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Signals generated in memristive circuits

Abstract
Signals generated in circuits that include nano-structured el-
ements typically have strongly distinct characteristics, par-
ticularly the hysteretic distortion. This is due to memris-
tance, which is one of the key electronic properties of nano-
structured materials. In this article, we consider signals gen-
erated from a memrsitive circuit model. We demonstrate
numerically that such signals can be efficiently represented
in certain custom-designed nonorthogonal bases. The pro-
posed method ensures that the actual numerical representa-
tion can be implemented as a fast, O(N logN), algorithm. In
addition, we discuss the possibility of modelling the hysteretic
distortion via fast numerical transforms.
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1. IntroductionSeveral attributes of nanoscale electronics set it apart from its classical predecessor. Among them is the problemof essential variability of nano-patterned circuits, which means that they might need to be assessed and tuned atthe essentially individual level. This contrasts with the specifications-based approach to mass fabrication of classicalelectronics. It is not surprising, therefore, that the variability problem is now recognized as one of the major challengesof next-generation microchip fabrication, [14]. One may expect that a solution of this problem will amount to nothingshort of a new paradigm which, compared with the classical approach to microfabrication, will shift even more weighttoward the circuit diagnostics, increasing the significance of specialized analytic tools, including mathematical methodsfor nano-circuit specific signal analysis.Another distinct attribute of nano-circuits is that they push the scale at which the quantum properties of mattercannot be ignored. The electronic characteristic of structures such as a molecule suspended between metal contacts, [7,16], or coupled quantum dots or other meta-materials, cannot be understood at the fundamental level outside theframework of Quantum Mechanics. Even though circuits that include nano-patterned elements can to some extent beanalyzed by means of a suitably designed classical approach, the classical circuit theory is by itself insufficient. Thatis in large part due to the emergence of nonlinear and charge-dependent resistance known as the memristance.Nonlinear macro-properties of matter emerge from a quantum linear micro-scale picture through sheer randomness,complexity, and open system dynamics. This can be rigorously considered within the framework of Quantum StatisticalMechanics: nonlinearity enters the quantum-mechanical arena via the von Neumann entropy, which becomes relevant tothe functional properties of a non-isolated system through the appropriate free energy. It is interesting to reflect that thenonlinear quantum-mechanical structures possess distinct mathematical flavor that sets them apart from the generallymore familiar geometric differential equations. In particular, with some purely-mathematical manipulation of parameters,
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Signals generated in memristive circuits

