ↪→ YR(g).

The above theorem can be employed to obtain a complete description of the center of YR(g):

Corollary 6.6. The center of YR(g) is equal to C · 1.

Proof. The center of the universal enveloping algebra U(gρ[z]) ∼= U(g[z]) is known to be trivial: see for
instance [Mo1, Lemma 1.7.4]. As a consequence of Theorem 6.5, the same must be true for the associated
graded algebra grYR(g), and thus the Yangian YR(g). See also [Ol, Theorem 1.12], [Mo1, Theorem 1.7.5],
and [AMR, Corollary 3.9] for the version of this result corresponding to the case where g is equal to slN , soN ,
or spN and V = CN , which is proven in the exact same way. �
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7. Structure of the extended Yangian

Using the results of the previous section one can extract a fair amount of information about the extended
Yangian XI(g), and in fact prove several results which are known to hold when g is a classical Lie algebra
and V is its vector representation. Making this explicit is the main goal of the current section.

7.1. The tensor product decomposition, the center, and the PBW theorem. In this subsection
we will prove that XI(g) is isomorphic to the tensor product of a polynomial algebra in countably many
variables with the Yangian YR(g). This will allow us to deduce a Poincaré-Birkhoff-Witt type theorem for
XI(g) and also to obtain a complete description of its center.

For brevity we shall denote the polynomial algebra C[y
(r)
λ : λ ∈ I, r ≥ 1] simply by C[y

(r)
λ ]λ,r.

Definition 7.1. We define the auxiliary algebra XI(g) to be the tensor product of C[y
(r)
λ ]λ,r with YR(g):

XI(g) = C[y
(r)
λ ]λ,r ⊗ YR(g).

Our present goal is to prove the deformed version of Proposition 4.15. Namely, we will prove that XI(g)

and XI(g) are isomorphic algebras. Define Y(u) ∈ E ⊗ (C[y
(r)
λ ]λ,r)[[u

−1]] by

Y(u) = I +
∑
λ∈I

X•λ ⊗ yλ(u), where yλ(u) =
∑
r≥1

y
(r)
λ u−r.

It will also be convenient to expand Y(u) =
∑N
i,j=1Eij ⊗ yij(u) with yij(u) = δij +

∑
λ∈I c

λ
ijyλ(u) for all

1 ≤ i, j ≤ N : see (4.2).

Set T(u) = Y(u)T (u) ∈ EndV ⊗ XI(g)[[u−1]], and denote by tij(u) = δij +
∑
r≥1 t

(r)
ij u

−r the (i, j)-th

entry of T(u) (that is, T(u) =
∑N
i,j=1Eij ⊗ tij(u)). We then have

(7.1) t
(r)
ij = τ

(r)
ij + y

(r)
ij +

N∑
a=1

r−1∑
c=1

y
(c)
ia τ

(r−c)
aj ∀ 1 ≤ i, j ≤ N, r ≥ 1.

The degree assignment deg y
(r)
λ = r − 1 for all λ ∈ I and r ≥ 1 defines a grading on the polynomial algebra

C[y
(r)
λ ]λ,r. Let Gk denote the subspace spanned by monomials of degree equal to k and denote the direct

sum ⊕ki=0Gk by Hk. In particular, we have y
(r)
ij ∈ Gr−1 for all r ≥ 1 and 1 ≤ i, j ≤ N . After equipping

XI(g) with the tensor product filtration defined by

Fr(XI(g)) =
∑
k+l=r

Hk ⊗ Fl(YR(g)) =

r⊕
a=0

Ga ⊗ Fr−a(YR(g)),

it becomes a filtered algebra with grXI(g) ∼= C[y
(r)
λ ]λ,r ⊗ grYR(g). It is immediate from (7.1) that the

following relations are satisfied in grXI(g):

t̄
(r)
ij = τ̄

(r)
ij + ȳ

(r)
ij , ∀ 1 ≤ i, j ≤ N, r ≥ 1.

Here t̄
(r)
ij and ȳ

(r)
ij denote the images of t

(r)
ij and y

(r)
ij , respectively, in Fr−1(XI(g))/Fr−2(XI(g)) ⊂ grXI(g).

It follows from Theorem 6.5 that the assignment (ȳ
(r)
ij , τ̄

(r)
ij ) 7→ (y

(r)
ij , F

(r−1)
ij ) for all r ≥ 1 and 1 ≤ i, j ≤ N

extends to an isomorphism grXI(g)
∼−→ C[y

(r)
λ ]λ,r⊗U(gρ[z]). Composing with the inverse of the isomorphism

φzI of Proposition 4.15 (after identifying K(r)
λ with y

(r)
λ ) yields an isomorphism

(7.2) ϕX : grXI(g)
∼−→ U(gI [z]), t̄

(r)
ij 7→ F

(r−1)
ij = F Iijz

r−1 ∀ 1 ≤ i, j ≤ N, r ≥ 1.

