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Abstract. We discuss a class of nonlinear and nonlocal models for the dynamics of a com-
posite quantum system. The models in question depend on the following constituents: on two

subsystem Hamiltonians (denoted by H and Ĥ), an analytic function (f), and a real param-
eter (s). As demonstrated elsewhere before, the stationary states can be described in these
models fairly explicitly. In this article, we build upon that result, and discuss the topological
as well as statistical characteristics of the spectra. Here, we concentrate on the special case
f = log. It turns out that an energy spectrum of the nonlocally bound system substantially
differs from that of its components. Indeed, we show rigorously that, if H is the harmonic

oscillator and Ĥ is completely degenerate with one energy level, then the energy spectrum
of the composite system has the topology of the Cantor set (for s > 2). In addition, we show
that, if H is replaced by the logarithm of the harmonic oscillator, then the spectrum consists
of finitely many intervals separated by gaps (for s sufficiently large). In the last case, the key

analytic object is the series
∑

n−s. In particular, as an interesting offshoot, this structure
furnishes a nontautological immersion of fundamental number-theoretic functions into the
quantum formalism.

DOI 10.1134/S1061920811020117

1. INTRODUCTION

In this article, we examine the spectra of quantum systems modelled by a special type of non-
linear, nonlocal, and nondissipative dynamics defining the evolution of a quantum state. We claim
that these systems can be designed, by an appropriate choice of the model constituents, to have a
rich spectral structure, for example, of a Cantor-set type, of a union of intervals interspersed with
band-gaps, or of discrete type. Our analysis is based on the characterization of stationary states
obtained in [1].

It seems helpful to begin with a few examples of spectra of microscopic and mesoscopic objects.
Objects like molecules, quantum dots, or atomic nuclei have discrete energy spectra, but their
complexity varies from fairly simple (atoms) to very complex (molecules). Next, crystals and meta-
lattices, characterized by periodic potentials, have spectra that comprise quasi-continuous intervals
interspersed with energy gaps. Moreover, when lattices are coupled to an external magnetic field,
the resulting spectrum, in some regimes, may take the form of a topologically nontrivial Cantor
set [2]. Another interesting example is that of the Josephson–junction circuits, whose importance
is underscored by a suggested application to superconducting qubit quantum computing [3]. The
spectra depend on the device architecture, e.g., the spectrum in the flux qubit regime is simply
discrete, whereas in the phase qubit regime the spectrum consists of continuous-energy bands in-
terspersed with segments containing discrete energy levels, see, e.g., [4]. In addition, the spectra of
small superconducting islands are essentially discrete but display broadening due to the presence
of low-lying quasi-particle states [5].

In very many instances of structure calculations, the spectra of a quantum system are deter-
mined via an eigenvalue problem for a single-particle Schrödinger operator. This linear differential
operator is obtained via quantization of the classical model. The potential function alone decides
the complexity of the spectrum, but its effect can be quite subtle, so that even a seemingly minor
alteration can give a strong effect. This is well illustrated by the famous Hénon–Heiles dynamics,
see, e.g., [6]. In this example, in spite of the relative simplicity of the potential, the spectrum is
fairly complex, and its eigenvalues may be divided into two types; this reflects the presence of chaos
in the underlying classical system. In general, the problem of determining the spectrum is highly
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nontrivial. The effective solutions typically rely on approximate methods, like semi-classical ones,
and some of these approaches have been developed only recently. Examples include the Gutzwiller
formulas, [7, 8, 9], and the method of approximate eigenfunctions, which is based on Maslov’s
canonical operator, [10, 11, 12]. An interesting point of view at the semiclassical machinery is
discussed in [13].

However, not all quantum dynamics comes from quantization. A notable exception is encountered
in the framework of cavity QED, particularly the Jaynes–Cummings model of interaction of light
with an atom in a cavity ([14, 15]). The Jaynes–Cummings model relies on composite system theory.
The system in question consists of two subsystems, namely, a two-level atom with the energy gap
�ω0, and a harmonic oscillator with energy values n�ω, n = 1, 2, . . . (the ground state energy �ω/2
is suppressed as unessential). The model introduces an interaction term, and predicts composite
eigenstates at the energy levels

E±(n) =

(
n− 1

2

)
�ω ± �

2
Ω(n), where Ω(n) =

[
(ω − ω0)

2 + 4λ2n
]1/2

.

The energy gaps characteristics of the composite are essentially different than those of either one of
its components, and these depend on the coupling constant λ via the Rabi frequencies Ω(n). The
Jaynes–Cummings model is linear; however, it is somewhat conceptually related to the nonlocal
dynamics considered in this article.

