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Abstract. Let g be a symmetrizable Kac–Moody algebra with associated
Yangian Y~g and Yangian double DY~g. An elementary result of fundamental

importance to the theory of Yangians is that, for each c ∈ C, there is an

automorphism τc of Y~g corresponding to the translation t 7→ t + c of the
complex plane. Replacing c by a formal parameter z yields the so-called formal

shift homomorphism τz from Y~g to the polynomial algebra Y~g[z].

We prove that τz uniquely extends to an algebra homomorphism Φz from
the Yangian double DY~g into the ~-adic closure of the algebra of Laurent

series in z−1 with coefficients in the Yangian Y~g. This induces, via evaluation

at any point c ∈ C×, a homomorphism from DY~g into the completion of the
Yangian with respect to its grading. We show that each such homomorphism

gives rise to an isomorphism between completions of DY~g and Y~g and, as a

corollary, we find that the Yangian Y~g can be realized as a degeneration of
the Yangian double DY~g. Using these results, we obtain a Poincaré–Birkhoff–

Witt theorem for DY~g applicable when g is of finite type or of simply-laced

affine type.
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1. Introduction

1.1. In this article, we study the Yangian double DY~g associated to a symmetriz-
able Kac–Moody algebra g, after Khoroshkin and Tolstoy [25], by taking the ap-
proach that it should be characterized in terms of the underlying Yangian Y~g. Our
main results realize such a characterization by showing that DY~g can be viewed
as both a dense subalgebra of the completion of the Yangian Y~g with respect to
its N-grading, and as the closure of a Z-graded subalgebra of the space of formal
Laurent series in z−1 with coefficients in Y~g. As a particular consequence of this
description, we obtain a uniform Poincaré–Birkhoff–Witt theorem for the Yangian
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2 C. WENDLANDT

double DY~g of an arbitrary finite-dimensional or simply laced affine Kac–Moody
algebra. These results are based on the construction of an extension Φz of the
formal shift homomorphism τz on the Yangian to the Yangian double DY~g. Here
we recall that τz is a graded algebra embedding

τz : Y~g→ Y~g[z]

which gives rise to an action of the group of translations of the complex plane on
Y~g; see (2.15) and (2.16). This action dates back to the foundational work of
Drinfeld [2] and has become ubiquitous in the theory of Yangians.

1.2. For the purpose of motivating our construction, let us first consider its clas-
sical counterpart with g taken to be a complex semisimple Lie algebra. Under this
assumption, the Yangian Y~g and Yangian double DY~g are graded deformations
of the enveloping algebras for the current algebra g[t] and loop algebra g[t, t−1],
respectively, and τz provides a quantization of the embedding

γz : g[t]→ g[t, z]

sending any polynomial f(t) to its translate f(t + z). Note that this is a graded
homomorphism, provided t and z are both given degree 1. As t+ z is an invertible
element in the ring C[t][z; z−1]] of Laurent series in z−1 with coefficients in C[t], γz
uniquely extends to a graded Lie algebra homomorphism

Υz : g[t, t−1]→
⊕
n∈Z

zng[[t/z]] ⊂ g[t][z; z−1]],

where g[[t/z]] is the image of the embedding g[[w]] → g[t][z; z−1]] sending f(w) to
f(t/z). This homomorphism is injective and possesses a number of properties
which elucidate the intimate connection shared by g[t] and g[t, t−1]. For instance,
the formal parameter z may be evaluated to any c ∈ C× to yield a family of Lie
algebra embeddings

Υc : g[t, t−1]→ g[[t]].

Each member Υc of this family restricts to an automorphism of g[t] and uniquely
extends to an isomorphism

Υ̂c : ̂g[t, t−1] ∼−→ g[[t]]

when g[t, t−1] is completed with respect to the descending filtration given by the
lower central series for the evaluation ideal Jc = (t − c)g[t, t−1]. In addition, Υc

induces an isomorphism of N-graded Lie algebras

gr(Υc) : gr(g[t, t−1]) ∼−→
⊕
n≥0

tng[[t]]/tn+1g[[t]] ∼= g[t]

which realizes g[t] as a degeneration of g[t, t−1].

The results of the present paper provide a quantization Φz of Υz admitting coun-
terparts to each of the above properties and satisfying the commutative diagram

(1.1)

DY~g LŶ~gz

Y~g

Φz

ı τz
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where ı is a quantization of the natural inclusion g[t] ⊂ g[t, t−1] and LŶ~gz is the
~-adic completion of the Z-graded subalgebra⊕

n∈Z
znŶ~gz ⊂ Y~g[z; z−1]],

where Ŷ~gz =
∏
k∈N Y~gkz

−k and Y~gk is the k-th graded component of Y~g. This
completed algebra is described explicitly in Proposition 4.2 and plays the role of
the graded Lie algebra

⊕
n∈Z z

ng[[t/z]] in the above classical picture.

1.3. When g is an infinite-dimensional symmetrizable Kac–Moody algebra, the
Yangian Y~g and Yangian double DY~g no longer deform the enveloping algebras
of the respective Lie algebras g[t] and g[t, t−1]. They do, however, deform the
enveloping algebras of semidirect products

so ḧ and to ḧ,

where ḧ is a finite-dimensional abelian subalgebra of g, and s and t are perfect
Lie algebras which project onto the current algebra ġ[t] and loop algebra ġ[t, t−1],
respectively, of the derived subalgebra ġ = [g, g]. In general, the kernel of these
projections is large and one cannot a priori put too much stock in the classical
story outlined above. Despite this fact, our construction of Φz remains completely
valid, and we exploit it as an effective and simple algebraic tool for studying the
Yangian double DY~g in full generality. In fact, one of the main goals of our work
is to further develop the algebraic theory of DY~g when g is an untwisted affine
Lie algebra. In this case, s and t are non-trivial central extensions of ġ[t] and
ġ[t, t−1], respectively, which admit entirely concrete descriptions, and DY~g may be
viewed as a rational, level zero, analogue of the so-called quantum toroidal algebra
associated to g.

The associated affine Yangians were first studied in detail in the work of Guay
[11–13] in type A, which in particular illuminated their connection to both rational
and trigonometric Cherednik algebras, as well as deformed double current alge-
bras. They have since been afforded a more general treatment in what is now a
rapidly growing body of literature. This includes, but is not limited to, the list of
contributions [1, 15,17,26–28,33,34,36–38].

1.4. Let us now outline our main results in detail. Let g be a symmetrizable Kac–

Moody algebra, and let Ŷ~g denote the formal completion of the Yangian Y~g with
respect to its N-grading. In this article, we prove the following theorem.

Theorem 1.1. There is a unique algebra homomorphism Φz : DY~g → LŶ~gz
satisfying the commutative diagram (1.1). Moreover:

(1) Φz is a Z-graded algebra homomorphism.
(2) Φz evaluates at any z = c ∈ C× to an algebra homomorphism

Φc : DY~g→ Ŷ~g

which uniquely extends the shift automorphism τc of Y~g.
(3) Each specialization Φc of Φz determines an isomorphism

Φ̂c : D̂Y~gc
∼−→ Ŷ~g,

where DY~g is completed with respect to its evaluation ideal at t = c.
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(4) Φz induces an isomorphism of N-graded algebras

gr(DY~g) ∼−→ Y~g,

where DY~g is filtered by powers of its evaluation ideal at t = 1.

This theorem is the amalgamation of two of the three main results established
in this paper. Our first main result, Theorem 4.3, outputs our main tool: a unique
extension Φz of τz satisfying (1) and (2). Our second main result, Theorem 5.5,
then proves that Φ = Φ1 induces an isomorphism

Φ̂ : D̂Y~g
∼−→ Ŷ~g,

where D̂Y~g is the completion of DY~g with respect to its evaluation ideal J at
t = 1. This is precisely the assertion of (3) in the special case where c = 1, and
is generalized to an arbitrary evaluation point c ∈ C× in Corollary 5.7, using that
Φ may be transformed into Φc by conjugating by a gradation automorphism, as
proven in Proposition 4.7.

Part (4) of the above theorem provides the Yangian double analogue of Drinfeld’s
result [3], proven by Guay and Ma in [14], that the Yangian Y~g may be realized as
a degeneration of the quantum loop algebra U~(Lg). It is established in Corollary
5.10 as an application of Theorem 5.5. As another byproduct of Theorem 5.5, we
find in Corollary 5.9 that ı extends to an isomorphism

ı̂ : Ŷ~g×
∼−→ D̂Y~g,

where Ŷ~g× is the completion of Y~g with respect to its own evaluation ideal at
t = 1. As explained in Section 5.3, this affords the completed Yangian double a
rather precise description.

Our third main result is provided by Theorem 6.2, which outputs the following
Poincaré–Birkhoff–Witt theorem for DY~g.

Theorem 1.2. Let g be a symmetrizable Kac–Moody algebra of finite type or of
simply-laced affine type. Then:

(1) Φz and Φc are injective for each c ∈ C×.

(2) DY~g is a flat deformation of U(to ḧ) over C[[~]]. In particular, there is an

isomorphism of C[[~]]-modules DY~g ∼= U(to ḧ)[[~]].

When g is finite-dimensional, the abelian Lie algebra ḧ vanishes and t coincides
with the loop algebra g[t, t−1]. In this case, Part (2) of this theorem improves upon
[4, Thm. 1.5], which established that the positive part DY +

~ g of the Yangian double
DY~g is topologically free. It is also a close relative of [5, Prop. 5.4] which, in
the particular setting outlined in [5, Rem. 8], shows that a quantum algebra closely
related to the so-called centrally extended Yangian double [24] has a similar flatness
property. When g is taken to be a classical Lie algebra of type B, C or D, Part (2)
of Theorem 1.2 is in fact a consequence of Theorems 3.4 and 6.2 from the recent
article [20]. In the type A setting, this should instead follow from the Poincaré–
Birkhoff–Witt result established in Theorem 2.2 of [19] (see also [32, Thm. 15.3])
for the Yangian double of glN in its R-matrix presentation, and the identification
obtained in [18, Cor. 3.5]. The proof given in the present paper does not rely on
these results, and applies uniformly in all Dynkin types.
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In the affine setting, there does not appear to be any counterpart to either part
of Theorem 1.2 which exists in the literature. Our proof applies the recent results
of [17] and [38], and ultimately reduces to a detailed computation of the classical
limit of Φ, which we prove is injective under the more general hypothesis that g is
of untwisted affine type with underlying simple Lie algebra ḡ � sl2. Our arguments
exploit the fact that, for any such g, the Lie algebras s and t admit perfectly tangible
descriptions. Namely, due to a result of Moody, Rao and Yokonuma [31], one has

s ∼= uce(ġ[t]) ∼= uce(ḡ[v±1, t]) and tκ ∼= uce(ġ[t, t−1]) ∼= uce(ḡ[v±1, t±1]),

where tκ is a one-dimensional central extension of t, and uce(a) denotes the universal
central extension of a given perfect Lie algebra a. Universal central extensions of
this type were realized concretely in the work of Kassel [22], and this description is
recalled in the course of our proof of Theorem 6.2: see Sections 6.3–6.5.

1.5. The results obtained in this paper, coupled with the findings of [9], lay the
foundation for a uniform proof of a conjecture from the pioneering work [25] of
Khoroshkin and Tolstoy. This is the assertion that, when g is finite-dimensional,
DY~g coincides with the restricted quantum double of the Yangian Y~g.

Our interest in this conjecture stems, in part, from a desire to understand the
universal R-matrix of the Yangian from a more familiar Hopf-theoretic point of
view. This is a remarkable formal series R(z) ∈ (Y~g ⊗ Y~g)[[z−1]], introduced by
Drinfeld in [2], which has played a central role in many of the developments at the
heart of the representation theory of Yangians. It is not, however, understood to
be a universal R-matrix in the traditional sense and, in particular, has not been
shown to arise as the canonical tensor associated to a Hopf pairing. On the other
hand, the universal R-matrix R associated to the restricted quantum double of the
Yangian Y~g has these properties by construction.

In the sequel [35] to this paper, we will show that there is a unique Hopf algebra
structure on DY~g preserved by Φz and that, when equipped with this structure,
DY~g is isomorphic to the restricted quantum double of Y~g, as conjectured in [25].
Using this identification, we will establish that R and R(z) are in fact one and the
same. More precisely, one has the equality

(Φv ⊗ Φz)R = R(v − z) ∈ (Y~g⊗ Y~g)[v][[z−1]].

1.6. Let us now consider the situation in which ~ is replaced with a nonzero
complex number µ ∈ C×. Let g be a finite-dimensional simple Lie algebra with
associated Yangian Yµg = Y~g/(~−µ)Y~g. The Yangian double DY~g itself admits
a C[~]-form DY~g (see Definition 2.5) which may be specialized to obtain a C-
algebra DYµ(g) = DY~g/(~ − µ)DY~g. Let Repfd(Yµg) and Repfd(DYµg) denote
the categories of finite-dimensional representations of Yµg and DYµg, respectively.

The results of this article have recently been applied in [10, §5] to construct, for
each c ∈ C, an equivalence of categories

Θc : Repcfd(Yµg) ∼−→ Repfd(DYµg),

where Repcfd(Yµg) is the full subcategory of Repfd(Yµg) consisting of all V with

the property that the commuting Cartan currents {hi(u)}i∈I ⊂ Yµg[[u−1]], defined
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in Proposition 2.3 below, have poles contained in the punctured complex plane
C \ {−c} when viewed as EndV -valued rational functions1 of u.