Remark 7.2. In Step 2 of the proof of Proposition 5.4, it was useful to expand T (u) with respect to the
basis {X•λ}λ∈Λ• of EndV . It is also sometimes more natural to expand T(u) and T (u) in this way. Setting

t
(r)
λ =

∑N
i,j=1 a

λ
ij t

(r)
ij and τ

(r)
λ =

∑N
i,j=1 a

λ
ijτ

(r)
ij for each λ ∈ Λ• and r ≥ 1, we obtain

T(u) = I +
∑
λ∈Λ•

X•λ ⊗ tλ(u) and T (u) = I +
∑
λ∈Λ•

X•λ ⊗ τλ(u),
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where (tλ(u), τλ(u)) = (
∑
r≥1 t

(r)
λ u−r,

∑
r≥1 τ

(r)
λ u−r) for all λ ∈ Λ•. We then have

t̄
(r)
λ =


τ̄

(r)
λ if λ ∈ Λ,

ȳ
(r)
λ if λ ∈ I,

0 otherwise,

in grXI(g), and the isomorphism ϕX from (7.2) is also determined by τ̄
(r)
λ 7→ X

(r−1)
λ for all λ ∈ Λ and

ȳ
(r)
λ 7→ X

(r−1)
λ for all λ ∈ I: see Subsection 4.3.2.

The next theorem is the first main result of this section, and, as previously suggested, it may be viewed
as the Yangian analogue of Proposition 4.15.

Theorem 7.3. The assignment T (u) 7→ T(u) extends uniquely to yield an algebra isomorphism

ΦI : XI(g)
∼−→ XI(g) = C[y

(r)
λ ]λ,r ⊗ YR(g).

Proof. Since Y(u) ∈ E ⊗ (C[y
(r)
λ ]λ,r)[[u

−1]] and T (u) satisfies the RTT -relation (5.1), the same argument as
used to prove Lemma 5.3 shows that T(u) = Y(u)T (u) also satisfies (5.1). Therefore, ΦI : T (u) 7→ T(u)
extends uniquely to an algebra homomorphism XI(g) → XI(g). By (7.1), ΦI is filtration preserving. To
prove that ΦI is an isomorphism, we will follow the same argument as employed to prove Theorem 6.2 and
show that the associated graded morphism grΦI is an isomorphism.

The composition grΦI ◦ϕI , where ϕI : U(gI [z]) � grXI(g) is the epimorphism of Proposition 5.4, sends

F
(r−1)
ij to t̄

(r)
ij for all r ≥ 1 and 1 ≤ i, j ≤ N . Composing with the isomorphism ϕX : grXI(g)

∼−→ U(gI [z])

defined in (7.2) therefore gives the identity map idU(gI [z]). This implies that grΦI is indeed an isomorphism,
and the same must be true of ΦI . �

Our next goal is to use Theorem 7.3 to obtain a complete description of the center of XI(g), and to
prove a Poincaré-Birkhoff-Witt theorem for XI(g). We will need a few preliminary lemmas, the first being
a consequence of Theorem 6.2.

Lemma 7.4. The generating matrix T (u) belongs to ρ(Y (g))⊗ YR(g)[[u−1]] ⊂ EndV ⊗ YR(g)[[u−1]]. Conse-
quently,

Y(u)T (u) = T (u)Y(u) and Y(u)T(u) = T(u)Y(u) in EndV ⊗XI(g).

Proof. Since R(u) ∈ (Y (g) ⊗ Y (g))[[u−1]], Theorem 6.2 implies the first part of the Lemma. As Y(u) ∈
E ⊗ (C[y

(r)
λ ]λ,r)[[u

−1]] and E is the centralizer of ρ(Y (g)) in EndV , [Y(u), T (u)] = 0 = [Y(u),T(u)]. �

Next, define Y(u) to be the preimage of Y(u) under ΦI :

Y(u) = I +
∑
λ∈I

X•λ ⊗ yλ(u) = Φ−1
I (Y(u)) ∈ E ⊗XI(g)[[u−1]],

and write yλ(u) =
∑
r≥1 y

(r)
λ u−r. As was the case for Y(u), we shall also make use of the expansion of Y(u)

with respect to the basis of elementary matrices {Eij}1≤i,j≤N . That is, we may write

Y(u) =

N∑
i,j=1

Eij ⊗ yij(u) with yij(u) = δij +
∑
λ∈I

cλijyλ(u) ∀ 1 ≤ i, j ≤ N.

For each λ ∈ I (resp. 1 ≤ i, j ≤ N) and r ≥ 1, the element y
(r)
λ (resp. y

(r)
ij ) belongs to FIr−1, and we will

denote by ȳ
(r)
λ (resp. ȳ

(r)
ij ) its image in the quotient FIr−1/F

I
r−2 = grr−1XI(g).

Lemma 7.5. The following statements hold:

(1) Z(u) = Y(u)Y(u+ 1
2cg)−1 ∈ E ⊗XI(g)[[u−1]],

(2) z
(r+1)
ij ∈ FIr−1 for all 1 ≤ i, j ≤ N and r ≥ 0 (where FI−1 = {0}),

(3) z̄
(r+1)
ij = r

2cgȳ
(r)
ij ∀ 1 ≤ i, j ≤ N and r ≥ 0, where z̄

(r+1)
ij denotes the image of z

(r+1)
ij in grr−1XI(g).
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Proof. Consider (1). Since Y(u) is an invertible element of (E ⊗ C[y
(r)
λ ]λ,r)[[u

−1]] ∼= E ⊗ (C[y
(r)
λ ]λ,r)[[u

−1]],

we obtain an automorphism SY of C[y
(r)
λ ]λ,r which is determined by Y(u) 7→ Y(u)−1. Consider the tensor

product SX = SY ⊗ SR, where we recall from (6.4) that SR is the antipode of YR(g), and it is given by

