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Motivation & Examples of Applications

Physical Interest

Multiple applications of ordered arrangements of
particles on the surface of 3D domains, in particular,
the sphere.

I Spherical crystals and crystal defects.

I The Narrow Escape Problem in biology and
biochemistry.

Mathematical Interest

Problem of distributing points on a sphere is
mathematically rich and has been studied for over
100 years:

I The Thomson Problem.

I Distributing points on the hypersphere in higher
dimensions.

Specific problem: How can N identical particles be
arranged on the unit sphere so as to minimize a
potential energy?→ Local Optimization Problem

Figure 1: Example of a spherical
crystal: a C60 molecule
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The Narrow Escape (NE) Problem and Mean First Passage Time (MFPT)

I The Narrow Escape Problem is concerned with finding
the mean time required for a particle undergoing
random Brownian motion inside a 2D or 3D domain to
escape through small openings on the boundary.

I The time required to escape the domain for the first
time is called the Mean First Passage Time (MFPT).

I Transport of molecules, ions, proteins, etc. inside a cell
can be modeled by a NE Problem. Particles must
escape the cell through a small channel to perform a
biological function.

I Minimizing the (average) MFPT minimizes the time
required to perform the function.

Figure 2: Cell nucleus illustrating
small pores through which molecules
can escape
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Pairwise Potential Energies

I Functions that depend only on the (scalar) distance between points, |xi − xj|:

H =

N∑

i<j

h(|xi − xj|)

Coulomb Potential

I Interactions between charged particles.

HC =

N∑

i<j

1

|xi − xj|
(1)

Logarithmic Potential

I Vortex defects in liquid crystals [1].

HL = −
N∑

i<j

log (|xi − xj|)

Narrow Escape (NE) Potential
I Asymptotic analysis of the Narrow Escape Problem.

HNE = HC +
1

2
HL −

N∑

i<j

1

2
log (2 + |xi − xj|) . (2)

Formulation of the Narrow Escape Problem

I A particle undergoes Brownian motion in a bounded domain Ω, with small openings
(traps) at xi on the boundary ∂Ω.

I The remaining parts of the boundary are reflecting.

Consider the trajectory X(t) of a Brownian particle confined in a bounded domain Ω ∈ Rd,
d = 2, 3, for which the boundary ∂Ω is almost entirely reflecting except for small windows (traps)
centered at the points xj ∈ ∂Ω, for j = 1, . . . , N , through which the particle can escape (see Fig. 1).
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Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

The mean first passage time (MFPT) v(x) is defined as the expectation value of the time taken
for the Brownian particle starting initially from X(0) = x ∈ Ω, to become absorbed by one of the
boundary traps. It is well-known that in the continuum limit, the MFPT v(x) satisfies the mixed
Dirichlet-Neumann problem (cf. [3])

4v = − 1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ωr ,

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj ,
(1.1)

whereD is the constant diffusivity. For two- and three-dimensional problems with diam (Ω) = O(1),
the windows Ωεj are respectively characterized by a length |∂Ωεj | = O(ε) or an area |∂Ωεj | = O(ε2),
where ε ¿ 1 is a small parameter.
Due to the mixed nature of the boundary condition for the PDE (1.1), no exact and only a

few approximate solutions are known for an arbitrary-shaped domain. In particular, leading-order
terms for the asymptotic expansion of the MFPT in the limit ε → 0 have been recently derived
for a unit disk with one and two traps [6, 7], a two-dimensional domain with a single trap located
at a cusp of a boundary [8], a unit sphere and a general three-dimensional domain with smooth
boundary and with a single trap [9, 10]. A recent survey of the calculation of the MFPT for small
targets in the interior or on the boundary of a confining domain is given in [13].
The method of matched asymptotic expansions was used to derive new asymptotic MFPT formu-

las in the limit ε → 0 for two-dimensional [11] and three-dimensional [12] domains with an arbitrary
number of non-identical, but well-separated, boundary traps. In Section 2 we present the asymp-
totic formulas for two-dimensional and three-dimensional domains in a common general framework.
These formulas employ the Neumann Green’s function for each respective domain, and can be used
for direct computations for domains for which this Green’s function is known analytically. Such
domains include the unit square, the unit disk, or the unit sphere. Importantly, the formulas for
the average MFPT include an additional term, called the interaction energy, which depends on
the mutual positions of the traps. This leads naturally to certain discrete variational problems
whereby the average MFPT is to be minimized with respect to the trap locations. Recently, in [14]
a rigorous proof of some of the asymptotic results in [11] and [12] has been given.
Section 2 also discusses specific forms of asymptotic MFPT formulas relevant for the unit disk, the

unit square, and the unit sphere. In particular, for the case ofN identical traps on a unit sphere, the
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Figure 3: Example domains and particle trajectories [3].