When c ∈ C×, the functor Θc can be interpreted as the restriction of the pull-
back functor Φ∗c to Repcfd(Yµg) upon specializing ~ to µ. In more detail, the homo-
morphism Φz from Theorem 1.1 admits a specialization

Φµz : DYµg→ Yµg[z; z−1]]

and the DYµ(g)-module Θc(V ) is obtained from (Φµz )
∗
(V [z; z−1]]) by evaluating z at

the point c. That such an evaluation is permitted is a consequence of the definition
of Repcfd(Yµg); we refer the reader to [10, §5] for complete details.

It is not difficult to generalize the construction of Θc from [10] to the setting
where g is an arbitrary symmetrizable Kac–Moody algebra. In this generality,
Repfd(Yµg) and Repfd(DYµg) are replaced with the categories of Yµg and DYµg
modules whose restrictions to g are integrable and in the category O. In fact,
one may even take the larger categories consisting of all h-diagonalizable Yµg and
DYµg modules with finite-dimensional weight spaces, where h ⊂ g is a fixed Cartan
subalgebra.

1.7. To conclude, it should be emphasized that the approach taken in this article
both complements and draws inspiration from the innovative work [7] of Gautam
and Toledano Laredo. Therein, the authors constructed a highly non-trivial algebra
homomorphism

ΦGTL : U~(Lg)→ Ŷ~g

which has several remarkable properties. In particular, when g is finite-dimensional,
it induces isomorphisms

Φ̂GTL : Û~(Lg) ∼−→ Ŷ~g and gr(ΦGTL) : gr(U~(Lg)) ∼−→ Y~g,

where U~(Lg) is both completed and filtered with respect to its evaluation ideal at
t = 1: see Theorem 6.2 and Proposition 6.5 of [7]. Combining Theorem 1.1 with
the results of [7], we obtain an algebra homomorphism

Ψ = Φ̂−1 ◦ ΦGTL : U~(Lg)→ D̂Y~g

which extends to an isomorphism between the evaluation completions of U~(Lg) and
DY~g. It may be viewed as a filtered map with associated graded map providing an
isomorphism between gr(U~(Lg)) and gr(DY~g), both of which may be identified
with the Yangian Y~g. As U~(Lg) and DY~g both deform the enveloping algebra of
the loop algebra g[t, t−1], it is perhaps natural to speculate on whether or not this
composition can be viewed as an isomorphism between U~(Lg) and DY~g, without
any completions at play. Though we do not consider Ψ in any detail in the present
article, we note in passing that this is easily seen not to be the case, even after
reducing modulo ~.

1By [8, Prop. 3.6], each hi(u) necessarily operates on V as the Taylor expansion at u = ∞ of

an operator valued rational function of u.
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1.8. Outline. In Section 2, we review the definitions and basic properties of the
Yangian Y~g and Yangian double DY~g associated to a symmetrizable Kac–Moody
algebra g. Our preliminary overview continues in Section 3, where we introduce
the Yangian Y~ġ and Yangian double DY~ġ of ġ = [g, g], in addition to the Lie

algebras s o ḧ and t o ḧ. In Section 4, we construct the unique extension Φz of
τz and its specialization Φc at any invertible complex number c. We then show in
Section 5 that each homomorphism Φc induces an isomorphism between the eval-
uation completion of DY~g at the point c and the completion of Y~g with respect
to its natural N-grading. In Section 6, we prove our final main result, which si-
multaneously establishes the injectivity of Φz and Φc, for any c ∈ C×, and the
Poincaré–Birkhoff–Witt theorem for DY~g, when g is of finite type or simply-laced
affine type. Finally, Appendix A contains the proof of a technical result on grading
completions used in the proof of Lemma 4.1 of Section 4.1.

1.9. Acknowledgments. The author gratefully acknowledges the support of the
Natural Sciences and Engineering Research Council of Canada (NSERC) provided
via the postdoctoral fellowship (PDF) program. He would also like to thank Sachin
Gautam for several helpful comments and insightful discussions.

2. Yangians and Yangian doubles

Let g be a symmetrizable Kac–Moody algebra with indecomposable Cartan ma-
trix A = (aij)i∈I. We fix a realization (h, {αi}i∈I, {α∨i }i∈I) of A as in [21, §1.1].
That is, h is a Cartan subalgebra of g, {αi}i∈I ⊂ h∗ is the set of simple roots,
and {α∨i }i∈I ⊂ h the set of simple coroots, so that αj(α

∨
i ) = aij for all i, j ∈ I.

Let Q =
⊕

i∈I Zαi ⊂ h∗ be the associated root lattice, and let ( , ) be a standard
invariant form on g, as in [21, §2]. We will use the same notation for the induced
bilinear form on h∗. Set

dij =
(αi, αj)

2
and di = dii ∀ i, j ∈ I.

By [21, §2.3], we may assume that ( , ) is normalized so that {di}i∈I are positive,
relatively prime, integers.

Let ġ denote the derived subalgebra [g, g]. The notation N and N+ will be used
to denote the sets of non-negative and strictly positive integers, respectively. All
of this data shall remain fixed throughout the course of this paper, unless specified
otherwise.

2.1. The Yangian Y~g. We begin by recalling the definition of the Yangian asso-
ciated to g. Let Sm denote the symmetric group on {1, . . . ,m}.

Definition 2.1. The Yangian Y~g is the unital associative C[~]-algebra generated
by h ∈ h and {x±ir, hir}i∈I,r∈N, subject to the following relations for i, j ∈ I, r, s ∈ N
and h, h′ ∈ h:

hi0 = diα
∨
i ,(2.1)

[hir, hjs] = 0, [hir, h] = 0, [h, h′] = 0,(2.2)

[h, x±js] = ±αj(h)x±js,(2.3)

[x+
ir, x

−
js] = δijhi,r+s,(2.4)
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[hi,r+1, x
±
js]− [hir, x

±
j,s+1] = ±~dij(hirx±js + x±jshir),(2.5)

[x±i,r+1, x
±
js]− [x±ir, x

±
j,s+1] = ±~dij(x±irx

±
js + x±jsx

±
ir),(2.6) ∑

π∈Sm

[
x±i,rπ(1)

,
[
x±i,rπ(2)

, · · · ,
[
x±i,rπ(m)

, x±js

]
· · ·
]]

= 0,(2.7)

where in the last relation i 6= j, m = 1− aij and r1, . . . , rm ∈ N.

The Yangian Y~g is an N-graded algebra with deg ~ = 1, deg h = 0, and

deg x±ir = deg hir = r ∀ i ∈ I, r ∈ N.
The k-th graded component of Y~g will be denoted Y~gk, so that

Y~g =
⊕
k∈N

Y~gk.

As a C[~]-algebra, Y~g is generated by its degree zero and one subspaces. More
precisely, we have the following standard result.

Lemma 2.2. Y~g is generated by h ∪ {x±i0, hi1}i∈I. Explicitly, for s > 0, x±is and
hi,s+1 are determined by

x±is = ± 1

2di

[
ti1, x

±
i,s−1

]
, where ti1 = hi1 −

~
2
h2
i0,

hi,s+1 = [x+
is, x

−
i1].

Let {ei, fi}i∈I denote the Chevalley generators of g, as in [21, §1.3], and set

hi = diα
∨
i , x+

i =
√
diei, x−i =

√
difi ∀ i ∈ I.

These normalized generators satisfy (x+
i , x

−
i ) = 1 and hi = [x+

i , x
−
i ] for all i ∈ I,

and the relations (2.1)–(2.7) imply that the assignment

x±i 7→ x±i0, hi 7→ hi0, h 7→ h ∀ i ∈ I and h ∈ h,

determines a C-algebra homomorphism U(g)→ Y~g.

2.2. Generating series and shift automorphisms. We now spell out a more
efficient presentation of Y~g, which can be deduced from [8, Prop. 2.3].

Proposition 2.3. For each i ∈ I, define x±i (u), hi(u) ∈ Y~g[[u−1]] by

x±i (u) =
∑
r≥0

x±iru
−r−1 and hi(u) =

∑
r≥0

hiru
−r−1.

Then the defining relations (2.1)–(2.7) of Y~g are equivalent to the following rela-
tions for i, j ∈ I and h, h′ ∈ h:

hi0 = diα
∨
i ,(2.8)

[hi(u), hj(v)] = 0, [h, hj(u)] = 0, [h, h′] = 0,(2.9)

[h, x±j (u)] = ±αj(h)x±j (u),(2.10)

(u− v ∓ ~dij)hi(u)x±j (v)

= (u− v ± ~dij)x±j (v)hi(u)± 2dijx
±
j (v)− [hi(u), x±j0],

(2.11)

(u− v ∓ ~dij)x±i (u)x±j (v)

= (u− v ± ~dij)x±j (v)x±i (u) + [x±i0, x
±
j (v)]− [x±i (u), x±j0],

(2.12)
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(u− v)[x+
i (u), x−j (v)] = δij(hi(v)− hi(u)),(2.13) ∑

π∈Sm

[
x±i (uπ(1)),

[
x±i (uπ(2)), · · · ,

[
x±i (uπ(m)), x

±
j (v)

]
· · ·
]]

= 0,(2.14)

where in the last relation i 6= j and m = 1− aij.

Remark 2.4. Since x±i (u), hi(u) ∈ u−1Y~g[[u−1]], the relations (2.8)–(2.13) can
(and will) be viewed as identities in the algebra Y~g[[u−1, v−1]]. Similarly, the Serre
relations (2.14) should be understood as identities in Y~g[[u−1

1 , . . . , u−1
m , v−1]].

The Yangian Y~g admits a family of automorphisms {τc}c∈C defined by

(2.15)
τc(h) = h ∀ h ∈ h,

τc(x
±
i (u)) = x±i (u− c), τc(hi(u)) = hi(u− c) ∀ i ∈ I.

This is readily verified using the relations of Proposition 2.3. In terms of the
generators x±ir and hir, the above formulas read as

τc(x
±
ir) =

r∑
k=0

(
r

k

)
x±ikc

r−k, τc(hir) =

r∑
k=0

(
r

k

)
hikc

r−k ∀ i ∈ I and r ∈ N.

Each τc is called a shift automorphism. Replacing c by a formal variable z, we
obtain the formal shift homomorphism

(2.16) τz : Y~g ↪→ Y~g[z]

defined by (2.15) with c replaced by z.

2.3. The Yangian double DY~g. We now turn to the Yangian double associated
to g, as first considered in the work of Khoroshkin–Tolstoy [25] in the case where
g is finite-dimensional. Let δ(u) =

∑
r∈Z u

r ∈ C[[u±1]] denote the formal delta
function, so that

u−1δ(v/u) =
∑
r∈Z

vru−r−1 ∈ C[[u±1, v±1]].

In what follows, we invoke the standard terminology for topological C[[~]]-algebras;
see [23, Def. XVII.2.2], for instance.

Definition 2.5. The Yangian double DY~g is the unital, associative C[[~]]-algebra
topologically generated by h ∈ h and the coefficients {X±ir ,Hir}i∈I,r∈Z of the series

X±i (u) =
∑
r∈Z
X±iru

−r−1 and Hi(u) =
∑
r∈Z
Hiru−r−1,

subject to the following relations for all i, j ∈ I and h, h′ ∈ h:

Hi0 = diα
∨
i ,(2.17)

[Hi(u),Hj(v)] = 0, [h,Hj(u)] = 0, [h, h′] = 0,(2.18)

[h,X±j (u)] = ±αj(h)X±j (u),(2.19)

(u− v ∓ ~dij)Hi(u)X±j (v) = (u− v ± ~dij)X±j (v)Hi(u),(2.20)

(u− v ∓ ~dij)X±i (u)X±j (v) = (u− v ± ~dij)X±j (v)X±i (u),(2.21)

[X+
i (u),X−j (v)] = δiju

−1δ(v/u)Hi(v),(2.22)
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π∈Sm

[
X±i (uπ(1)),

[
X±i (uπ(2)), · · · ,

[
X±i (uπ(m)),X±j (v)

]
· · ·
]]

= 0,(2.23)

where in the last relation i 6= j and m = 1− aij .
The C[~]-form DY~g of DY~g is defined to be the unital, associative C[~]-algebra

generated by h ∈ h and {X±ir ,Hir}i∈I,r∈Z, subject to relations (2.17)–(2.23).

Remark 2.6.

(1) The relations (2.18)–(2.22) are understood to be expanded in the formal
series space DY~g[[u±1, v±1]] to yield the corresponding relations for DY~g.
Similarly, (2.23) is to be expanded in DY~g[[u±1

1 , . . . , u±1
m , v±1]].

(2) The above relations are equivalent the relations (2.1)–(2.7) upon replacing
all instances of x±ik, x

±
jk, hik and hjk (k ∈ N) by X±ik ,X

±
jk,Hik and Hjk,

respectively, and allowing k to take arbitrary integer values.

Let us now collect some facts about DY~g and DY~g which follow readily from
the above definition. Let  denote the natural C[~]-algebra homomorphism

 : DY~g→ DY~g.

Proposition 2.7.

(1)  induces an isomorphism of C[[~]]-algebras

lim←−
n

(DY~g/~nDY~g) ∼−→ DY~g.