T (u) 7→ T (u)−1. Then SX is the anti-automorphism of the algebra XI(g) = C[y
(r)
λ ]λ,r ⊗ YR(g) completely

determined by
SX(T(u)) = Y(u)−1T (u)−1 = T (u)−1Y(u)−1 = T(u)−1,

where in the second equality we have appealed to Lemma 7.4. Consequently, SX ◦ ΦI = ΦI ◦ SI . Since
Φ : YR(g) → Y (g) is a Hopf algebra morphism and (1 ⊗ S2)R(−u) = R(−u − 1

2cg), we have S2
R(T (u)) =

T (u+ 1
2cg). Therefore,

ΦI(Z(u)) = ΦI(S2
I(T (u))T (u+ 1

2cg)−1) = S2
X(T(u))T(u+ 1

2cg)−1 = S2
X(Y(u))Y(u+ 1

2cg)−1.

Since SX becomes an automorphism when restricted to C[y
(r)
λ ]λ,r (namely SY) and SX(Y(u)) = Y(u)−1,

we have S2
X(Y(u)) = Y(u), and we may thus conclude that ΦI(Z(u)) = Y(u)Y(u+ 1

2cg)−1, and hence that

Z(u) = Y(u)Y(u + 1
2cg)−1. Since E = EndY (g)V is an algebra, Z(u) also belongs to E ⊗XI(g)[[u−1]]. This

observation concludes the proof of (1).

Proof of (2). The (i, j)-th entry of the u−r−1 coefficient of Y(u+ 1
2cg)−1 is equal to −y(r+1)

ij mod FIr−1. It is

a straightforward consequence of this fact that the u−r−1 coefficient of the (i, j)-th entry of Y(u)Y(u+ 1
2cg)−1,

which is equal to z
(r+1)
ij , is contained in FIr−1.

Proof of (3). The argument we give is similar to the proof of Proposition 5.6. By (1), we have

Z(u)Y(u+ 1
2cg) = Y(u).

Taking the (i, j)-th coefficient of both sides yields
∑N
a=1 zia(u)yaj(u+ 1

2cg) = yij(u). Writing yaj(u+ 1
2cg) =∑

r≥0 y
◦(r)
aj u−r, we have y

◦(r)
aj ∈ FIr−1 for each r ≥ 0 and

(7.3) yij(u) =

N∑
a=1

zia(u)yaj(u+ 1
2cg) = yij(u+ 1

2cg) + zij(u) +

N∑
a=1

∑
k,s≥1

z
(k)
ia y

◦(s)
aj u−k−s

By (2), z
(k)
ia y

◦(s)
aj ∈ FIk+s−3. Thus, the coefficient of u−r−1 in the summation on the right-hand side of the

above equality is contained in FIr−2. On the other hand, the same argument as used to establish (5.19)

allows us to deduce that the u−r−1 coefficient of yij(u+ 1
2cg) is equivalent to y

(r+1)
ij − r

2cgy
(r)
ij modulo FIr−2.

Thus, (7.3) implies that

y
(r+1)
ij ≡ y(r+1)

ij + z
(r+1)
ij − r

2cgy
(r)
ij mod FIr−2,

and hence that z̄
(r+1)
ij = r

2cgȳ
(r)
ij for all 1 ≤ i, j ≤ N, r ≥ 0. �

For each λ ∈ Λ•, set zλ(u) =
∑
r≥1 z

(r)
λ u−r with z

(r)
λ =

∑N
i,j=1 a

λ
ijz

(r)
ij . Then, by Part (1) of Lemma 7.5,

Z(u) = I +
∑
λ∈Λ•

X•λ ⊗ zλ(u) = I +
∑
λ∈I

X•λ ⊗ zλ(u).

The following Proposition gives a complete description of the center of XI(g) in terms of the coefficients

z
(r)
λ of Z(u).

Proposition 7.6. Let ZXI(g) denote the center of XI(g). The set of elements {y(r)
λ }λ∈I,r≥1 is algebraically

independent and generates ZXI(g), and the same is true of the set {z(r)
λ }λ∈I,r≥2. Consequently,

C[y
(r)
λ : λ ∈ I, r ≥ 1] ∼= ZXI(g) ∼= C[z

(r)
λ : λ ∈ I, r ≥ 2].

Proof. By Corollary 6.6, the center of XI(g) is equal to the polynomial algebra C[y
(r)
λ ]λ,r. Since the isomor-

phism ΦI of Theorem 7.3 satisfies ΦI(y
(r)
λ ) = y

(r)
λ for all λ ∈ I and r ≥ 1, the set {y(r)

λ }λ∈I,r≥1 must be

an algebraically independent set which generates the center of XI(g). In particular, ZXI(g) ∼= C[y
(r)
λ : λ ∈

I, r ≥ 1].
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Since the coefficients {z(r)
λ }λ∈I,r≥2 are central, the assignment y

(r)
λ 7→ z

(r+1)
λ , for all λ ∈ I and r ≥ 1,

extends to an algebra endomorphism

ϕy,z : ZXI(g) ∼= C[y
(r)
λ : λ ∈ I, r ≥ 1]→ ZXI(g).

