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1. The Applicable Goal

Let us alert the reader that the nonlinear flows introduced in this pa-
per, cf. (5), differ significantly from all of the broad family of flows
constructed with the aid of the surface curvature. At the level of an
infinitesimal step, our flows typically use the median filter in combina-
tion with a convolution with an oscillatory kernel. The fact that the
kernel we consider is oscillatory is one of those features that set our
approach apart also from the technique of iteration of morphological
operators. Roughly speaking, the high-pass filter facilitates deblurring
while the median filter regularizes the evolving image at a coarser scale.
Thus, both of the goals of smoothing/denoising and deblurring of im-
ages, apparently contradictory when viewed through the prism of linear
methods, are here achieved in parallel. The process we introduce may be
viewed, at least in the discrete setting, that we are in fact focused on, as
a system of (very many) nonlinear ordinary differential equations. We
will later show that solutions of the initial value problem exist and are
unique. We will also shed some light on the problem of what behavior is
to be expected of the solutions by considering simplified models in more
detail.

Our initial target problem of image enhancement was to reconstruct
a digital image, whose every second row had been lost, cf. Figure 2 at
the end of this article. We can think of essentially only three approaches
to this problem:

1. Interpolating the missing row. The shortcoming of this approach
is that interpolation is designed to work for smooth functions, and
will result in rough error whenever a discontinuity (typically pre-
sented in an image luminance function) is encountered. In addi-
tion, even a small error resulting from interpolation would be am-
plified to quite a monstrous artifact if a subsequent linear sharp-
ening (deconvolution) was required in order to reduce blurring.
On reflection, this seems to be an inherent limitation of all linear
methods.

On the other hand, all nonlinear flows of geometric type, including
mean curvature based flows, regularized total variation minimizing
flows, as well as iteration of morphological operators, cf. [6], may
be seen as iterated interpolation. Indeed, in all those cases the
driving force (infinitesimal step) locally depends on Taylor coeffi-
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cients of order two. In particular, it is now known that all these
flows are asymptotically equivalent, cf. [7]. Naturally, their short
and medium time-range effects may be giving subtle and desirable
effects. However, it seems that these techniques essentially fail for
the application at hand.

2. Disocclusion techniques [9]. They are a possibility that might be
tested in this context but they typically require more costly com-
putation and involve “messy” programming. Naturally, these are
typically based on interpolation in one form or another and may
be burdened with the same type of side-effects as the techniques
mentioned above.

3. Regularization of the input in some sense while leaving the part
of information that is known to be accurate, like e.g. the low
frequency contents, intact. This is the route we take in the current
approach. It is a priori far from obvious how to chose the right
regularizing operators in this context. For the application at hand
we have settled for the so-called median filter. Median filters have
been exploited in the area of image enhancement for a long time,
e.g. [8] and [10].

The technique we present provides a good quality solution to the
problem above. Moreover, at the expense of some modifications it may
be extended to target other applicable problems. As mentioned above,
since we allow the possibility that the kernel of the convolutional op-
erator that enters the definition at the infinitesimal level may be oscil-
latory, this approach yields results that are qualitatively different from
those obtained with the technique of iterating morphological operators,
or the many geometric nonlinear flows. It also differs from the broad
set of techniques resulting from variational and multiresolution type ap-
proaches to signal analysis (a review of many nonlinear algorithms for
image enhancement may be found in [1] and other articles in that is-
sue of the IEEE Transactions on Image Processing; it may be helpful
to the reader in forming his/her opinion on the history of this area of
research). Our idea is perhaps closest to that of Frieden, cf. [4], who
studied iterative applications of intertwined median filters and low-pass
Fourier filters to digital images.

Nonlinear flow (5) is also attractive from the purely mathematical
point of view. The natural broader setting for (5) is that of the graph
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theory, which incorporates all the required geometric and analytic struc-
tures. including the crucial notion of scale. On the other hand, consid-
ering the flow on manifolds would involve preselecting the characteristic
scale as the infinitesimal step is not given by a differential operator but
rather a localized global operation (selection of the median). We do not
consider these issues at present. Naturally, the particular characteristic
of the solutions of (5) depends also on the choice of filter. This feature
is exploited when extending the system to other applications, such as
simultaneous deblocking and sharpening, etc. We have made an effort
to rigorously prove some basic properties of (5) that allow one to make
sense of what it is really doing. In particular, existence for all times
t > 0 and uniqueness of solutions, as well as some basic estimates on
their growth are shown in Theorem 1. We have also included remarks
that shed some light at the morphology of solutions in some simple cases.

