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Physical Interest » IN particles — (2N — 3)-dimensional optimization problem in spherical coordinates. » Spherical design —
Multiple applications of ordered arrangements of For large IV, the problem quickly becomes computationally difficult. A fast local » The Euler Characteristic: relation between the numbers of vertices (), edges (F),
particles on the surface of 3D domains, in particular, optimization routine was developed in C++. and faces (F'):

the sphere. _ _
P Dynamical system-based optimization algorithm: V-_s+F=2

» Spherical crystals and crystal defects. 1. Start from an initial starting configuration (see below).
» The Narrow Escape Problem in biology and

biochemistry.

’ » Tessellation of polygons (cf. soccer ball).
2. Compute all tangential forces. On the first iteration only compute the largest of / » Fact: spherical arrangements have a defect of 12 (12

the tangential forces. pentagons, or 13 pentagons and 1 septagon, etc.)

M athematical I nte rESt LI . y , i , Lo . Retrieved 8/9/16 http://images.clipartpanda.com
A _ _ @~ - . Increment the particles’ positions by an amount proportional to the forces.
Problem of distributing points on a sphere is

mathematically rich and has been studied for over N o . Project the particle back to the unit sphere by dividing by the norm of position.

100 years: . . . .
/ . Compute until the ratio of the largest tangential force to the initial largest

» The Thomson Problem. . . .
T . o Figure 1: Example of a spherical tangential force is smaller than the specified tolerance.
» Distributing points on the hypersphere in higher crystal: a C60 molecule

dimensions. Retrieved 8/5/16 . Compare all locally optimal configurations; choose the putative globally optimal

http://cdn.phys.org/newman/gfx/news /2004 /c60.silver.jpg

configuration.

Specific problem: How can NV identical particles be
arranged on the unit sphere so as to minimize a
potential energy?— Local Optimization Problem

Figure 7: Defects for the case (a) N=72 with 12 pentagons arranged at the vertices of an icosahedron and (b) N=109 with an
irregular arrangement of defects (a scar).

Starting Configurations

® Particles » Most configurations have irregularly placed defects
* Triangle Middl N , -
e but there are 'magic numbers’ of particles for

= _ which the 12 pentagons form an inscribed
» A systematic method was developed that starts - RN icosahedron [2]:

The Narrow Escape (NE) Problem and Mean First Passage Time (MFPT) » Different starting configurations can lead to
different locally optimal configurations.

» The Narrow Escape Problem is concerned with finding

the mean time required for a particle undergoing . . . .
dom B . tion inside a 2D or 3D domain t Nuclear from an N-particle optimal configuration and N 10(n? ) )
random Brownian motion inside a or omain to . . . . . —
.  \ae yields starting configurations for IV + 1 particles. _ mn (n”+m”+mn) +
escape through small openings on the boundary. 7N A  Haear ,_ | Retrieved 08/06/16 from http:/ i imaclean.com

(3) Figure 8: Icosahedron

. . . . For an N-particle configuration, perform the
» The time required to escape the domain for the first g P & P

time is called the Mean First Passage Time (MFPT). \ | = 7 Results for the NE Potential

Insert one particle at the center of a triangle to . o .
g P 5 Figure 4: Global minima for the case N=16 » The NE and Coulomb potentials have similar numbers of local minima.

» Transport of molecules, ions, proteins, etc. insideacell _ ___V . . . . .
obtain an NV + 1 particle starting configuration. showing all 28 triangle centers where the 17th trap
Figure 2: Cell nucleus illustrating can be inserted | Number of Local Minima

can be modeled by a NE Problem. Particles must

escape the cell through a small channel to perform a small pores through which molecules ol _  coous
Can e€sCape€

All Normalized Energy Minima (NE)

80 [ . 1.0004 F

biological function.