By Part (2) of Lemma 7.5, ϕy,z is a filtered morphism, and by Part (3) of Lemma 7.5 the associated

graded morphism grϕy,z is just the rescaling automorphism of C[y
(r)
λ : λ ∈ I, r ≥ 1] which sends y

(r)
λ to

2(rcg)−1y
(r)
λ for each λ ∈ I and r ≥ 1. Thus ϕy,z is an automorphism of ZXI(g) and hence {z(r)

λ }λ∈I,r≥2 is
an algebraically independent set which generates the center ZXI(g) of XI(g). �

Using Theorem 7.3 or, more accurately, its proof, we obtain the following Poincaré-Birkhoff-Witt theorem
for XI(g):

Theorem 7.7. The surjective homomorphism ϕI : U(gI [z])→ grXI(g), Fr−1
ij 7→ t̄

(r)
ij , of Proposition 5.4 is

an isomorphism of algebras. As a consequence, the assignment

(7.4) F Iij 7→ t
(1)
ij ∀ 1 ≤ i, j ≤ N

defines an embedding U(gI) ↪→ XI(g), while the assignment

(7.5) Fij 7→ t
(1)
ij − 2c−1

g z
(2)
ij ∀ 1 ≤ i, j ≤ N

defines an embedding U(gρ) ↪→ XI(g).

Proof. The injectivity of ϕI was proven in the course of the proof of Theorem 7.3, and that (7.4) defines an
embedding follows immediately.

As for the last statement of the theorem, consider the embedding ιR : YR(g) ↪→ XI(g), T (u) 7→
Y(u)−1T (u). It sends τ

(1)
ij to t

(1)
ij −y

(1)
ij for all 1 ≤ i, j ≤ N . Composing with the embedding U(gρ) ↪→ YR(g),

Fij 7→ τ
(1)
ij of Theorem 6.5, we obtain an injection U(gρ) ↪→ XI(g) which is given by Fij 7→ t

(1)
ij − y

(1)
ij for all

1 ≤ i, j ≤ N . The proof that this coincides with (7.5) is completed by noting that, by Part (3) of Lemma

7.5, we have y
(1)
ij = 2c−1

g z
(2)
ij for all 1 ≤ i, j ≤ N . �

7.2. The Yangian as a Hopf subalgebra of the extended Yangian. By Theorem 7.3, YR(g) may also
be identified as a subalgebra of XI(g) via the embedding

ιR : YR(g) ↪→ XI(g), T (u) 7→ Y(u)−1T (u),

which played a role in the proof of Theorem 7.7. In this subsection we study YR(g) from this viewpoint, our
main goals being to show that ιR is a Hopf algebra morphism, to study the behaviour of the center under
the coproduct ∆I , and to show that YR(g) can in fact be realized as a fixed point subalgebra of XI(g).

In order to distinguish between the identifications of YR(g) as a quotient and as a subalgebra of XI(g),

we shall denote by ỸR(g) ⊂ XI(g) the isomorphic copy of YR(g) obtained from the embedding ιR. We also

set T̃ (u) = Y(u)−1T (u) =
∑
i,j Eij ⊗ τ̃ij(u).

The first and main step in showing that ιR is a morphism of Hopf algebras is to study the behaviour of
Y(u) under the coproduct, counit, and antipode of XI(g). This is the purpose of the next lemma.

Lemma 7.8. The central matrix Y(u) satisfies

∆I(Y(u)) = Y[1](u)Y[2](u), SI(Y(u)) = Y(u)−1, εI(Y(u)) = I.

Proof. We have already demonstrated in the course of the proof of Lemma 7.5 that SI(Y(u)) = Y(u)−1.
More precisely, we showed that SX(Y(u)) = Y(u)−1 where SX is the anti-automorphism of XI(g) determined
by SX(T(u)) = T(u)−1. Since SX = ΦI ◦ SI ◦ Φ−1

I , this implies that SI(Y(u)) = Y(u)−1.

The Hopf algebra axioms dictate that εI ◦ SI = εI , and hence εI(Y(u)) = εI(Y(u))−1. The equality
εI(Y(u)Y(u)−1) = I then implies that εI(Y(u))2 = I. Since the identity matrix I is the unique square root
of itself belong to I + u−1(EndV )[[u−1]], we can conclude that εI(Y(u)) = I.
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It remains to see that ∆I(Y(u)) = Y[1](u)Y[2](u). Let ∆Y be the algebra morphism C[y
(r)
λ ]λ,r →

C[y
(r)
λ ]λ,r ⊗ C[y

(r)
λ ]λ,r determined by

∆Y(Y(u)) = Y[1](u)Y[2](u) ∈ E ⊗ (C[y
(r)
λ ]λ,r ⊗ C[y

(r)
λ ]λ,r)[[u

−1]].

We then obtain an algebra morphism ∆X = σ23 ◦ (∆Y ⊗ ∆R) : XI(g) → XI(g) ⊗ XI(g), where σ23 =

idC[y
(r)
λ ]λ,r

⊗ σ ⊗ idYR(g) and σ : YR(g)⊗ C[y
(r)
λ ]λ,r → C[y

(r)
λ ]λ,r ⊗ YR(g) is the flip map. By definition,

∆X(T(u)) = Y[1](u)Y[2](u)T[1](u)T[2](u) ∈ EndV ⊗ (XI(g)⊗XI(g))[[u−1]].