Nonlocal dynamics, see equation (6), results from a nonlinear perturbation (small or large) of a
linear problem, where the perturbation term depends on an analytic function f . In addition, the
dynamics is not derived via the quantization of a classical problem. Instead, one postulates a non-
linear Hamiltonian dynamics directly in the phase space of the quantum system. Most importantly,
the resulting evolution of the subsystems is localized and linear. In other words, the evolution of
the reduced density matrices, i.e., the mixed states, only depends on the local Hamiltonians.
In particular, there is no transfer of energy from one subsystem to another. This type of separability
is necessary for a quantum theory to be realistic. (The reader may wish to refer to [16, 17] for a
discussion of general “reality” constraints on nonlocal quantum dynamics.) At the same time, the
global nonlinearity implies the existence of nonlocal stationary states, and thus leads to the notion
of nonlocal bonding, first explored in [18]. The nonlocal dynamics seems unique in that it allows
for a direct characterization of its stationary states, and subsequently its spectrum. It ought to be
emphasized, however, that the description starts at a higher level of generality, as we assume that
the “linear part” of the problem is given a priori with its spectral decomposition. Given this, the
operators that represent stationary states are constructed out of the two subsystem Hamiltonians
and the function f . This fact facilitates a rigorous and explicit description of the corresponding
nonlocal spectra. As it turns out, the spectra can have an intricate topological structure. Our focus
here is on the special case f = log. We show that, for a certain specific choice of the Hamiltonians in
(6), the spectrum is a topological Cantor set (more precisely the image of the standard Cantor set
under a logarithmic mapping). For another choice of the Hamiltonians, the spectrum is obtained
via the set of all subseries (rarefied sums) of the series

∑
n−s. Remarkably, it turns out that, in this

case, the ground state is tied to the sum of the full series, i.e. ζ(s), [19]. In particular, its energy
can be expressed via an integral formula known already to Riemann, which ties the zeta function to
the prime-counting function; see formula (30) below. The resulting relation between fundamental
number theoretic functions and the ground state is nontautological, namely, the function is not
being inserted as a constituent, but rather emerges naturally from the structure of quantum theory
and from the specific properties of equation (6). Overall, these examples shed new light at the
nature of the nonlocal bonding scenario. In particular, they show that the spectral characteristic
of a nonlocally bound system typically is drastically different from that of its components.

In general, one expects a large variety of spectrum types in terms of quantitative variety, i.e.,
having prescribed levels of stationary state energies with a given topological type. The quantita-
tive characteristic will depend on the choice of constituents in (6). This property of the nonlocal
dynamics makes it universally applicable to the task of modelling a complex quantum system, pro-
viding an attractive alternative in those situations when the inherent system complexity makes the
ab initio approach impractical. At the same time, the proposed nonlocal model, and the resulting
notion of nonlocal bonding, may in fact be fundamental; see [20] for a discussion of this problem.

Since fractal type spectra are the most exotic, and have received a lot of attention in the physics
literature, let us briefly outline some of the key points as background for results presented in
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Section 4.1. As we have already mentioned, fractal type energy spectra feature most prominently in
the theory of Bloch electrons in magnetic fields. It is worthwhile repeating that this theory is fully
based on linear quantum dynamics. The multi-scale structure of the spectrum of such systems has
been described theoretically already in the 1970s by Hofstadter, [2]. Hofstadter based his analysis on
a tight-binding approximation of the dynamics with periodic potential, which results in Harper’s
equation. The spectrum related to Harper’s equation depends on one real parameter, α, which
represents the number of flux quanta through one lattice cell. In particular, Hofstadter proved
that, if α is an irrational number, then the corresponding spectrum can only be a Cantor-type
set. However, he also pointed out a difficulty in proving that the spectrum coincides in fact with
the implicated Cantor set; namely, it is hard to demonstrate the conjecture that all points in the
spectrum correspond to a bounded eigenfunction. Interestingly enough, Harper’s equation has also
been at the foundation of one of the mathematical approaches to the integer quantum Hall effect,
see [21, 22]. In general, the topic of the dynamics of a single electron in the periodic lattice potential
and transversal magnetic field has received a lot of attention. An ample review of the mathematical
literature, alongside interesting new results, can be found in [11, 12]. A discussion of the theoretical
and numerical aspects of the specific problem of spectrum Cantorization in periodic metastructures
can be found in [23], wherein the problem is approached via the theory of Green’s function.

The article is organized as follows. In Sections 2 and 3, we recapitulate the relevant facts about
nonlocal dynamics and its stationary states. While the main result comes from [1], we state it here
in a modified form well-adapted to the discussion that follows. The spectrum structure is discussed
in Sections 4 and 5. We highlight two particular examples of nonlocal dynamics which are viewed as
fairly representative, although not exhaustive of interesting spectra types. The main observation is
that the energy spectra of systems considered here consist of the subseries (also known as rarefied
sums) of an infinite series. General level studies of this particular object can be found in the
mathematical literature going back to the 1940s. The foundational concepts have been developed
by a group of mathematicians, most of all J. D. Hill, H. von Hornich, H. Pollard, and S. Ulam
(see [24–26]). The approach they have taken combines elements of topology, measure theory, and
probability, especially Kolmogorov’s version of the zero-one law. It seems that the problem at hand
was considered at the time without any particular applications in mind. Nevertheless, those classical
results became unexpectedly relevant to the mathematical/theoretical physics problem considered
here, many years later. Most notably, Hill’s theorem assists in the numerical work with the spectra;
see equation (39) and discussion in Subsection 5.2.

Finally, it seems appropriate to mention that many different types of nonlinear operator equations
have been discussed in the physics and mathematics literature, see, e.g., [27–30], and other sources.
There are similarities and differences between these types, and they have been considered for many
different purposes. Just as better known nonlinear partial differential equations, each type of an
operator equation requires its own methods. A more detailed comparison of many different nonlinear
operator equations can be found in [1]. The procedure of identifying the combined state vector with
an operator, denoted by K, which endows the nonlocal dynamics with a physical interpretation
(see the introduction below), was previously used in [31], and (independently) in [20]. It has been
used in this role implicitly, as a transform mediating between two subsystems of a quantum system,
already in [32–34]. Also, many authors have taken advantage of the possibility to formally factorize
the density operator into a product ρ = K∗K for various purposes; see, e.g., [35].