Retrieved 8/5/16 http://archive.cnx.org/resources/ ol | 100035 -
83b9432fabdcladd12f4ae6ed9c404c678f55122/0318_ ' -

Nicleus jog Increasing the Number of Particles. Parallel Computation ol - 10003 |

» Minimizing the (average) MFPT minimizes the time _ _ _

required to perform the function. | | | | | ol | + o002
» Using the idea for generating starting configurations together with the local wl / -

optimization algorithm, results for large numbers of particles can be obtained by 20 A MY 1.0001 |

.. : : starting at /N = 4 and working upwards. 12' Ml | ' 1-0000?-
Pairwise Potential Energies _ — : oW
1. Start from the known globally optimal arrangement for NV = 4: an inscribed umber of PartlesfTraps ()

a b
tetrahedron. (a) (b)

. Compute the locations of each triangle center. » Only the N =4,5,6,7,12,32 global minima appear identical.
» Arrangements of defects are often similar.
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» Functions that depend only on the (scalar) distance between points, |x; — X;|:

N
H = Z h(|x; —x;]) . Insert a particle at a triangle center.
i<

. Repeat 3) for all triangle centers. Some resulting starting configurations may be

Coulomb Potential geometrically identical due to the high symmetry of the arrangements. Local Optimization — Computational Challenges
» Interactions between charged particles.

Yoo
Ho=2. x; — %]

i<

. For each configurations found in 4), remove all the redundant configurations using

an invariant measure, e.g., pairwise distances » Number of local minima increases quickly with V.

For each of the non-redundant configurations, execute the local optimization » More local minima and higher numbers of particles — more starting configurations.

routine (in parallel). » Local optimization routine typically performs > 10 iterations even for N < 20; run

Logarithmic Potential time of each iteration is O(N?).

+ Vortex defects in liquid crystals [1]. . Some of the resulting optimal arrangements will again be geometrically identical.

v Remove redundant configurations as in 5). Go to 2). » Changes in the configuration result in small energy changes, leading to slow
convergence in many cases. Local minima have energy spacings as small as 107° %.

HL:_ZlogﬂXi_XjD g y gy spacing 0

i< » Occasionally the routine finds ‘flat’ regions with forces equal to are zero to numerical

Narrow Escape (NE) Potential Configuration and Energy Results for the Coulomb Potential precision but the configuration is non-optimal. Each configuration is checked by

» Asymptotic analysis of the Narrow Escape Problem. verifying that the Hessian matrix is positive—definite.

1 N » Few globally optimal configurations have simple/symmetric particle arrangements.
HNEZH0+§HL—Z§10g(2—I— ‘XZ'—X]'D.

1<J

» N = 5,6, 7: one particle at each pole; NV — 2 particles equally spaced on the equator.
» N = 12: an inscribed icosahedron, Figure 8. Future Work

» Multiple, closely-spaced local energy minima for higher V. » Study the topology (arrangement of defects) for different pairwise energies.

Formulation of the Narrow Escape Problem » Refine the local optimization algorithm for more exhaustive local minimum analysis.

» Optimizations for larger V.
All Normalized Energy Minima (Coulomb) » Generalize to non-spherical domains.

» A particle undergoes Brownian motion in a bounded domain (2, with small openings / 1.0001
(traps) at x; on the boundary Of2.

» The remaining parts of the boundary are reflecting. e 1.00008 ‘ References

1.00006
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Figure 3: Example domains and particle trajectories [3]. Number of Coulombic Particles (N)
Figure 6: Normalized spectra of local Coulomb energy minima, [3] A. F. Cheviakov, M. Ward, and R. Straube.

(b) 80< N =114 An asymptotic analysis of the mean first passage time for narrow escape problems.

location-dependent Narrow Escape Potential (2). ;:;)g'i;ep*:’:tig'efa”y optimal arrangements for (a) N'=6 and Multiscale Modeling & Simulation, 8(3):836-870, 2010.
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» In the limit of small traps, minimization of the MFPT requires the minimization of the




