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Abstract

Symmetry methods are important in the analysis @edential equation (DE) sys-
tems. In this thesis, we focus on two significant topics in syatry analysis: non-
locally related partial dferential equation (PDE) systems and the application of
the nonclassical method.

In particular, we introduce a new systematic symmetry-thasethod for con-
structing nonlocally related PDE systems (inverse patkstistems). It is shown
that each point symmetry of a given PDE system systematigidlds a nonlocally
related PDE system. Examples include applications to neatireaction-diusion
equations, nonlinear fiusion equations and nonlinear wave equations. Moreover,
it turns out that from these example PDES, one can obtaironahfymmetries (in-
cluding some previously unknown nonlocal symmetries) femme corresponding
constructed inverse potential systems.

In addition, we present new results on the correspondereeeba two poten-
tial systems arising from two nontrivial and linearly inéglent conservation laws
(CLs) and the relationships between local symmetries of B Byatem and those
of its potential systems.

We apply the nonclassical method to obtain new exact solsitié the nonlin-
ear Kompaneets (NLK) equation

Uy = X% (X* (et + Bu+ yuz))x,

wherea > 0,8 > 0 andy > 0 are arbitrary constants. New time-dependent exact
solutions for the NLK equation

U = X2 (X4 (aux + yuz))x,

for arbitrary constantexr > 0, y > 0 are obtained. Each of these solutions is
expressed in terms of elementary functions. We also condfigebehaviours of
these new solutions for initial conditions of physical netst. More specifically,
three of these families of solutions exhibit quiescent b&ha and the other two
families of solutions exhibit blow-up behaviour in finitanie. Consequently, it
turns out that the corresponding nontrivial stationaryisohs are unstable.
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Chapter 1

Introduction

The use of symmetries to investigate the solvability of ¢igna can be traced
to the middle of the nineteenth century when Galois estadtishe relationship
between the solvability of polynomial equations by radicahd their symmetry
groups. Motivated by Galois’ work, Sophus Lie developedtie®ry of continuous
groups, i.e., Lie groups, to deal with the solvability offdrential equations (DES)
by quadratures [66, 57].

A symmetry of a DE system is a transformation which maps thatisas of
the DE system to other solutions. In this thesis, our intdeelmited to symme-
tries that are connected local Lie groups (continuous syimesg which can be
characterized by their infinitesimal generators. Throughhbis thesis, “symme-
try” means “continuous symmetry”. One important type of syetry is a local
symmetry. Local symmetries include:

e point symmetries: in evolutionary form, the componentsrofrdinitesimal
generator for dependent variables depend at most lineatlgeofirst deriva-
tives of dependent variables;

e contact symmetries (exist only for scalar DESs): in evoludity form, the
component of an infinitesimal generator for the dependeriaibie depends
at most on first derivatives of the dependent variable;

¢ higher-order symmetries: in evolutionary form, the comgus of an in-
finitesimal generator for dependent variables depend at amoBnite order
derivatives of dependent variables.

An important feature of a point symmetry is that one is abldind such a
symmetry systematically by Lie’s algorithm. Lie’s algdih for finding the point
symmetries of a DE system is presented in [21, 25, 28, 29,3% % 76, 80, &7].
In finding the point symmetries of a DE system, one need only e compo-
nents of their infinitesimal generators. The invarianceddns yield a system
of linear determining equations, which can be solved eitplithrough various
existing software packages. There are some popular pregfansolving large
over-determined DE systems, e.g., DIFFGROB2 [69, 70],dgtedhform [84], rif
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[B5], CRACK [94], etc. Lie’s algorithm can be extended to fewhtact or higher-
order symmetries, in which one needs to take tlieintial consequences of the
given DE system into consideration.

Once one obtains a symmetry of a DE system, various apjlitatrise.

e One can construct new solutions from known solutions.

e One can reduce the order of a given ordinarffedential equation (ODE).
Moreover, one can obtain the solutions of the given ODE frbasé of the
reduced ODE.

e One can construct invariant solutions for a given partifiedential equation
(PDE) system.

From the knowledge of the contact (point) symmetries, ormdblis to

¢ determine whether a given scalar PDE (PDE system) can beiblyanapped
into a linear scalar PDE (PDE system), and find such a mappivemt ex-
ists (25, 29, 31, 62];

¢ determine whether a linear PDE with variable ffméents can be invertibly
mapped into a linear PDE with constant fia@ents, and find such a map
ping when it exists [18, 25, 29, 30].

In 1918, for a variational system, Emmy Noether introduceaethod for con-
structing conservation laws (CLs) from point symmetriestefaction functional
[72]. In 1921, Bessel-Hagen extended Noether's work tautheldivergence sym-
metries, which leave invariant the action functional tohivita divergence term
[14]. In [S], Anco and Bluman introduced a systematic prageddirect method)
to construct CLs for a given DE system. The direct methoduthes and extends
Noether’s theorem, since it can be applied to any DE systeoreter, the direct
method is coordinate-independent.

Topologically, continuous symmetries are not limited todbsymmetries |2,
25,129, 39, 61, 75, 91, 92]. A symmetry that is not a local sytmynis called a
nonlocal symmetry. A special kind of nonlocal symmetry iymmetry whose in-
finitesimal generator depends on the integrals of the dejpgvariables. However,
it is hard to find such a special kind of nonlocal symmetry ofveiyg PDE system
by applying Lie's algorithm directly to it. A way to seek nacehl symmetries of
a given PDE system is through application of Lie’s algorittora nonlocally re-
lated PDE system of the given PDE system. Two PDE systemscaiigalentand
nonlocally relatedf they have the following properties:
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(1) Any solution of either PDE system yields a solution of dtieer PDE system.

(2) The solutions of either PDE system yield all solutionshaf other PDE sys-
tem.

(3) The correspondence between the solutions of these tvitodyBtems is not
one-to-one.

Throughout this thesis, “nonlocally related” means “eglént and nonlocally re-
lated”.

Nonlocally related PDE systems play a crucial rule in thelocad analysis of
a given PDE system, since one could extend local analysikadstto nonlocal
ones by applying local analysis methods to nonlocally eel@®DE systems. Prior
to the new work presented in this thesis, there are two kngwtematic methods
to construct nonlocally related PDE systeins [7, 19, 23-9632, 43].

(1) The CL-based method: Ugeontrivial local CLs of a given PDE system to
construct &-plet potential system of the given PDE system.

(2) Exclude some dependent variables from a given PDE sy&ietonstruct
subsystems.

Since one is able to find local CLs, provided they exist, ofh@igiPDE system
systematically through the direct method, it is straightiard for one to construct
potential systems of the given PDE system systematicatlyob¥ain subsystems,
one can exclude some dependent variables by cré&sehtiation or direct sub-
stitution from the given PDE system. It is important to rekntirat all potential
systems arising from nontrivial CLs of a given PDE systemremelocally related
to the given PDE system. However, not all subsystems areoailty related to the
given PDE system.

In the framework of nonlocally related PDE systems, norlsganmetries of
a given PDE systerR{x, t; u} can arise from point symmetries of any PDE system
in a tree of nonlocally related PDE systems that inclugés t; u}. When such
nonlocal symmetries can be found for a given PDE system, an@ise such sym-
metries systematically to possibly generate further esalkitions from its known
solutions, to construct new invariant solutions, to findlpoal linearizations, or to
find additional nonlocal CLs.

Finding exact solutions is an essential topic in the field &sDOne can use
symmetries to find invariant solutions of a given DE system.siclassical method
is based on the construction of invariants for a symmetrygi¥an DE system. If
a given PDE system admits a symmetry group, then the indas@ntions cor-
responding to this symmetry can be obtained by solving aceditPDE system

3
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with fewer independent variables than the given PDE systemnjl15], (also see
[27]), Lie’s classical method for finding invariant solut®was generalized to the
nonclassical method. In the nonclassical method, invhsatutions arise from
“nonclassical symmetries”, which keep only some subsethekolutions invari-
ant. By construction, the nonclassical method includesldssical method and
the direct method introduced by Clarkson and Kruskal in [45]

In this thesis, we focus on nonlocally related PDE systeims,nbnclassical
method and their applications. In particular, the follogvitew results are obtained.

e We present a relationship between two potential systensingrirom two
nontrivial and linearly independent local CLs of a given PBjstem.

¢ We find a correspondence between local symmetries of a givénsistem
and those of its potential systems.

¢ We introduce a new systematic symmetry-based method fstrgcting non-
locally related PDE systems and show that such nonlocaligted PDE
systems yield nonlocal symmetries for specific examplesedver, some
nonlocal symmetries are previously unknown.

o We apply the nonclassical method to obtain new exact sokitd the di-
mensional nonlinear Kompaneets (NLK) equati6€] given by

U = X2 (x4 (cxux +Bu+ yuz))x, (1.1)

wherea > 0, 8 > 0 andy > 0 are arbitrary constants. These new exact
solutions are expressible in terms of elementary functant allow one to
study stability properties with respect to initial data.

In Chapter 2, we give a brief introduction to symmetries, @hd their appli-
cations.

In Chapter 3, we present the known framework for constrgctionlocally
related PDE systems and their applications. Twedént cases are discussed:
PDE systems with two independent variables and PDE systethnshiee or more
independent variables. We present the known CL-based ohétiha@onstructing
nonlocally related PDE systems (potential systems) fosdhwo cases. We also
state the method for constructing subsystems of a given BBtEm. In addition,
we present an extended procedure for constructing a treenteally related PDE
systems. Various examples are shown in this chapter. Mergme illustrate how
to use nonlocally related PDE systems to find nonlocal symeseand nonlocal
CLs of a given PDE system. Two new results are presented. riicylar, we
show that for two potential systems written in Cauchy-Kevakaya form, arising

4
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from two nontrivial and linearly independent local CLs of imepn PDE system,
the potential variable of one system cannot be expressedi@salafunction in
terms of the independent variables, dependent variabtetheir derivatives of the
other system. Furthermore, we investigate relationshgig/den symmetries of
subsystems and those of potential systems. We prove thdbealysymmetry of

a PDE system with precisely local CLs can be obtained by projection of some
local symmetry of its1-plet potential system.