2. NONLOCAL DYNAMICS

2.1. Evolution of Composite States

In this section, we describe the fundamentals of nonlocal dynamics. This brief exposition summa-
rizes relevant results published in our previous articles. We organize the material in a way suitable
for the discussion of energy spectra. Let us begin with a pair of quantum systems. When the two
systems are considered separately, the states of the first system (of the second one, respectively)

correspond to unit vectors in two Hilbert spaces, namely, in H (in Ĥ, respectively). The dynam-

ics of the first (second, respectively) system is prescribed by Hamiltonian H (Ĥ, respectively).
Throughout the paper, we assume that both the Hamiltonians have pure-point spectra consisting
of the eigenvalues. Let N = {1, 2, . . . } stand for the set of natural numbers. To fix the notation, we
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set
H =

∑
n∈N

hn|en〉〈en|, (1)

where h0 � h1 � · · · , and (en)n∈N is an orthonormal basis of H. Analogously, let

Ĥ =
∑
n∈N

ĥn|fn〉〈fn|, (2)

where ĥ0 � ĥ1 � · · · , and (fn)n∈N is an orthonormal basis of Ĥ. The operators H and Ĥ are
densely defined and self-adjoint but need not be bounded, i.e., either one or both of the sequences

(hn) and (ĥn) may diverge to infinity. The two eigenbases will be considered fixed but they do not

need to be defined uniquely, e.g., taking Ĥ = h I allows one to consider an arbitrary orthonormal

basis (fn) in correspondence to the uniform energy level h = ĥ0 = ĥ1 = ĥ2 = · · · . In general, the
phases of the eigenfunctions are not defined uniquely; this ambiguity has no effect on the analysis
below.

Next, we consider the composite system consisting of the pair of subsystems H and Ĥ. The

composite states are represented by unit vectors in Ĥ ⊗ H. Furthermore, the Hermitian product
on H allows us to identify composite states with operators, so that the state

|Ψ〉 =
∑
m,n

k∗mn|fm〉 ⊗ |en〉 ∈ Ĥ
⊗

H

will be identified with
K =

∑
kmn|fm〉〈en|.

Note that the normalizing condition ‖Ψ‖2 = 1 translates into

TrK∗K = 1.

In particular, the operators K that admit physical interpretation have the Hilbert–Schmidt prop-
erty, and are a fortiori bounded. One easily verifies that Tr

Ĥ
|Ψ〉〈Ψ| = K∗K. In other words, the

corresponding mixed state of the H subsystem is ρ = K∗K. Similarly ρ̂ = KK∗ is the mixed state
of the hatted subsystem.

Representing states via operators K rather than vectors |Ψ〉 has an advantage, namely, since
the space of operators has an algebra structure, it is possible to consider nonlinear expressions in
K, such as f(K∗K), where f is an analytic function. This is the type of nonlinearity we are to
consider. Note that, if K∗K is a self-adjoint bounded operator, then one can interpret f(K∗K) via
the spectral decomposition theorem.

Next, let us prescribe the dynamics of the composite system. We assume that f is an analytic
function, well-defined on the entire positive semi-axis (0,∞), where it takes real values. In addition,
let F be the antiderivative of f , F ′ = f . We consider a model for nonlocal dynamics that is
prescribed by the following composite-system Hamiltonian:

Ξ(K) = Tr

[
K∗KH +K∗ĤK +

1

s
F (K∗K)

]
(s = real parameter). (3)

Under certain technical assumptions [20], the gradient of Ξ can readily be calculated, and it is seen
to induce the Hamiltonian flow

−i�K̇ = KH + ĤK +
1

s
Kf(K∗K). (4)

Since K is identified with the composite state, the equation is taken to describe the evolution of
the composite system. We conclude this section with the following general observations.
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Remark 1. It is easily seen that (4) implies

i�ρ̇ = [H, ρ], i� ˙̂ρ = [ρ̂, Ĥ]. (5)

Therefore, the mixed states evolve according to the von Neumann equations based on the local
Hamiltonians. This means, in particular, that the subsystems cannot nonlocally feed into the evo-
lution of each other.

Remark 2. In the better known theory of nonlinear Schrödinger equations, the nonlinearity
is introduced by means of expressions such as f(|ψ(x)|2). This presupposes that the state vec-
tors admit an interpretation as functions defined over a certain geometric domain x → ψ(x). In
contrast, in our approach, geometry is essentially removed from the picture. However, it can be
implicitly present in the picture. Indeed, this is the case in which the Hamiltonians (1), (2) stem
from differential operators on manifolds.