2. The Flow

As stated above, we will only look at the discrete theory. Our functions
are in fact vectors in R™ or matrices in RN, N = n? that we will often
refer to as 1D signals or 2D images. A pixel is one of the components,
e.g. z(1) = z; or u(i,j) = u;;. To simplify notation we will assume
throughout our discussion periodic boundary condition, so that in par-
ticular z(n + k) = z(k) or u(n + k,n + ) = w(k,l). Similarly, all the
standard functional operators will be interpreted as periodic, e.g. convo-
lution with a fixed (periodic) kernel. We will refer to the usual Discrete
Fourier Transform as the Fourier Transform denoted F'T or FT(u) = 4.
We will sometimes consider a broader setting, when the Fourier Trans-
form consists of a transeription of the data into a sequence of coefficients
in some basis, e.g. given by the eigenfunctions of an elliptic operator,
etc. Now, in order to define the flow we need two geometric operators
that, somewhat remarkably, come from two different realms of analysis.

1) The median filter operator. Depending on a particular ap-
plication one may select another suitable operator to play this part.
At the most general level, description of the properties of the resulting
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flow should be essentially independent of this particular choice (how-
ever, in order to guarantee uniqueness of solutions one has to assume
that the operator of choice, say T satisfies the Lipschitz condition
|7u — Tw|| < C|lu — v||). For our purpose at hand we want to fo-
cus attention on the median filter M. Led by experimental results, we
specifically define it as the median of the 3 x 3 neighborhood of each
pixel with its center punched out, i.e.

Mu(k,1)

u(k — L1 —=1),u(k - 1,0),u(k — 1,1 + 1),
= Median ¢ u(k,! —1),u(k, ! +1), . (1)
ulk + 1,0 = 1), u(k + 1,1),u(k + 1,1+ 1)

where the median is defined as the average of the fourth and fifth largest
elements. M is subtly nonlinear in 2D, but it is worth keeping in mind
that its 1D analog is a linear operator. Namely,

Maz(k) = 5(z(k — 1) + z(k +1)). (2)

This will enable us to completely understand the properties of a 1D
flow, which gives some guidance as to the basic properties of its 2D
counterpart.

2) The filter. Let H denote a fixed kernel to be thought of as a
high pass filter to be specified later, so that 4 — H % u suppresses the
low frequency component of the signal. Depending on our knowledge of
the structure of data at hand, H can be designed to fulfill any additional
specifications. Having tried several such possibilities on our images, we
have obtained the most satisfying results with a rotationally symmetric
“sin-squared” (Hamming) high-pass filter. More strictly, let (£;,&;) de-
note the Fourier domain variables normalized so that —1 < & < 1 and
let 7 = (€2 +€2)'/2. Let 0 < Lo< Hi < 1 and s = S(i=Tay and let T4
denote the characteristic function of the set A. We first define

H(&1,&) = (Ijpocr<miy sin (s(r — Lo)) + I{."h’-gr})za (3)

and subsequently
Hxu=FT"! (Hu) (4)

We are now ready to define the flow that is our main interest in this
paper. Let v = wu(t,k,l) be a (continuously) evolving image with the
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initial condition u(0, k,1) = ug(k,!). We define an evolution process by

gtu:H*Mu3 (5)

for operators H and M as specified above. For the sake of this article
let us adopt for it the name Filtered Median Flow or FMF. Since we
want to consider only the discrete version of the flow in this article, it
will benefit us later if we introduce a more detailed notation for this
case. Namely, let fi, f2,..., fn denote the orthonormal Fourier basis —
for the sake of simplicity we ignore the more natural in the case of 2D
images double indexing (in a more general setting one would understand
it broadly as a basis that consists of eigenfunctions of the Laplacian on
a given graph). As noted above, the filter H acts via multiplication of
the Fourier coefficients by fixed numbers — let us say the i-th coefficient
gets multiplied by &;. For the type of filters we are practically interested
in, it is both possible and convenient to fix the indices in such a way
that h; =0fort=1,...,kand 0 < h; < lforalli=k+1,...,n. In
this convention, flow (5) can be written as

n

G =3 ha(Mu, fu)f ®)

=1

where (.,.) denotes the scalar product corresponding to the Euclidean
norm ||.|. Here the partial time derivative has been replaced with the
ordinary derivative as we reinterpret the flow in the functional space.
Since in addition u(t) = [u;;(t)] is a discrete matrix we may assume
the point of view that (6) is a nonlinear system of ordinary differential
equations. It is sometimes convenient to switch from one point of view
to the other, but all results of the next section will be presented from
the ODE perspective.