In Chapter 4, we present a new systematic symmetry-basdubchéar con-
structing nonlocally related PDE systems. It is shown thst point symmetry
of a given PDE system yields a nonlocally related PDE sysiameise potential
system). It turns out that the nonlocally related PDE systanising from point
symmetries can also yield nonlocal symmetries of a given Bigiem. Some
examples are listed to illustrate this new method.

In Chapter 5, firstly, we review Lie’s classical method fonstyucting invariant
solutions of a given PDE system. Following this, we give arnoatuction to the
nonclassical method. Finally, we use the nonclassical ogetb construct exact
solutions of the NLK equation. It is shown that the noncleaisimethod can yield
further exact solutions beyond those arising from point myatries of the NLK
equation. Moreover, the new solutions are shown to be esiplesin terms of
elementary functions. The properties of such new solutazesexhibited. It turns
out that these new solutions yield five families of solutiarih initial conditions of
physical interest. In particular, three of these familiesautions exhibit quiescent
behaviour, i.e.t,_!LLTu(x, t) = 0, and the other two families of solutions exhibit blow

up behaviour, i.e.t, Itipm(x, t*) = oo for some finitet* depending on a constant in
their initial conditions. Moreover, new stationary sotuts are presented.
In Chapter 6, conclusions and some open problems are pbpose

Throughout the thesis, we use the software package GeM teaksgary com-
putations [40].



Chapter 2

Symmetries, Conservation Laws
and Applications

2.1 Introduction

In this chapter we review the basic ideas of local symmetiesCLs. Lie’s algo-
rithm for finding local symmetries of a DE system is discuss@é also present
equivalence transformations and symmetry classificafiona class of PDEs. As
an end of this chapter, we state the direct method for cortgsiguCLs and some
connections between symmetries and CLs.

2.2 Symmetries of DE systems

2.2.1 Lie groups and local groups of transformations

In applications, symmetries of a DE system are often Lie gsaf transformations
acting on the solution manifold of the given DE.

Definition 2.2.1 An r-parameter Lie groups anr-dimensional smooth manifold
G that is also a group with the property that the multiplicatroap

m: GxG -G, mg hy=g-h, g heG,

and the inversion
i:G > G, (=gt geG,

are smooth.

One significant application of Lie groups involves actionslie groups on
special manifolds.

Definition 2.2.2 A transformation grougacting on a smooth manifold is deter-
mined by a Lie groups and a smooth ma@: G x M — M, denoted byd(g, X) =
g-X, which satisfies
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(1) e- x= x, whereeis the identity ofG andx € M.
(2) g-(h-x)=(g-h)-xforall xe M, g,heG.

In many cases, we are only interesteddnal group action, i.e., for a given
x € M, g- xis only defined for elementgthat lie in a small neighborhood of the
identity e.

Definition 2.2.3 A local group of transformationacting on a smooth manifolk
is determined by a Lie grou@, an open subsed, with {e} x M c D c {G} x M,
and a smooth ma@: D — M, denoted byd(g, X) = g- X, which satisfies

(1) Forallxe M,e-x=x.
2) f(h,x)e D, (@, h-x)eD,and g-h, x) e D, theng-(h-x)=(g-h)-x
Q) If(g,X) e D, then g™, g-x) e Dandg™-(g-Xx) = x.

Among transformation groups, a one-parameter group oftoamations is an
important kind that plays a significant role in various fields

Definition 2.2.4 A (smooth local one-parameter group of transformatiofelso
called alocal flow) acting on a smooth manifolifl is a local group of transforma-
tions®: D — M, whereD c R x M is theflow domain with the properties:

(1) O(e,0(1, X)) = O(c + 1, X), Xxe M, for all &, T € R such that both sides of the
equation are defined.

(2) ©(0,X) = X, xe M.

If D =R x M, 0 is called aglobal one-parameter group of transformatiofts a
global flow).

In order to distinguish the pointe M and the parameter, we use the notation
0O(X; £) to denote a one-parameter group of transformations.

Example 2.2.5 Consider the ma@: R x R? — R given by
O(e, X, ¥) = O(X,Y; €) = (XCOSe — ySing, XSing + yCOSe).

Then® is a global one-parameter group of transformations degdtie rotation
group on a plane.



2.2. Symmetries of DE systems

Theorem 2.2.6If ®: D — M is a smooth local one-parameter group of transfor-
mations, for eaclx € M, define a vector by

d

Xlx==—| O(Xe). (2.1)
de &=0

Then the assignmenti— X|x is a smooth vector field oM, which is called the

infinitesimal generatoof @.

Proof. See [64] for the proof.

Suppose the dimension & is n. In local coordinates, by Taylor’s formula,
for ¢ in a small neighborhood of 0,

O(x; &) = X+ ££(X) + O(?),

where¢ = (£, ..., &") is given by

gkx):% 0@i(x;g), i=1...,n (2.2)

£=

Thus the infinitesimal generator &fis given by

n
0
X = '(X)—. 2.3
;f( )= (23)
The quantitiest’, i = 1,...,n, are called thenfinitesimalsof the one-parameter

group of transformation®. The transformation
X=X+ & &(X) (2.4)
defines thénfinitesimal transformatiorf @.

Example 2.2.7 Consider the rotation grou® in Example[2.2.5. According to
formula [2.3), the infinitesimal generator ®fis given by

On the other hand, the infinitesimal generators can be uselai@cterize a
one-parameter group of transformations. One can obtainribgparameter group
of transformations generated by a smooth vetdhrough solving an ODE sys-
tem. We use the notation exX) to denote the one-parameter group of transfor-
mations generated by, i.e.,

expEeX) = O(X; &).
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One can show that
2 >k
eXPEX)X = X+ ££(X) + %X(f)(x) b=y %Xk(x), (2.5)
k=0

whereX is given by (2.8)¢ = (£1,...,&"), X(&) = (X(£Y),..., X(&"), andXX =
xx k1,

In local coordinates, the one-parameter group of transiioms @(x; €) can
be determined from its infinitesimal generator through 4.iElrst Fundamental
Theorem.

Theorem 2.2.8 (Lie’s First Fundamental Theorem)A one-parameter group of
transformation®(x; £) is equivalent to the solution of the initial value probleon f
a system of first order ODEs

(o) =£@0ce). 0(x0)=x 2.6)

Proof. See [21. 29, 48, 75, 80] for the proof.
Example 2.2.9 Consider the infinitesimal generator

0 0
X = 2ta—x - XU%. (27)

Here the one-parameter group of transformati®xs) = (t(c), X(¢), u(e)) gener-
ated byX satisfies

dt

e

dx _—

e 2t, (2.8)

W_

de ’
with initial value ®(0) = (t, x,u). Solving the equations (2.8), one finds that the
one-parameter group of transformatigdgenerated by is given by

—

=1,
X=X+ 2et, (2.9)
— ue—sx—szt.

<l

The following shows that, by choosing proper local coortiisaa vector field
near a regular pointy, i.e., Xy, # 0, can be expressed in a simple canonical form
[21, 25,29, 39, £3, 64, 75, 76, 80].



2.2. Symmetries of DE systems

Theorem 2.2.10 SupposeX is a smooth vector field on a smooth maniféld and
Xy, # 0 at a pointxy € M. Then there exist smooth coordinatgs, (..,y") on
some neighborhood 0§ such thatX has the coordinate representation (canonical

form) — oy
If y = f(x) is a change of coordinates, then the vector field
X = Zn:gi(x)i. (2.10)
i—1 oxX
has the expression
SN | 1 1 0
X = ; 2,40 Do Ok (2.11)

in they coordinates. Suppose the corresponding canonical catediof the vector
field X are given by

y' = (%),
_ 2

y' = f1(x).
Since the canonical form of is given by%, according to the formula (2.11),
f(X) = (f1(X), ..., f"(x)) satisfies the following first order linear PDE system

ot (X) ay*‘ 3
Zg() o =0, p=1..,n-1
(2.13)

PIC LA @

D g
= X oy

The canonical form of a vector field is essential in the symyaledsed method
for constructing nonlocally related PDE systems, which el presented in Chap-
ter 4.

2.2.2 Lie algebra and Lie bracket

Definition 2.2.11 A Lie algebrais a vector spacg endowed with an operation
[, ]: 8 xg— g, called theLie bracketfor g, that satisfies the following properties
forall X,Y,Z €g:

10



2.2. Symmetries of DE systems

(1) Bilinearity: Fora, be R,

[aX + bY,Z] = a[X, Y] + b[X, Z],

[X,aY +bz] = a[X, Y] + b[X, Z].
(2) Antisymmetry:

[X,Y] =-[Y,X].
(3) Jacobi identity:
[X,IY,Z]] +[Z,[X, Y]] +[Y,[Z,X]] =0.
Definition 2.2.12 Let X andY be two smooth vector fields on a smooth manifold

M. TheLie bracketof X andY is a smooth vector field{, Y]: C*(M) —» C*(M),
whereC*(M) denotes the set of all smooth real-valued functiond/gulefined by

[X,Y] = X(Y(f)) - Y(X(f)) feC™(M). (2.14)
An important property of the Lie bracket is given by the fallag theorem.

Theorem 2.2.13Suppose-: M — N is a difeomorphism an, Y € 7 (M),
where7 (M) denotes the set of all smooth vector fieldsin ThenF.[X,Y] =
[F.(X), F.(Y)], whereF, is the pushforward associated wkh

Proof. See [64] for the proof.

Supposeg is anr-dimensional Lie algebra. LdX4,...,X,} be a basis ofj,
then [X;, Xj] € g, i.e., there are specific constami? i,j,k=1,...,r, called the
structure constantef g, such that

)
[Xi, X1 = > Xk Bj=1,....1. (2.15)
k

The structure constants have the following properties.

Theorem 2.2.14 (Lie’s Third Fundamental Theorem) The structure constants
satisfy
(1) Antisymmetry:

(2) Jacobi identity:

.
> (e + cie + i) = 0. (2.17)
P

Proof. See [43] for the proof.

11



2.2. Symmetries of DE systems

2.2.3 Jet spaces and prolongations

The basic objects we consider in this thesis are DE system&rder to apply
infinitesimal methods to DE systems, it is necessary to extke basic space of
independent variables= (x, ..., x") and dependent variables= (u,...,u™ to
a space including the derivatives wfLet X = R" denote the space ofindepen-
dent variables an@{ = R™ denote the space af dependent variables.