Since Y[2](u) commutes with T[1](u), we can rewrite this as

∆X(T(u)) = Y[1](u)T[1](u)Y[2](u)T[2](u) = T[1](u)T[2](u),

and hence (ΦI ⊗ ΦI) ◦∆I = ∆X ◦ ΦI . This implies that ∆I = (Φ−1
I ⊗ Φ−1

I ) ◦∆X ◦ ΦI , and consequently

∆I(Y(u)) = (Φ−1
I ⊗ Φ−1

I )(Y[1](u)Y[2](u)) = Y[1](u)Y[2](u). �

The above lemma leads us to the first main result of this subsection. Let εY be the homomorphism

C[y
(r)
λ ]λ,r → C, Y(u) 7→ I, and recall that ΦI : XI(g)→ XI(g) is the algebra isomorphism of Theorem 7.3.

Proposition 7.9. C[y
(r)
λ ]λ,r is a Hopf algebra with coproduct ∆Y, counit εY and antipode SY, and if XI(g)

is equipped with the standard tensor product of Hopf algebras structure, ΦI : XI(g) → XI(g) becomes an
isomorphism of Hopf algebras. In particular, The embedding ιR : YR(g) ↪→ XI(g) is a morphism of Hopf
algebras.

Proof. XI(g) becomes a Hopf algebra, and ΦI a Hopf algebra isomorphism, after being equipped with
coproduct (ΦI ⊗ ΦI) ◦∆I ◦ Φ−1

I (which, by Lemma 7.8, is ∆X), counit εI ◦ Φ−1
I (which, by Lemma 7.8, is

εX), and antipode ΦI ◦ SI ◦Φ−1
I (which, by Lemma 7.8, is SX). Since the tuple (∆Y, εY, SY) coincides with

(∆X|C[y
(r)
λ ]λ,r

, εX|C[y
(r)
λ ]λ,r

, SX|C[y
(r)
λ ]λ,r

), it endows C[y
(r)
λ ]λ,r with the structure of a Hopf algebra.

Since ∆X = σ23 ◦ (∆Y⊗∆R), εX = η ◦ (εY⊗ εR) (where η : C⊗C→ C is the natural isomorphism), and
SX = SY⊗ SR, the Hopf algebra structure on XI(g) induced from XI(g) via ΦI coincides with the Hopf
algebra structure obtained via the standard tensor product of Hopf algebras construction. �

Before moving onto the last main result of this subsection, we note the following corollary of Lemma 7.8.

Corollary 7.10. The central matrix Z(u) satisfies

∆I(Z(u)) = Y[1](u)Z[2](u)Y[1](u+ 1
2cg)−1, SI(Z(u)) = Y(u)−1Y(u+ 1

2cg), εI(Z(u)) = I.

Proof. By Lemma 7.5, Z(u) = Y(u)Y(u+ 1
2cg)−1. Therefore, by Lemma 7.8, we have

∆I(Z(u)) = Y[1](u)Y[2](u)Y[2](u+ 1
2cg)−1Y[1](u+ 1

2cg)−1 = Y[1](u)Z[2](u)Y[1](u+ 1
2cg)−1.

Similarly, εI(Z(u)) = ε(Y(u))ε(Y(u+ 1
2cg))−1 = I. Lastly, since the restriction of SI to the center ZXI(g)

is an automorphism, SI(Z(u)) = SI(Y(u))SI(Y(u+ 1
2cg))−1 = Y(u)−1Y(u+ 1

2cg). �

Recall that, by Lemma 5.3, for each (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ there is an automorphsim mf of

XI(g) determined by the assignment (5.3). The next theorem proves that ỸR(g) can be realized as a fixed
point subalgebra of XI(g).

Theorem 7.11. The Yangian ỸR(g) is equal to the subalgebra of XI(g) fixed by all automorphisms mf :

(7.6) ỸR(g) =

{
Y ∈ XI(g) : mf (Y ) = Y ∀ (fλ(u))λ∈I ∈

∏
λ∈I

(u−1C[[u−1]])λ

}
.
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Proof. Recall from (5.2) that (fλ(u))λ∈I is identified with the matrix f◦(u) =
∑
λ∈I X

•
λ⊗fλ(u), and that, by

(5.3), mf (T (u)) = f(u)T (u), where f(u) = I + f◦(u). Let us denote the right-hand side of (7.6) by XI(g)mf .

For each (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ, the assignment Y(u) 7→ f(u)Y(u) extends to an automor-

phism m
Y

f of C[y
(r)
λ ]λ,r. Consider the automorphism mX

f = m
Y

f ⊗ id of XI(g). It satisfies

mX
f (T(u)) = mX

f (Y(u))mX
f (T (u)) = f(u)T(u),

and thus mX
f ◦ ΦI = ΦI ◦mf . It follows that mf (Y(u)) = f(u)Y(u) for every tuple (fλ(u))λ∈I . Therefore,

for each element (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ,

mf (T̃ (u)) = mf (Y(u))−1mf (T (u)) = Y(u)−1f(u)−1f(u)T (u) = Y(u)−1T (u) = T̃ (u).

This proves that ỸR(g) ⊂ XI(g)mf .

To obtain the reverse inclusion, we employ similar techniques as used to prove [AMR, Theorem 3.1].