(2) For each i ∈ I, we have [X+
i0 ,X

−
i (u)] = Hi(u). Consequently, the set

h ∪ {X±ik}i∈I,k∈Z
generates DY~g as a C[~]-algebra and DY~g as a topological C[[~]]-algebra.

(3) DY~g is a Z-graded algebra with deg ~ = 1, deg h = 0, and

degX±ir = degHir = r ∀ i ∈ I, r ∈ Z.
(4) The assignment

x±ir 7→ X
±
ir , hir 7→ Hir, h 7→ h ∀ i ∈ I, r ∈ N and h ∈ h,

extends to a homomorphism of Z-graded C[~]-algebras ıY : Y~g→ DY~g.

We shall set
ı :=  ◦ ıY : Y~g→ DY~g.

It should be emphasized that, at this point, it is not clear that any of the maps ,
ıY or ı are injective. As a consequence of (1) above, we have

Ker() =
⋂
n∈N

~nDY~g,

and, as DY~g is not necessarily separated, this ideal need not vanish. We will,
however, see in Corollary 4.4 that both ıY and ı are indeed injective.
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2.4. Translation automorphisms. We now introduce the so-called translation
automorphisms of the Yangian double (see [25, (5.12)], for instance). These will
play a particularly important role in the proof of Theorem 5.5 in Section 5.

Proposition 2.8. Fix i ∈ I. Then the assignment ti defined by

ti(h) = h, ti(X±jr) = X±j,r±δij , ti(Hjr) = Hjr ∀ j ∈ I, r ∈ Z and h ∈ h

extends to an automorphism ti of DY~g and of DY~g.

Proof. It suffices to prove the assertion for DY~g. For each n ∈ Z, define an
assignment tni by

tni (h) = h, tni (Hj(u)) = Hj(u), tni (X±j (u)) = u±nδijX±j (u) ∀ j ∈ I, h ∈ h.

It is straightforward to verify that tni preserves the relations of Definition 2.5. For
instance,

[tnk (X+
i (u)), tnk (X−j (v))] = (u/v)nδkjδiju

−1δ(v/u)Hi(v) = δiju
−1δ(v/u)Hi(v),

where we have used (u/v)nu−1δ(v/u) = u−1δ(v/u). It follows that tni extends to
a C[~]-algebra endomorphism of DY~g, which satisfies tni = (ti)

n for all n ∈ Z. In
particular, ti is an automorphism with inverse t−1

i . �

3. Derived subalgebras and classical limits

3.1. The algebras Y~ġ and DY~ġ. In the current literature on Yangians of infinite-
dimensional Kac–Moody algebras, both the full Yangian Y~g of Definition 2.1 and
the Yangian Y~ġ of the derived Lie subalgebra ġ ⊂ g, defined below, have indepen-
dently been considered; see [15,17,38], for instance.

The results of this paper, which are primarily stated for Y~g and DY~g, are
entirely valid for Y~ġ and DY~ġ. In this subsection, we make this transparent by
clarifying the precise relationship between Y~g and Y~ġ, and DY~g and DY~ġ.

Definition 3.1. The Yangian Y~ġ is the unital, associative C[~]-algebra generated
by {x±ir, hir}i∈I,r∈N, subject to the relations (2.4) - (2.7) of Definition 2.1, in addition
to

[hir, hjs] = 0, [hi0, x
±
js] = ±2dijx

±
js ∀ i, j ∈ I, r, s ∈ N.

We first observe that Y~ġ admits the structure of a Q-graded C[~]-algebra

Y~ġ =
⊕
β∈Q

Y~ġβ ,

determined by assigning deg hir = 0 and deg x±ir = ±αi for all i ∈ I and r ∈ N.
Next, let us fix a decomposition of (abelian) Lie algebras

h = ḣ⊕ ḧ, where ḣ =
⊕
i∈I

Cα∨i .

The Lie algebra ḧ then acts on Y~ġ by the commuting C[~]-linear derivations
uniquely determined by

(3.1) h · xβ = β(h)xβ ∀ h ∈ ḧ, xβ ∈ Y~ġβ .
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We can thus form the crossed product (or smash product) algebra Y~ġoU(ḧ) over
the complex numbers [30, Def. 4.1.3]. As a vector space, we have

Y~ġo U(ḧ) = Y~ġ⊗C U(ḧ),

with associative multiplication • defined on simple tensors by

(x⊗ h) • (y ⊗ h′) = x(h1 · y)⊗ h2h
′ ∀ x, y ∈ Y~ġ and h, h′ ∈ U(ḧ),

where we have used the sumless Sweedler notation ∆(h) = h1⊗h2 for the standard

coproduct on U(ḧ). As the underlying action of U(ḧ) is C[~]-linear, this defines a

C[~]-algebra structure on Y~ġo U(ḧ). We then have the following result.

Proposition 3.2. The assignment

h 7→ 1⊗ h, x±ir 7→ x±ir ⊗ 1, hir 7→ hir ⊗ 1,

for h ∈ ḧ, i ∈ I and r ∈ N, uniquely extends to an isomorphism of C[~]-algebras

Y~g
∼−→ Y~ġo U(ḧ).

The proof of the proposition is entirely analogous to the argument that U(g)

itself decomposes as U(g) ∼= U(ġ)o U(ḧ), and is therefore omitted.

A nearly identical story unfolds if Y~g is replaced by DY~g. The only subtlety
which arises is that the crossed product construction should be carried out in the
category of topological C[[~]]-modules. We summarize these results below, beginning
with the definition of DY~ġ.

Definition 3.3. The Yangian double DY~ġ is the unital, associative C[[~]]-algebra
topologically generated by {X±ir ,Hir}i∈I,r∈Z, subject to the relations (2.20) - (2.23)
of Definition 2.5, in addition to

[Hir,Hjs] = 0, [Hi0,X±js] = ±2dijX±js ∀ i, j ∈ I, r, s ∈ Z.

The C[~]-form DY~ġ of DY~ġ is the unital, associative C[~]-algebra generated by
{X±ir ,Hir}i∈I,r∈Z, subject to the same set of relations.

The algebra DY~ġ is itself Q-graded with degHir = 0 and degX±ir = ±αi:

DY~ġ =
⊕
β∈Q

DY~ġβ .

As in the Yangian case, we have an action of the Lie algebra ḧ on DY~ġ by deriva-
tions, uniquely determined by (3.1), where xβ now takes values in DY~ġβ . Each
such derivation is C[~]-linear, and therefore determines a C[[~]]-linear derivation of
the algebra

DY~ġ ∼= lim←−
n

(DY~ġ/~nDY~ġ).

We thus have an action of ḧ on DY~ġ by derivations, and may form the spaces

DY~ġo U(ḧ) and DY~ġo U(ḧ),

which are naturally algebras over C[~] and C[[~]], respectively. We then have the
following analogue of Proposition 3.2.
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Proposition 3.4. The assignment

h 7→ 1⊗ h, X±ir 7→ X
±
ir ⊗ 1, Hir 7→ Hir ⊗ 1,

for h ∈ ḧ, i ∈ I and r ∈ Z, uniquely extends to yield algebra isomorphisms

DY~g
∼−→ DY~ġo U(ḧ) and DY~g

∼−→ DY~ġo~ U(ḧ),

where DY~ġo~ U(ḧ) is the ~-adic completion of DY~ġo U(ḧ).

3.2. The classical limits s and t. Modulo the ideal generated by ~, the defining
relations of Y~ġ and DY~ġ are of Lie type. It follows that Y~ġ and DY~ġ deform
the enveloping algebras of certain infinite-dimensional complex Lie algebras s and
t, respectively. In this section, we overview the abstract definitions of s and t,
together with their Y~g and DY~g counterparts.

Henceforth, the symbol a is understood to take value s or t, and we set

Zs = N and Zt = Z.

Definition 3.5. The complex Lie algebra a is defined to be the quotient of the free
Lie algebra on {X±ir , Hir}i∈I,r∈Za

by the ideal generated by the following relations,
for i, j ∈ I and r, s ∈ Za:

[Hir, Hjs] = 0,(3.2)

[Hir, X
±
js] = ±2dijX

±
j,r+s,(3.3)

[X+
ir , X

−
js] = δijHi,r+s,(3.4)

[X±i,r+1, X
±
js] = [X±ir , X

±
j,s+1],(3.5)

ad(X±i0)1−aij (X±js) = 0 for i 6= j.(3.6)

We note that a is a Za-graded Lie algebra with degX±ir = degHir = r for all
i ∈ I and r ∈ Za. Additionally, the assignment

X±ir 7→ x±i ⊗ t
r, Hir 7→ hi ⊗ tr ∀ i ∈ I, r ∈ Za,

extends to yield graded epimorphisms

(3.7) πs : s � ġ[t] and πt : t � ġ[t±1],

which are isomorphisms when g is finite-dimensional. When g is an untwisted affine
Lie algebra with underlying simple Lie algebra ḡ � sl2, one has instead

(3.8) s ∼= uce(ġ[t]) and tκ ∼= uce(ġ[t±1]),

where uce(p) denotes the universal central extension of a perfect Lie algebra p, and
tκ is a one-dimensional central extension of t, defined for g of any type, constructed
as follows. Define a linear map κ̄ : ġ[t±1]⊗ ġ[t±1]→ C by

κ̄(f(t), g(t)) = Rest (∂t(f(t)), g(t)) ∀ f(t), g(t) ∈ ġ[t±1],

where the invariant form ( , )|ġ×ġ has been naturally extended to a bilinear form
on ġ[t±1]⊗ ġ[t±1] with values in C[t±1], ∂t : ġ[t±1]→ ġ[t±1] is the formal derivative
operator, and Rest : C[t±1]→ C is the formal residue. One verifies as in [21, §7.2]
that κ̄ is a C-valued 2-cocycle on ġ[t±1]. It follows that

κ = κ̄ ◦ π⊗2
t : t⊗ t→ C

is a C-valued 2-cocycle on t.
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Definition 3.6. The Lie algebra tκ is the central extension of t by the cocycle κ.
That is, tκ = t⊕ CK as a vector space, with Lie bracket given by [t,K] = 0 and

[x, y] = [x, y]t + κ(x, y)K ∀ x, y ∈ t.

The assertion of (3.8) is non-trivial, and has been established in the work of
Moody, Rao and Yokonuma [31]. These isomorphisms appear in the form stated
above in [17], where tκ is itself denoted t. A deeper analysis of these results will be
given in the course of the proof of Theorem 6.2 in Section 6.5.

Returning to our general discussion of a, note that the assignment degHir = 0
and degX±ir = ±αi, for all i ∈ I and r ∈ Za, defines a Q-grading

a =
⊕
β∈Q

aβ .

The commutative Lie algebra ḧ acts on a by the derivations uniquely determined by
(3.1) with xβ ∈ aβ . We may therefore take the semidirect product of Lie algebras

ao ḧ.

We then have the following result, where the notation xa,±ir , hair is used to denote
x±ir, hir ∈ Y~ġ if a = s, and X±ir ,Hir ∈ DY~ġ if a = t.

Proposition 3.7. The assignment

X±ir 7→ xa,±ir mod ~, Hir 7→ hair mod ~ ∀ i ∈ I, r ∈ Za

uniquely extends to isomorphisms of graded algebras

U(s) ∼−→ Y~ġ/~Y~ġ and U(t) ∼−→ DY~ġ/~DY~ġ.

Tensoring with the identity 1 on U(ḧ) yields isomorphisms

U(so ḧ) ∼−→ Y~g/~Y~g and U(to ḧ) ∼−→ DY~g/~DY~g.

The first assertion of the proposition, for Y~ġ, is precisely [17, Prop. 2.6]. The
DY~ġ analogue of this result follows from an identical argument (see also [17,
Prop. 3.6]). The second part of the proposition is then a consequence of Proposi-
tions 3.2 and 3.4, which imply there are algebra isomorphisms

Y~g/~Y~g ∼= Y~ġ/~Y~ġo U(ḧ) ∼= U(so ḧ),

DY~g/~DY~g ∼= DY~ġ/~DY~ġo U(ḧ) ∼= U(to ḧ),

where we have employed the fact that U(ao ḧ) ∼= U(a)o U(ḧ).

4. Extending the shift automorphism

The primary goal of this section is to introduce the formal shift operator Φz
together with its evaluation Φc at any invertible complex number c ∈ C×. This will
be achieved in Theorem 4.3, after first proving a collection of preliminary results on
completed Yangians and formal series algebras. We will then conclude this section
by spelling out a number of direct consequences to Theorem 4.3 in Sections 4.5 and
4.6.
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4.1. Completed Yangian. Let Ŷ~g denote the completion of Y~g with respect to
its N-grading:

Ŷ~g =
∏
k∈N

Y~gk.

Since ~ has degree one, Ŷ~g is a unital, associative C[[~]]-algebra. Consider now the
ideal Y~g+ ⊂ Y~g generated by elements of strictly positive degree:

Y~g+ =
⊕
k>0

Y~gk.

Lemma 4.1. Ŷ~g admits the following properties.

(1) The canonical C[~]-algebra homomorphism Y~g→ lim←−n
(
Y~g/Y~g

n
+

)
extends

to an isomorphism of C[[~]]-algebras

Ŷ~g
∼−→ lim←−

n

(
Y~g/Y~g

n
+

)
.

(2) Ŷ~g separated and complete as a C[[~]]-module,

(3) Ŷ~g is a torsion free C[[~]]-module, provided Y~g is a torsion free C[~]-
module.