these structures may display fairly exotic properties, such as fractal energy spectra, or Riemann’s zeta-function relatedground states, [22].Nonlinearity may also enter the arena of quantum- and nano-system modelling via the quantum hydrodynamicmodels which are often conceptually, as well as computationally, superior to the typically intractable ab initio models,[13]. To add to the complexity of the overall picture, nonlinearities may sometimes affect the dynamics of a quantumsystem via nonlocal integral operators as it happens in the case of the Schrödinger-Poisson models or their extensions,e.g. [12]. Naturally, the list of ways in which nonlinear dynamics becomes relevant to quantum- and nano-systems ismuch longer and cannot be made complete in this introduction.A functional macro-scale description of the electronic properties of a given nano-circuit is seldom, if ever, deriveddirectly from the first principles, whether they be linear or nonlinear. A classical approximation of the charge dynamicsin a nano-circuit can be based on the aforementioned concept of memristance, first proposed theoretically by L. Chuain the 1970s, [4], and experimentally validated in the context of nano-materials only fairly recently, [29]. Memristivematerials have since been used in remarkably novel device applications, e.g. in [1] the authors proposed a devicebased on a layered Au-Pt-TiO2−x-Pt-Ti-SiO2-Si nano-structure1 with voltage-pulse-tunable resistive states. They havealso indicated an application to analog multiply-and-add computation, which is one of the fundamental operationsin information processing. Separately, a joint Hewlett-Packard Laboratories and Boston University project, Cog ExMachina, focuses on electronic brain models, which rely in an essential way on memristive structures. In this instance,the memristive elements, which amount for no more that 1 percent of the circuitry, enable the essential adaptivity featuresand memory of the system, [21]. Other applications of memristive circuits, including applications in non-volatile memoryor image processing, have been reviewed in [17]. Memristive circuits have also been found to enable energy efficienthigher harmonics generation, [6], providing an alternative to the diode bridge which has been traditionally used for thispurpose.It is remarkable that Chua’s initial motivation was founded on a rather penetrating insight that the classical RLCcircuit theory is mathematically incomplete2. The fact that the circuit theory amended with memristance now seemsentirely complete builds confidence that this approach is no longer missing anything hidden, and can be used to helppredict the implications of more fundamental modelling. It also implies that in essence the functional macroscopic theoryof passive nano-circuits is equivalent to the theory of nonlinear, second order ordinary differential equations. Thisposes mathematical challenges that are typically addressed by means of numerical simulation as well as by means oftheoretical analysis that encompasses elements of the Theory of Dynamical Systems. We emphasize that this type ofmathematics is indeed fully relevant to nano-circuits, including the rather sophisticated concepts such as chaos, cf. theChua circuit, [28].There exist several alternative approaches to the description of complex linear or nonlinear circuits. As observedseveral decades ago, see [8], [15], one of the mathematical structures naturally emerging in this context is that of theDifferential Algebraic Equations (DAE), also referred to as the semi-state equations. An analysis of memrsitive circuitswithin the framework of semi-state equations has been carried out in [18]. One of the main theoretical concepts in thatwork is the tractability index arising in the analysis of the DAE.Among the memristive circuits a special place is occupied by memristor oscillators, cf. [10]. It is therefore interestingto consider the problem of existence of proper oscillations, which leads to differential-algebraic eigenvalue problems(DAEP). The contrast with the classical linear theory is underscored by the fact that such problems typically do not admitclosed-form solutions, and are rather difficult to tackle analytically. An approach based on linearization and eigenvalueanalysis, as an approximate diagnostic for the existence of proper oscillations, has been explored in [19]. In addition,there exist fruitful fully nonlinear techniques for the analysis of DAEP, which rely on elements of the Analytic NumberTheory, [23]. In the framework of this approach a DAEP is set a priori in the space of the classical Dirichlet series or,alternatively, in the space of holomorphic Fourier series. This forces discretization of the spectrum. (For comparison,in the classical linear Sturm-Liouville theory the latter is accomplished by prescribing the boundary conditions.) The
1 The memristive properties of such structures may be understood via the linear dopant-drift model, see e.g. [29] or [17].
This model is further refined in [6].2 The nature of this incompleteness is rather subtle but becomes quite ostensible once it is revealed — see Fig. 1 in
[29].
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method yields an explicit recurrence formula for the series coefficients of the ground state eigenfunction. As it turns out,the higher energy eigenfunctions are dialated versions of the ground state eigenfunction.The number-theoretic approach to an eigenvalue problem — such as may stem from a nano-circuit of interest —leads to a whole new method of analysis of signals which originate from the circuit. Namely, one first notes that theentire system of eigenfunctions (typically with a modified constant term) can be considered as a basis for a suitableHilbert space. The basis consists of a ground state function f (x) and its dialated copies f (mx), m = 1, 2, 3, . . .. It hasbeen established that such bases have a very unusual property – namely, they furnish fast, O(N logN), change-of basistransforms, [24]. In fact, the change of basis can be carried out numerically with extreme efficiency via a lifting schema,[25]. These facts form the precepts of a new method of signal analysis which is numerically efficient and customizable tospecific nano-circuits. Moreover, the method presented in [26] allows for a construction of a broad family of fast-transformbases, going beyond the framework of DAEP. Indeed, the paper identifies verifiable sufficient conditions on f (x) for thecollection {f (mx)}, m = 1, 2, 3, . . . to be a Riesz basis. We emphasize that f (x) need not necessarily descend froma DAEP. However, it is demonstrated in [26] that the bases arising from the specific DAEP considered in [24] are infact Riesz. The Riesz property is of interest from the point of view of applications as it guaranties numerically stabledecomposition of a signal in the given basis. However, in practice numerical stability can be established via a numericalexperiment.In this article we describe an application of these new techniques to the analysis of a hypothetical memristivecircuit, introduced and numerically simulated in Section 2. As was observed relatively early on, [5], memristive circuitsoften generate signals with a characteristic hysteretically distorted shape3. In Section 3 we discuss a few topics relatedto the analysis of hysteretically distorted signals. The main challenge stems from the fact that for the hysteretic featuresto appear the signal’s Fourier series needs to have a significantly long tail. Therefore, an approximation of such a signalby a low degree trigonometric polynomial will erase hysteretic features. (Clearly, this phenomenon may be viewed asa generalized Gibbs effect — see Sections 4–5 for detailed comments.) This becomes a hindrance when one wishes tocarry out, say, signal denoising or compression in a way that does not spoil the hysteretic features. Section 3 outlinesan approach to this problem, which utilizes a novel fast transform, [24–26]. The discussion culminates in Section 4,where we argue that hysteretic distortion may also be simulated by certain fast transforms.
2. A model for an RLCM circuitLet us fix four electronic components: a resistor fully characterized by constant resistance R , an inductor with induc-tance L, a capacitor with capacitance C , and a memristor which is characterized by a charge- and current-dependentmemristance M = M(q, dqdt ). We consider a circuit that consists of these components connected in a series with anaddition of a voltage source v (t). In contrast to the classical RLC circuit it is more convenient to describe the temporaldynamics of an RLCM circuit by charge fluctuations, q(t), rather than the current fluctuations ι = dq