Suppose towards a contradiction that there is X ∈ XI(g)mf \ ỸR(g). By Theorem 7.3 we may write X as

a polynomial in the variables {y(r)
λ }λ∈I,r≥1 with coefficients in ỸR(g). This polynomial is non-constant by

assumption. Only finitely many variables can appear in this polynomial, so there is m ≥ 1 such that X

depends only on the variables {y(r)
λ }λ∈I,r=1,...,m. We take m to be minimal with this property, and we fix

µ ∈ I such that X depends on y
(m)
µ .

Let X =
∑
a≥0Xa(y

(m)
µ )a be the expansion of X as a polynomial in the single variable y

(m)
µ and set

P (y
(m)
µ ) =

∑
a≥1Xa(y

(m)
µ )a. The polynomial P (y

(m)
µ ) has degree at least 1, as otherwise X would not

depend on y
(m)
µ . For each w ∈ C, define f◦w(u) = (fλ(u))λ∈I by

fλ(u) =

{
0 if λ 6= µ,

wu−m if λ = µ.

As a matrix in E ⊗ u−1C[[u−1]], f◦w(u) = X•µ ⊗ wu−m. Note that

fw(u)Y(u) = (I +X•µ ⊗ wu−m)Y(u) = Y(u) +X•µ ⊗ wu−m + (X•µ ⊗ wu−m)Y◦(u),

where Y◦(u) = Y(u)− I. This implies that, for 1 ≤ r ≤ m and λ ∈ I, the image of y
(r)
λ under mfw is given

by

mfw(y
(r)
λ ) =

{
y

(r)
λ if (λ, r) 6= (µ,m),

y
(m)
µ + w if (λ, r) = (µ,m).

Consequently, X = mfw(X) = X0 + mfw(P (y
(m)
µ )) = X0 + P (y

(m)
µ + w) for each w ∈ C. Here P (y

(m)
µ + w)

is the polynomial obtained from P (y
(m)
µ ) by substituting y

(m)
µ 7→ y

(m)
µ + w. This allows us to deduce that

(7.7) P (y(m)
µ ) = P (y(m)

µ + w) ∀ w ∈ C.

For each w ∈ C, let evw be the algebra endomorphism of C[y
(r)
λ ]λ,r given by y

(r)
λ 7→ y

(r)
λ for all (λ, r) 6= (µ,m)

and y
(m)
µ 7→ −w. Note that ∩w∈CKer(evw) = {0}. We can extend evw to obtain an endomorphism evX

w of
XI(g) by setting evX

w = evw ⊗ id. We then have Ker(evX
w) = Ker(evw)⊗ YR(g) and ∩w∈CKer(evX

w) = {0}.

The equality (7.7) implies that evX
w(ΦI(P (y

(m)
µ ))) = 0 for all w ∈ C. This shows that ΦI(P (y

(m)
µ )) = 0,

and thus that P (y
(m)
µ ) = 0. This contradicts the fact that P (y

(m)
µ ) is a non-constant polynomial of degree

at least 1. Thus no such X can exist, and we may conclude that ỸR(g) = XI(g)mf . �

8. Drinfeld’s theorem and classical Lie algebras

When V is assumed to be irreducible, one can recover from the results of Sections 5, 6 and 7 a proof of
[Dr1, Theorem 6]. Our first task is to formalize this statement: this will be accomplished in Subsection 8.1.
We will conclude in Subsection 8.2 by explaining how many of the results of this paper reduce to, and have
been motivated by, results which are known to hold when V is the vector representation of a classical Lie
algebra g.
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8.1. Drinfeld’s theorem and the irreducibility assumption. We now restrict our attention to the
setting where the underlying Y (g)-module V is irreducible. As has been explained in Remark 5.2, this
situation has additional practical value, since, at least in principle, R(u) can be computed by solving the
equation (3.13) and, after a suitable re-normalization, is equal to a rational R-matrix.

Since V is irreducible, Schur’s lemma implies that E = EndY (g)V = C · I. In particular, the indexing
set I contains a single element, say ς, and the basis element X•ς of E can be chosen to equal the identity
matrix I. With this in mind, we shall henceforth denote XI(g) simply by X(g) whenever V is assumed to
be irreducible.

Set z(u) = 1 +
∑
r≥2 zru

−r = 1 + zς(u) and y(u) = 1 +
∑
r≥1 yru

−r = 1 + yς(u). The observation made
in the previous paragraph implies the first part of the following result.

Corollary 8.1. The matrices Z(u) and Y(u) are equal to z(u) · I and y(u) · I, respectively. In particular,
z(u) is uniquely determined by the relation

S2
I(T (u))T (u+ 1

2cg)−1 = z(u) · I = T (u+ 1
2cg)−1S2

I(T (u)).

Proof. The relation z(u) · I = S2
I(T (u))T (u + 1

2cg)−1 is immediate from (5.17). This relation, together

with the centrality of z(u), implies that z(u)T (u + 1
2cg) = T (u + 1

2cg)z(u) = S2
I(T (u)), and hence that

z(u) · I = T (u+ 1
2cg)−1S2

I(T (u)). �

These simplifications allow us to write down a proof of the following theorem, whose first two parts are
precisely the statement of [Dr1, Theorem 6].

Theorem 8.2 (Theorem 6 of [Dr1]). The following three statements are satisfied:

(1) There is an epimorphism of Hopf algebras Φ̃ : X(g) � Y (g) such that

Φ̃(T (u)) = (ρ⊗ 1)(R(−u)).