Consider a smooth functioh: X — U, i.e.,u = f(x) = (f(x),..., f™(X)).
For each, there are

_[(n+ k-1
Pk = K
differentk-th order partial derivatives df (x). Let
*g(X
02909 = —— 9%

oxitoxiz - - . Hxik

for every smooth scalar-valued functigéx) = g(x, ..., x"), whered = (j1,..., jk)
is anunordered ktuple of integers with X j, < nforx=1,...,k. We callJ an
unordered multi-indexf orderk, i.e.,|J| = k. We use the notation

ME(X) = B*FL(X), ..., *fM(X)

to denote thé-th order partial derivatives of(x). In particular,0f(x) = 9*f(x).
Hence, there aren- py differentk-th order partial derivatives of (x). It follows
that one needm - py different coordinateg,i =1,...,m,|J| = kto represent all
differentk-th order partial derivatives

i P oku

u) =u =85 (X

of a functionu = f(x). Let Uy ~ R™P be the space of ak-th order partial
derivatives ofu. Consequently, the space of all the derivatives op tol is (") =
U x Uy X --- x U, whose dimension is

m+mpl+---+m|q:n(nl+l)sm|d').

We denote a point irt/®) by u®). For the smooth functiom = f(x), thel-th
prolongation off, denoted by = f()(x), is defined by the equations

uy=a5f' (%), i=1....m
where 0< |J| < |. (By conventionui0 denotes the componeutof u.)

12



2.2. Symmetries of DE systems

Definition 2.2.15 If M c X x U is an open set, thiejet space oM is given by
MO = Mx U x---xU,.

A (local) point transformationacting onM c X x U is defined by a (local)
diffeomorphism orM:

(xu) = (F(x,u),G(x,u)) (x,u) e M. (2.18)
LetK c X be an open set, and K — U be a continuous function. Thgraph
of f is given by
I(f) = {(x,u) e R""xR™: x e K andu = f(x)}.
Thel-th order prolongation of a grapli'(f) is given by
rO(f) = {(xudu,....d'u) : xeK, (udu,...,do) = (f(x).9f(3).....d' F(x)}.
If Tis alocal point transformation oil:

X = (X, u),

- 200 (2.19)

andu = f(x) is a smooth function, thenacts onu = f(x) by acting on its graph.
Hence, it is natural to extendto a mapr() acting on the-th jet space oM, which
maps the derivatives af = f(x) to the derivatives of the transformed function
u = f(X). Thel-th order prolongation ofr is given byr() which satisfies

() (F(I)(f)) =1O(f). (2.20)

An I-th order (local) contact transformatioris a (local) difeomorphism ofvi®)

onto itself: _
=Fxudy, i=1....n

X
. . 2.21
u,=GixuY), j=1....m < (2.21)

for (x, u") e M with the contact conditions:
n n
duf - > U dX =du) - Y uhdX =0, II<l. (2.22)
i—1 i=1
For example, the Legendre transformation

uX5

XUy,

ISl X

Ux = —X,

is a first order contact transformation that is not a first opgtelongation of a point
transformation. The following significant theorem is dudtcklund [12].

13



2.2. Symmetries of DE systems

Theorem 2.2.16If there is more than one dependent varialnhe; 1, then every
contact transformation is the prolongation of a point tfameation. Ifm = 1,
there exist first order contact transformations that ardirgitorder prolongations
of point transformations. However, eveargh order contact transformation is the
I-th order prolongation of a first order contact transfororati

Proof. See [12, 76] for the proof.

Consider the infinitesimal generatérof a local one-parameter group of trans-
formations exp{X) on M c X x U. We define thd-th order prolongation oK

by
d
X0y = &LoeXD@X)“)(x, u®), (2.23)

In local coordinatesX® can be computed by an explicit formula.

Definition 2.2.17 Thetotal derivativewith respect tox is given by the dferential
operator

L .0
Di =Dy = — + u—, (2.24)
W52
where the summation over the multi-indicéss over allJ’ swith |J| > O.

Theorem 2.2.18 Let

n ) (9 m ) 6
— | _ J -

be a smooth vector field oWl. Thel-th order prolongation oK is the smooth
vector field

m
- 9
X0 = X + Z Z 7 (%, u('))ﬁ (2.25)
=13 J
with the codficients
n n
n)(xu¥) = D, (n’ - Zf‘uﬂ) + ) Euy (2.26)
i=1 i=1

where the summation i (2.25) over the multi-indideis over all unordered multi-
indicesJ = (j1,...,jywith1 < j, <nfork =1,...,k,1 <k <I,andD; =
Dj,Dj, - Djy-

Proof. See [21, 25, 29, 39, 53, 75, 76, 80] for the proof.

Let X andY be two smooth vector fields ad c X x U, then their prolonga-
tions have the properties [75, 76]:

14



2.2. Symmetries of DE systems

(1) Linearity: Forcy, ¢z € R,
(€1 X + oY)V = ¢, X0 4 ¢, YO0,
(2) Lie bracket property:
[X,Y](l) - [X(l), Y(l)] )
2.2.4 Infinitesimal methods for symmetries

Before discussing symmetries of a DE system, it is necedsargnsider a sim-
pler case: symmetries of a system of algebraic equationsisi@er a system of
algebraic equations defined foin some manifold\:

Fe(¥) =0, o=1....5 (2.27)
whereF,(x) e C*(M),oc=1,...,s.

Definition 2.2.19 Let M be a manifold an& c M. A local group of transforma-
tionsG acting onM is asymmetry groupf S if wheneverx € S, andg € G is such
thatg - xis defined, thery- x € S.

LetSk = {x: F,(X) =0,0 = 1,..., s} be the set of solutions of the algebraic
equation systen (2.27). A local group of transformati@ris asymmetry groupf
the algebraic equation system (2.27) if it is a symmetry groiSe.

Definition 2.2.20 Let M and N be two manifolds, and leB be a local group of
transformations acting oWl. A function f: M — N is a G-invariant functionif
f(g-x) = f(x) for all xe M and allg € G such thag - xis defined. IfN =R, f is
called aninvariant of G.

Theorem 2.2.21LetG be a connected group of transformations acting on a mani-
fold M. Then/ € C*(M) is an invariant folG if and only if for every infinitesimal
generatoiX of G,

X() =0, forallxe M. (2.28)

Proof. See [75, 76, 80] for the proof.

Definition 2.2.22 Let M be a smooth manifold;?, ..., 7K € C®(M) arefunction-
ally dependenif for arbitrary X, € M there exists a neighborhodadi,, of X, and a
function F(y%, ..., y¥) € C*(R") with F 0 on any open subset &, such that

F({'9,....8 ) =0, (2.29)

for all x € Uy,. Otherwise/?, ..., % arefunctionally independent
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2.2. Symmetries of DE systems

Theorem 2.2.23 Let expeX) be a one-parameter group of transformations act-
ing on ann-dimensional smooth manifolt¥l, and letx, € M be a regular point
for X. Then expéX) has preciselyn — 1 functionally independent local invari-
ants¢(x), ..., "1(x) defined in a neighborhood of. Moreover, any other local
invariant of expéX) defined neaxg is of the form

{09 =F(¢'.....d™ (). (2.30)
for some smooth functiof.

Proof. See [75, 76] for the proof.

Theorems 2.2.21 and 2.2]23 provide a method for constguativariants of a
one-parameter group of transformations near a regulat ggir.et

X=;ém£;

be the infinitesimal generator of a one-parameter grou@oéformations expi).
According to Theorern 2.2.21, a local invaridtik) of expX) satisfies

X() = Zf‘(x)% =0. (2.31)
i=1

Theorem 2.2.23 implies there exist- 1 functionally independent local invariants
of expeX) nearxg. The general solution of the linear homogeneous first oriét P
(2.31) can be obtained through solving the correspondirgacteristic system of

ODEs

1
dd  dé  d¥ 232

Ax 20 X
If the general solution of (2.32) is given by

208, oM =cy, . LN LX) = e,

wherec;’s are constants, theft, ..., /" are functionally independent local in-
variants.

Example 2.2.24 Consider the one parameter rotation group SO(2) with the in-

o 0 0 : . .
finitesimal generatoX = —y& + xa/ . The solution for its corresponding charac-
teristic system
d d
x_ %y (2.33)
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2.2. Symmetries of DE systems

is given byx? + y? = ¢. Thus,¢ = X? + y? is a local invariant of SO(2), and any
local invariant of SO(2) is a function af = X2 + y2. Geometrically, the distance
between a point and the origin is invariant under the ratagimup SO(2).

Theorem 2.2.23 also assures one that there exidtfunctionally independent
solutions ¢1(x), ..., f"™%(x)) of the PDE systeni (2.13) which are used to obtain
corresponding canonical coordinates of a vector fieldn order to obtainf"(x),
one introduces a new variableand solves the following linear homogeneous first
order PDE

5 L0 0L
;fwﬁ*%‘a (2.34)

using the method of characteristics. Since
n
i 0f(x)
'XN—— =1
;f( )~

if and only if / = v— f"(X) is a solution of[(Z.34), one can obtaffi(x) from the
solution of [2.34). Thus the — 1 functionally independent functions(x), . . .,
f"1(x)), together with the functiori"(x), yield the corresponding canonical coor-
dinates ofX.

Example 2.2.25 Consider the vector field = —yaix+x%. Suppose the canonical

coordinates oKX are given by
z= f(xy),
w=g(xy).

From Examplé 2.2.24, one obtairi§x, y) = x° + y2. To obtaing(x,y), one first

(2.35)

finds the invariants of = X + aﬁv i.e., solves the ODEs

dx dy dv
3 X1 (2.36)

Sincer = +/x2 + y2 is an invariant ofY, one replaceg by /r2 — y2in (2.36). This
yields the following equation

d dv
_7L3:T‘ (2.37)
N

Integrating [(2.37) leads to another invariantYofjiven by

l=V- arcsin%/ =V- arctan% .