It is helpful to realize that evolution of u as prescribed by the flow
as above has the following property.

Fact 1. If hy =0 then a solution of (6) has the property that the
total sumn of its components remains fixed throughout the evolution, i.e.

fu(t) = Euk,f(t) = const. (7)
kl
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Proof. This observation follows directly from the fact that [ f, =0
for all n # 0. O

At this point we would like to mention the heuristics behind the
equation. On one hand, we want to emphasize the analogy with the
classical heat flow. Indeed, if M in (1) were replaced by the standard
average and H were reduced to the subtraction of a multiplicity of u so
as to guarantee that the right-hand side has mean zero, we would have
obtained a version of the standard discretized heat flow. The advantage
of having the median in place of the average is precisely the fact that
the former preserves edges. On the other hand, the high-pass filter H
enforces that the right-hand side maintains average zero and provides
some extra control. In addition, we would like to point out that image
enhancement tasks often pose apparently contradicting demands, e.g.
the image has to be simultaneously deblurred and denocised. Given an
image ug, it would be good to find its “enhanced model”. This stands in
contradistinction with the picture typical in nonlinear differential equa-
tions approach to image enhancement. There, an image is expected to
evolve towards the unique limit, say the constant function, regardless of
the initial condition while here an image is expected to evolve until its
median is in some sense close to the null space of H, when the rate of
evolution should slow down.

Let us also note that if the filter H were a convolution with a positive
kernel, the operator v — H * Mu would be morphological. In that case
the whole process would be asymptotically equivalent to an iterative
application of a morphological operator. That in turn is known to be
equivalent [7] (cf. also [5]) to the viscosity solution of the mean curvature
flow (or the regularized Rudin-Osher flow [11]) — the nowadays standard
technique for reduction of the total variation of an image. Naturally, one
is often interested in the deformation of an image resulting from a short
time evolution in which case results are different from the long time
asymptotics and interesting in their own right. However, we emphasize
that since the application at hand requires we pick an oscillatory kernel,
one should expect effects other than those displayed by any regularizing
techniques.

Let us illustrate some of these observations using the much easier
to analyze 1D flow. In this case the median operator (2) is linear — a
convolution with the filter G = [101], i.e. Mu = Gxu. Thus, (5) is best
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described in the frequency domain, where

a 5
S )
pT G-,

which has a unique solution
a(t,§) = exp (LH(€)G(€) o €).

Now, G = cos (7€) so that choosing H supported in {€:[¢] > .5} will
guarantee convergence. As a result of this evolution the high frequency
content of the initial signal is completely suppressed while the low fre-
quency content remains intact. On the other hand, a choice of H with
the Fourier Transform nonvanishing in the low-pass band {¢ : [¢] < .5}
would cause gradual (divergent to infinity) amplification of the low fre-
quency content of the signal. Although this convergence property ap-
pears to be in principle correct in 2D as well, its analysis would require
much more subtle arguments specifically designed so as to handle the
nonlinearity of M as in (1). For illustration we display Figure 1 below.
It shows that a long run “model” of an image will typically have a lot
of high frequency energy while its median-filtered version is completely
contained in the low pass band. Thus, the image has been regularized in
the coarser scale, as seen via the nonlinear median filter, while actually
loosing regularity in the finer scale.

3. Existence and Uniqueness of Solutions

We now undertake the task of demonstrating that the flow makes good
sense in higher dimensions, especially dimension 2, and/or possibly more
general settings. In particular, M is unavoidably a nonlinear operator
now. We begin with a general fact about the median we will later use
in order to prove that solutions of FMF exist and are unique. We em-
phasize that inasmuch as existence for short time may seem obvious,
especially when viewed via the prisin of numerical simulations, the fact
that solutions do not blow up to infinity in finite time as well as unique-
ness of solutions are rather unobvious (one should bear in mind the
standard examples like & = #%/% with the initial condition z(0) = 0,
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when both z(t) = 0 and z(¢) = (t/3)? satisfy the ODE with the given
initial condition). Let us denote vectors in R™ by