I In the limit of small traps, minimization of the MFPT requires the minimization of the
location-dependent Narrow Escape Potential (2).

The Algorithm for Local and Global Optimization

I N particles → (2N − 3)-dimensional optimization problem in spherical coordinates.
For large N , the problem quickly becomes computationally difficult. A fast local
optimization routine was developed in C++.

Dynamical system-based optimization algorithm:

1. Start from an initial starting configuration (see below).

2. Compute all tangential forces. On the first iteration only compute the largest of
the tangential forces.

3. Increment the particles’ positions by an amount proportional to the forces.

4. Project the particle back to the unit sphere by dividing by the norm of position.

5. Compute until the ratio of the largest tangential force to the initial largest
tangential force is smaller than the specified tolerance.

6. Compare all locally optimal configurations; choose the putative globally optimal
configuration.

Starting Configurations

I Different starting configurations can lead to
different locally optimal configurations.

I A systematic method was developed that starts
from an N -particle optimal configuration and
yields starting configurations for N + 1 particles.

I For an N -particle configuration, perform the
Delaunay triangulation.

I Insert one particle at the center of a triangle to
obtain an N + 1 particle starting configuration.

Figure 4: Global minima for the case N=16
showing all 28 triangle centers where the 17th trap
can be inserted

Increasing the Number of Particles. Parallel Computation

I Using the idea for generating starting configurations together with the local
optimization algorithm, results for large numbers of particles can be obtained by
starting at N = 4 and working upwards.

1. Start from the known globally optimal arrangement for N = 4: an inscribed
tetrahedron.

2. Compute the locations of each triangle center.

3. Insert a particle at a triangle center.

4. Repeat 3) for all triangle centers. Some resulting starting configurations may be
geometrically identical due to the high symmetry of the arrangements.

5. For each configurations found in 4), remove all the redundant configurations using
an invariant measure, e.g., pairwise distances.

6. For each of the non-redundant configurations, execute the local optimization
routine (in parallel).

7. Some of the resulting optimal arrangements will again be geometrically identical.
Remove redundant configurations as in 5). Go to 2).

Configuration and Energy Results for the Coulomb Potential

I Few globally optimal configurations have simple/symmetric particle arrangements.

I N = 5, 6, 7: one particle at each pole; N − 2 particles equally spaced on the equator.

I N = 12: an inscribed icosahedron, Figure 8.

I Multiple, closely-spaced local energy minima for higher N .

(a)

(b)

Figure 5: Globally optimal arrangements for (a) N=6 and
(b) 12 particles.
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Figure 6: Normalized spectra of local Coulomb energy minima,
80 ≤ N ≤ 114

Topological Results for the Coulomb Potential

I Spherical design → Delaunay triangulation.

I The Euler Characteristic: relation between the numbers of vertices (V ), edges (E),
and faces (F ):

V − E + F = 2.
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I Tessellation of polygons (cf. soccer ball).

I Fact: spherical arrangements have a defect of 12 (12
pentagons, or 13 pentagons and 1 septagon, etc.)

(a) (b)

Figure 7: Defects for the case (a) N=72 with 12 pentagons arranged at the vertices of an icosahedron and (b) N=109 with an
irregular arrangement of defects (a scar).

I Most configurations have irregularly placed defects
but there are ’magic numbers’ of particles for
which the 12 pentagons form an inscribed
icosahedron [2]:

Nmn = 10(n2 + m2 + mn) + 2 (3)
Figure 8: Icosahedron
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Results for the NE Potential

I The NE and Coulomb potentials have similar numbers of local minima.

0 20 40 60 80 100 120

Number of Particles/Traps (N)

0

10

20

30

40

50

60

70

80

90

100
Number of Local Minima

Coulomb
NE

(a) (b)

I Only the N = 4, 5, 6, 7, 12, 32 global minima appear identical.

I Arrangements of defects are often similar.

Local Optimization – Computational Challenges

I Number of local minima increases quickly with N .

I More local minima and higher numbers of particles → more starting configurations.

I Local optimization routine typically performs > 104 iterations even for N < 20; run
time of each iteration is O(N 2).

I Changes in the configuration result in small energy changes, leading to slow
convergence in many cases. Local minima have energy spacings as small as 10−6 %.

I Occasionally the routine finds ‘flat’ regions with forces equal to are zero to numerical
precision but the configuration is non-optimal. Each configuration is checked by
verifying that the Hessian matrix is positive-definite.

Future Work

I Study the topology (arrangement of defects) for different pairwise energies.

I Refine the local optimization algorithm for more exhaustive local minimum analysis.

I Optimizations for larger N .

I Generalize to non-spherical domains.
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