Proof. By Lemma 2.2, Y~g0 and Y~g1 generate Y~g as a C[~]-algebra, and conse-
quently, we have

Y~g
n
+ =

⊕
k≥n

Y~gk for all n ∈ N.

Lemma 4.1 thus follows from Proposition A.1 of Appendix A with the algebra A
taken to be Y~g. Parts (2) and (3) may also be proven as in [7, Prop. 6.3]. �

4.2. Formal series spaces. Let Y~g[z; z−1]] denote the algebra of formal Laurent
series in z−1 with ceofficients in Y~g:

Y~g[z; z−1]] =
⋃
n∈N

znY~g[[z−1]] ⊂ Y~g[[z±1]].

Define Ŷ~gz ⊂ Y~g[[z−1]] by

Ŷ~gz =
∏
k∈N

Y~gkz
−k.

Let LŶ~gz denote the C[z±1]-submodule of Y~g[z; z−1]] generated by Ŷ~gz. The
following proposition outputs a set of valuable properties characterizing this space
and its ~-adic completion.

Proposition 4.2. Let v be an indeterminate and equip Ŷvg[z±1] with the C[~]-
algebra structure determined by ~ · 1 = vz. Then:

(1) LŶ~gz is a Z-graded C[~]-algebra with LŶ~gz,k = zkŶ~gz. In particular,

LŶ~gz =
⊕
n∈Z

znŶ~gz.
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(2) The graded linear map LŶ~gz → Ŷvg[z±1] given by

znf~(z) 7→ znfv(1) ∀ f~(z) ∈ Ŷ~gz, n ∈ Z,
is an isomorphism of graded C[~]-algebras.

(3) The ~-adic completion LŶ~gz of LŶ~gz is the subspace of Ŷ~g[[z±1]] consist-
ing of formal series∑

k∈Z
zkfk(z), fk(z) ∈ Ŷ~gz

with the property that, for each m ∈ N, ∃ Nm ∈ N such that

fk(z) ∈ (~/z)mŶ~gz ∀ |k| ≥ Nm.
(4) For each c ∈ C×, the map

Evc : LŶ~gz → Ŷ~g, f(z) 7→ f(c),

is an epimorphism of C[[~]]-algebras.

Proof. As Ŷ~gz is a C-algebra, ~ ∈ zŶ~gz and

znŶ~gz · zmŶ~gz ⊂ zn+mŶ~gz ∀ n,m ∈ Z,

LŶ~gz is a C[~]-algebra, which will be Z-graded provided the sum
∑
n∈Z z

nŶ~gz is
direct. This assertion is readily verified, and hence Part (1) holds.

Part (2) is a consequence of Part (1), the definition of the C[~]-module structure

on Ŷvg[z±1], and the fact that

Ŷ~gz → Ŷ~g, f(z) 7→ f(1),

is an isomorphism of C-algebras.

Consider now Part (3). Since z ∈ Ŷvg[z±1] is a unit, Part (2) yields

LŶ~gz = lim←−
n

(
LŶ~gz/~nLŶ~gz

)
∼= lim←−

n

(
Ŷvg[z±1]/vnŶvg[z±1]

)
.

Part (3) thus follows from the identification of Part (2), Lemma 4.1, and the fol-
lowing straightforward general result:

If A is a separated and complete C[[~]]-module, then the ~-adic completion of
A[z±1] is equal to the subspace of A[[z±1]] consisting of all series∑

k∈Z
xkz

k ∈ A[[z±1]]

satisfying the condition that, for each m ∈ N, ∃ Nm ∈ N such that

xk ∈ ~mA ∀ |k| ≥ Nm.

Let us now turn to Part (4). Composing the algebra epimorphism Ŷvg[z±1] �
Ŷ~g, fv(z) 7→ f~(c) with the isomorphism of (2), we obtain an epimorphism of
C[~]-algebras

Ev′c : LŶ~gz � Ŷ~g,

given by evaluating z 7→ c. Since, by Lemma 4.1, Ŷ~g is separated and complete,
Ev′c induces Evc as in the statement of the proposition. �
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4.3. The formal shift operator Φz. Let τc and τz be the shift homomorphisms
of (2.15) and (2.16), respectively, and recall that  and ı are the natural homomor-
phisms

 : DY~g→ DY~g and ı : Y~g→ DY~g

introduced in Section 2.3. In addition, we shall set

∂(n)
z =

1

n!
(∂z)

n ∀ n ∈ N,

where ∂z is the formal derivative operator with respect to z. With the machinery
of Sections 4.1 and 4.2 at our disposal, we are now prepared to state and prove our
first main result.

Theorem 4.3.

(1) There is a unique homomorphism of C[[~]]-algebras

Φz : DY~g→ LŶ~gz

with the property that Φz ◦ ı = τz. It is given by

(4.1)

Φz(h) = h ∀ h ∈ h,

uΦz(Hi(u)) =
∑
n∈N

hi,n∂
(n)
z (δ(z/u)) , uΦz(X±i (u)) =

∑
n∈N

x±i,n∂
(n)
z (δ(z/u)) ,

for all i ∈ I.
(2) The compostion Φz ◦  is a Z-graded C[~]-algebra homomorphism

Φz ◦  : DY~g→ LŶ~gz =
⊕
n∈Z

znŶ~gz ⊂ Y~g[z; z−1]].

(3) Fix c ∈ C×. Then Φc = Evc ◦ Φz is the unique homomorphism of C[[~]]-
algebras

Φc : DY~g→ Ŷ~g

satisfying Φc ◦ ı = τc.

The proof of the theorem will be given in §4.4 below. Let us first examine the
formula (4.1) in more detail. Expanding the formal delta function u−1δ(z/u) as

u−1δ(z/u) = exp(−z∂u)(1/u) + exp(−u∂z)(1/z),
we find that

∂(n)
z

(
u−1δ(z/u)

)
= exp(−z∂u)(u−n−1) + (−1)n exp(−u∂z)(z−n−1).

Hence, from the second line of (4.1), we obtain

(4.2)
(Φz ◦ ı)hi(u) = exp(−z∂u)hi(u) = hi(u− z),

(Φz ◦ ı)x±i (u) = x±i (u− z),
for all i ∈ I. We may thus conclude that Φz ◦ ı = τz will hold, provided that Φz, as
given by (4.1), is an algebra homomorphism.

The above expansion of ∂
(n)
z

(
u−1δ(z/u)

)
also implies that

(4.3) Φz(X±i,−n−1) = (−1)n+1∂(n)
z x±i (−z) ∀ i ∈ I, n ∈ N.

In particular, since x±i (z) ∈ z−1Ŷ~gz and ∂
(n)
z is a degree −n operator on LŶ~gz,

(−1)n+1∂(n)
z x±i (−z) ∈ z−n−1Ŷ~gz ⊂ LŶ~gz.
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Consequently, Part (2) of the theorem will follow automatically from Part (1) and
the second statement of Proposition 2.7.

4.4. Proof of Theorem 4.3. Let us begin by establishing that there is at most

one homomorphism Φz : DY~g → LŶ~gz with the property that Φz ◦ ı = τz. Our
argument will also imply the uniqueness of Φc, as in the statement of the theorem.

Proof of uniqueness. Let Φz be such a homomorphism, and fix i ∈ I. Our starting
point is the relation

(4.4) [ı(ti1),X±is ] = ±2diX±i,s+1 ∀ s ∈ Z,

where ti1 = hi1 − ~
2h

2
i0, as in Lemma 2.2. This relation is proven in the same way

as its Y~g-counterpart; see (2) of Remark 2.6 and Lemma 2.2. It implies that

ad(Ti)
k(X±is ) = (±1)kX±i,s+k ∀ s ∈ Z, k ∈ N, where Ti =

ι(ti1)

2di
.

Applying Φz, and using that τz(ti1) = ti1 + zhi0, we obtain

ad

(
Ti +

z

2di
Hi0
)k

Φz(X±is ) = (±1)kΦz(X±i,s+k) ∀ s ∈ Z, k ∈ N.

By (2.17) and (2.19), [Hi0,Φz(X±is )] = ±2diΦz(X±is ). It follows that the above is
equivalent to

(z ± ad(Ti))
kΦz(X±is ) = Φz(X±i,s+k) ∀ s ∈ Z, k ∈ N.

Fixing n ∈ N and taking k = n+ 1 and s = −n− 1, we deduce that

(4.5) (z ± ad(Ti))
n+1Φz(X±i,−n−1) = X±i0 .

As Ti ∈ Y~g1,

(4.6) (z ± ad(Ti))
−n−1

=
∑
p≥0

(−1)nad(∓Ti)
p∂(n)
z (z−p−1)

is a C[[~]]-linear endomorphism of LŶ~gz. Applying it to (4.5) and employing (4.4),
we recover (4.3):

Φz(X±i,−n−1) =
∑
p≥0

(−1)n+px±ip∂
(n)
z (z−p−1) = (−1)n+1∂(n)

z x±i (−z).

By Part (2) of Proposition 2.7, this identity, together with the requirement Φz ◦ ı =
τz, completely determines Φz. This proves the uniqueness of Φz.

Observe that, since the evaluation of (4.6) at z = c ∈ C× defines an honest

C[[~]]-linear endormorphism of Ŷ~g, the above uniqueness argument is completely
valid with z replaced by a fixed scalar c ∈ C×. It thus proves that there is at most

one C[[~]]-algebra homomorphism Φc : DY~g→ Ŷ~g such that Φc ◦ ı = τc.

Proof of (1) and (2). Next, we prove that the assignment Φz defined by (4.1)

preserves the defining relations of DY~g. Since LŶ~gz is separated and complete (by
(3) of Proposition 4.2), this will imply that (4.1) indeed extends to a homomorphism
of C[[~]]-algebras

Φz : DY~g→ LŶ~gz,

which, by the remarks following the statement of the theorem, will complete the
proof of both Parts (1) and (2) of the theorem.
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It is clear from (2.1) and (2.2) that Φz preserves the relations (2.17) and (2.18).

The relation (2.19). By (2.3), for each h ∈ h and j ∈ I we have

[Φz(h),Φz(X±j (u))] =
∑
n∈N

[h, x±j,n]∂(n)
z

(
u−1δ(z/u)

)
= ±αj(h)Φz(X±j (u)).

The relations (2.20) and (2.21). For each n ∈ N, we have

(4.7)
(u− v)∂(n)

z

(
u−1δ(z/u)

)
= ∂(n−1)

z

(
u−1δ(z/u)

)
+ (z − v)∂(n)

z

(
u−1δ(z/u)

)
,

(u− z)∂(n)
z

(
u−1δ(z/u)

)
= ∂(n−1)

z

(
u−1δ(z/u)

)
,

where ∂
(n−1)
z

(
u−1δ(z/u)

)
= 0 if n = 0. The second relation is obtained from the

first by setting v = z, and the first relation is proven by induction on n.

For each n,m ∈ N, set

fn,m(u, v, z) = ∂(n)
z

(
u−1δ(z/u)

)
∂(m)
z

(
v−1δ(z/v)

)
.

Then (4.7) implies that fn,m(u, v, z) satisfies

(4.8) (u− v)fn,m(u, v, z) = fn−1,m(u, v, z)− fn,m−1(u, v, z),

where f−1,m(u, v, z) = fn,−1(u, v, z) = 0.

We now apply this to prove that Φz preserves (2.20) and (2.21). Fix i, j ∈ I, and
let (Yi(u), yir) denote (X±i (u), x±ir) or (Hi(u), hir) for all r ∈ N. Then, by (4.8):

(u− v)
[
Φz(Yi(u)),Φz(X±j (v))

]
=
∑
n,m∈N

[yi,n, x
±
j,m](u− v)fn,m(u, v, z)

=
∑
n,m∈N

[yi,n, x
±
j,m](fn−1,m(u, v, z)− fn,m−1(u, v, z)).

Using (2.5) and (2.6), we can rewrite the right-hand side as∑
n,m∈N

([yi,n+1, x
±
j,m]− [yi,n, x

±
j,m+1])fn,m(u, v, z)

= ±~dij
∑
n,m∈N

{yi,n, x±j,m}fn,m(u, v, z) = ±~dij
{

Φz(Yi(u)),Φz(X±j (v))
}
,

where {x, y} = xy + yx. Thus, we have proven that

(u− v ∓ ~dij)Φz(Yi(u))Φz(X±j (v)) = (u− v ± ~dij)Φz(X±j (v))Φz(Yi(u)),

which is precisely (2.20) if Yi(u) = Hi(u), and (2.21) if Yi(u) = X±i (u).

The relation (2.22). Fix i, j ∈ I. Then, by (2.4), we have

[Φz(X+
i (u)),Φz(X−j (v))] =δij

∑
n∈N

hi,n

n∑
k=0

∂(k)
z (u−1δ(z/u))∂(n−k)

z (v−1δ(z/v))

= δij
∑
n∈N

hi,n∂
(n)
z (u−1v−1δ(z/u)δ(z/v))

= δiju
−1δ(v/u)Φz(Hi(v)),
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where in the second equality we have used the generalized Leibniz identity, and in
the third equality we have used that u−1v−1δ(z/u)δ(z/v) = u−1v−1δ(v/u)δ(z/v).

The Serre relations (2.23). Fix i, j ∈ I with i 6= j and let m = 1 − aij . For
(n1, . . . , nm, s) ∈ Nm+1, set

fn1,...,nm,s
u1,...,um,v (z) = ∂(n1)

z (u−1
1 δ(z/u1)) · · · ∂(nm)

z (u−1
m δ(z/um))∂(s)

z (v−1δ(z/v)).