X:(fﬂ],ﬂfg,...,xﬂ), Y:[y11y21"'1yn)1 etc.,

and let | X| denote, say, the standard Euclidean norm (we think of vectors
X. Y as low-dimensional; we will later use them in local calculations;
we also want to reserve ||.|| to denote the Euclidean norm in the discrete
functional space that contains high-dimensional u, v, etc.). In order to
prove uniqueness we will first show that

M:R" = R, MX =Median{z,z2,...,z5} (8)

is a Lipschitz function. We know of no reference to this simple yet
nontrivial fact. As a midway fact we need to establish that sorting,
viewed as a map S : R™ — R", defined as

SX = (ZTo(1), To(2)s - - - 1 To(n)), Where Zo(1) < Zo(2)s--- S To(my,  (9)

is also Lipschitz'. Although it does not enter discussion in an essential
way, we emphasize that in order to make definition (9) unambiguous
one needs to introduce an extra rule for deciding how to order elements
when there is a tie. Let us adopt the convention that in case z; = zj, one
puts the number with lower index first. We are now ready to establish
the following basic facts.

Proposition 1.  Both the sorting mapping S and the median
function M are Lipschitz, i.e.

ISX —SY| < |X -Y| (10)
and
IMX - MY| < C(n)|X — Y], (1)

where the optimal constants are C(n) = 1 for n odd and C(n) = v/2/2
for n even. In fact, the above inequality remains valid for any median-
type function defined by the selection of, say, the k-th smallest element
out of an n-tuple.

"1t was pointed out to the author in private communication by Dr. John Elton that
this fact is known in the theory of Banach lattices. I do not know a reference, though.
Anyhow, for the reader convenience we provide a simple argument that proves this
point. It also prepares ground for the second part of the proof.
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Proof. i) We prove (10) first and later use it in the proof of the
second Inequality above. We begin by considering the two-dimensional
case. Let X = (z,z2) and Y = (y1,y2) and let TY = (yo2,%1). We have

X —TY2 - |X - Y|?
= (21 —92)* + (@2 —11)? = (21 — )% — (z2 — )2
=2(z1 — z2)(11 — y2)-

The right-hand side is positive if vectors X and Y have their coordi-
nates ordered in the same way, e.g. increasingly in which case SX = X
SY =Y. Otherwise, switching the order decreases the distance. This
shows (10) is true for n = 2. Let us now consider the general case. It is a
simple fact that sorting can be accomplished by successive transpositions
of pairs of elements according to some pattern. The exact declaration
of this pattern can be skipped here as it is of no consequence in further
considerations. It takes a moment to realize that the same algorithm
may be used to sort two vectors X and Y simultaneously by succes-
sively applying transpositions of corresponding pairs in the following
sense. If (zy,z;) and (yx,y;) are both in the reversed (decreasing) order,
one transposes both; otherwise, only the pair that is in the reversed or-
der gets reversed. According to our initial observation the norm of the
difference will decrease or stay at the same level as we are applying this
procedure. This proves the first inequality (10).

ii) We may assume without loss of generality that MX < MY. We
introduce two index-sets

L ={i:zi <MX}, I,={i:y;i>MY}. (12)

If n is odd then both #I; and #I,, exceed (n+1)/2 so that in particular
I; NI, # (. Let us chose i € I; N I,,. It follows that |Y — X| > y; —z; >
MY — MX which proves that (11) holds in this case. In order to see
that the constant 1 cannot be improved, consider an example when all
zi =y fore =1,...,m, 1 # (n+ 1)/2, except T(ns1)/2 = Ym+1)/2 + 1
and both X and Y are sorted in the increasing order.

Let us now consider the case when n is even. Since MSX = MX,
inequality (10) shows that in order to prove (11) we may assume without
loss of generality that X and Y are sorted in the increasing order. With
this understood,

MX =

I3

(Yn/2 + Ynj2+1)

Lol
b

(Znj2 + Tpjatr), MY =
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so that in particular
1
IMX = MY| = '2"|13n;2 + Tnjo41 —Yns2 t Yn/2+1]
1 1
< §|Tn,!2 — Yns| + §[In32+1 = Yn/241]

1 1 12
< | zlzpe - 2+ =|Znjos1 — P
< {3len2 =gl + 5lEn24 Yn/2+1

V2

£ ~—|X =¥
< SIxX-Y

This shows (11) for n even. One checks that the constant 3@ is achieved
for a sorted pair X and Y such that all z; = y; for i = 1,...n/2 —
1,n/2+2,...,n, while T2 = Tnj2+1 < Yn/2 = Ynj241- This completes
the proof of proposition. O

Corollary 1. The median filter operator M defined in (1) has the
Lipschitz property. In fact for any two digital functions u and v we have

|Mu — Mo|| < 2l|u— ol (13)

Moreover, the composition of M with a Fourier multiplier as above is
also Lipshitz continuous with the same constant, i.e.

|H % Mu — H * Mv|| < 2|ju—v]|. (14)
Proof. Tt follows from (1) and (11) that for any pair (k,!)