17



2.2. Symmetries of DE systems

Thus the canonical coordinates Xfare given by

z=x+V

2.38
W= arctan%/( , (2.38)

andX = 9 in (z w) coordinates.
ow

Theorem 2.2.26 Suppose the algebraic equation system (2.27) is of maxanél r
. : Fo). :
i.e., the Jacobian matr x% is of ranksfor everyx € Sg. ThenG is a symmetry
group of the algebraic equation systém (2.27) if and onlgiifdvery infinitesimal
generatoiX of G,

X(Fs(x)) =0, o=1...,5 (2.39)

whenever
F,(xX) =0, oc=1,...,s

Proof. See [75] for the proof.

For the case of a DE system, consider a DE syd®m u} of s DEs of order
| with n independent variables = (x%,..., x") and m dependent variables =
(ut,...,u"M given by

Rxu)) =R (xudy...,0uy=0, oc=1,...,s (2.40)
A solutionof the DE systenR{x; u} (2.40) is a smooth function = f(x) satisfying
Rxfx)=0 o=1...,5
whenx s in the domain off, i.e.,

P = {(x FO00)] € Srixu = {(x 1) : R(x ) =0, o=1....5]

Definition 2.2.27 A point symmetrpf the DE systeniR{x; u} (2.40) is a local one-
parameter group of transformatio@shat leaves invariant the solution manifold of
R{x; u} (2.40), i.e., ifu = f(x) is a solution ofR{x; u} (2.40), and the transformed
function f = g- f is defined forg € G, thenu = f(X) is also a solution oR{x; u}
(2.40).

In order to apply the infinitesimal method to the DE syste{®; u} (2.40), itis
necessary to impose some additional conditionRpq u} (2.40).
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2.2. Symmetries of DE systems

Definition 2.2.28 Consider the DE systeiR{x; u} (2.40). The system is ohaxi-
mal rankif the rank of its Jacobian matrix
R OR”

_ B 2.41
X oy (2.41)

J(x,u®) = [ ]

J 7 sx(n+mph)
with respect to the variable,u") is swheneveR"(x, u") = 0,0 =1,...,s.
The maximal rank condition eliminates the redundancy of askdem.

Theorem 2.2.29 Suppose the DE systeR{x; u} (2.40) is of maximal rank. If
every infinitesimal generatof of a local group of transformatior satisfies

XOrR(xuy =0, o=1,...,5 (2.42)
whenever
R(xu))=0 o=1,...,5
thenG is a point symmetry oR{x; u} (2.40).
Proof. See [21. 25, 29, 39, 53,75, 76, 80] for the proof.

Theorem 2.2.29 provides a systematic way to find point symnoéta DE sys-
tem with maximal rank. However, there is no assurance thgoait symmetries
are found. In order to obtain a necessary anigant condition, the given DE
system must satisfy another condition.

Definition 2.2.30 Consider the DE systemR{x; u} (2.40). The system ibcally
solvableat the point ko, ug)) € Sgrixy If there exists a smooth solutian= f(Xx),

defined in a neighborhood e, which satisfies) = f0)(xy). A system is said to
belocally solvableif it is locally solvable at every point iSgrx.y;.

Definition 2.2.31 A DE system isiondegenerat at every point §o, ug)) e MOt
is both of maximal rank and locally solvable. A DE systertoislly nondegenerate
if it and all its differential consequences are nondegenerate.

Throughout the thesis, unless stated otherwise, all DEEgyshre assumed to
be totally nondegenerate.

Theorem 2.2.32 Suppose the DE systeR{x; u} (2.40) is nondegenerate. A local
group of transformation& is a point symmetry oR{x; u} (2.40) if and only if

X0 (x,uM =0, o=1,...,5s (2.43)

whenever
Rxu)=0 o=1...5

for every infinitesimal generatof of G.
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2.2. Symmetries of DE systems

Proof. See [21, 25, 29, 39, 53,75, 76, 80] for the proof.

According to the properties of prolonged vector fields, o all infinitesi-
mal symmetries of a nondegenerate PDE system forms a Libralge

Definition 2.2.33 An I-th order DE system isegular if it is of maximal rank,
analytic and contains all its fllerential consequences up to ortlare., no further
differential consequences of ordeor less can be obtained from the DE system
through diferentiation or taking integrability conditions.

Theorem 2.2.34 A regular DE system is nondegenerate.

Proof. See [63] and references therein for the proof.

Theoreni 2.2.32 provides us a systematic way to find the pgintreetries of
anl-th order nondegenerate DE system.

Algorithm 2.2.35 (Lie’s algorithm for finding point symmetr ies} Consider an
I-th order nondegenerate DE syst&fx; u}.

1. Let the infinitesimal generat® of the point symmetries be of the form

n ] a m ] a
- | - J —
X‘;f(x’“)axi +;n(x,u)auj,

where the infinitesimals'(x, u) andz!(x, u) are unknown functions of and
uto be determined.
2. Find thel-th order prolongatioiX of X according to Theorem 2.2.32.

3. Apply thel-th order prolongatiorX(! to R{x; u}, and eliminate the depen-
dencies among the derivativeswérising fromR{x; u} itself.

4. Set the coficients of the remaining derivatives afto be zero. This step
yields a system of linear PDEs for the unknown functights, u) andn!(x, u),
called thedetermining equationsf the infinitesimals of the point symme-
tries of R{x; u}.

5. Solve the determining equations explicitly to obtain geaeral solutions of
&'(x u) andn!(x, u).

6. Exponentiate the infinitesimal generadrto obtain the global symmetry
groups.
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2.2. Symmetries of DE systems

Example 2.2.36 Consider the nonlinear reactionfidision equation
U — Uy = WP, (2.44)

Since the nonlinear reactionfflision equation (2.44) is totally nondegenerate, one
can apply Algorithm 2.2.35 to find its all point symmetriegtL

0 0 0
X = &(x t, u)& +7(X% t, u)a +n(x,t, u)% (2.45)

be the infinitesimal generator of a point symmetry of the m&ar reaction-dfusion
equation[(2.44). TheK is an infinitesimal point symmetry of the nonlinear reaction
diffusion equation (2.44) if and only if its second order proktimn X® satisfies

X@(u; — uyy — U3)| = 0. (2.46)

U =Uny U3

According to Step 4 in Algorithm_2.2.85, one obtains thedaiing determining
equations
u37'uu —Nuu+éxu=0,
26y — UgTu +Txx =Tt =0,
2u3Txu -é— Usé:u +&xx — 2xu = 0, (2.47)
Mt — Mxx — 3U277u + U377u - U3Tt - UGTu + USTxx =0,
=0, 7=0, 7qu=0, éw=0, &+7x=0.

Direct computation shows that the nonlinear reactidfiidion equation[(2.44)
only has the three point symmetries given by the infinitetipaerators

X1= ﬁ Xo = ﬁ
oX ot
(2.48)
X3 = x2 + ZtQ - u2
37 T Tat au

Moreover, the corresponding one-parameter groups offtranationsG; gener-
ated byX; are given by

Gy (Xt U) = (x+stu),
Go: (Xt,u) = (xt+su), (2.49)
Gs: (X 1,U) = (¢'x €t e7u).

21



2.2. Symmetries of DE systems

2.2.5 Contact and higher-order symmetries

The infinitesimals for a point symmetry depend only>oandu. A natural exten-
sion of the notion of point symmetry is by allowing the infestmals to depend
on derivatives ou. We use the notatioR[u] to denoteP as a smooth function
depending orx, u and derivatives ofi.

Definition 2.2.37 A generalized vector field an expression of the form

X = Zf [l + Zn =, (2.50)

where¢' andp! are smooth functions.

Analogous to the prolongation of a smooth vector field, lttte prolongation
of a generalized vector field is given by

m
X0 =X + Z Z ng[u]ij (2.51)
=1 1<J|< auy

with the codficients

n)[u] = D, [nj - Zfiui’] Zg uh (2.52)
i=1

with the same notation as in Theorem 2.2.14. In particuhairtfinite prolongation
of (2.50) is the infinite sum

X = X + Z Z il ] (2.53)

j=11J>1
whereng[u] is given by (2.52).

Theorem 2.2.38If the number of dependent variables is one, nes 1, a gen-
eralized vector fielX is an infinitesimal generator of a one-parameter group of a
(first order) contact transformation if and onlydfu] = &(x, u,du) andni[u] =
*(x, u, du) satisfy

o'l Z U O£ _ j=1....n (2.54)

Juj = duj

Proof. See [25, 76] for the proof.
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Definition 2.2.39 A generalized vector field is ahigher-order infinitesimal sym-
metry(or an infinitesimal generator oftdgher-order symmetjyof a DE system

R7[u =0 o=1,...,5s (2.55)

if and only if
X®RU =0, o=1,...,5s (2.56)

on any solution of((2.55). In particular, fon = 1, if X is an infinitesimal gen-
erator of a one-parameter group of contact transformatiescall X a contact
infinitesimal symmetry

Definition 2.2.40 A local symmetryis a point symmetry, contact symmetry or
higher-order symmetry.

In practice, it is useful to consider the generalized vefiedd with £'[u] = 0.

Definition 2.2.41 A generalized vector field

m ) 6
- 11 Y il
Xq=) Q-
j=1
is called arevolutionary generalized vector fiel@he m-tuple of diferential func-
tions Q[u] = (Q[ul], ..., QMu]) is called itscharacteristic

Theevolutionary formof a generalized vector field (2.50) is given by

X = Z (ni - Zgiu{) %. (2.57)

Them-tuple of diferential functions

n

QM = (Qul, ... Q"u) = (nl - > Eul - Zf‘ui’“) (2.58)
i=1

i=1

is the correspondingharacteristicof the generalized vector fiel.
Consider the one-parameter group of point transformatgererated by the
infinitesimal generator

N i DN i 0O
X = ;g (U7 + ;n (). (2.59)
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given by
(2.60)

with x = (x4,...,x") andu = (u%,...,u™. Letu = f(X) be a surface iX x U
space. The one-parameter group of point transformatiop&Xx mapsu = f(x)
into a family of surfacesi = g(x; &) in X x U space. According to the property of
one-parameter group of transformations, one obtains

X — s£(X, 1(X) + O(?),
u—en(x, (X)) + O(?),

X = expeX)x (2.61)
o :

u=expeX)u =
where¢ = (£,...,&" andn = (3,...,7™). Substituting equations (2.61) into
u = f(x), one obtains
U—en(x £(3) + O(e?) = f(x~ e&(x f(X) + O?)
(2.62)

=10 -e ) T 1(9) + 0.
i=1

It follows that

0= 19+ [n<x—, @)~ Y, 2z f(i»)e LOE).  (263)

n
i=1 d

Replacingx by x, u by u in (2.63), one obtains the image surfaees: g(x; ).
Keepingx invariant, the following one-parameter group of transfations

X=x, i=1....n,

(2.64)

n
= u+[n(x,u)—Zu|'(§k(x,u) e+0@E? j=1....m
=

mapsu = f(X) into the same image surfacas= g(x;&). It turns out that the
infinitesimal generatoK and its evolutionary fornX determine the same action
on surfaces. Figure 2.1 illustrates the action of eXp@nd expéX).