Then, since fn1,...,nm,s
u1,...,um,v (z) is symmetric in {1, . . . ,m}, (4.1) gives∑

π∈Sm

[
Φz(X±i (uπ(1))),

[
Φz(X±i (uπ(2))), · · · ,

[
Φz(X±i (uπ(m))),Φz(X±j (v))

]
· · ·
]]

=
∑

n1,...,nm,s∈N
fn1,...,nm,s
u1,...,um,v (z)

∑
π∈Sm

[
x±i,nπ(1)

,
[
x±i,nπ(2)

, · · · ,
[
x±i,nπ(m)

, x±js

]
· · ·
]]

= 0,

where the last equality holds by (2.7).

Proof of (3). Fix c ∈ C×. By Part (1) of the theorem and Part (4) of Proposition
4.2, Φc = Evc ◦ Φz is a homomorphism of C[[~]]-algebras satisfying Φc ◦ ı = τc. As
we have already established the uniqueness assertion, we are done. �

4.5. Consequences and formulas. As a first, and rather immediate, corollary to
Theorem 4.3 we obtain the injectivity of the natural homomorphisms from Y~g to
both DY~g and DY~g, and deduce the existence of injective translation endomor-
phisms on the standard Borel subalgebras of Y~g.

Corollary 4.4. Define Y~(b±) to be the subalgebra of Y~g generated by the Cartan
subalgebra h and {x±ir, hir}i∈I,r∈N. Then:

(1) The algebra homomorphisms

ıY : Y~g→ DY~g and ı : Y~g→ DY~g

are injective.
(2) For each fixed i ∈ I, the assignment

σ±i : x±jr 7→ x±j,r+δij , hjr 7→ hjr, h 7→ h ∀ j ∈ I, r ∈ N and h ∈ h

determines an injective C[~]-algebra endomorphism σ±i of Y~(b±).

Proof. Since Φc ◦ ı = τc is injective, ı is injective. As ı =  ◦ ıY, we can conclude ıY
is also injective. This proves Part (1).

Consider now Part (2), and fix c ∈ C× and i ∈ I. Define

σ±i := τ−c ◦ Φc ◦ t±1
i ◦ ı|Y~(b±).

This is an algebra endomorphism of Y~(b±) which agrees with the assignment in
the statement of (2). It is injective since t±1

i (ı(Y~(b±))) ⊂ ı(Y~(b±)), ti is an
automorphism, and Φc ◦ ı, ı and τ−c are all injective. �

Remark 4.5. When g is of finite type or of simply-laced affine type, one can deduce
the existence of the algebra endomorphisms σ±i of Y~(b±) by appealing to the fact
that Y~g is known to admit a triangular decomposition, as in [7, §2.6]. Corollary
4.4 circumvents the fact that such a decomposition has not yet been established for
general g.
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The next result applies the endomorphisms σ±i of Y~(b±) to obtain a useful set
of formulas re-expressing the definition of Φz on each generating series X±i (u).

Corollary 4.6.

(1) For each i ∈ I, we have

Φz(X±i (u)) = exp(σ±i ∂z)(u
−1δ(z/u)x±i0) = u−1δ

(
z + σ±i
u

)
(x±i0).

In particular, for each k ∈ N and ` ∈ Z,

Φz ◦ t±`i (X±ik) = exp(σ±i ∂z)(z
k+`x±i0) = (z + σ±i )`τz(x

±
ik),

where ti ∈ Aut(DY~g) is as in Proposition 2.8.
(2) For each i ∈ I, we have

exp(−z∂u)x±i (u) = Φz(X±i (u)+) =
u−1

1− u−1(z + σ±i )
(x±i0)

exp(−u∂z)x±i (−z) = Φz(X±i (u)−) = − z−1

1− z−1(u− σ±i )
(x±i0),

where X±i (u)+ = ı(x±i (u)) and X±i (u)− = X±i (u)+ −X±i (u).

Proof. Since (σ±i )n(x±i0) = x±in for all i ∈ I and n ∈ N, Part (1) follows directly from
(4.1). As for Part (2), the leftmost equalities follow from (4.2) and (4.3), while the
rightmost equalites are readily deduced from Part (1). �

4.6. Similarity of Φc and Φa. We conclude Section 4 by establishing that, for
any a, c ∈ C×, Φc and Φa are equal up to conjugation by a gradation automorphism
governed by the ratio c

a .

For each a ∈ C×, introduce the C-algebra automorphism χa of DY~g by

χa =
⊕
k∈Z

ak1k ∈ AutC(DY~g),

where 1k is the identity map on the k-th graded component DY~gk of DY~g. Since
χa(~nDY~g) = ~nDY~g for each n ∈ N, χa extends to a C-algebra automorphism
of DY~g, which we again denote by χa. These gives rise to an action of the multi-
plicative group C× on DY~g. That is, one has

χa ◦ χc = χa·c ∀ a, c ∈ C×.
In addition, χa restricts to a C-algebra automorphism of Y~g ∼= ı(Y~g), which

extends by continuity to an automorphism χıa of the completed Yangian Ŷ~g. The
next proposition uses these automorphisms to illustrate the precise relation between
Φc and Φa, for any a, c ∈ C×.

Proposition 4.7. For each pair of points a, c ∈ C×, one has the identity

Φc = χıa/c ◦ Φa ◦ χc/a.

Proof. The composition χıa/c ◦ Φa ◦ χc/a fixes ~, and is thus a C[[~]]-algebra homo-

morphism. Next, observe that, for each b ∈ C×, χb satisfies

χb(h) = h, χb(Ai(u)) = Ai(u/b) ∀ h ∈ h, i ∈ I,
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where Ai(u) takes value uX±i (u) or uHi(u). The assertion of the proposition there-
fore follows from (4.1) together with the identity

(a/c)n ∂(n)
z (δ(zc/au))

∣∣∣
z=a

= ∂(n)
w (δ(w/u))

∣∣∣
w=c

,

which is obtained by making the change of variables w = zc/a. �

5. Isomorphism with completed Yangian

The evaluation ideal J at t = 1 is defined to be the kernel of the composite

DY~g
~ 7→0−−−→ U(to ḧ)

evg−−→ U(g),

where ~ 7→ 0 denotes reduction modulo ~, under the identification of Proposition
3.7, and evg is the epimorphism of algebras induced by the composition

(5.1) to ḧ
πt⊕1−−−→ ġ[t±1]o ḧ

ėvg⊕1−−−−→ ġo ḧ ∼= g,

with πt as in (3.7) and ėvg : ġ[t±1]→ ġ the evaluation morphism given by t 7→ 1. In
this section, we will prove that the evaluation of Φz at z = 1 induces an isomorphism
of C[[~]]-algebras

Φ̂ : D̂Y~g
∼−→ Ŷ~g,

where D̂Y~g is the completion of DY~g with respect to the descending filtration

DY~g = J 0 ⊃ J ⊃ J 2 ⊃ · · · ⊃ J n ⊃ · · ·
This will be achieved in Theorem 5.5 of Section 5.1. In Section 5.2, we will obtain

a generalization of this result which holds for an arbitrary evaluation point c ∈ C×.
We will then conclude this section with two applications of Theorem 5.5: In Section
5.3, we will show that the natural inclusion ı extends to an isomorphism between
the evaluation completions of Y~g and DY~g at t = 1. We will then demonstrate in
Section 5.4 that Y~g can be realized as a degeneration of DY~g, in the same way
that Y~g can be realized as a degeneration of the quantum loop algebra U~(Lg).

5.1. The isomorphism Φ̂. In what follows, we shall set Φ = Φ1, where Φ1 is the
morphism Φc from Theorem 4.3 with c taken to be 1. Since

∂(n)
z (u−1δ(z/u)) = (−1)n∂(n)

u (u−1δ(z/u)) ∀ n ∈ N,
we deduce from (4.1) that Φ is given explicitly by the following data:

(5.2)

Φ : DY~g→ Ŷ~g,

Φ(h) = h, Φ(X±i (u)) =
∑
n∈N

(−1)nx±in∂
(n)
u (δ(u)) ∀ i ∈ I and h ∈ h.

For each n ∈ N, introduce the ideal Ŷ~g≥n ⊂ Ŷ~g by

Ŷ~g≥n =
∏
k≥n

Y~gk.

Equivalently, under the identification of Part (1) of Lemma 4.1, one has

Ŷ~g≥n = lim←−
k>n

(
Y~g

n
+/Y~g

k
+

)
.
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Lemma 5.1. We have
Φ(J n) ⊂ Ŷ~g≥n ∀ n ∈ N.

Consequently, Φ induces a homomorphism of C[[~]]-algebras

Φ̂ : D̂Y~g→ Ŷ~g.

Proof. We proceed analogously to the proof of [7, Thm. 6.2 (1)]. To prove the first

assertion, it suffices to show that Φ(J ) ⊂ Ŷ~g+ := Ŷ~g≥1, as this will imply

Φ(J n) ⊂ (Ŷ~g+)n ⊂ Ŷ~g≥n ∀ n ∈ N.
As the kernel of the evaluation homomorphism evg is generated as an ideal by
{X±ir −X

±
is}i∈I,r,s∈Z, the ideal J ⊂ DY~g is generated by

(5.3) ~DY~g ∪ {X±ir −X
±
is }i∈I,r,s,∈Z.

Since (ur − us)δ(u) = 0 for all r, s ∈ Z, (5.2) yields

(ur − us)Φ(X±i (u)) =
∑
n>0

(−1)nx±in(ur − us)∂(n)
u (δ(u)) ∈ Ŷ~g+[[u±1]] ∀ i ∈ I.

Applying the formal residue Resu : Ŷ~g[[u±1]]→ Ŷ~g to this identity, we obtain

Φ(X±ir )− Φ(X±is ) = Resu((ur − us)Φ(X±i (u))) ∈ Ŷ~g+.

As ~ ∈ Ŷ~g+, this completes the proof of the first part of the lemma.

We may thus conclude that Φ induces a family of C[[~]]-algebra homomorphisms

(5.4) Φn : DY~g/J n → Ŷ~g/Ŷ~g≥n
∼= Y~g/Y~g

n
+ ∀ n ∈ N.

Taking the inverse limit of this family, we obtain

Φ̂ = lim←−
n

Φn : D̂Y~g→ Ŷ~g. �

We will show that Φ̂ is an isomorphism by constructing its inverse explicitly. Set

(5.5) Γ = ı ◦ τ−1 : Y~g ↪→ DY~g,

where we recall that τ−1 ∈ Aut(Y~g) is defined in (2.15), and ı is the natural
homomorphism Y~g→ DY~g, which by Corollary 4.4 is an embedding.

Lemma 5.2. We have
Γ(Y~g+) ⊂ J .

Consequently, Γ induces a homomorphism of C[[~]]-algebras

Γ̂ : Ŷ~g→ D̂Y~g.

Proof. On the generating set h ∪ {x±i0, hi1}i∈I, Γ is given by

Γ(h) = h, Γ(x±i0) = X±i0 , Γ(hi1) = Hi1 −Hi0 ∈ J ∀ i ∈ I and h ∈ h.

Since J 0 = DY~g, this implies that Γ(Y~gk) ⊂ J k for all k ∈ N, and therefore that
Γ(Y~g+) ⊂ J . Consequently, Γ induces a family of C[[~]]-algebra homomorphisms

(5.6) Γn : Y~g/Y~g
n
+ → DY~g/J n ∀ n ∈ N.
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Taking the inverse limit of this system, we obtain

Γ̂ = lim←−
n

Γn : Ŷ~g→ D̂Y~g. �

In order to prove that Γ̂ = Φ̂−1, we will first analyze how the family of automor-
phisms {ti}∈I ⊂ Aut(DY~g) of Proposition 2.8 interact with the ideal J ⊂ DY~g.

Lemma 5.3. Fix i ∈ I. Then

(5.7)
ti(J ) = J ,

(1− t±1
i )J n ⊂ J n+1 ∀ n ∈ N.

Consequently, ti induces ti,n ∈ Aut(DY~g/J n) satisfying

(5.8) t∓1
i,n =

n−1∑
k=0

(1− t±1
i,n)k ∀ n ∈ N.

Proof. As ti permutes the generating set (5.3) of J , we have ti(J ) = J . It follows
that, for each n ∈ N, ti induces ti,n ∈ Aut(DY~g/J n) uniquely determined by

qn ◦ ti = ti,n ◦ qn,

where qn : DY~g � DY~g/J n is the natural quotient map.

If the second relation of (5.7) holds, then (1− t∓1
i )nDY~g ⊂ J n for each n ∈ N.

In particular, (1− t∓1
i,n)n = 0, from which (5.8) follow readily.

We are thus left to prove that (1− t±1
i )J n ⊂ J n+1 for all n ∈ N. Since

(1− t−1
i ) = (ti − 1)t−1

i and t−1
i (J ) = J ,

we need only prove this for ti. Moreover, as ti(J ) = J and

(5.9) (1− ti)(x1x2 · · ·xn) =

n∑
j=1

x1 · · ·xj−1(1− ti)(xj)ti(xj+1) · · · ti(xn)

for any x1, . . . , xn ∈ DY~g and n > 0, it suffices to prove that

(1− ti)DY~g ⊂ J and (1− ti)J ⊂ J 2.