2.2. Solutions of the Stationary Problem

Substituting eiνt/�K for K into (4), we obtain

KH + ĤK +
1

s
Kf(K∗K) = νK (K time-independent). (6)

The solutions of this equation represent the stationary states of the composite system. It has been
demonstrated in [1] that all Hilbert-Schmidt solutions (in fact, even a broader class of solutions)
can be represented in the form

K = KJ,σ(s) :=
∑
n∈J

rσn(s) |fσ(n)〉〈en|, (7)

where J ⊆ N, σ : J
1−1−→ N is an arbitrary immersion of J into N, and, in addition, the coefficients

satisfy the condition

rσn(s)
2 = f−1

[
s
(
ν − hn − ĥσ(n)

)]
for all n ∈ J. (8)

(If f differs from 1 − 1, then any point of the preimage gives rise to an admissible solution. The
main example in this article is f = log, in which case f−1 = exp.) Note that the phases of the
eigenfunctions remain unconstrained. In the subsequent analysis, we do not distinguish between
stationary states that differ only by phases of |fσ(n)〉〈en|.

Note that, if the composite system is in the state KJ,σ , then the two subsystem mixed states are

ρJ,σ(s) =
∑
n∈J

ρnJ,σ(s)|en〉〈en|, ρnJ,σ(s) := rσn(s)
2, (9)

and

ρ̂J,σ(s) =
∑
n∈J

ρnJ,σ(s)|fσ(n)〉〈fσ(n)| (same eigenvalues as ρJ,σ(s)). (10)

The physical solutions satisfy

Tr ρJ,σ(s) = Tr [KJ,σ(s)
∗KJ,σ(s)] =

∑
n∈J

ρnJ,σ(s) = 1. (11)

In the next section, we use this constraint to determine ν, and subsequently the energy spectrum.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 18 No. 2 2011



232 SOWA

3. THE SET OF STATIONARY STATES, AND THE ENERGY SPECTRUM

3.1. The Set of Stationary States

From now on, assume that F (x) = x log x − x, and therefore, f(x) = log x and f−1(x) = ex.
Hence (8) and (9) imply

ρnJ,σ(s) = es(ν−hn−ĥσ(n)). (12)

This agrees with the Boltzmann distribution of states if we interpret s as 1/kT . Physical solutions
are obtained by selecting ν to satisfy (11), i.e.,∑

n∈J

es(ν−hn−ĥσ(n)) = 1.

This determines ν = νJ,σ(s) for every choice of J and σ. A direct calculation shows that

νJ,σ(s) = −1

s
log

∑
n∈J

e−(hn+ĥσ(n))s = −1

s
logDJ,σ(s), (13)

where
DJ,σ(s) :=

∑
n∈J

e−s(hn+ĥσ(n)) =
∑

n∈σ(J)

e−s(hσ−1(n)+ĥn). (14)

Note that, if J is finite, then DJ,σ(s) is an analytic function well-defined for all s. Consider an
infinite J , say, J = {j1, j2, . . . }. Since all terms of the series are positive, convergence automatically
implies uniform convergence. In particular, the ordering of terms does not matter. In general, the
convergence of each DJ,σ(s) is resolved separately. However, if DJ,σ(s) < ∞ for some real s, then
it is defined in the maximal semi-axis, say, {s > s0}, and DJ,σ(s) → ∞ for s → s0+.

Substituting (13) into (12), we obtain

ρnJ,σ(s) = e−(hn+ĥσ(n))s/DJ,σ(s), n ∈ J. (15)

The operators

ρJ,σ(s) =
∑
n∈J

ρnJ,σ(s)|en〉〈en|

and
ρ̂J,σ(s) =

∑
n∈J

ρnJ,σ(s)|fσ(n)〉〈fσ(n)|

are well defined mixed states as long as DJ,σ(s) < ∞. For J infinite, the density operator is well
defined in {s > s0}, but it degenerates to 0 at the pole at s = s0.

Next, consider the set of stationary states,

States(s) := {(J, σ) : KJ,σ(s) satisfies (7), (8), (11)} (16)

The stationary states correspond to those pairs (J, σ) for which DJ,σ(s) is well defined. As s
decreases, some of the DJ,σ(s) may blow up to infinity, and the corresponding states KJ,σ(s) can
be lost. Therefore,

s1 < s2 =⇒ States(s1) ⊆ States(s2).

Note that, if s < 0, then KJ,σ(s) ∈ States(s) if and only if J is finite. Properties of States(s) depend

on the choice of H and Ĥ. This is illustrated by a few examples in Section 4.

Remark. If we admit complex values of s, then DJ,σ(s) can be regarded as a generalized

Dirichlet series. It is a Dirichlet series in the proper sense [36], if the sequence (hσ−1(jn) + ĥjn)
∞
n=1

contains no repetitions, and the last property cannot be guarantied for a general σ, H, and Ĥ.
The complex variable interpretation suggests the possibility of working with analytic extensions of
operators such as KJ,σ(s), but we do not undertake it here.
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3.2. The Energy Levels

Let us evaluate the energy of a stationary state (J, σ) via (3):

ΞJ,σ(s) = Ξ[KJ,σ(s)] =
∑
n∈J

ρnJ,σ(hn + ĥσ(n)) +
1

s
F (ρnJ,σ).