\Mu(k,1) - Mok, D)2 < 5 Y Jui,5) —v( 0P

(1,7)ETky

[N

where each

Jiy = {(k—l,i—l):(k— 1,0, (k= L1+1), (k1 —-1),...

(k,0+1),(k+1,1-1), (k+1,£),(k+1,£+1)}
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1s the perforated neighborhood of (k,!) containing eight elements (as-
suming bi-periodicity as we are). Taking the sum over (k,) of both sides
of the inequality leads to (13) as the norm [lu — v||? is overestimated by
the right-hand side of the resulting inequality exactly four-fold.

Since convolution is linear, in order to prove inequality (14) we only
need to recall

[H*vl? =|H-5|> = X h2o

< X oh =ol* = Jloll?,

where we have used the Parseval identity. O

This allows us to prove the following facts that are of immediate
practical interest.

Theorem 1. Assume that the filter H in (5) (equivalently (6)) is
such that its Fourier coefficients h, = H(n) satisfy 0 < h, < 1. Then
solutions exist for allt > 0 and are unique up to the choice of an initial
condition. Moreover, we have

lu(@®)I? < [lu(0)]|* exp (42). (15)

Proof. The first part of Theorem follows from Corrolary 1 and well
known general results on existence of solutions of a (autonomous) sys-
tem of first order ordinary differential equations solved with respect to
derivative and with Lipschitz right-hand side (for example cf. [3]).

Let now (.,.) denote the scalar product corresponding to |.||.
follows fromn Corollary 1 that

d, . . s
'Lgll’bt(t)ll2 = 2(tk, u) < 2] - ||l
= 2||H % Mul| - ||lull < 2|Mull - [lul| < 4||u|?.
This implies (15) and completes the proof of Theorem. O

Arguments from the discussion of the 1D case at the end of the
previous section show that the exponential estimate (15) cannot be im-
proved. Naturally, solutions of the initial value problem do not always
diverge. Their actual behavior continues to depend on the combination
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of choices of the initial condition and the filter. We address some of this
type of questions in Section 4.

We now briefly digress from the discussion of the properties of the
flow (5) to discuss an important side issue. Namely, in spite of all the
benefits of nondiffusivity, there are instances when it is beneficial to
introduce a controlled measure of smoothing into the flow, e.g. this may
help suppress the so-called Gibbs phenomena, which may be present
in a pre-compressed image, etc. As it turns out, perhaps somewhat
surprisingly, this type of an effect can be obtained by replacing Hx Mu
with H * Mu — pu in the formula (5), where p is a real parameter. The
idea behind it is quite clear. Consider the flow

%u:H*Mu—pu. (16)

Using nothing more than the Lipschitz property of the operator u —
H + Mu we prove below that for a sufficiently large p a solution of (16)
converges to the constant 0.

Proposition 2. Let ¢ denote the Lipschitz constant of the operator
w — H x Mu (e.g. ¢ = 2 for the particular choices indicated above).
When p > ¢ the flow (16) is a contraction. Moreover, if both u = u(t)
and w = w(t) are solutions, then

llu(t) — w(t)|| < |[u(0) — w(0)][exp (c — p)t.

In particular, u(t) = 0 as t — oo.

Proof. We have

d d
128 ju—wlP = (Gu- Fwu—v)

= (H * Mu — pu— H* Mw + pw,u — w)
< || H % Mu — Hx Mw|| - [Ju — || = pllu = w|[®

< (¢ — p)|Ju — wl[®
(17)
Tt follows that

d
glogllu —uw||Lc—p,
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Le. [lu(t) —w(®)]| < [[u(0) = w(0)|| exp (c — p)t.

Selecting p larger than ¢ obviously guarantees convergence as
claimed. O

Here, the convergence is shown via an observation that the Lo-norm
is diminishing during the evolution, which fact is of secondary impor-
tance in a finite dimensional (discrete) setting but would be quite disap-
pointing in a continuous variable setting. A complete resolution of this
problem would require us to find answers to some rather deep questions
(cf. Section 5). Separately, it is perhaps worth reporting that experi-
ments show that even when p is set lower than the constant ¢, we will still
observe some (albeit weaker) regularizing effect. In particular, it may
be expected that a more conventional regularization is to be expected
as a result of this flow.