(2) There is a series c(u) = 1 +
∑
r≥1 cru

−r, whose coefficients {cr}r≥1 are central and generate KerΦ̃
as an ideal, which satisfies

∆I(c(u)) = c(u)⊗ c(u).

(3) The coefficients of c(u) generate the center of X(g), which is a polynomial algebra in countably many
variables.

Proof. The first statement is precisely Lemma 6.1, which we have seen holds even when V is not irreducible.
Let us turn to (2). There are two natural candidates for the series c(u), the first being z(u) and the second
being y(u), and both satisfy the desired properties. If c(u) = z(u), then by Corollaries 7.10 and 8.1 we have

∆I(z(u)) = (y(u)⊗ 1)(1⊗ z(u))(y(u+ 1
2cg)−1 ⊗ 1) = z(u)⊗ z(u),

while Theorem 6.2 gives KerΦ̃ = (z(u) − 1). If instead c(u) = y(u), then it is immediate from Lemma 7.8
and Corollary 8.1 that c(u) satisfies the grouplike property (2). As the ideal (y(u) − 1) generated by the

coefficients {yr}r≥1 is equal to (z(u)− 1), we also have KerΦ̃ = (y(u)− 1).

As for part (3), Proposition 7.6 and Corollary 8.1 guarantee that both {zr}r≥2 and {yr}r≥1 are alge-
braically independent sets which generate ZX(g). �

Remark 8.3. More generally, when V is not assumed to be irreducible, we have shown that C(u) = Y(u) ∈
I+E⊗u−1XI(g)[[u−1]] has central coefficients which generate the ideal (Z(u)−I) = KerΦ̃, and moreover that
C(u) satisfies ∆(C(u)) = C[1](u)C[2](u). This should be viewed as a generalization of (2), and the statement

that the coefficients y
(r)
λ of C(u) are algebraically independent generators of ZXI(g) (see Proposition 7.6)

should be viewed as a generalization of (3).

In the proof of Theorem 8.2 we have observed that the series z(u) is grouplike. It is thus also the case that
SI(z(u)) = z(u)−1 (as can also be seen from Corollary 7.10). The next corollary summarizes these results.

Corollary 8.4. When V is irreducible the formulas of Corollary 7.10 reduce to

∆I(z(u)) = z(u)⊗ z(u), SI(z(u)) = z(u)−1, εI(z(u)) = 1.
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We conclude this subsection by noting that, since E = C · I, every automorphism mf (see (5.3)) takes the
form T (u) 7→ f(u)T (u) for a series f(u) ∈ 1 + u−1C[[u−1]] uniquely determined by f(u) = I ⊗ f(u). With
this in mind, we will denote mf by mf for the remainder of this paper.

8.2. The vector representation of the Yangian of a classical Lie algebra. We now narrow our focus
to the case where g is a Lie algebra of classical type and V is specialized to its vector representation, our goal
being to briefly highlight results in the literature which have motivated some of the results of this paper,
with emphasis on the results of Section 7.

We remark that these specializations fall into the slightly more general framework in which the repre-
sentation V of Y (g) is irreducible as a g-module. Considering only such modules leads to fairly significant
simplifications. For instance, gI always coincides with gJ and hence Subsection 4.3 and Step 2 of the proof
of Proposition 5.4 are no longer needed. There are, however, examples where R(u) has been computed when
V is not irreducible as a g-module: see [CP].

8.2.1. The special linear Lie algebra slN . Fix N ≥ 2, let {e1, . . . , eN} denote the standard basis of CN , and
view g = slN as the space of traceless N ×N matrices. Fixing the invariant form (·, ·) to be the trace form,

we have Ωρ = P − 1
N I and cg = 2N , where P =

∑N
i,j=1Eij⊗Eji is the permutation operator σ on CN ⊗CN .

Additionally, we have gJ = gI ∼= glN .

It is well known that the slN -module CN admits a Y (slN )-module structure defined by allowing J(X), for
each X ∈ slN , to act as the zero operator: see for instance Example 1 of [Dr1]. In this case (ρ⊗ ρ)(R(−u))
is, up to multiplication by a formal series in u−1, equal to Yang’s R-matrix

(8.1) R(u) = I − Pu−1,

as can be deduced by directly solving the equation (3.13) with V = W = CN . The associated extended
Yangian X(slN ) is usually denoted Y (glN ) in the literature, and has been studied extensively. In what
follows we do not attempt to provide a full account of the history behind each result, but instead refer the
reader to the appropriate results in the monograph [Mo1] where a detailed bibliography is given.

The central series y(u) and z(u) (adapting the notation from Corollary 8.1) both admit rather concrete

descriptions. The series y(u) is equal to the series d̃(u) which has appeared in the proof of [Mo1, Theorem
1.8.2]: it is the unique central series in 1 + u−1ZX(slN )[[u−1]] such that

d̃(u)d̃(u− 1) · · · d̃(u−N + 1) = qdetT (u),

where qdetT (u) is the quantum determinant of the generating matrix T (u): see Definition 1.6.5 of [Mo1].
By [Mo1, Proposition 1.6.6], it is given by

qdetT (u) =
∑
π∈SN

sign(π) · tπ(1),1(u) · · · tπ(N),N (u−N + 1).