In general, a generalized vector fieldand its evolutionary fornX are equiv-
alent in symmetry analysis [21, 25, 29, 39, 53, 75].

Theorem 2.2.42 A generalized vector fielX is an infinitesimal symmetry of a
DE system if and only if its evolutionary forix is.
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~_ |

(a) The action of expX) (b) The action of expa(f()

Figure 2.1: The action of expK) and expéX).

One can extend Lie’s algorithm for finding point symmetriesghe algorithm
for finding local symmetries of a DE system through repla¢ch@symmetry by its
evolutionary form and letting the characteristics depenc,as and a fixed order
of derivatives. Then one applies its infinite prolongatiorthte given DE system.
In eliminating the dependencies among the derivativas tfis necessary to take
the diferential consequences of the given DE system into considera

Symmetry is one of the main tools in the analysis of DEs. InGQiXE case,
using a continuous symmetry to integrate an ODE is one of tbst important
applications. It turns out that one can use a continuous stnyno reduce the
order of a given ODE. If an ODE has a one-parameter symmetypgrthen the
order of the ODE can be reduced by one. If an ODE hasperameter symmetry
group and its corresponding Lie algebra is solvable, theroof the ODE can
be reduced by. Moreover, one can obtain the solutions of a given ODE froen th
solutions of the corresponding reduced ODE. The reductitimecorder of an ODE
through a symmetry can be obtained in twéf@lient ways: canonical coordinates
or differential invariants.

In the PDE case, besides constructing new solutions fromRrames, one can
use symmetries to construct invariant solutions, which wéldiscussed in Chap-
ter 5. Moreover, one can use the knowledge of symmetriesristeat invertible
mappings relating PDEs. 1n [62] (also sze [25, 30, 31]), Kuane Bluman intro-
duced an algorithm to determine whether there exists a $nioartible mapping
that maps a nonlinear PDE system to a linear PDE system basegnametries
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and find such a mapping when it exists. In [17, 18] (also see30), Bluman
presented a symmetry-based algorithm to determine whetlieear PDE with
variable coéicients can be invertible mapped to a linear PDE with constaet-
ficients and find such a mapping when it exists.

2.2.6 Equivalence transformations and symmetry classifi¢deon

If a given DE system involves some constitutive functiond/anparameters, there
exist some special transformations of the system, whickepve the dterential
structure of the DEs in the family. Such transformationsiamgortant in the sym-
metry analysis of the system. Consider a fan§ily of DE system$R{x, u; K}:

R(xu);K)=0, o=1,...,5 (2.65)
involving p constitutive functions aridr parameter& = (K, ..., Kp).

Definition 2.2.43 An equivalence transformatioaf a family x of DE systems
is a transformation that maps a DE systBiix, u; K} € Fk to another DE system
R{x u; K} € Fk.

For example, a one-parameter group of equivalence tranaf@ns of a family
&k of DE systems is a one-parameter group of equivalence tnanations

=¢(xue), i=1....n,
=ylxue), j=1,....m (2.66)
K, =6,(xuK;&), v=1,...,p

S

which maps a DE systeR{x, u; K} € §k to another DE systeR{X, U; K} € Fk.

Example 2.2.44 Consider the nonlinear reactionfgision equation

Ut — Uxx = Q(u), (2.67)

whereQ(u) is an arbitrary constitutive function. In order to find theegparameter
groups of equivalence transformations of the nonlinearti@a-diffusion equation
(2.67), one treats the constitutive functiQu) as a new dependent variable and
apply Algorithm[2.2.35 to the nonlinear reactiorffdsion equation (2.67). Ac-
cording to the transformations_(2/66), one can supposenfirétésimal generator
is given by

0 0 0 0
X = &(xt, u)a—x + 7(X, t, U)E + n(x,t, u)% + (X, t,u, Q)a_Q' (2.68)
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2.2. Symmetries of DE systems

Applying (2.68) to the nonlinear reactionfllision equation (2.67), one obtains the
infinitesimal generators given by

0 0
X1 =UF— F+uF)—
1 o5 (QF + )aQ’

0 0
X2 = G_ + (Gt - Gxx)_,

ou ETe)
o= ZH < U 7 - XUH + Q) (2.69
X4 = %XP/(% + p% _ %qup,,%
: (%“p' - SRUP” - 2RQP - QF’) &

whereF = F(t), G = G(xt), H = H(t) andP = P(t) are arbitrary functions.
Since the constitutive functio® depends only om, for the aboveX; to generate
equivalence transformationB, G, H andP must satisfyF(t) = C1, G(x,t) = Cy,

H = 0 andP” = 0, whereC; andC, are constants. Therefore, the infinitesimal
generators (2.69) become

0 0
Y1= U5t g
0 0 0
= — = — = — 2.70
Ya=on Ya= o0 Ya= o (2.70)

o 0 P
Ys =202 4 xL 202
5= 23+ X35 ~ Q55

The five-parameter group of equivalence transformatioisingrfrom the infinites-
imal generatord (2.70) is given by

X=aiX+ ay,
t=alt+ag,
U= ayu + as, (2.71)

Q@) = %Q(U)-

A symmetry classification probleaf a family §x of DE systems with consti-
tutive functions antr parameters is to classify DE systems in the family intosom
subfamilies with the property that all DE systems in the saoigamily admit the
same symmetries. It is common to use the group of equivalieassformations to
simplify the point symmetry classification problem [1, 2, B8, 80, 82]. There-
fore, a point symmetry classification table is usually pnése modulo the group
of equivalence transformations of the given family of DEteyss.
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2.3 Conservation laws and the direct method

2.3.1 Conservation laws
Consider a DE systefR{x; u} with nindependent variables= (x, ..., x") andm
dependent variablas= (ut,...,u™).
Definition 2.3.1 A conservation lavof R{x; u} is a divergence expression
div (®[u]) = D1®u] + --- + Dy®"[u] =0 (2.72)

holding for every solutioru = f(x) of R{x; u}. The functionsP'[u], i = 1,...,n,
are called théluxesof the CL.

Remark 2.3.2 If one of the independent variables of a PDE system is tiraeCL
of the PDE system is of the form

n
D[] + > Di@'[u] =0, (2.73)
i=1
wherex = (xL,...,x" aren spatial variables¥[u] is the densityof the CL [2.73),
and®'[u], i = 1,..., n, are thespatial fluxesof the CL (2.73).

A CL could trivially hold in two diferent cases.

(1) Then-tuple®[u] in (2.72) vanishes for all solutions of the given DE system.
This type of triviality is called thdirst kind of triviality.

(2) The divergence expression dij(]) = 0, i.e., divfp[u]) = O holds for all
functionsu = f(x). This type of triviality is called thesecondkind of trivi-
ality. Suchn-tuple ®[u] yields anull divergence

There is a useful characterization of a null divergence as sethe following
theorem.

Theorem 2.3.3 Suppose®[U] = (®U],...,d"[U]) is an n-tuple of smooth
functions depending o®, U = (U1,...,U™) and their derivatives. The®[U]

yields a null divergence if and only if there exist smoothdtions Q;;[U], i, ] =

1,...,n, such that

Qij[U] =-Q;[U], 1,j=1...,n, (2.74)
and

o'[U] = > DjQ[U], i=1,....n, (2.75)
=1
hold for all functionsU (x) = (U(X), ..., U™(x)).
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2.3. Conservation laws and the direct method

Proof. See [75] for the proof.

Definition 2.3.4 A CL div (®[u]) = 0 of a given PDE system tsivial if its fluxes
are of the form®'[u] = A'[u] + B'[u], where A'[u] are the fluxes of a first kind
trivial CL and Bi[u] are the fluxes of a second kind trivial CL= 1,...,n. Two
CLs areequivalentif they differ by a trivial CL.

Throughout this thesis, unless stated otherwise, a “CL’maea “nontrivial
cL".
A set of k CLs {div (@;[u]) = 0}';:1 is said to belinearly dependentf there

exists a set of constan{aj}';_l, not all zero, such that the linear combination

div

Z aj(Dj[U]] = 0is a trivial CL.
=1

Consider a totally nondegenerate DE syste{®; u} with n independent vari-
ablesx = (x4,..., x") andmdependent variablas= (ul, ..., u™) given by

Ru=Rxu=0 oc=1,...,s (2.76)

Definition 2.3.5 A multiplier (characteristic)of a CL div(®[u])= O of the DE
systemR{x; u} (2.76) is ans-tuple A[U] = (A1[U], ..., Ag[U]) such that

S
Z A, [UIR’[U] = div(®[U]) (2.77)
o=1
holds for all functiondJ (X). A multiplier is trivial if it vanishes for all solutions of

the DE system. Two multipliers aefjuivalentif they differ by a trivial multiplier.