As 1−ti is C[[~]]-linear and annihilates 1, (5.3) and (5.9) imply that these inclusions
will follow from

(1− ti)X±jr ∈ J and (1− ti)(X±jr −X
±
js) ∈ J

2 ∀ r, s ∈ Z, j ∈ I.

By definition, we have

(1− ti)X±jr = δij(X±ir −X
±
i,r±1) ∈ J .

In addition, since ~ ∈ J and Hi1 −Hi0 ∈ J , we have

(1− ti)(X+
jr −X

+
js) = δij(X+

ir −X
+
i,r+1 −X

+
is + X+

i,s+1)

=
δij
2di

[ı(ti1 − hi0),X+
is −X

+
ir ] ∈ J 2,

where we have used (4.4) in the second equality. Similarly,

(1− ti)(X−jr −X
−
js) =

δij
2di

[ı(ti1 − hi0),X−i,s−1 −X
−
i,r−1] ∈ J 2. �
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Remark 5.4. The lemma implies that, for each i ∈ I, ti extends to an automor-

phism t̂i of the C[[~]]-algebra D̂Y~g. More precisely,

t̂i := lim←−
n

ti,n ∈ Aut(D̂Y~g).

In addition, t̂i satisfies the relation

t̂∓1
i =

∑
k∈N

(1− t̂±1
i )k = lim←−

n

n−1∑
k=0

(1− t±1
i,n)k.

With the above lemma at our disposal, we are now prepared to prove the main

result of this section. Let Φ̂ and Γ̂ be as in Lemmas 5.1 and 5.2.

Theorem 5.5. The C[[~]]-algebra homomorphisms

Φ̂ : D̂Y~g→ Ŷ~g and Γ̂ : Ŷ~g→ D̂Y~g

are mutual inverses. In particular, Φ̂ is an isomorphism of C[[~]]-algebras.

Proof. Let {Φn}n∈N and {Γn}n∈N be as in (5.4) and (5.6), respectively. Since

Φ̂ = lim←−n Φn and Γ̂ = lim←−n Γn, it suffices to prove that

(5.10) Γn = Φ−1
n ∀ n ∈ N.

Fix n ∈ N. As Φ ◦ Γ = Φ ◦ (ı ◦ τ−1) = τ1 ◦ τ−1 = 1Y~g, we have

Φn ◦ Γn = 1 ∈ End(Y~g/Y~g
n
+).

Hence, (5.10) will hold provided that Γn is surjective, which we prove below.

Since τ−1 is an automorphism we have ı(Y~g) ⊂ Im(Γ), and thus

(5.11) (qn ◦ ı)Y~g ⊂ Im(Γn),

where we recall that qn : DY~g � DY~g/J n is the natural quotient map. As
t±1
i ı(Y~(b±)) ⊂ ı(Y~(b±)), the identity (5.8) of Lemma 5.3 implies that

(t∓1
i,n ◦ qn ◦ ı)Y~(b±) ⊂ (qn ◦ ı)Y~(b±).

Therefore,

qn(X±i,−k−1) = (t∓1
i,n)k+1qn(X±i0 ) ⊂ (qn ◦ ı)Y~g ∀ k ∈ N, i ∈ I.

As DY~g is generated by {X±i−k−1}i∈I,k∈N∪ ı(Y~g), combining the above with (5.11)
yields

DY~g/J n ⊂ (qn ◦ ı)Y~g ⊂ Im(Γn) ⊂ DY~g/J n. �

Remark 5.6. Fix n ∈ N and i ∈ I. The relation

(Γn ◦ Φn ◦ qn)X±i,−k−1 = qn(X±i,−k−1) ∀ k ∈ N
may also be proven directly as follows. Set

X±i (u)Φ
n := −

n−1∑
k=0

(−σ±i )k∂ku
k!

(
x±i0

1− u

)
∈ Y~g[[u]].

By (2) of Corollary 4.6, Φ(X±i (u)−) ≡ X±i (u)Φ
n modulo Ŷ~g≥n[[u]]. By (1) of Corol-

lary 4.6,
τc ◦ (σ±i )k(x±i0) = (c+ σ±i )kx±i0 ∀ k ∈ N, c ∈ C×.



26 C. WENDLANDT

It follows that

Γ(X±i (u)Φ
n ) =

n−1∑
k=0

(1− t±1
i )k∂ku
k!

(
X±i0
u− 1

)
= −

∑
p≥0

up
n−1∑
k=0

(
p+ k

p

)
(1− t±1

i )kX±i0 .

Applying qn and using (5.8) together with (1− t±1
i,n)n = 0, we obtain

(Γn ◦ Φn ◦ qn)X±i (u)− = qn ◦ Γ(X±i (u)Φ
n ) = −

∑
p≥0

t
∓(p+1)
i,n (X±i0 )up = qn(X±i (u)−).

5.2. Change of evaluation point. We now apply Proposition 4.7 to illustrate
that the evaluation point c = 1 = t can be replaced by any c ∈ C× in the statement
of Theorem 5.5. Let Jc ⊂ DY~g be the evaluation ideal at t = c. That is, Jc is the
kernel of the composite

DY~g
~ 7→0−−−→ U(to ḧ)

evcg−−→ U(g),

where evcg is defined as in (5.1), but with ėvg replaced by the evaluation morphism

ėvcg : ġ[t±1]→ ġ given by t 7→ c. Note that the above composition coincides with

DY~g
χc−→ DY~g

~ 7→0−−−→ U(to ḧ)
evg−−→ U(g),

where χc is as in Proposition 4.7. In particular, we have the equality χc(Jc) = J
and may thus that χc induces an isomorphism of C-algebras

χ̂c : D̂Y~gc
∼−→ D̂Y~g,

where D̂Y~gc is the completion of DY~g with respect to its descending filtration
given by powers of Jc. The following corollary then provides the desired general-
ization of Theorem 5.5.

Corollary 5.7. Fix c ∈ C×. Then:

(1) Φc satisfies Φc(Jc) ⊂ Ŷ~g+ and thus induces a C[[~]]-algebra homomorphism

Φ̂c : D̂Y~gc → Ŷ~g.

(2) Φ̂c is an isomorphism satisfying the relations

Φ̂c = χı1/c ◦ Φ̂ ◦ χ̂c and Φ̂−1
c = χ̂1/c ◦ Γ̂ ◦ χıc.

Proof. Since χc(Jc) = J , Proposition 4.7 and Lemma 5.1 yield

Φc(Jc) = (χı1/c ◦ Φ)(J ) ⊂ Ŷ~g+.

As in the proof of Lemma 5.1, this implies that Φc gives rise to Φ̂c as in the statement

of Part (1). As for Part (2), it follows by continuity that Φ̂c and χı1/c ◦ Φ̂ ◦ χ̂c are

both determined by their values on the image of DY~g, and therefore coincide by

Proposition 4.7. The assertion that Φ̂c is invertible with inverse χ̂1/c ◦ Γ̂ ◦ χıc now
follows immediately from Theorem 5.5. �



THE FORMAL SHIFT OPERATOR ON THE YANGIAN DOUBLE 27

5.3. The evaluation completion of Y~g. A simplification of the classical result
underlying Theorem 5.5 is provided by the observation that the translation w 7→
t+ 1 induces an isomorphism

Ĉ[w±1] ∼−→ C[[t]], where Ĉ[w±1] = lim←−
n

(C[w±1]/Jn)

and J = (w− 1) is the evaluation ideal of C[w±1] at w = 1. On the other hand, the
natural inclusion C[t] ↪→ C[w±1] sending t to w extends to an isomorphism

Ĉ[t] ∼−→ Ĉ[w±1],

where C[t] is completed with respect to its evaluation ideal J+ = (t − 1). In this
subsection, we prove the Yangian analogue of this fact. To begin, we define the
evaluation ideal J+ ⊂ Y~g at t = 1 to be the kernel of the composite

Y~g
~ 7→0−−−→ U(so ḧ)→ U(g),

where the second arrow is the epimorphism induced by the composition

so ḧ
πs⊕1−−−→ ġ[t]o ḧ

ėvg⊕1−−−−→ ġo ḧ ∼= g,

with πs as in (3.7) and ėvg as defined at the beginning of Section 5. Since the above
coincides with the composite

Y~g
ı−→ DY~g

~ 7→0−−−→ U(to ḧ)
evg−−→ U(g),

one has the equality ı(J+) = J ∩ ı(Y~g) ⊂ J . Consequently, ı induces a homomor-
phism of C[[~]]-algebras

ı̂ : Ŷ~g× → D̂Y~g,

where Ŷ~g× is the completion of Y~g with respect to the descending filtration

Y~g = J 0
+ ⊃ J+ ⊃ · · · ⊃ J n+ ⊃ · · ·

Our goal is to prove that ı̂ is an isomorphism using our work in the previous
section. We begin with the following analogue of Lemma 5.2, which asserts that
the gradation and evaluation completions of Y~g are isomorphic.

Lemma 5.8. Setting Γ = τ−1, we have the equality

Γ(Y~g+) = J+.

Consequently, Γ induces an isomorphism of C[[~]]-algebras

Γ̂ : Ŷ~g
∼−→ Ŷ~g×.

Proof. The proof that Γ = ı ◦ Γ satisfies Γ(Y~g+) ⊂ J , given in Lemma 5.2, shows

that Γ(Y~g+) ⊂ J+. Conversely, by Lemma 5.1, we have Φ(J ) ⊂ Ŷ~g+, and thus

Γ−1(J+) = τ1(J+) = Φ(ı(J+)) ⊂ Y~g ∩ Ŷ~g+ = Y~g+. �

Combining this lemma with Theorem 5.5 yields an isomorphism of C[[~]]-algebras

Γ̂ ◦ Φ̂ : D̂Y~g
∼−→ Ŷ~g×.

It follows from the identity Γ ◦ Φ ◦ ı = τ−1 ◦ τ1 = 1Y~g that ı̂ is a right inverse,
and therefore the unique inverse, of this isomorphism. We have thus proven the
following corollary, which realizes our current goal.
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Corollary 5.9. The C[[~]]-algebra homomorphisms

ı̂ : Ŷ~g× → D̂Y~g and Γ̂ ◦ Φ̂ : D̂Y~g
∼−→ Ŷ~g×

are mutual inverses. In particular, ı̂ is an isomorphism of C[[~]]-algebras.

This corollary affords the evaluation completion of DY~g a rather explicit de-
scription. Namely, it coincides with the gradation completion of Y~g with respect
to the shifted N-grading

Y~g =
⊕
n∈N

Γ(Y~gn),

where Γ = τ−1, as above. More precisely, one has the equality

D̂Y~g =
∏
n∈N

(ı ◦ Γ)(Y~gn) =
∏
n∈N

Γ(Y~gn).

The natural homomorphism DY~g → D̂Y~g can be expressed in terms of these
coordinates using Corollary 5.9. Alternatively, using Remark 5.4 we find that, for
each i ∈ I, one has the identity

(5.12) u−1δ
(
t̂±1
i /u

)
= δ(u+ z)|z=1−t̂±1

i

in End(D̂Y~g)[[u±1]]. The right-hand side may be rewritten as

δ(u+ z)|z=1−t̂±1
i

= exp((1− t̂±1
i )∂u)δ(u) =

∑
n∈N

(1− t̂±1
i )n∂(n)

u (δ(u)).

Applying both sides of (5.12) to X±i0 = ı(x±i0) therefore yields

X±i (u) = u−1δ
(
t̂±1
i /u

)
X±i0 =

∑
n∈N

(1− t̂±1
i )n(X±i0 )∂(n)

u (δ(u))

=
∑
n∈N

(−1)nΓ(x±in)∂(n)
u (δ(u))

in D̂Y~g, where in the last equality we have applied the second identity of Part (1)
of Corollary 4.6 with z = −1, ` = n and k = 0. Note that, by (5.2), the above

computation recovers the identity X±i (u) = (̂ı ◦ Γ̂ ◦ Φ̂)(X±i (u)) of Corollary 5.9.

5.4. Degeneration. It was observed by Drinfeld [3, §6] and later proven by Guay
and Ma [14] that the Yangian of a finite-dimensional simple Lie algebra g may be
viewed as a degeneration of the corresponding quantum loop algebra U~(Lg). In
the form presented in [14] and [7] this result can be stated as follows. The quantum
loop algebra U~(Lg) admits a descending filtration given by powers of its evaluation
ideal J at t = 1, and there is an isomorphism of graded C[~]-algebras

grJ(U~(Lg)) ∼−→ Y~g.

It was shown in [7, Prop. 6.5] that this isomorphism can be realized as the associated
graded map gr(ΦGTL) of the algebra homomorphism

ΦGTL : U~(Lg)→ Ŷ~g

of geometric type constructed in [7]. In this section, we present a DY~g-analogue
of this result in which U~(Lg) and ΦGTL are replaced by DY~g and Φ, and g is taken
to be an arbitrary symmetrizable Kac–Moody algebra.
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In what follows, we view DY~g, Y~g and Ŷ~g as N-filtered algebras, with descend-
ing filtrations

{J n}n∈N, {Y~gn+}n∈N and {Ŷ~g≥n}n∈N,
respectively. Note that

gr(Ŷ~g) ∼= grY~g =
⊕
n∈N

Y~g
n
+

/
Y~g

n+1
+
∼=
⊕
n∈N

Y~gn = Y~g,

as graded C[~]-algebras. Let Φ and Γ be as in (5.2) and (5.5), respectively.