The series z(u) is related to the series

z(u) =
qdetT (u− 1)

qdetT (u)
,

which was defined in [Mo1, (1.68)], by z(u) = z(u + N), as can be seen using [Mo1, Theorem 1.9.9]. The
relation z(u) = 1 is equivalent to qdetT (u) = 1, as was pointed out in the original statement of [Dr1,
Theorem 6].

Theorem 7.3 reduces to the statements of Theorems 1.7.5 and 1.8.2 of [Mo1], and Proposition 7.6 follows
from these same results together with [Mo1, Corollary 1.9.7]. The Poincaré-Birkhoff-Witt theorem for X(slN )
(Theorem 7.7 with (g, V ) = (slN ,CN )) is given in [Mo1, Theorem 1.4.1].

The description of YR(slN ) as the subalgebra of X(slN ) consisting of all elements stable under all au-
tomorphisms of the form mf , which is provided by Theorem 7.11, was actually taken as the definition of
YR(slN ) in [Mo1]. It was then proven in Corollary 1.8.3 of [Mo1] that YR(slN ) could be equivalently charac-
terized as in Definition 5.1. According to [Mo1, Bibliographical notes 1.8], the description of YR(slN ) using
the automorphisms mf is originally due to Drinfeld, as is the more general fact that YR(slN ) can be realized
as a subalgebra of X(slN ): see Theorem 1.13 of [Ol].
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8.2.2. The orthogonal and symplectic Lie algebras soN and sp2n. Still assuming N ≥ 2, let n ∈ N be defined
by N = 2n (if N is even) and N = 2n + 1 (if N is odd). We now assume that gN = g is either equal to
soN or spN , where N is necessarily even in the latter case. It is convenient to relabel the standard basis
of CN using the indexing set IN = {−n, . . . ,−1, (0), 1, . . . , n}, where (0) = 0 if N = 2n + 1 and should
be omitted otherwise. That is, we denote the standard basis of CN by {e−n, . . . , e−1, (e0), e1, . . . , eN}. Let
t : EndCN → EndCN denote the transposition determined by

(Eij)
t = θijE−j,−i where θij =

{
1 if gN = soN ,

sign(i)sign(j) if gN = spN .

The Lie algebra gN can then be realized as the Lie subalgebra of glN spanned by the elements Fij =
Eij − (Eij)

t, and as this notation suggests the corresponding presentation is consistent with that provided
by Proposition 4.4. We refer the reader to (2.4) and (2.5) of [AMR] for an explicit description of the defining
relations.

Letting (·, ·) be equal to one half of the trace form, we have Ωρ = P −Q and cg = 4κ, where

P =
∑

i,j∈IN

Eij ⊗ Eji, Q = P t2 =
∑

i,j∈IN

θijEij ⊗ E−i,−j , and κ =

{
N/2− 1 if gN = soN ,

n+ 1 if gN = spN .

As in the g = slN case, it is well known that the vector representation CN of gN extends to a representation
of Y (gN ) by setting ρ(J(X)) = 0 for all X ∈ gN . For an explicit proof see [GRW4, Proposition 3.1]. The
R-matrix (ρ⊗ ρ)(R(−u)) can be computed from (3.13) and is equal to

(8.2) R(u) = I − Pu−1 +Q(u− κ)−1,

up to multiplication by an invertible element of C[[u−1]]. This has certainly been known for a long time (see
[KS2] and [Dr1, Example 2]), but for a complete proof we refer the reader to Proposition 3.13 of the recent
paper [GRW4]. The RTT -Yangian YR(gN ) and the extended Yangian X(gN ) have not been studied to the
same extent as their slN analogues, although there has been an increase in efforts over the last fifteen years
[AAC+, AMR, MM1, MM2, GRW4, JLM].

It was proven in [AAC+] (see also [AMR, (2.26)]) that there is a central series z(u) ∈ 1+u−1ZX(gN )[[u−1]]
determined by

z(u) · I = T t(u+ κ)T (u) = T (u)T t(u+ κ), where T t(u) =
∑

i,j∈IN

(Eij)
t ⊗ tij(u).

By comparing (2.31) of [AMR] with the relation S2
I(T (u)) = z(u)T (u+2κ) of Corollary 8.1, we can conclude

that

z(u) =
z(u)

z(u+ κ)
.

Conversely y(u) is equal to the central series y(u) defined in [AMR, Theorem 3.1]: it is uniquely determined
by y(u)y(u+κ) = z(u). It was also noted in the statement of [Dr1, Theorem 6] that, when (g, V ) = (soN ,CN ),

the coefficients of z(u)− 1 generate the kernel of the epimorphism Φ̃ from Lemma 6.1 as an ideal.

Theorem 7.3 with (g, V ) = (gN ,CN ) is precisely Theorem 3.1 of [AMR], while Corollary 7.6 is deduced
from that same theorem of [AMR] together with [AMR, Corollary 3.9]. The Poincaré-Birkhoff-Witt theorem
for X(gN ) when V = CN was stated and proven in Corollary 3.10 of [AMR]: see also [AMR, Theorem 3.6],
which is exactly Theorem 6.5 in the particular case being discussed.

Just as was the case for g = slN with V = CN , the authors of [AMR] first defined YR(gN ) as the fixed
point subalgebra of X(gN ) under all automorphisms mf , and then in [AMR, Corollary 3.2] proved that it
could be equivalently defined as a quotient of X(gN ).
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