In fact, any CL of a totally nondegenerate DE system arisa® fmultipliers
to within a trivial CL. Since the DE systeR({x; u} (2.76) is totally nondegenerate,
div(®[u]) = 0 is a CL of the system if and only if there exist functio@s such
that

div(®[U]) = Z QJ[UID;R7[U] (2.78)
o,J
holds for all functiondJ (x). After integrating by parts, one obtains
div(®[U]) = Q[U] - R[U] + div(¥[U]), R=(R,...,RS), (2.79)
whereQ[U] = (Q1[U],..., Qs[U]) with entriesQ,[U] = Z(—D)JQ(JT[U], and
J

Y[U] = (PYHU],...,¥"[U]) depends linearly orR“[U] and their derivatives.
Therefore, divfP[u]) = 0 is a trivial CL of the given system.
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2.3.2 The direct method

Definition 2.3.6 TheEuler operatorwith respect tas*, 1 < a < m, is defined by
0

Ew = -D);— 2.80

! ;< 2P (2.80)

where the summation is over all multi-indicds= (j1,...,jx) with1 < j, < n
forx = 1,...,k [J] > 0, and £D); = (-1)¥Dy = (-Dj,)(-Dj,)--- (-Dj,) for
J=(jx-» J0)-

One of the most important properties of the Euler operatocharacterized in
the following theorem [€, 25, 75].

Theorem 2.3.7 The equation€y, (F[U]) = 0, @ = 1,...,m, hold for arbitrary
function U(X) if and only if F[U] = div(®[U]) for somem-tuple of diferential
functions®[U] = (®[U],..., dM[U]).

In [9] (also see [25]), Anco and Bluman introduce a systemagy, calledthe
direct methodfor constructing CLs for the DE systeR{x; u} (2.76).

Algorithm 2.3.8 (The direct method for constructing CLS):

1. LetA,[U] = A-(x, UX), o = 1, ..., s, be thek-th order multipliers for CLs
of the DE systeniR{x; u} (2.76). Eliminate the dependence of the derivatives
of U due to the DE systeR{x; u} (2.76).

2. Solve the system of determining equations generated by

Eye ZAG[U]R"[U]] =0, a=1,...,m (2.81)
o=1

explicitly to obtain its general solution ses,[U]}S_;.

3. Find the corresponding fluxes for each solution{agfU]}>_,. In particu-
lar, find ann-tuple of functions®[U] = (®[U],..., ®"[U]) satisfying the
identity

div(®[U]) = ZAG[U]R"[U]. (2.82)

o=1

4. ReplacdJ and their derivatives by and their derivatives ir_(2.82) to obtain
a CL of the DE systenR{x; u} (2.76) given by

div(®[u]) = O. (2.83)
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2.3. Conservation laws and the direct method

Remark 2.3.9 For a PDE system with independent variables, &) = (t, x%, ...,
x"1) andm dependent variables, . .., u™) in Cauchy-Kovalevskaya form

did | .

i flxtudy,....,0u), 1<lj<l, j=1....m (2.84)
where, for eachj, the orders of all derivatives with respectttappearing inf! are
lower thanl;, it suffices to consider specific forms of multipliers. In particutzme
can rewrite the PDE systern (2184) into the following equémalform

o
ot

wheredli denotes thé-th order partial derivatives af With respect tox (90 =
at). It follows that all derivatives with respect tacan be expressed in termstof
X, G and derivatives ofl with respect tax from the equations (2.85). According to
Theoren 2.3.10, all nontrivial local CLs o¢f (2)85), up to emlence classes, arise
from the multipliers of the formA,[U] = Ax(xt, U, 8,0, ..., ak0)™ .

= f(t %, 0,0x0,...,80), v=1,...,m, (2.85)

The correspondence between equivalence classes of CLyies& of multi-
pliers of a PDE system in Cauchy-Kovalevskaya form is stateithe following
theorem [9, 25, 75].

Theorem 2.3.10 Suppose a given PDE system is in Cauchy-Kovalevskaya form.
Let L andL be two CLs of the given PDE system determined from the migtigl

A andA, respectively. Theh andL are equivalent CLs if and only it andA are
equivalent multipliers.

Once one obtains the set of multipliers for a local CL, a probls how to find
the corresponding fluxes. The method that is used to find fldeesnds on specific
problems [4, 6, 8, 9, 42, 93]. For multipliers in simple fornas dfective way
is integration by parts. For multipliers in complicatedrfia, Anco and Bluman
introduced the following integral formula for finding theroesponding fluxes [9].

Theorem 2.3.11For a given set of local CL multipliers\,[U] = A,(x, U®)}S_,
of the DE system(2.76), its corresponding fluxes are givethbyfollowing inte-
gral formulas:

@'[U] = @'[U]

1 . ~ ~
N fo (SU-0.A00 + @-00ERAV + - 001

+ 8 [U-0.RaU + (1- 0] AU + (1 - 1)0]]) da,
i=1,...,n,
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with
I-11-p-1 m s
- IR[U]
i . _ °]
SMWRUL =3 ) ) ) (1DivDa| ) Wiy } (2.87)
p=0 g=0 p=11,J o=1 il
and
k-1 k-p-1 m S [U]
VAT q ™ X 0'
SV, W: A[U]] = ] Z > (11D, VD, Zw 07 ] (2.88)
p=0 g=0 p=11,J o=1 il

for arbitrary~ functions\{ = (\fl(x),...,\/Nm(x)), W = (Wi(X),...,Ws(x)), V =
V), ...,V™(x)) andW = (Wi(X), ..., Ws(X)), whered = (ji,..., jq) andl =
(i,...,ip) are ordered multi-indices such thaklj; < --- < jg<i<ip <--- <
ip<n.

Example 2.3.12 Consider the nonlinear filusion equation
— (uu)x = 0. (2.89)

Applying the Euler operatdgy to the functionA(x, t, U) (U; — (UUy)y) yields the
expression
Eu (A(x t,U) (U - (UU)) =0, (2.90)

for arbitrary U (x, t). Splitting equation[(2.90) with respect to arbitrddy, Uy and
U,y leads to
- AU - UAUU = O,

—-2UAy =0,
—2UAx =0,
—At—UAx=0.
The general solution of equationis (2.91Néx,t,U) = ¢ X + ¢p, wherec; andc;

are arbitrary constants. Thus there are two linearly inddeet multipliers of the
form A = A(x,t,U): A; = 1 andA, = x. The corresponding CLs are given by

(2.91)

A1 =1: Diu— Dy(uuy) =0,
2 2.92
u )= 0 (2.92)

Ao = X Dy(xu) — Dy (xuw )

The next theorem shows that it is possible to use the diretiiadeo find all
local CLs for an evolution equation of specific form [54].
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Theorem 2.3.13 Consider the (#1)-dimensional scalar evolution equation with
two independent variables, ) and one dependent variableof even order R
given by

U = F(X Uy, . .., 02U). (2.93)

If a CL of the equation[(2.93) is given by
D{¥[u] + Dx®[u] = 0O, (2.94)
then the maximal order of a derivative ofn W[u] is I.

A notable result relating CLs and symmetry groups was obthiny Noether
[72]. Noether showed that each CL of a DE system admittingriati@nal princi-
ple arises from a point symmetry (variational symmetry)haf aiction functional.
Boyer [38] extended Noether's theorem by taking higheeorsymmetries into
consideration. In particular, a one-parameter higheefotréinsformation (in evolu-
tionary form) is a variational symmetry of an action funotbif the corresponding
Lagrangian is invariant to within a divergence term undehsa transformation.

However, there are some limitations of Noether’s theorenfifoling CLs of a
given DE system. First of all, the given DE system is restddib Euler-Lagrange
equations for some variational problem. In addition, it asngtimes dficult to
determine the variational symmetry for a given system ofElhgrange equa-
tions. It is incorrect that all symmetries of a system of Edlagrange equations
are variational symmetries of the corresponding actiorctional. In order to
check whether a symmetry of a system of Euler-Lagrange mmsats a varia-
tional symmetry of the corresponding action functionak anust firstly determine
the corresponding Lagrangian of the action functionalalymnNoether’s theorem
is coordinate-dependent since an invertible transfoonathay transform a DE
system admitting a variational principle to a DE system tfest no such property.
However, any invertible transformation maps a CL of a givéndystem to a CL of
the transformed one, i.e., CLs are coordinate-independeémis an ideal method
for finding CLs should be coordinate-independent.

The direct method for finding CLs is superior to Noether'stigen in the sense
that it is free of all the above limitations. The direct meattzan be applied to any
DE system, whether it is variational or not. Moreover, it sio®t require one to
find the variational symmetries and Lagrangian when theg¥e system is a sys-
tem of Euler-Lagrange equations. In fact, the direct metioectly generates the
multipliers for CLs of any given DE system. Most importantlye direct method
is coordinate-independent.

The next theorem shows that a divergence expression is mappealivergence
expression by a point transformation [25, 35, 81].
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Theorem 2.3.14 Under the point transformation

X =xX(zW), i=1...,n,

_ ] _ (2.95)
u'=ulzw), j=1,....m

whereU = (UY(x),...,UM(X)),z=(Z,...,2") andW = (Wi(2),..., W"(2)), there
exists am-tuple ¥[W] = (¥[W], ..., ¥"[W]) such that
JWIdiv(@[U]) = div(P[W]), (2.96)

where®[U] = (®[U],...,d"[U]), JW] = g(é};f;:)’ anddiv is the divergence
operator onZ, W) space. o

Remark 2.3.15 Similar to Theorem_2.3.14, it is straightforward to showttla
m = 1, then any contact transformation maps a divergence eipremto a diver-
gence expression.

The following theorem illustrates how the fluxes change urdeymmetry in
evolutionary form [75].

Theorem 2.3.16 Let div(®[u]) = 0 be a CL of a totally nondegenerate DE sys-
tem R{x;u}. If X is a symmetry in evolutionary form dR{x;u}, then the in-
ducedn-tuple ® = X (@[u]), with entriesd[u] = X (@i[u]), also yields a
CL: div(®[u]) = 0.

Besides the basic applications of CLs, a CL could also be tse@termine
whether a nonlinear PDE can be mapped into a linear PDE thrangnvertible
transformation. In [10], Anco, Bluman and Wolf presentecalgorithm for deter-
mining whether there exist an invertible transformatioat tmaps a nonlinear PDE
into a linear PDE through CLs. Moreover, one can use thisrilgo to explicitly
find such an invertible transformation provided it exists.
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Chapter 3

Nonlocally Related PDE Systems
and Applications

3.1 Introduction

In Chapter 2, we presented algorithms to find local (poimttact or higher-order)
symmetries for a given DE system. Since a symmetry of a DEEBy# a trans-
formation that keeps its solution manifold invariant, ipisssible that the infinites-
imals of a continuous symmetry need not depend only on intip# and depen-
dent variables and their derivatives. Such symmetries aréogal symmetries,
and are callechonlocal symmetriesA special kind of nonlocal symmetry is one
whose infinitesimals depend on integrals of the dependeiatblas. However, it is
not possible to find such nonlocal symmetries through a taeglication of Lie’s
algorithm to the given DE system. In addition, there is thabpgm of how to use
such symmetries.