Corollary 5.10. Γ : Y~g→ DY~g is filtered and the induced homomorphism

gr(Γ) : Y~g→ gr(DY~g).

is an isomorphism of graded C[~]-algebras with inverse given by

gr(Φ) : gr(DY~g)→ gr(Ŷ~g) ∼= Y~g.

Proof. By Lemma 5.2, Γ(Y~g+) ⊂ J , and hence Γ is filtered. Similarly, Lemma 5.1
implies that Φ is a filtered morphism.

In the proof of Theorem 5.5 we showed that

Γn : Y~g/Y~g
n
+ → DY~g/J n and Φn : DY~g/J n → Y~g/Y~g

n
+

are mutual inverses for each n ∈ N. By Lemmas 5.1 and 5.2, we have

Γn+1(Y~g
n
+/Y~g

n+1
+ ) = J n/J n+1 ∀ n ∈ N.

Letting Γ(n+1) and Φ(n+1) denote the restrictions of Γn and Φn to Y~g
n
+/Y~g

n+1
+

and J n/J n+1, respectively, we find that

gr(Γ) = ⊕n∈NΓ(n+1) : Y~g ∼=
⊕
n∈N

Y~g
n
+/Y~g

n+1
+ → gr(DY~g) =

⊕
n∈N
J n/J n+1

is an isomorphism with inverse gr(Φ) = ⊕n∈NΦ(n+1). �

The above result can be rephrased in the language of one-parameter deformations
as follows. Let Y~,v(g) be the C[~, v]-subalgebra of DY~g[v±1] generated by v−1J
and DY~g. Equivalently, Y~,v(g) is the extended Rees algebra

Y~,v(g) =
⊕
n∈Z

v−nJ n ⊂ DY~g[v±1],

where J−n = DY~g for all n ∈ N. Then, by Corollary 5.10, Y~,v(g) is a flat
deformation of the Yangian Y~g over C[v]. Indeed, Y~,v(g) ⊂ DY~g[v±1] is a torsion
free C[v]-module and one has

Y~,v(g)/vY~,v(g) ∼=
⊕
n∈Z
J n/J n+1 = gr(DY~g) ∼=

gr(Φ)
Y~g.
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6. DY~g as a flat deformation

We now apply our construction to prove a Poincaré–Birkhoff–Witt theorem for
DY~g, applicable when g is of finite type or of simply-laced affine type. The pre-
cise statement of this result, given in Theorem 6.2, simultaneously establishes the
injectivity of both Φz and Φc for all such g, and therefore that DY~g can be viewed

as both a subalgebra of LŶ~gz ⊂ Ŷ~g[[z±1]] and of Ŷ~g. Here we note that the
injectivity of Φ is not an immediate consequence of Theorem 5.5, since the natural
homomorphism

DY~g→ D̂Y~g

has kernel equal to the intersection of all powers J n of J , which need not vanish.
Theorem 6.2 nevertheless implies that this intersection is indeed trivial, at least in
the finite and simply-laced affine cases.

6.1. The classical limit of Φ. Since the quotient map Y~g→ Y~g/~Y~g ∼= U(soḧ)
is N-graded, it induces an isomorphism

Ŷ~g/~Ŷ~g ∼−→ Û(sh),

where sh := s o ḧ and Û(sh) is the formal completion of U(sh) with respect to its
N-grading:

Û(sh) =
∏
n∈N

U(sh)n.

The classical limit Φ̄ of Φ is then the homomorphism U(t o ḧ) → Û(sh) uniquely
determined by the requirement that the following diagram commute:

(6.1)

DY~g Ŷ~g

U(to ḧ) Û(sh)

Φ

Φ̄

where the vertical arrows are given by reducing modulo ~. By (5.2), Φ̄ is given
explicitly by the formulas

Φ̄(h) = h, Φ̄(X±i (u)) =
∑
n∈N

(−1)nX±in∂
(n)
u (δ(u)) ∀ i ∈ I and h ∈ h,

where X±i (u) =
∑
r∈Z

X±iru
−r−1 ∈ t[[u±1]].

Remark 6.1. Since Φ ◦ ı = τ1 admits an invertible classical limit, it follows that
the classical limit of ı, which coincides with the natural homomorphism

U(so ḧ)→ U(to ḧ),

is injective. This justifies our use of the same notation for generators of s and t.

The above formulas for Φ̄ imply that Φ̄(t) ⊂ ŝ, where ŝ is the Lie algebra

ŝ =
∏
n∈N

sn ⊂ Û(s).
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We may therefore define φ to be the homomorphism of Lie algebras

φ := Φ̄|t : t→ ŝ.

Consider now the injection C[w] ↪→ C[[t]] given by w 7→ t+1. As t+1 is invertible
in C[[t]] with inverse

(t+ 1)−1 =
∑
k≥0

(−1)ktk,

this morphism uniquely extends to γ : C[w±1] ↪→ C[[t]]. We thus obtain an injective
homomorphism of Lie algebras

1⊗ γ : ġ[w±1] = ġ⊗ C[w±1] ↪→ ġ[[t]] = ġ⊗ C[[t]].

The homomorphism φ then satisfies the commutative diagram

(6.2)

t ŝ

ġ[w±1] ġ[[t]]

πt

φ

π̂s

1⊗ γ

where πs and πt are the graded homomorphisms defined in (3.7), and π̂s is obtained
from πs by extending by continuity. We end this subsection by noting that, when
g is of finite type, the vertical arrows in (6.2) are isomorphisms and, consequently,
φ is injective. We will see below that this holds in a much more general context.

6.2. DY~g as a flat deformation. The following theorem is the main result of
this section.

Theorem 6.2. Suppose that φ : t → ŝ is injective and that Y~ġ is a torsion free
C[~]-module. Then:

(1) For any fixed c ∈ C×, the algebra homomorphisms

Φz : DY~g→ LŶ~gz and Φc : DY~g→ Ŷ~g

are injective.
(2) DY~ġ and DY~g are flat deformations of U(t) and U(t o ḧ), respectively,

over C[[~]]. In particular, there are isomorphisms of C[[~]]-modules

DY~ġ ∼= U(t)[[~]] and DY~g ∼= U(to ḧ)[[~]].

Moreover, the hypotheses on φ and Y~ġ are satisfied whenever g is of finite type or
simply-laced affine type.

Remark 6.3. In fact, we will show that φ is injective whenever g is of untwisted
affine type with underlying finite-dimensional simple Lie algebra ḡ � sl2. Although
Y~ġ is expected to be torsion free for all such g, this remains a conjecture.

Proof. Let us first clarify why the hypotheses on φ and Y~ġ are satisfied in the
claimed cases. That Y~ġ is torsion free when g is of finite type is due to Levendorskii
[29] (see also [6, Thm. B.6] and [16, Prop. 2.2]). We have seen that φ is injective
in this case at the end of Section 6.1.

It has recently been proven independently in [17] and [38] that Y~ġ is a torsion
free C[~]-module when g is of simply-laced affine type. We will prove that φ is



32 C. WENDLANDT

injective when g is of untwisted affine type in Section 6.6 using the identifications
s ∼= uce(ġ[t]) and tκ ∼= uce(ġ[t±1]), which are made concrete in Sections 6.3–6.5.

Now let us turn to proving (1) and (2) under the assumption that g is such that
the hypotheses on Y~ġ and φ hold.

Proof of (1). By Part (3) of Theorem 4.3 and Proposition 4.7, we have

Ev1 ◦ Φz = Φ and Φc = χı1/c ◦ Φ ◦ χc ∀ c ∈ C×.
Therefore, it suffices to show that Φ is injective. Taking the direct sum of φ with
the identity map 1 on ḧ, we obtain an injective homomorphism of Lie algebras

φ⊕ 1 : to ḧ→ ŝo ḧ,

where the action of ḧ on ŝ is obtained from that of ḧ on s by extending by continuity.
By the Poincaré–Birkhoff–Witt theorem for enveloping algebras, the above map
induces an injective homomorphism of algebras

U(to ḧ)→ U(ŝo ḧ) ⊂ Û(sh),

which is precisely the classical limit Φ̄ of Φ introduced in Section 6.1. In particular,
Φ̄ is injective.

Suppose now that x ∈ DY~g is nonzero. We will employ a standard argument
to show that x /∈ Ker(Φ). Since DY~g is a separated C[[~]]-module, there is k ∈ N
such that

x = ~ky, where y /∈ ~DY~g.
Since the image of y in DY~g/~DY~g is nonzero and Φ̄ is injective, the commutativ-

ity of the diagram (6.1) implies that y /∈ Ker(Φ). Moreover, as Y~g = Y~ġoU(ḧ) is

torsion free, Part (3) of Lemma 4.1 implies that Ŷ~g is torsion free. We may thus
conclude that

Φ(x) = ~kΦ(y) 6= 0,

and therefore that Φ is injective, as desired.

Proof of (2). By Proposition 3.7, DY~ġ and DY~g are deformations of U(t) and

U(to ḧ), respectively, over C[[~]].

To prove that they are flat deformations, it suffices to show that they are sep-
arated, complete and torsion free C[[~]]-modules (see [23, Prop. XVI.2.4], for in-
stance). They are separated and complete by definition, having been defined topo-
logically in terms of generators and relations. They are torsion free since Φ is

injective and Ŷ~g is torsion free, as explained in the proof of (1). �

6.3. Kassel’s realization. For the remainder of Section 6, we assume that g is an
untwisted affine Kac–Moody algebra with underlying simple Lie algebra ḡ � sl2.
We then have

ġ ∼= ḡ[v±1]⊕ Cc
as a vector space, with Lie bracket determined by [c, ġ] = 0 and

[x⊗ vr, y ⊗ vs] = [x, y]⊗ vr+s + rδr,−s(x, y)c

for all x, y ∈ ḡ and r, s ∈ Z. By [17, Prop. 4.7], there are isomorphisms

(6.3) uce(ġ[t]) ∼= uce(ḡ[v±1, t]) and uce(ġ[t±1]) ∼= uce(ḡ[v±1, t±1]).
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To prove that φ is injective, we shall make use of isomorphisms

tκ
∼−→ uce(ḡ[v±1, t±1]) and s ∼−→ uce(ḡ[v±1, t])

obtained in the work of Moody–Rao–Yokonuma [31], which coupled with (6.3) yield
(3.8). Their construction is partly based on a general result due to Kassel [22], which
provides an explicit realization of uce(ḡ⊗A), where A is an arbitrary commutative,
associative algebra over the complex numbers. For the sake of completeness, we
recall some of the relevant general theory below, beginning with Kassel’s realization.
After briefly discussing some auxiliary properties of this realization in Section 6.4,
we will review the relevant results from [31] in Section 6.5.

Let (Ω(A), d) be the module of Kähler differentials associated to A. That is,
Ω(A) is the A-module

Ω(A) = (A⊗A)/M,

where A acts on A ⊗ A by left multiplication in the first tensor factor, and M is
the submodule of A ⊗ A generated by 1 ⊗ ab − a ⊗ b − b ⊗ a for all a, b ∈ A. The
differential map d is then the derivation

d : A→ Ω(A), d(a) = 1⊗ a mod M ∀ a ∈ A.
In particular, we can (and will) write ad(b) for the equivalence class of the tensor
a⊗ b in Ω(A). We shall use the same notation for generators of the quotient

z(A) := Ω(A)/d(A).

Consider the alternating bilinear map ε : (ḡ⊗A)× (ḡ⊗A)→ z(A) determined by

ε(x⊗ a, y ⊗ b) = (x, y)bd(a) ∀ x, y ∈ ḡ, a, b ∈ A.
Using the invariance of (·, ·) and the fact that in z(A) we have

d(abe) = 0 = ab · d(e) + ae · d(b) + be · d(a) ∀ a, b, e ∈ A,
one readily concludes that ε satisfies the cocycle equation

ε(x⊗ a, [y ⊗ b, z ⊗ e]) + ε(y ⊗ b, [z ⊗ e, x⊗ a]) + ε(z ⊗ e, [x⊗ a, y ⊗ b]) = 0,

for all x, y, z ∈ ḡ and a, b, e ∈ A. It follows that the vector space

u(A) := (ḡ⊗A)⊕ z(A)

admits the structure of a Lie algebra with bracket given by [u(A), z(A)] = 0 and

(6.4) [x⊗ a, y ⊗ b] = [x, y]⊗ ab+ (x, y)bd(a) ∀ x, y ∈ ḡ, a, b ∈ A.
It is clear that u(A) is a central extension of ḡ⊗ A. In fact, we have the following
remarkable result due to Kassel [22, Thm. 3.3] (see also [31, Prop. 2.2]).

Proposition 6.4. u(A) is isomorphic to the universal central extension of ḡ⊗A:

u(A) ∼= uce(ḡ⊗A).
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6.4. Gradings on u(A). If in addition A =
⊕

k∈ZAk is a Z-graded algebra, then
the Lie algebra ḡ⊗A is naturally Z-graded, with k-th graded component

(ḡ⊗A)k = ḡ⊗Ak ∀ k ∈ Z.