dt = q̇. In our case
q(t) satisfies the equation

Ld
2q
dt2 + R dqdt +M(q, dqdt )dqdt + 1

C q = v (t). (1)
The nonlinear term depends on the particular architecture of the memristor which may be based on a nano-structure,[11]. In order to fix attention henceforth we fix the memristance function as

M(q, dqdt ) = M(q) = A exp(−Bq). (2)
Note that Bq needs to be dimensionless, so that the physical unit of B is [ 1

C
], while the unit of A is [Ω]. Our selectionof this particular function for M has been motivated by an observation a posteriori that it yields a hysteretic distortionof the oscillatory function t 7→ q(t). This type of distortion is known from experiment to be a characteristic feature ofmany memristive systems. It should be emphasized, however, that the hysteretic distortion may arise in circuits withother M = M(q, ι), e.g. an alternative example is analyzed in [24] and [23].

3 Such distortion is also characteristic for magnetic quantum systems, [20], and for nonlinear electrodynamics, [27].
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Fig 1. A numerical solution of (3) with R = L = C = 1, ι(0) = q(0) = 0, ω = .1, A = 8, and B = 3. Note that the signal shape during the first cycle
is clearly different than in the subsequent cycles. Beginning with the second cycle, t 7→ q(t) settles in an essentially periodic regime. This
indicates that the dynamics has a strong periodic attractor. Note that the oscillatory function t 7→ q(t) has a sharper slope when it rises than
when it falls off. This is the signature of hysteretic distortion. It is often convenient to use the term more loosely, and apply it the type of
distortion observed in t 7→ ι(t) as well.

Next, we carry out a simulation of the solutions of (1)-(2). For an implementation of an ODE solver, e.g. via theRunge-Kutta method, it is convenient to represent the dynamics in an equivalent autonomous form:
q̇ = ι

ι̇ = − 1
LC q−

R+Ae−Bq
L ι + 1

L sinu
u̇ = ω

(3)

Note that sinu = sinωt signifies an oscillatory voltage with amplitude 1. A numerical solution of this dynamical systemis displayed in Fig. 1. The reader will observe the hysteretic features of q(t) — namely, the rate of growth of the curve
q(t) is faster than the rate of its decay within all the consecutive cycles.
3. Representation of hysteretic signals in special nonorthogonal basesWe wish to consider a few signal analysis problems specifically related to such signals as q(t), or ι(t) generated inthe previous section. First, however, we need to point out a technical point about simulated signals as compared tothe natural ones. Namely, signals collected from real systems tend to be given as sampled in regularly spaced timeintervals. In contrast, the simulated signals are obtained via a step-adaptive method and so, before any analysis is done,it is necessary to re-sample them in the uniform time-axis grid. However, we have found that for any practical purposesa standard re-sampling method ensures sufficient accuracy. Therefore, from now on we assume that all the signals areprepared in a uniform grid.Next, we observe that since the signals we work with are real we can take advantage of the analytic signal method.Namely, if, say,

ι(t) =∑
n∈Z

yn exp(2πint),
then y−n = yn. Thus, coefficients with negative indices are redundant and need not be processed. In other words, it issufficient to analyze the series

ιh(t) =∑
n>0 yn exp(2πint),
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and reinsert y−n = ȳn (and also the constant term y0) only when the signal needs to be reconstructed, e.g. after acompression and transmission, or after a suitable analysis. We denote the Hilbert space of all square-summable seriesof this type (non-negative frequencies only) by Hh. (Hh may be referred to it as the space of holomorphic Fourierseries).To simplify our task even further, we extract a single cycle of ι(t), denoted s(t) — see Fig. 2. Now, let f denotethe holomorphic part of s, i.e.
f (t) = sh(t) =∑

n>0 αn exp(2πint), s(t) = f (t) + f̄ (t) + const.
We wish to construct a basis of Hh, in which f (t) will have sparse representation. The construction below followsthe method established in [24] and [26], and will only be outlined. First, consider the set {f (mt)}, m = 1, 2, . . ., as acandidate for a basis in Hh. Let Φ ∈ Hh be an arbitrary vector. It has been demonstrated in [24] that if