As stated in Chapter 1, two PDE systemsegaivalentandnonlocally related
if they have the following properties.

(1) Any solution of either PDE system yields a solution of ttleer PDE system.

(2) The solutions of either PDE system vyield all solutionshef other PDE sys-
tem.

(3) The correspondence between the solutions of these tvitodyBtems is not
one-to-one.

Nonlocally related PDE systems are important in the anslgsa given PDE
system. In particular, one may be able to obtain new exaatienk for a given
PDE system through solutions of its nonlocally related PP&esns. Bluman,
Kumei and Reid [32] introduced a systematic CL-based mefbodonstructing
nonlocally related PDE systems of a PDE system with two irddpnt variables.
In [23], an extended procedure for the construction of a dfagonlocally related
PDE systems was presented. It turns out that one can obtaloaab symme-
tries and nonlocal CLs for a given PDE system through its oxally related PDE
systems (see [25] and references therein).
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In [7], a systematic CL-based method for constructing neelly related PDE
systems of a PDE system with three or more independent \esialas presented.
However, in this case, nonlocally related PDE systemsnayifiom divergence-
type CLs are invariant under gauge transformations, hereearader-determined.
But it turns out that one can also obtain nonlocal CLs fromhsoenlocally re-
lated PDE systems. Unlike the situation for two independariables, it is shown
that, in the case of three or more independent variabledpcalty related PDE
systems arising from divergence-type CLs cannot yield oxallsymmetries of a
given PDE system. In order to find nonlocal symmetries of giPDE system,
it is necessary to add gauge constraints to such nonlocgtyed PDE systems.
Conservation laws of a PDE system with three or more indegrenehriables are
not limited to divergence-type CLs. There exist curl-tydes@ower-degree CLs
of a PDE system with three or more independent variables. séesyatic method
for constructing nonlocally related PDE systems of a PDEesygswith three or
more independent variables through lower-degree CLs &epted in [25, 43, 44].
In addition, it is shown that CLs with degree one can yielcedeined potential
systems.

In this chapter, we present the known CL-based method fostogeting non-
locally related PDE systems (potential systems) and théadefor constructing
subsystems. We also state the method for seeking nonlatahstries and nonlo-
cal CLs of a given PDE system through its nonlocally relatBdERystems. More-
over, at the end of this chapter, we investigate relatiggsshetween symmetries of
a given PDE system and those of its potential systems.

Two new results are presented in this chapter. Consider endRDE sys-
tem R{x t;u} with two independent variables,t) and m dependent variables
u=(ut,...,um.

e It is shown that for two potential systen®{x, t;u, v} and S?(x, t; u, w} of
R{x, t; u} written in Cauchy-Kovalevskaya form, arising from two nirigl
linearly independent local CLs d®{x,t;u}, the potential variable of one
system cannot be expressed as a local function in terms dafdependent
variables, dependent variables and their derivativesebther system.

¢ Itis shown that ifR{x, t; u} has precisely a finite numbarof local CLs, then
any local symmetry oR{x, t; u} can be obtained by projection from a local
symmetry of its correspondingplet potential system.
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3.2 CL-based method for constructing nonlocally related
PDE systems in 2D

3.2.1 Potential systems and subsystems

Consider a PDE systeR({x, t; u} with two independent variablex,t) andm de-
pendent variables = (u', ..., u™ given by

R7[u =0, o=1,...,s (3.2)

In [32], Bluman, Kumei and Reid introduced a systematic waygdnstruct
nonlocally related PDE systems of a PDE sys{r, t; u} (3.1) based on its CLs.
SupposeR{x, t; u} (3.1) has a nontrivial CL given by

D{¥[u] + Dx®[u] = 0. (3.2)
By introducing gpotential variable yone obtains a pair of potential equations
vy = P[],
x = P[] (3.3)
Vi = —®[u].

Definition 3.2.1 A system of PDE§({x, t; u, v} consisting of the given PDE system
R{x, t; u} and the pair of potential equations (3.3) arising from a CIR@, t; u} is
apotential systenof R{x, t; u}.

Remark 3.2.2 If the given PDE systerR{x, t; u} is a scalar PDE and the CL (3.2)
arises from multipliers that do not involwe and its derivatives, it is redundant
to addR{x,t; u} to the potential syster§{x,t;u,v}. One can deduce the PDE in
R{x, t; u} from the pair of potential equations through integrabitipnditions.

Remark 3.2.3 The given PDE systeR{x, t; u} and its potential systei®{x, t; u, v}
are equivalent. Without loss of generality, one can comside case when the
given PDE systenR{x,t; u} is a scalar PDE. Suppose= f(x,t) is a solution of
R{x,t; u}. SinceD;¥[u] + Dx®[u] = 0 is a CL of R{x, t; u}, due to the integrability
conditionvy; = Vix, there exists a functiog(x, t) such thatq, v) = (f(x,t), g(x, t))

is a solution ofS{x,t;u,v}. Thus any solution oR{x,t;u} yields a solution of
S{x t;u,v}. Conversely, if ¢,v) = (f(x1),g(x t)) is a solution ofS{x,t;u, v},
by projection,u = f(x,t) solvesR{x,t;u}. HenceR{x,t;u} and S{x,t;u, v} are
equivalent. Moreover, ify,v) = (f(x,t),g(x, t)) is a solution ofS{x, t;u, v}, so is
(u,v) = (f(xt),9(x,t) + C), whereC is arbitrary constant. It follows that the re-
lationship between the solutions of the given PDE sysim t; u} and those of
its potential systen${x,t;u,v} is not one-to-one. Hence the given PDE system
R{x, t; u} and its potential syster§{x, t; u, v} are nonlocally related.
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Remark 3.2.4 The potential variable is anonlocal variableof R{x,t; u}, i.e.,v
cannot be expressed as a local function of the variablB$xrt; u} and their deriva-
tives. Suppose is a local variable oR{x, t; u}, thenv = F[u] on the solutions of
R{x, t; u} for some local functiorf. Since
vy = P[u],
Vi = —D[U],
it follows that
Dx(F[u]) = ¥[ul,
Di(F[u]) = —@[u],
on the solutions oR{x, t; u}. Consequently, on the solutions Bfx, t; u}, the CL
(3.2) can be rewritten into

De¥[u] + Dx®[u] = Dt (Dx(F[ul)) + Dx (De(F[u])) = 0,

which implies that the CLL(312) is a trivial CL. This contratsi the assumption that
the CL (3.2) is nontrivial. Henceis a nonlocal variable.

Since each potential system arising from a nontrivial CLaslacally related
to the given PDE system, we also use the terminologylocally related CL-based
system(nonlocally related CL systento denote a potential system.

Example 3.2.5 Consider the nonlinear filusion equation
U = (K(U)U)x - (3.4)

The nonlinear dfusion equation (314) is in a CL form. By introducing a potehti
variable, one obtains the potential system given by

VX=u’

v = K(u)uy. (3:5)

Moreover, the nonlinear ffusion equation (3/4) has another CL given by

(xU) — (X(L(U))x — L(W))x = 0, (3.6)

wherel’(u) = K(u). Based on the CL_(316), one can construct another potential
system of the nonlinear flusion equation (314) given by

ax = XUy,

(3.7)
ar = X(L(U))x — L(u).
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For potential systems arising from equivalent CLs, theofeihg theorem shows
that such potential systems are locally related [25].

Theorem 3.2.6 If two potential system§1{x,t; u,v} and Sz{x,t; u, w} of a given
PDE systenR{x, t; u} arise from two equivalent CLs d®{x, t; u}, thenS'{x, t; u, v}

and S{x, t; u, w} are locally related. In particulaw = v + F[u] for some function
Flu.

The following new theorem concerns the relationship betw®e potential
variables arising from two nontrivial and linearly indeplent local CLs.

Theorem 3.2.7 Suppose two potential systerﬁé{x,t; u, v} and S{x, t; u,w} of a
given PDE systenR{x,t; u} arise from two nontrivial and linearly independent
local CLs, wherev andw are potential variables. BL{x, t; u, v} and S{x, t; u, w}
are in Cauchy-Kovalevskaya form, theris a nonlocal variable dB{x, t;u,v} and
vis a nonlocal variable d8%{x, t; u, w}.

Proof. In order to showw is a nonlocal variable o&'{x, t; u, v}, it suffices to show
thatw cannot be expressed as a local function of the variabl&{ixt; u, v} and

their derivatives. Without loss of generality, one can assuhatR{x,t;u} is a

scalar PDER[u] = 0. Suppos&t{x, t; u, v} arises from the CL

D[] - Dx®[u] = 0, (3.8)
with corresponding multiplien; = A4[U], i.e.,
A1[UJR[U] = Dy#H[U] - Dx®*[U], (3.9)

for arbitraryU. SinceSY{x, t; u, v} is in Cauchy-Kovalevskaya forngH{x, t; u, v} is
given by

= lPll (1. (3.10)
Vi = @ [u].
SupposeSz{x, t; u, w} arises from the CL
Dy¥?[u] — Dx®?[u] = O, (3.11)
with corresponding multiplien», i.e.,
A2[U]R[U] = D;¥2[U] - Dy@®?[U], (3.12)

for arbitrary U. SinceS3{x,t;u, v} is in Cauchy-Kovalevskaya forng2{x, t; u, w}
is given by
WX = lIlz[u],

o — 074l (3.13)
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Assumew can be expressed by a local function of the variablegtm, t; u, v} and
their derivatives, i.ew = F[u, v] for some local functior-. Then the CL[(3.11) is
a trivial CL of SY{x, t; u, v}, since

D:W?[u] — Dxy®?[u] = Dy(DxF[u,V]) — Dx(D{F[u,V]) (3.14)

on solutions o8{x, t; u, v}.
On the other hand,

D¥?[U] - Dx@?[U] = A-R[U] = %j (De(¥ U] - Vi) - Dx(@'[U] - Vi)
_ A2 1 A2 1
- 0o 0] - W) - Dy @1 - v

- Dt(%) (#HU] - Vi) + D(%) (@HU] - Vo),
1 1
(3.15)

for arbitraryU andV. The identity [(3.15) implies the multipliers for the CL (2)1
with respect tas{x, t; u, v} areD; (ﬁ—i) and—Dy (ﬁ—i)

Theorem_ 2.3.10 shows that for a PDE system in Cauchy-Kostéga form, a
CL is trivial if and only if its multipliers are trivial. Sinethe CL[(3.11) is a second
kind trivial CL of S*{x,t;u,V}, it follows that Dt(ﬁ—i) =0 and—Dx(ﬁ—i) = 0.
ConsequentlyA, = cA; for some constant. Hence the CL< (318) and (3/11) are
linearly dependent. It turns out thatis not a local function of the variables in
SYx, t; u, v} and their derivatives. Thusis a nonlocal variable o8{x, t; u, v}.