4. Remarks on Dynamics of the Flow

As it is well known, a more thorough analysis of a noulinear dynamical
system is in general nontrivial even in the case of really low-dimensional
systems, e.g. in just three variables. Moreover, the property that a
solution may both exponentially diverge and converge shows that the
evolution process at hand is not controlled by any functional norm. An
even more essential difficulty is in that the driving force is not a differ-
ential operator, so in particular it may not come from any functional by
way of the Euler-Lagrange equations.

Experiment suggests that depending on the actual initial data, a
solution of (5) either converges, diverges to the infinite horizon, or it ap-
proaches a cyclic orbit while we have never observed chaotic phenomena.
On the other hand, experiment shows that there is always “convergence”
in terms of optical appearance of solutions, which convinces us that it
should be possible to prove convergence in some suitably defined weak
sense. However, we do not pursue this direction at present.

The purpose of this section is to demonstrate the nature of evolution
prescribed by the flow (5) by displaying simple examples when the me-
dian and the filters are especially easy to evaluate. As mentioned above,
the natural context for studying the discrete version of the filtered me-
dian flow (FMF) is that of graph theory. In particular, the Lipschitz
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property of the median, as well as the existence and uniqueness results
of the previous section carry over to this setting. Naturally, depending
on the complexity of the underlying graph structure, details of the dy-
namical behavior of solutions may be more or less difficult to keep track
of. However, the situation is quite clear when one considers the so-called
bipartite graphs, cf. [2], while additionally assuming that the filter be
given by the orthogonal projection to the highest harmonic.

Example 1. To better understand the form of solutions of the FMF,
let us begin with an analysis of a low-dimensional situation when the
signal is four-dimensional. Let us introduce notation

a(t) b(t)
c(t) d(t)

and let us define the neighborhood of each element as the complementary
triplet of elements in the matrix so that in particular we have a median
filter

R M(b,c,d) M(a,c,d)

Mu =
M(a,b,d) Mia,b,c)

Let us fix the Fourier basis in the four-dimensional space as given by the
following four matrices.

11 1 1
f{):-5 1 f1'__‘5 '
: 11 -1 -1
1 ~1 1 =]
f2:-5 ] f3-__'5
1 -1 -1 1

We want to understand convergence properties of the solutions to the
initial value problem for a flow of type (5) with the initial condition

ap bo
u(0) =
co do

First, consider the simplest case when

Hu = (u, f3)f3,
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so that (5) becomes

= (1L, 1) . (18)

We have
2(Mu, f3) = M(b,c, d) — M(a,c,d) — M(a,b,d) + M(a, b, c), (19)

so that (18) represents a nonlinear system of four differential equations.
The actual value of the driving force (19) can be narrowed down more
precisely since it depends only on the ordering of numbers q, b, ¢, d, e.g.

when @ <b < ¢ < d we have (Mu, fay =0 (20)
while
for a < d < b < ¢ we obtain (Mu, f3) = 2(b—d). (21)
One checks directly that in the latter case, when the initial condition
satisfies ag < dy < by < ¢ the solution is explicitly given by
a(t) = ao+.5(bo—do) (1—e™"),  b(t) = .5(bo+do)+.5(bg—dp)e~, (22)
c(t) = co+.5(do—bo)(1—€™*), d(t) = .5(by+do)+.5(do—bg)e™". (23)

In particular, a+ b+ ¢+ d =const. As one sorts through all possibilities,
one concludes that this is in fact typical in the following sense.

Fact 2.  Out of the 24 possible cases of ordering the elements
a,b,c,d, the driving force in (18) is nonzero only for six of them—
precisely when the two middle elements are contained in one row or
one column and the two extreme elements are in the complementary
row or column in the opposite order, eg a<d<b<e.

When the driving force is nonzero, it is the double of the difference
of the two middle elements, cf. (20)-(21). One checks directly that the
solution, guarantied to be unique by Theorem 1, is given by (22)-(23) if
ag < dy < by < ¢y and analogous formulas in the remaining five cases.