Φ(t) =∑
m>0 xmf (mt)

then the series coefficients are obtained via (x1, x2, . . .)T = DF Φ, (4)
where F is the Fourier transform, yielding the (positive frequency) Fourier series coefficients, and D = D({α}) is theinverse of the infinite matrix determined by the sequence (αn) as follows4:

D−1 = D−1({α}) =



α1 · · · · · · · . . .
α2 α1 · · · · · · . . .
α3 · α1 · · · · · . . .
α4 α2 · α1 · · · · . . .
α5 · · · α1 · · · . . .
α6 α3 α2 · · α1 · · . . .
α7 · · · · · α1 · . . .
α8 α4 · α2 · · · α1 . . .... ... ... ... ... ... ... ...

(5)

(The dots in the body of the matrix stand in for zeros to help bring out the pattern.) It was observed in [24, 26] thatmatrices of this type form a ring which is isomorphic to the Dirichlet ring. Article [24] is also devoted to the study ofnecessary conditions for a set of dialated functions, such as {f (mt)}, to furnish an unconditional basis. This type of ananalytical problem was first addressed in [2]; additional contributions to this theme may also be found in [9].The unconditionality of the basis typically translates into numerical stability of the corresponding change of basistransform which, for all practical purposes, is easily detected in the course of numerical experimentation. In fact, in thecase of {f (mt)} defined above, which corresponds to the transform D({α})F , we have observed numerical stability.In the numerical work one only considers truncated vectors and matrices. It was demonstrated in [25] that anevaluation of an N-by-N matrix of type D({α}) — that is the upper left corner of the infinite matrix defined above — ona vector of length N can be performed via a lifting schema in O(N logN) arithmetical operations5. Since the well knownFFT algorithm performs the discrete Fourier transform in O(N logN) arithmetical operations, the transform defined in(4) is a fast transform. Note that its inverse is a transform of the same type. A representation of s(t) and s(2t) in thebasis constructed in this way is displayed in Fig. 2.
4 In practice, in order to ensure numerical stability, it is better to renormalize the sequence α to ensure α1 = 1.5 The exact number of operations is given by the sum-of-divisors function — a few refined estimates of this quantity
are discussed in [3] (Ch. VIII).

· NanoMMTA · Vol. 1 · 2012 · 48-57· 52
Brought to you by | Loughborough University

Authenticated | sowa@math.usask.ca author's copy
Download Date | 11/6/13 9:30 AM



Signals generated in memristive circuits

0 50 100 150 200 250 300 350 400 450
−0.1

0

0.1

0.2

The original signal and the double frequency signal (color coded)

                                                      time−axis mesh

am
pl

itu
de

−15 −10 −5 0 5 10 15
0

1

Riesz basis coefficients of the original signal and the double frequency signal

frequency m

m
od

ul
us

 o
f c

oe
ffi

ci
en

ts

Fig 2. The top graph shows a single-cycle extracted from the signal ι(t) denoted in the article text s(t), as well as the double frequency signal s(2t).
(For convenience, the horizontal axis is indexed by discretized index points rather than by t.) The bottom figure depicts the coefficients of
both signals in the basis {f (mt)} ∪ {1} ∪ {f (mt)} the outer bars belong to the double frequency signal. Note that the remaining coefficients
are in both cases so small as to be imperceptible in this figure. (Note that negative m corresponds to f (mt).)

The point of the construction given above is that even when signals are contaminated by noise, as it may happenin the process of measurement, the basis at hand will well separate the deterministic components. This phenomenonis illustrated in Fig. 3. Since the noise energy is evenly distributed over all f (mt) basis vectors, a simple resettingof all small coefficients to zero (nonlinear thresholding) results in a reconstruction of the deterministic signal. Thereconstructed signal differs from the ideal one by just a small smooth error term. (Depending on the application, thenonlinear thresholding operation may be replaced by a linear low-pass filter.) In Sections 4–5, we shed some light onthe nature of hysteretic distortion, and explain why the denoising of hysteretic signals is a hard task to carry out withthe Fourier transform alone.
4. Hysteretic distortion via a fast transformIt is interesting to ask if one might use a fast transform to effect hysteretic distortion in a regular oscillatory signal.We provide an affirmative answer by constructing a O(N logN) transform which effects hysteretic distortion. This isillustrated in Fig. 5, where the input is a simple trigonometric polynomial, and the output is its hysteretically distortedclone.We begin by considering a “standard" hysteretic wave. Naturally, the physical model of hysteresis which maybe based e.g. on ferromagnetism, will result in a somewhat different shape. However, the curve we use captures theessential features of the hysteretic distortion, and has been successfully used in the analysis of quantum magneticsystems, see e.g. [20]. Its main advantage is the mathematical simplicity of the definition. Namely, it is obtained fromthe transcendental equation