Recall that F (x) = x log x− x. Therefore,

ΞJ,σ(s) = −1

s
(1 + logDJ,σ(s)) = −1

s
+ νJ,σ(s). (17)

It is also interesting to note that the corresponding state entropy is

SJ,σ(s) = −Tr [ρJ,σ(s) log ρJ,σ(s)] =

(
1− s

d

ds

)
logDJ,σ(s). (18)

We also wish to consider a probability distribution on States(s), assuming that all stationary
states of equal energy occur (in an ensemble) with the same frequency and that the distribution is
insensitive to shifting all energies by a constant. Naturally, this mirrors the assumption of equal a
priori probability used in Statistical Mechanics [37]. The probability distribution is thus represented
by a formal expression

P (s) =
1

Z̃
e−sΞJ,σ(s) [d(J, σ)], (19)

where [d(J, σ)] is a suitable measure on States(s), and Z̃ is a normalizing constant, i.e., P is the
partition function. Substituting (17) into (19), we directly obtain

P (s) =
1

Z
DJ,σ(s) [d(J, σ)] (20)

with Z = Z̃/ exp(1). In Section 5, we give a rigorous interpretation (limited to some interesting
special cases) to the measure [d(J, σ)].

4. TOPOLOGY OF THE SPECTRUM

In this section, our main objective is to discuss qualitative properties of the set

Sp(s) := {ΞJ,σ(s) = Ξ[KJ,σ(s)] : KJ,σ(s) ∈ States(s)}.

In fact, we accomplish slightly more, and describe the graph

States(s) � KJ,σ(s) �→ ΞJ,σ(s) ∈ Sp(s).

It is convenient to define the pre-spectrum Ps as the set of all Dirichlet sums corresponding to
physical states, i.e.,

Ps = {DJ,σ(s) : (J, σ) such that KJ,σ(s) ∈ States(s)} . (21)

In view of (17), Ps can be taken onto the actual spectrum via

Sp(s) = −1

s
(1 + log Ps) . (22)

It is interesting to ask whether or not the pre-spectrum (and, consequently, the spectrum as well)
has gaps, and, if yes, to describe their structure. It turns out the answer strongly depends on the
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type of the Hamiltonians H and Ĥ. In particular, the pre-spectrum can be a Cantor type set, or a
continuum with finitely many holes. In the following sections, we illustrate this claim by examples
based on two choices of the Hamiltonian pairs (1), (2) (see also Remark at the end of
Subsection 4.2).

Few questions about the spectrum can be resolved by using general considerations. However, it
is typically easy to check whether or not the pre-spectrum Ps is bounded above. Note that, if Ps is
bounded above and s > 0, then the spectrum Sp(s) is bounded below (22), and so the system has
a ground state. Indeed,

2e−s(hn+ĥσ(n)) � e−2shn + e−2sĥσ(n) ,

and ‘=’ holds only if hn = ĥn. Therefore,

DJ,σ(s) =
∑
n∈J

e−s(hn+ĥσ(n)) � 1

2

∑
n∈J

e−2hns +
1

2

∑
n∈J

e−2ĥσ(n)s � 1

2

∞∑
n=1

e−2hns +
1

2

∞∑
n=1

e−2ĥns.

For example, let H = Ĥ. In this case, Ps has the following properties:

if DN,Id(s) < ∞, then Ps ⊆ (0,DN,Id(s)] . (23)

In the complementary case, Ps contains all partial sums of the divergent series DN,Id(s). Therefore,

If DN,Id(s) = ∞, then Ps ⊆ (0,∞) is unbounded above. (24)

4.1. Fractal Type

Let H =
∑

n|en〉〈en| and Ĥ = h
∑

|fn〉〈fn|. Since the second Hamiltonian is a multiple of the
identity, the eigenbasis (fn) is not determined uniquely; namely, it can be an arbitrary orthonormal
basis. Nevertheless, the results discussed above still apply, and the only effect of degeneracy for the
stationary states (7) is that they can now be constructed starting from an arbitrary (fn). Inserting
the corresponding eigenvalues into (14), we obtain

DJ (s) = DJ,σ(s) =
∑
n∈J

e−s(n+h) = e−sh
∑
n∈J

e−sn. (25)

We drop the subscript σ, because the sums do not depend on σ. Note that DN(s) is a geometric
series, and

DN(s) = e−sh
∞∑

n=1

e−sn = e−sh 1

es − 1
.

In addition, Ps = {DJ (s) : J ⊆ N} consists of sums of all the subseries. For clarity, it is convenient
to separate the scale factor and to represent the pre-spectrum in the form

Ps = e−shP̃s.

Then P̃s does not depend on h, and it consists of the sums

P̃s =

{ ∞∑
n=1

εne
−sn : (εn) can be any sequence with εn = 0, 1

}
.

Note that P̃s is a self-similar set satisfying the relation

P̃s = e−sP̃s ∪
(
e−s + e−sP̃s

)
.

In particular, P̃log 3 is the classical Cantor set,

P̃log 3 =
1

3
P̃log 3 ∪

(
1

3
+

1

3
P̃log 3

)
.

We can obtain sparser (denser) Cantor sets for larger (smaller) values of s. If 0 < s � log 2, then

P̃s is a segment without gaps, and (22) shows that the spectra Sp(s) are of the same topological

type as those of Ps or P̃s.
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4.2. Union-of-Intervals Type

Consider the pair of Hamiltonians

H =
∑

log n |en〉〈en|, Ĥ = h
∑

|fn〉〈fn|.

Substituting the eigenvalues into (14), we obtain

DJ (s) =
∑
n∈J

e−s(log n+h) = e−sh
∑
n∈J

n−s =: e−shζJ (s).