Proof. By inspection. O

Example 2. What happens when the high-pass filter is more inclu-
sive? Consider for illustration the flow given by

= BT I g+ Gt f) fo+ (Bt f)fs. (28

One easily observes the following result.
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Fact 3. In all cases, regardless of the actual placement of the
elements, the driving force in (24) equals the double of the difference of
the two middle elements. The evolution, which is uniquely defined by
the initial condition, obeys the same exponential pattern as in (22)-(23).
In particular, the middle elements will converge to their mean and the
extreme elements will come closer together by the same amount.

Proof. By inspection. |

Note that even though the systems (18) and (24) are nonlinear, we
have been able to give their solution in terms of combinations of expo-
nentials (plus a selection-of-the-formula rule!) just as for a linear system.
This is due to the fact that the median behaves nonlinearly only when
ordering of coordinates changes and is linear everywhere “in-between”.
Moreover, the situation above is easy to analyze also due to the fact that
the Fourier harmonics consist of 41 only.

Example 3. The observations we have just made will help us prove a
general statement about the fully high-dimensional case when the filter is
limited to the projection on the highest Fourier harmonic and the median
operator is also simplified by allowing it to look up only the vertical
and horizontal neighbors, see (26) below. Namely, let us introduce the
following bi-periodic pattern with period n

where ¢ = 1/n so that |[P| = 1. It is well known, cf. [2], that P
represents the highest harmonic, i.e. an eigenfunction of the discrete
Laplacian corresponding to the highest eigenvalue (which is 2 for one
popular choice of normalization). Now the simplified median operator
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is given by
Mu,:,j=M(u,-_hj‘u,-ﬁ,_,-,ug,j_l,ui’dﬂj. (26)

Proposition 3. Consider the flow

%u,—,}- = (Mu, P)P, ;. (27)
The solution of an initial value problem is explicitly given by the formula
u(t)iy = u(0)i,j + (Co/2¢)(1 — e *)P,, (28)
where k = 2¢ = 2/n? and
Co= D Mu(0);— Y. Mu(0), (29)
i,j:P; j=¢ ij:Pij=—c

Proof. Theorem 1 remains valid in this context and it guaranties
that the solution we display is unique. Suppose that u(t) is given by
(28). We will now show that it satisfies (27). Let us first look at the
right-hand side of (27). Observe that (Mwu(0), P) = Cyc, where Cj is as
in (29). Moreover, since in general

M (u + const) = M (u) + const,

and since Y. Mu(t);; depends only on the values u(t) assumes at

i, 5 s=¢
points (i, 7), where P; ; = —c, we have
> Mu(t)iz= > Mu(0)i; - Co(l-e*)/2.  (30)
1,7:F j=c¢ L,J: P j=c
Analogously,
Yo Mu()ij= Y Mu(0)i;+Co(l-e®)/2.  (31)
1,7:F; j=—c¢ i,9:F; j=—c

Subtracting identities (30)-(31) we obtain

%{Mu(t), P = l(ﬂru(g),}:’) — Ol —e7 ") = Cge™™, (32)

C

so that the right-hand side of (27) satisfies

(Mu, P)P; j = cCoe *P, ;. (33)
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On the other hand, if u(t) satisfies (28), then we obtain by way of direct
differentiation that

d —kt
-(Eu,;J = k(C'g/Zc)e R.;,j'. (34)
Comparing (33) and (34) we see that it suffices to set k = 2¢2 for (28)
to satisfy the evolution equation. This completes the proof. O

We note that exponent k& decreases to zero as n — oo. This is to
be expected for two reasons: first, P is a purely discrete object that
does not survive the limit n — oo and secondly, even the median filter
operator M, or more strictly the local neighborhood it depends on the
value at a point, would have to be rescaled in order to make sense in the
limit. We want to point out that identities (30)-(31) indicate

Z MU@):‘J + Z Mu(t}é,j = Cy,

3P =c i,j: P j=—¢

so that the “integral” of Mu is preserved during the evolution.
gr p g

5. Summary and Future Directions

There remain many open questions as regards the properties of the Fil-
tered Median Flow. In particular, we do not discuss its behavior in the
presence of noise. Naturally, the main property displayed here is that
the flow provides a regularizing effect while simultaneously enhancing
the high frequency content of an image. This has many applications, and
in fact the basic technique presented in this paper has been successfully
applied to help provide solutions to some other well-known problems of
image processing. Notably, it lead to an algorithm that allows to de-
block an image while simultaneously sharpening it in the sense discussed
in this article (some such methods and processes are proprietary to the
Pegasus Imaging Corporation).