x(t) = a sin[x(t) + t], t ∈ [0, 2π). (6)
Note that the equation can be trivially solved for t, given x . However, we need t to run over a uniform grid, whichforces us to solve the equation for x , given t. (An adaptive grid may be desirable in some applications. However, thesignal processing algorithms discussed here require a uniform grid.) This can be done with the use of a numerical or
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Fig 3. The top graph shows a double frequency signal with additive white noise, and the denoised version (smooth line). The bottom graph
shows that almost all the noise is spread evenly through all frequencies in the sense of the {f (mt)} basis, which is why a simple nonlinear
thresholding (alternatively a low-pass filter) denoises the signal almost perfectly.

symbolic solver. The task is computationally intensive, but trivially parallelizable. Also, the computation needs to bedone essentially only once for any grid of interest. Let xa(t) be the solution corresponding to a given parameter a > 0.The parameter controls the strength of the hysteretic distortion as well as the amplitude — examples are displayed inFig. 4. In general, as a increases the Lipschitz constant characterizing the continuity of the functions xa(t) increasesindefinitely, and past a certain threshold (close to 1), we obtain discontinuous functions. In parallel, the correspondingFourier series of xa(t) have increasingly lower diminishing rate for the magnitude of their higher harmonics. Naturally,when a discontinuity appears, which happens for a sufficiently large a, this amounts to the classical Gibbs effect. In thissense, denoising a hysteretically distorted signal by a traditional method of suppressing the high-frequencies will induceGibbs-type artifacts. While the classical Gibbs artifact is manifested by the introduction of undesirable smoothness nearan edge, the weaker version corresponding to hysteretically distorted signals manifests itself via a loss of hystereticdistortion.Next, let
fa(t) = (xa)h(t) =∑

n>0 βn exp(2πint),
and let {fa(mt)} be a basis in Hh. (We do not prove the basis property here.) Finally, let Da = Da({β}) be thecorrespondiing fast transform as defined in (5). We define the following transforms:

Φ 7→ Tabs[Φ] := D−1
a |F Φ| , Φ 7→ T<[Φ] := D−1

a <{F Φ}, (7)
where | | denotes the pointwise absolute value, and < denotes the pointwise real part. Thus T< is real-linear, while
Tabs is not linear due to the application of the absolute value. In practice the two transforms have a very similar effect.However, we have observed that in order to ensure a smooth T<[Φ] it is necessary to additionally set to zero the smallcoefficients of F Φ (either by nonlinear thresholding or by a low pass filter). Note that the pointwise operations, whetherlinear or not, are carried out in O(N) arithmetical operations. Thus, both transforms have the overall complexity of
O(N logN). The effect of Tabs for the signal Φ(t) = sin(2t) + sin(3t) is shown in Fig. 5.
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Fig 4. Two solutions xa(t) of equation (6) over a uniform grid for t ∈ [0, 2π). Note that parameter a controls both the amplitude and the strength of
distortion, i.e. how sharply the curve rises and how gently it falls off.
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Fig 5. The input is defined as Φ(t) = sin(2t) + sin(3t) (top graph), and the output is Tabs [Φ] defined in (7) with a = .8.

5. Summary and Closing RemarksWe have seen how memristive circuits can generate oscillatory signals with hysteretic distortion. It has also beenoutlined how to construct bases of dialated functions which provide sparse representation for hysteretically distortedsignals. In addition, we have pointed out that the proposed bases give rise to fast linear transforms, which may typicallybe expected to display numerically stability.We have also constructed a fast transform method for inducing hysteretic distortion in an oscillatory signal. Let uspoint out that the converse task, i.e. removal of hysteretic distortions from a signal, is rather trivial. Indeed, signals withhysteretic distortion possess a long tail of small Fourier coefficients, see Fig. 6. In other words, low-degree trigonometricpolynomials do not display hysteretic features. Therefore, a simple approximation by a low degree polynomial will erasethe hysteretic feature, and effect a rather significant shape deformation. (As outlined in Section 4 this phenomenon issimilar to the classical Gibbs effect.) In comparison, the method proposed in Section 3 shows how to denoise a signal
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Fig 6. The graph of the Fourier coefficients x̂a(n) of xa(t) defined via (6), a = .9. Observe the relatively significant spread of significant coefficients.

without any loss of the hysteretic feature. A similar technique is applicable to the task of informational-compression ofhysteretically distorted signals.
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