Note that

ζN(s) =

∞∑
n=1

n−s = ζ(s) (s > 1),

where ζ(s) is the Riemann zeta function. This justifies our notation. As above, we are to characterize
the set of all rarefied sums of the series. It seems that the type of argument needed to be engaged
here was known already to von Hornich, [25]. Similar ideas can also be found in [38]. Here, we
briefly discuss the problem in a manner suitable for our purposes.

Since the role of h is trivial, let us set h = 0, and consider the pre-spectrum

Ps := {ζJ (s) : J ⊆ N} =

{ ∞∑
n=1

εnn
−s : (εn) can be any sequence with εn = 0, 1

}
.

We focus on the case s > 1, Ps ⊆ (0, ζ(s)], and show that, in this case, Ps is a continuum with
finitely many holes. More precisely,

(0, ζ(s)] \ Ps either is the empty set or consists of finitely many open intervals. (26)

In order to see this, let us fix s > 1 and observe that

1

s− 1
(k + 1)1−s =

∫ ∞

k+1

1

xs
dx <

∞∑
n=k+1

1

ns
<

∫ ∞

k

1

xs
dx =

1

s− 1
k1−s.

This implies that for all k but finitely many, k−s is dominated by the tail
∑∞

n=k+1 n
−s. Indeed, if

only k + 1 > (s − 1)2s =: N(s), then

k + 1

s− 1
> 2s �

(
k + 1

k

)s

,

so that

k−s <
1

s− 1
(k + 1)1−s <

∞∑
n=k+1

1

ns
.

Let us focus on the set of partial sums of the series ζ+(s) :=
∑∞

n=N(s)+1 n
−s. We claim that

every point z ∈ (0, ζ+(s)] may be expressed as a rarefied sum of

∞∑
n=N(s)+1

n−s. (27)

Before we shall proceed with the proof of this fact, we note the following: Ps consists of finitely

many right shifts of (0, ζ+(s)] by quantities
∑N(s)

n=1 εnn
−s with arbitrary εn = 0, 1. Also note that,

even though 0 is not in the spectrum, its shifts are. Therefore, (27) implies that (0, ζ(s)] \ Ps is
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either empty or consists of finitely many open intervals, as claimed in (26). Let us now present a
short proof of (27).

Proof of (27). If z = ζ+(s), then there is nothing to show. Assume that 0 < z < ζ+(s). Let us
construct a 0− 1 sequence εn = εn(z) such that

∞∑
n=N(s)+1

εn(z)n
−s = z. (28)

We initially set εn = 0 for all n, and alter this sequence recursively as follows:

(1) Step 1. Find n1 = min{m > N(s) : m−s � z}, and set εn1
(z) = 1. If n−s

1 = z, stop;
otherwise move to the next step.

(2) Step 2. Find n2 = min{m > n1 : n−s
1 +m−s � z}, and set εn2

(z) = 1. If n−s
1 + n−s

2 = z,
stop; otherwise move to the next step.

(3) Sep 3. Find n3 = min{m > n2 : n−s
1 + n−s

2 +m−s � z}, and set εn3
(z) = 1 . . . etc.

The algorithm either stops after a finite number of steps or never stops. In the former case, z can be
expressed as a rarefied sum, and there is nothing more to prove. Therefore, assume that εn(z) = 1,
for infinitely many n. Since z < ζ+(s), there is an m > N(s) such that εm(z) = 0. We claim that,
in fact, εm(z) = 0 for infinitely many m. Indeed, since εm(z) = 0, it follows that

0 < z −
m−1∑

n=N(s)+1

εn(z)n
−s < m−s, (29)

and since m > N(s), we have

m−s <

∞∑
n=m+1

n−s.

Therefore, there is an m′ > m such that εm′(z) = 0. Since this argument can be repeated with m′

instead of m, we have εm(z) = 0 for infinitely many m, as was claimed above. It follows that (29)
holds for infinitely many m. Passing to the limit as m → ∞ implies (28). This completes the proof
of (27).

Remark. It is of interest to note that, in the case of ĥn = hn = log n, the pre-spectrum consists
of generalized zeta functions

DJ,σ(s) = ζJ,σ(s) =
∑
n∈J

[nσ(n)]−s

indexed by pairs (J, σ). Note that ζN,Id(s) = ζ(2s) for s > 1
2
. It follows from (23) that Ps ⊆ (0, ζ(2s)]

in this case. Moreover, the complement of the pre-spectrum to this interval can be only an empty
set or a union of finitely many open intervals. Indeed, Ps contains, in particular, all the sums

ζJ,Id(s) :=
∑
n∈J

n−2s,

so that the claim follows from (26). Naturally, in this case, the graph

States(s) � KJ,σ(s) �→ ΞJ,σ(s) ∈ Sp(s)

has a more complex structure than that in the case of ĥn = h.
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4.3. Information Inherent in the Ground State KN(s)

We continue discussing the example from Subsection 4.2. Note that, as long as s > 1, KN(s)
represents the ground state of the system. Indeed, DN(s) > DJ (s) for any proper subset J ⊆ N.
Therefore, (17) implies that ΞN(s) < ΞJ(s). If 0 < s < 1, the series diverges, DN(s) = ∞, and the
system has no ground state. Instead, there is a sequence of states whose energies tend to −∞. If
s is negative, then the ground state reappears, but it is no longer KN(s). Namely, for s < 0, the
ground state corresponds to J = {1}, which minimizes DJ (s) and gives the minimal energy

Ξ{1} = −1

s
− 1

s
logD{1}.