The way to achieving further substantial progress is through estab-
lishment and thorough understanding of a new type of relevant to images
notion of regularity whose existence is indicated by the peculiar features
of the various median-filter based techniques, and especially the Filtered
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Median Flow. As we have seen, the FMF induces new types of regular-
izing effects in images. Let us try to see it in a more general context.
Namely, I would like to suggest the following general point of view: Just
as the Sobolev regularity paradigm is fundamental to a variety of non-
linear PDE and wavelet techniques, and the paradigm of Total Variation
results in a bunch of more “singular” dynamical systems (Rudin-Osher,
cf. [11]), so will this anticipated new type of regularity play a funda-
mental role for a broad family of existing and future median-filter based
algorithms. Let me take this opportunity to somewhat elaborate this
point below. I emphasize that it is not my intention to provide here
anything like a brief summary of the history of Image Processing, but
rather to share with the reader a personal perspective and to place the
developments presented in this article in a broader context.

Typically, an image can be thought of as a collection of a bunch of
smaller images. Sometimes a systematic error is present throughout the
entire collection, but that is usually easy to correct. More often, how-
ever, images suffer from the presence of locally manifested deformations.
contaminations and artifacts that are not spatially correlated. One of
the great lessons that Image Processing has learned from Mathemati-
cal Physics is that quality of an image may be to some extent discussed
within the framework of functional regularity, e.g. regularity in the sense
of Sobolev. Accepting this paradigm, regularization/enhancement would
be achieved by an iterative application of smoothing integral operators,
i.e. diffusion. The major problem that gives impetus to this popular
research direction is how to gain local control or assure local selectivity
of such a process. The necessity of introducing feedbacks that would re-
alize that particular requirement unavoidably leads to the introduction
of nonlinearity to the diffusive process. Of course, the paradigm has a
weakness as it turns out that Sobolev regularity is not the most relevant
measure of image quality. It was later pointed out that a more relevant
measure of regularity would be that of Total Variation. Subsequently,
the Rudin-Osher flows were adapted as an “evolutionary motor” for ar-
tifact erasing processes. However, in practice one needs to regularize
these processes, either by introducing the so-called viscosity or other-
wise, which effectively makes these flows equivalent or very close to the
mean-curvature flows. As a result of this, the regularized processes will
introduce some dose of diffusion into an image. Attempts at providing
a substitute (at least more) free of diffusion resulted in discrete machin-
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ery that does not allow generalization to the continuous domain setting.
Needless to say, not all contributions to this research stream are explic-
itly stated in the formalisin of Partial Differential Equations, viz the
wavelet theory, but they could at least in principle be reformulated in
that form, e.g. what one typically does in the wavelet domain amounts
to (adaptive or not) construction of an integral operator.

Now, an independent stream largely kept alive by the practitioners
of iiage processing and essentially lacking systematic theoretical back-
ground is that which comprises applying ad hoc filters - notably, the
very successful median filter. The power of the median filter is in its
robustness to noise and non-blurring behavior at an edge, but its very
serious shortcoming is in that it over-regularizes the input image in some
sense. Again, the main problem here is that we are lacking a rigorous
description of the relevant notion of regularity as mentioned above. The
Filtered Median Flow may be seen as an attempt to further control and
exploit this anticipated hypothetical type of regularity while avoiding
over-regularization. The most successful part of this effort, beyond its
applicability to the erasure of artifacts, is that it seems to break the
barrier toward phenomena that are beyond the reach of those methods
that are inherently tied to the Sobolev or the Total Variation type reg-
ularity (which is not to say that these latter methods are not useful or
beautiful within their range of applicability). I hope that a systematic
development of the merger between the two streams mentioned above in
continuation of the work on the Filtered Median Flow may help open a
new and essentially different perspective on the problem of regularity of
Images.
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Figure 1: The result of an application of the flow (5) to
a random low-frequency image as seen in the Fourier space
(F'S). It shows three frequency profiles: The model (obtained
after 150 iterations) has lots and lots of high frequency energy
while its median has no energy in the high pass.
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Input Image

Result of Filtered Median Flow

Result of Interpolation

Figure 2: The result of an application of the flow (5) to an im-
age, whose every second row is missing. The FMF has filled
up the missing rows (in about 50 iterations) while keeping the
existing information essentially intact. We emphasize that no
mask or constraint of any sort have been applied. In spite
of that, there has been no diffusion. We urge the reader to
keep in mind that the difference in quality between the image
obtained by an application of our algorithm and the result
of plain interpolation is better visible on high-quality prints
or directly in the ps-file.
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