The grading on A also naturally induces a Z-graded A-module structure on Ω(A),
compatible with that on A ⊗ A. As the subspace d(A) is itself graded, z(A) is a
graded C-vector space. By (6.4), it follows that u(A) inherits the structure of a
Z-graded Lie algebra, with k-th graded component

u(A)k = (ḡ⊗A)k ⊕ z(A)k,

where z(A)k is the k-th graded component of z(A). If Ak = {0} for all k < 0
(that is, if A is N-graded), then we may complete u(A) with respect to its induced
N-grading to obtain a Lie algebra

û(A) = (ḡ⊗
∏
k∈N

Ak)⊕
∏
k∈N

z(A)k,

with Lie bracket determined by (6.4), for a, b ∈ Â =
∏
k∈NAk, together with the

requirement that
∏
k∈N z(A)k be central.

The next result we will need concerns the functorial nature of u(A) and its
compatibility with the above completion process. In what follows, A and B are
associative, commutative C-algebras, with A taken to be N-graded, as above. Ad-
ditionally, let us assume we are given an algebra homomorphism

γ : B → Â.

Lemma 6.5. There is a unique Lie algebra homomorphism

φγ : u(B)→ û(A)

with the property that φγ |ḡ⊗B = 1⊗ γ. Explicitly, φγ |z(B) is given by

(6.5) φγ(bd(e)) = γ(b)d(γ(e)) ∀ b, e ∈ B.

Proof. The bracket relation (6.4) implies that, if φγ exists, then it must satisfy
(6.5). Conversely, if (6.5) determines a well-defined map

z(B)→ ẑ(A) :=
∏
k∈N

z(A)k,

then (6.4) implies that φγ , uniquely determined by φγ |ḡ⊗B = 1⊗ γ and (6.5), will
be a Lie algebra homomorphism.

Since the natural quotient map A ⊗ A → z(A) is N-graded, it induces a linear

map A⊗̂A → ẑ(A), where A⊗̂A is the completion of A ⊗ A with respect to its
N-grading. The composition

B⊗2 γ⊗γ−−−→ Â⊗2 ↪→ A⊗̂A→ ẑ(A)

then sends b⊗ e to γ(b)d(γ(e)) and factors through Ω(B) and z(B) = Ω(B)/d(B),
as desired. �
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6.5. The Moody–Rao–Yokonuma isomorphism. We now narrow our focus to
the special case where A is the Z-graded algebra C[v±1, t±1] or the N-graded algebra
C[v±1, t], where deg t = 1 and deg v = 0.

As in [31, §2], one finds that A-module Ω(A) is freely generated by d(v) and d(t).
Using that, in z(A), we have

0 = d(vrts) = svrts−1d(t) + rtsvr−1d(v),

one deduces (cf. [4, 31]) that z(A) admits the vector space decomposition

z(C[v±1, t±1]) =
⊕

(r,s)∈Z×Z

CKr,s ⊕ Ccv ⊕ Cct, z(C[v±1, t]) =
⊕

(r,s)∈Z×N+

CKr,s ⊕ Ccv,

where K0,0 := 0, and for (r, s) ∈ Z× Z× we have

(6.6) Kr,s =
1

s
vr−1tsd(v), Ks,0 = −1

s
vst−1d(t), cv = v−1d(v), ct = t−1d(t).

By (6.3) and Proposition 6.4, we can (and will) identify uce(ġ[t±1]) and uce(ġ[t])
with the Lie algebras u(C[v±1, t±1]) and u(C[v±1, t]), respectively. In particular,

uce(ġ[t±1]) = ḡ[v±1, t±1]⊕ z(C[v±1, t±1])

as a vector space, with Lie structure such that z(C[v±1, t±1]) is central and

[x⊗ vrts, y ⊗ vkt`] = [x, y]⊗ vr+kts+` + (x, y)vkt`d(vrts)

for all x, y ∈ ḡ and r, s, k, ` ∈ Z. Moreover, in terms of the basis (6.6), we have

vkt`d(vrts) = δr,−kδs,−`(rcv + sct) + (r`− sk)Kr+k,s+`,

By definition, this is equivalent to

vkt`d(vrts) =

{(
r`−sk
s+`

)
vr+k−1ts+`d(v) if s 6= −`,

δr,−krv
−1d(v) + svr+kt−1d(t) if s = −`.

The Lie algebra uce(ġ[t]) may then be characterized as the Lie subalgebra

uce(ġ[t]) = ḡ[v±1, t]⊕
⊕

(r,s)∈Z×N+

CKr,s ⊕ Ccv ⊂ uce(ġ[t±1]).

As a consequence of the general discussion in §6.4, uce(ġ[t±1]) and uce(ġ[t]) are Z
and N-graded Lie algebras, respectively, with gradings determined by deg t = 1.

In order to make precise the isomorphisms of (3.8), let us specify g to be rank
`+ 1, with I taken to be {0, . . . , `} so that Ī = {1, . . . , `} labels the simple roots of
ḡ. Let x±θ ∈ ḡ±θ be such that (x+

θ , x
−
θ ) = 1, where θ is the highest root of ḡ.

The following result is a translation of [31, Prop. 3.5]. It appears in the form
below in [17]; see Propositions 4.4 and 4.7 therein. Recall that tκ is the one-
dimensional central extension of t introduced in Definition 3.6.

Proposition 6.6. The assignment

K 7→ ct, X±ir 7→ x±i ⊗ t
r, X±0r 7→ x∓θ ⊗ v

±1tr ∀ i ∈ Ī, r ∈ Z
uniquely extends to an isomorphism of Z-graded Lie algebras

ψ : tκ
∼−→ uce(ġ[t±1]).

Moreover, ψ induces isomorphisms of graded Lie algebras

ψ|s : s ∼−→ uce(ġ[t]) and ψt : t ∼−→ uce(ġ[t±1])/Cct.
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6.6. Injectivity of φ. We now combine the results collected in Sections 6.3–6.5 to
prove that φ : t→ ŝ is injective when g is of untwisted affine type.

Since ψ|s from Proposition 6.6 is graded, it extends to an isomorpism

ψ̂|s : ŝ ∼−→ uce(̂ġ[t]) = ̂u(C[v±1, t]).

As illustrated in Section 6.4, the right-hand side above may be identified with

(ḡ⊗ C[v±1][[t]])⊕
∏
s∈N

z(C[v±1, t])s,

where z(C[v±1, t])s =

{
Ccv if s = 0,⊕

r∈ZCKr,s if s ∈ N+.

Next, let us us extend γ : C[w±1] ↪→ C[[t]] of (6.2) to a homomorphism

γ : C[v±1, w±1] ↪→ ̂C[v±1, t] = C[v±1][[t]]

by setting γ(v) = v. By Lemma 6.5, 1 ⊗ γ : ḡ[v±1, w±1] → ḡ ⊗ C[v±1][[t]] extends
uniquely to a homomorphism of Lie algebras

φγ : uce(ġ[w±1])→ uce(̂ġ[t])

with φγ(fdg) = γ(f)d(γ(g)) ∀ f, g ∈ C[v±1, w±1].

The following proposition completes our proof that φ : t→ ŝ is injective when g is
of untwisted affine type, and therefore completes the proof of Theorem 6.2.

Proposition 6.7. Let ψ̂|s and φγ be as above. Then:

(1) Ker(φγ) = Ccw. Consequently, φγ induces an injection

φ̄γ : uce(ġ[w±1])/Ccw ↪→ uce(̂ġ[t]).

(2) φ : t→ ŝ is injective, and satisfies φ = (ψ̂|s)−1 ◦ φ̄γ ◦ ψt.

Proof. Let us begin by establishing that the kernel of φγ coincides with Ccw.

Proof of (1). Since φγ |ḡ[v±1,w±1] = 1⊗ γ is injective and

φγ(z(C[v±1, w±1])) ⊂ ̂z(C[v±1, t]),

it suffices to show that the restriction of φγ to z(C[v±1, w±1]) has kernel Ccw.

In ̂z(C[v±1, t]), we have the relations

γ(vrw−1)d(γ(w)) =
∑
k≥0

(−1)kvrtkd(t), vrtkd(t) = − r

k + 1
vr−1tk+1d(v).

Hence, φγ is determined on z(C[v±1, w±1]) by

φγ(vrwsd(v)) = vr(t+ 1)sd(v),

φγ(vrw−1d(w)) = −rvr−1
∑
k≥0

(−1)k
tk+1

k + 1
d(v) = −rvr−1 log(t+ 1)d(v),

for all r, s ∈ Z. In particular, φγ(cw) = φγ(w−1d(w)) = 0.
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Since z(C[v±1, w±1]) has basis

{vrwsd(v)}(r,s)∈Z×Z× ∪ {vrw−1d(w)}r∈Z ∪ {v−1d(v)},
to show that Ker(φγ) = Ccw, it suffices to prove that the set

{vr(t+ 1)sd(v)}(r,s)∈Z×Z× ∪ {vr−1 log(t+ 1)d(v)}r∈Z× ∪ {cv}
is linearly independent in

̂z(C[v±1, t]) =
∏
s∈N+

z(C[v±1, t])s ⊕ Ccv ∼= tC[v±1][[t]]⊕ Cv−1 ⊂ C[v±1][[t]],

where the embedding of vector spaces ̂z(C[v±1, t]) ⊂ C[v±1][[t]] alluded to above is
determined by identifying vrtsd(v) with vrts.

This follows readily from the observation that {(t+ 1)s}s∈Z× ∪ {log(t+ 1)} is a
linearly independent set in C[[t]], which can be deduced using the injectivity of γ
and the observation that

γ(ws−1) =

{
1
s∂t(t+ 1)s if s 6= 0,

∂t log(t+ 1) if s = 0.

Proof of (2). It suffices to verify the identity φ = (ψ̂|s)−1◦φ̄γ ◦ψt on the generating
set {X±ir}i∈I,r∈Z of t. This is easily done directly, using the explicit formulas for ψt

and ψs given in Proposition 6.6 (see also (6.2)). �

Appendix A. Grading completions

In this appendix we prove Proposition A.1 which serves to clarify a number of
properties satisfied by the grading completion of any N-graded C[~]-algebra. This
proposition has been applied to prove Lemma 4.1 and, though it is elementary, has
been included for sake of completeness.

Proposition A.1. Let A =
⊕

n∈N An be a N-graded C[~]-algebra satisfying:

(a) ~A ⊂ A+ =
⊕

n>0 An,
(b) An

+ =
⊕

k≥n Ak for each n ∈ N.

Then the formal completion of A with respect to its N-grading,

Â =
∏
n∈N

An,

is a unital, associative C[[~]]-algebra. Moreover:

(1) The canonical C[~]-algebra homomorphism Υ : A → lim←−n
(
A/An

+

)
extends

to an isomorphism of C[[~]]-algebras

Υ̂ : Â =
∏
n∈N

An
∼−→ lim←−

n

(
A/An

+

)
.

(2) Â is separated and complete as a C[[~]]-module.

(3) Â is a torsion free C[[~]]-module, provided A is a torsion free C[~]-module.
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Proof. First note that the condition (a) guarantees that both completions of A
appearing above are unital, associative C[[~]]-algebras.

To prove (1), note that (b) implies that, for each n ∈ N, we have

Â/Â≥n ∼= A/An
+, where Â≥n =

∏
k≥n

Ak.

We thus have a canonical homomorphism of C[[~]]-algebras

Υ̂ : Â→ lim←−
n

(
Â/Â≥n

)
∼= lim←−

n

(
A/An

+

)
.

Moreover, the composite of Υ̂ with the inclusion A ↪→ Â coincides with Υ.

Under the identifying A/An
+
∼=
⊕n−1

k=0 Ak, the projection pn+1 : A/An+1
+ →

A/An
+ coincides with the truncation operator x0 + . . .+ xn 7→ x0 + . . .+ xn−1. We

may therefore identify

lim←−
n

(
A/An

+

)
= {(x0 + . . .+ xn−1)n∈N : xk ∈ Ak} ⊂

∏
n∈N

(
n−1⊕
k=0

Ak

)
Under this identification, we have

Υ̂ :
∑
k≥0

xk 7→ (x0 + . . .+ xn−1)n∈N,

from which the bijectivity of Υ̂ follows immediately.

Consider Part (3). If x =
∑
k xk ∈ Â is such that ~x = 0, then we must have

~xk = 0 for each k. As A is assumed to be torsion free, we can conclude that each
xk, and thus x itself, vanishes.

It remains to prove (2). By (a), ~nÂ ⊂ Â≥n, and thus⋂
n∈N

~nÂ ⊂
⋂
n∈N

Â≥n = {0}.

Therefore, Â is a separated C[[~]]-module. To show it is also complete, we must
argue that the natural homomorphism

Θ : Â→ lim←−
n

(
Â/~nÂ

)
is surjective. To this end, note that any x ∈ lim←−n

(
Â/~nÂ

)
may be represented as

x =
(∑

n≥0 qk(xk,n)
)
k∈N

, where

(i) xk,n ∈ An satisfy xk,n − x`,n ∈ ~min(k,`)A for all k, `, n ∈ N.
(ii) qk : A→ A/~kA is the natural quotient map.

Set xn = xn+1,n ∈ An for all n ∈ N. We claim that x is equal to the image of∑
n xn under Θ. To prove this, it suffices to show that

xn − xk,n ∈ ~kA ∀ k, n ∈ N.
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By (i), xn − xk,n ∈ ~min(n+1,k)A for all k and n, hence the assertion is true for
k < n. If k ≥ n then, by (a) and (b), we have

xn − xk,n ∈ ~n+1A ⊂
⊕
k>n

Ak,

which implies that xn − xk,n = 0 ∈ ~kA, as desired. �
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