We now assume that s > 1 and evaluate the energy and the entropy of the ground state KN.
Rewriting (17) with the help of well-known integral formulas for log ζ(s), see [19], we have

ΞN(s) = h− 1

s
− 1

s
log ζ(s) = h− 1

s
−

∫ ∞

0

π(x)

x(xs − 1)
dx = h− 1

s
−

∫ ∞

0

J(x)x−s−1dx (s > 1), (30)

where π(x) stands for the prime-counting function, and

J(x) =
∑
n

1

n
π(x1/n).

Similarly, the entropy (18) can be represented as

SN(s) = log ζ(s)− s
ζ ′(s)

ζ(s)
= s

∫ ∞

0

J(x)x−s−1dx+ s2
∫ ∞

0

ψ(x)x−s−1dx (s > 1), (31)

where ψ(x) =
∑

pk<x log p (here p ranges over the prime integers) is the Chebyshev function.

The guest appearance of the fundamental number theoretic functions in the description of a
state of a quantum system is as buffling as it is beautiful. The reader can note that these functions
have not been introduced here by brute force (say, by hand-inserting a refined analytic function
directly into the model); instead, these are a consequence of the choice of the Hamiltonians and
the nonlocal coupling based on the log function. The model seems to bridge quantum mechanics to
number theory in a new way. It is natural to ask if the ground states of an s-parametrized family
of quantum systems can be used to determine either one of the fundamental number theoretic
functions, but this problem is not addressed here.

Remark. Note that the degeneracy of Ĥ is not essential for the “number theoretic” ground

state. Indeed, the case ĥn = hn = log n results in similar formulas for the ground state, cf. Remark
in Subsection 4.2.

5. STATE STATISTICS

In this concluding section, we consider only a special type of systems, such as those discussed in
Subsections 4.1 and 4.2. The following assumptions will underly the discussion of state statistics.

(1) H =
∑

hn|en〉〈en| with all hn distinct, and Ĥ =
∑

h|fn〉〈fn|, so that Ĥ has just one
degenerate energy level. In this case, DJ,σ(s) = DJ (s) does not depend on σ.

(2) Recall that the stationary states are described in (7). The states that differ only by σ or by
a choice of the orthonormal basis |fn〉 will be viewed as indistinguishable.

(3) Unless otherwise stated, s is assumed to be large enough to ensure the conditionDN(s) < ∞.

Under these assumptions, the set of states can be identified with the set of all subsets of the index
set, i.e., States(s) = {J : J ⊂ N}. In the following subsections, we show how every DJ (s) can be
identified with a function of real variable x → D(x, s), x ∈ [0, 1]. We shall also define the measure
[d(J, σ)] = [d(J)] as [d(J)] := dx, where dx is the standard Lebesgue measure on [0, 1]. This will
enable us to give a rigorous interpretation of formulas (19), (20) and to conduct a quantitative and
numerical analysis of the energy spectra.
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5.1. Identification of States(s) with [0, 1] and the Probability Measure

Subsets J ⊂ N can be identified with points x ∈ [0, 1] as follows: Every J determines a binary
sequence (αn)

∞
n=1: αn = 1 for n ∈ J and αn = 0 otherwise. The binary sequence in turn determines

x =
∑

αn2
−n, which is written in the binary notation as 0. α1 α2 . . . αn . . . . The identification

J ←→ x is 1 − 1 everywhere in [0, 1] except for the countable set of points of the form x =
k/2N (reduced fraction), which can be represented either as x = 0. α1 α2 . . . αN−1 1 or as x =
0. α1 α2 . . . αN−1 011111 . . . .

It is often convenient to use the Rademacher functions defined as

rn(x) = −sgn sin(2nπx), x ∈ [0, 1], n ∈ N.

Let αn(x) denote the nth digit in the binary expansion of x. If x is not a binary fraction, then

αn(x) =
1 + rn(x)

2
. (32)

For a binary fraction x = k/2N , we have 1+rn(x)
2

= 1
2
for all n � N .

Recall the definition of States(s) in (16). Identifying each J with a binary sequence, and subse-
quently with x ∈ [0, 1], gives an identification

States(s) = [0, 1]. (33)

The identification is ‘1 − 1’, except for a countable set of dyadic fractions. Next, we define the
measure [d(J, σ)] = [d(J)] as

[d(J)] := dx, (34)

where dx is the standard Lebesgue measure on [0, 1].

Finally, we identify DJ (s) with a function of x. Recall that DJ (s) =
∑

n∈J e−s(hn+h), so that

DJ (s) = D(x, s) =

∞∑
n=1

αn(x)e
−s(hn+h). (35)

Here, x is determined from the condition αn(x) = 1 for n ∈ J and αn(x) = 0 otherwise. The
function x → D(x, s) is well defined almost everywhere. Substituting Rademacher functions (32)
gives a useful formula

D(x, s) =

∞∑
n=1

1 + rn(x)

2
e−s(hn+h). (36)

The identifications (33), (35), and (34) enable us to replace the formal formulas (19) and (20)
by a rigorous definition of the probability measure on the set of states. Namely, we write

P (s) =
1

Z
D(x, s) dx, where Z =

∫ 1

0

D(x, s) dx < ∞. (37)

The integral is well defined. Indeed, the integrability of the rarefied sum functions such as x →
D(x, s) has already been proved by Hill [24]. It is necessary to assume, as we have, that the full
series D(1, s) converges in order to obtain Z > 0. Note also that, since the set of binary fractions is
countable, and therefore of measure zero, one need not worry about the nonuniqueness of D(x, s) at
those points. Finally, recall that (17) gives Ξ(x, s) as a function of D(x, s). Therefore, the average
state energy may be expressed as

〈Ξ(s)〉 = 1

Z

∫ 1

0

Ξ(x, s)D(x, s) dx. (38)
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5.2. Numerical Simulations and Quantitative Analysis

We now have all the required ingredients to explicitly compute the spectra. First, the average
value of D(x, s) is

Z =

∫ 1

0

D(x, s) dx =

∫ 1

0

∑
n

αn(x)e
−s(hn+h) dx =

1

2

∑
n

e−s(hn+h) =
1

2
D(1, s). (39)

This result has been established by Hill [24]. It is natural, whereas its rigorous proof is nontrivial.
(One needs to show that the integrand is in fact a measurable function, and that the sum and the
integral can be transposed.) We use (39) to control the accuracy of numerical simulations. Namely,
the accuracy is defined as

accuracy =

∣∣∣∣D
av − Z

Z

∣∣∣∣ , (40)

where Dav is the computed average value of D = D(x, s). In practice, Z = 0.5 ·D(1, s) is estimated
numerically via a partial sum.

The figure depicts graphs of D(x, s) for the two highlighted regimes: fractal (described in Subsec-
tion 4.1), here denoted Df , and zeta-function (described in Subsection 4.2), here denoted Dz. Since
the effect of h is trivial, we set h = 0. These graphs have been generated by a direct calculation of
(36) based on the first twenty Rademacher functions. We have compared this method to an obvious
Monte Carlo type method based on randomization of the sequence αn in (35). Both algorithms
have been implemented on a standard desktop computer with a 32 bit Intel Core 2 processor.
At the picture resolution, the images obtained from the two methods are indistinguishable. How-
ever, the numerics show that the approach based on the Rademacher-function gives a more accurate
estimate of the average value of D(x, s). The accuracy of this method typically tops the other by
three to five orders of magnitude.

The Rademacher-function method is used also to estimate the average system energies by com-
putational evaluation of the integral (38). The table below shows the numerical estimates of the
mean system energy, as well as the corresponding accuracy (40), for the two convergent cases il-
lustrated in the figure. The energy is expressed in units in which the eigenvalues of H are integers,
n = 1, 2, . . . . Note that we cannot assign meaningful values of mean energy, or accuracy, to the
divergent case of s = −0.01, because Z = ∞ in the case.

spectrum type parameters accuracy mean energy〈Ξs〉
Fractal
Zeta

Log3
3

6.3 · 10−8

7.6 · 10−8
.0775
−.3059

Remark 1. In the [24] cited above, Hill observed in particular that, for an absolutely convergent
series, the rarefied sum functions, like x → D(x, s), are continuous at all x ∈ [0, 1] except for the
dyadic fraction points. Note that the set of dyadic fractions is everywhere dense in [0, 1], so that in
spite of the continuity almost everywhere, the graphs will typically look manifestly discontinuous.
This is noticeable in the figures provided in this article.

Remark 2. It follows from well-known results that, if the full series converges, i.e.,D(1, s) < ∞,
then the set Ps of all rarefied sums, see (21), is topologically perfect. Recall that a perfect set is a set
with no isolated points. (This observation concerning the rarefied sums of certain series has been
made already by S. Ulam, who privately communicated it to Pollard [26]. More general results have
been proven later by Hornich [25].) Automatically, Sp(s) is also perfect, see (22). In other words,
every point in Sp(s) is a limit of a sequence of points in Sp(s). This means that, if D(1, s) < ∞,
then the energy levels of a composite system are never isolated on both sides.

Remark 3. Pollard gave a proof of Hill’s theorem (39) based on the Rademacher representation
(36), see [26]. Furthermore, Pollard’s results imply that the set

States(s) = {x ∈ [0, 1] : D(x, s) < ∞}
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has measure either 1 or 0, depending on whether D(1, s) < ∞, or D(1, s) = ∞. One of the main
tools in Pollard’s work is the zero-one law. Here we have only considered the case of convergent
series.

Figure. The graphs of Df (x, log 3), Dz(x, 3), Dz(x,−0.01) (top row), as well as the corre-
sponding energy functions Ξ (bottom row). As explained in the text, the variable x indexes

groups of quantum states of the composite system. The image of Df (x, log 3) is a rescaled copy
of the standard Cantor set. Note the self-similarity of the graph, and a multi-scale system of
gaps. In comparison, the image of Dz(. s) has only finitely many gaps (for s > 1), and the
energy spectrum inherits this property. This is illustrated here for s = 3, in which case we see
three gaps. One of those in the graph of Ξz(x, 3) is too tight to be visible at the current picture
resolution. For s < 1 (here we take s = −0.01), the image of Dz(x, s) and the corresponding
spectrum display a sequence of gaps.
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