Similarly, one can show thatis a nonlocal variable oB2{x, t; u, W}. m]

If the PDE systenR{x, t; u} (3.1) has linearly independent local CLs:

De¥'[u] + D@'[u] =0, i=1,....n, (3.16)
one can introduce potential variables' with the potential equations:
V., = Wi,
=T (3.17)
Vi = —@'[u].

Let #' denote the potential equatioris (3.17). Through the petestjuations
(3.17), one can obtain potential systemS&®{x, t;u, vV} = R{x, t; u} U .

Definition 3.2.8 A k-plet potential systerfl < k < n) of a PDE systenR{x, t; u}
with n linearly independent local CLs is the potential system

SKx tu v, LV = R U UPL U - U Pk, (3.18)

In particular, fork = 1,2, 3,4, suchk-plet potential systems are callsthglets
couplets triplets andquadruplets respectively.

40



3.2. CL-based method for constructing nonlocally relatBdRystems in 2D

Example 3.2.9 Consider the nonlinear fiusion equation (314). A couplet poten-
tial system of[(3.4) is given by

VX = u’
ay = Xy, '

at = X(L(W)x — L(u).

For a PDE systenR{x, t; u} (3.1) with n linearly independent local CLs, one
can construct 2— 1 potential systems:

e nsinglets:SY{x t;u,vi},i =1,...,n.

o In(n- 1) couplets:SP{x t;u,V,vi}i, j=1,...,nandi # j.

Onen-plet: SV{x t;u, v, ..., V).

Definition 3.2.10 For a PDE systenR{x, t; u} with n linearly independent local
CLs, the set of all 2— 1 potential systems arising frompotential variables/?,
..., V'is called acombination potential systerdenoted byP\: .

3.2.2 Subsystems

Another dfective way to construct equivalent PDE systems of a PDE syRiex, t;
u} with two independent variables,t) andm > 2 dependent variables= (U, ...,
u™ is through excluding some dependent variableR{o€ t; u}.

Definition 3.2.11 Consider a PDE systeR{x, t; u} with two independent vari-
ables & t) andm > 2 dependent variables = (u!,...,u™). A subsystenof

R{x, t;u} is a PDE system obtained by excluding some dependent vesiaijl
R{x, t; u} and has the properties:

(1) Any solution of the subsystem yields a solutiorRik, t; u}.

(2) The solutions of the subsystem yield all solutiong&0x, t; u}.

Example 3.2.12 Consider the potential systern (8.5) of the nonlinedfudion
equation [(3.4). By excludingi from (3.5), one obtains the subsystem [of (3.5)
given by

Vi = K(Vy)Vxx. (3.20)
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Example 3.2.13 Consider the Lagrange system of gas dynamics given by

qX - Vy = 07
Vx + py =0, (3.21)
Px + B(p’ Q)Vy = 0’

whereB(p, g) is the constitutive function. By excludingfrom (3.21), one obtains
the subsystem given by
qu + pyy = 07

3.22
by + B(p. Qi = O. (3:22)

The following theorem states when a subsysterRpf t; u} is nonlocally re-
lated toR{x, t; u}.

Theorem 3.2.14 A subsystenR{x, t; ul, ..., u™1}, obtained by excluding the de-
pendent variable™ from the PDE systerR{x, t; u}, is nonlocally related t&®{x, t;

u} if and only if U™ cannot be directly expressed from the PDESRGK, t; u} in
terms ofx, t, the dependent variablag, ..., u™?! of R{x t;u’,...,u™} and
their derivatives. Otherwise the subsystBifix, t; ut, . .., u™} is locally related to
R{x, t; u}.

Proof. See [23, 25] for the proof.

From Theorem _3.2.14, one concludes that the FDE|(3.20) isalyarelated
subsystem of the PDE system (3.5), since the excluded Vadaian be expressed
in terms ofx, t, v and its derivatives from the PDEs of the PDE systemi (3.5). In
particular,u = vy. But the PDE system (3.22) is a nonlocally related subsystem
the Lagrange system of gas dynamics (B3.21), since the eeatlsariablev cannot
be expressed as a local functiong¥, p, g and their derivatives from the PDEs of
the PDE system (3.21).

3.2.3 Procedure for constructing a tree of nonlocally relagéd PDE
systems

For a given PDE system{x, t; u}, a basic procedure for the construction of a tree
of nonlocally related PDE systems is as follows.

Procedure 3.2.15 (A Tree Construction Procedure)

1. Construction of potential systems. For each CL ofR{x, t;u}, one intro-
duces a potential variable. tiflinearly independent CLs are found, one can
construct 2 -1 potential systems. This yields up t6-21 nonlocally related
PDE systems. Denote the resulting tree/ly
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2. Continuation of construction of potential systems.For each potential sys-
tem in77, find its CLs using any method. Repeat Step 1 for such potentia
systems to obtain potential systems of each potential systeepeat this
step to obtain more potential systems. This leads to aZfieeontaining
nonlocally related PDE systems.

3. Construction of subsystemsFor each PDE system ifg, by excluding its
dependent variables one by one when possible to generatahitystems.
Eliminate locally related PDE systems. This step couldltésa larger tree
of nonlocally related PDE systems denoted/ty

Remark 3.2.16 It is redundant to construct potential systems of the newltiag
subsystems 173 for the reason that the set of all local CLs of a PDE system
includes all local CLs of its subsystems [25].

Remark 3.2.17 It may be dificult to determine whether two such systems are non-
locally related. However, by construction, all PDE systerosstructed by Proce-
dure[3.2.15 are equivalent in the sense that the solutioasyofuch PDE system
can be obtained from the solutions of any other such PDEmystaus redundant
(locally related) systems in a tree do not lead to incorrestiits.

Remark 3.2.18 Suppose the given PDE systeRix, t; u} hasn (n > 2) linearly
independent CLs. Leat,i = 1,...,nbe the corresponding potential variables. Itis
shown that the linear combinations of such potential vég&gb

ik
W:Zai\ll, l§i1<i2<”‘<ik§n, 1§k§n, (323)

i=ig

could also yield potential systems that are nonlocallyteelaoR({x, t; u} as well as
SMx, t; u, v} for arbitrary constants; with at least two of them not zero [25, 57].
It follows that a set oh CLs could yield a spectrum of singlet potential systems.

Remark 3.2.19 In Proceduré 3.2.15, subsystems are obtained by direatlyue:x

ing dependent variables of a given PDE syst{®, t; u}. In addition, it turns out
one can employ hodograph transformations on a PDE systeanebekcluding

its dependent variables [20, 24, 25]. By excluding dependanables from the
transformed PDE system, it is possible to generate additinanlocally related
subsystems. More generally, any point transformationctbel applied to a PDE
system before excluding its dependent variables as long@ssaable to exclude
some dependent variables from the transformed PDE system.
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According to Remarks 3.2.18 and 3.2.19, it is straightfodMa modify Steps
2 and 3 in Procedutie 3.2/15 to obtain further nonlocallyteeld® DE systems in a
tree.

For Step 2 in Procedufe 3.2]15, there is an important resaldid redundant
computation in finding new CLs of a potential system [25, 2, 6

Theorem 3.2.20 A CL of any potential systen®{x, t; u, v} is equivalent to a local
CL of the given PDE systeR{x, t; u} if and only if this CL arises from multipliers
that do not essentially depend on the potential variabtaodulo the equivalence
class.

According to Theorem_3.2.20, additional CLs of a potentigtsm can only
arise from multipliers that include the potential variakleTherefore, it is neces-
sary to consider multipliers with an essential dependemcat ¢east one potential
variable intoduced in Step 2 of Procedure 3.2.15.

Example 3.2.21 Consider the nonlinear wave equation

U = (CC(U)uy) (3.24)

wherec(u) is an arbitrary constitutive function. In this example, use Procedure
3.2.15 to construct a tree of nonlocally related PDE systaitise nonlinear wave
equation((3.24).

Using the direct method, one can show that there are fouriptieis of the
form A = A(x,t, U) for arbitraryc(u) [24]. The corresponding CLs are given by

Ar=1: ug— (cz(u)ux)x =0, (3.25)
Az =t: Di(tu —u) — Dy (tcz(u)ux) =0, (3.26)
Az = X: D¢ (xu) — Dy (xcz(u)ux - fcz(u)du) =0, (3.27)

and
Asa = xt: D¢ (X (tu — u)) — Dy (t(xcz(u)ux - f c2(u)du)) =0. (3.28)

By introducing potential variables, one obtains four cepanding singlet potential

systems given by
Vy = U,
{ = (3.29)

Vi = C2(U)Uy.
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Wy = tu; — U,
{ wtx = t:Zt(u)ux. (3.30)
ax = Xu,
ar = XA (U)uy — fcz(u)du. (3:31)
and
Bx = x(tu - u),
Bi = t(xcz(u)ux - fcz(u)du). (3.32)
The hodograph transformation
X = X(u, V),
{ o t(l(J’ V)’) (3.33)
maps the potential systein (3129) into an invertibly eqeintalinear PDE system
Xy = ty,
{X: _ :Z(U)tv. (3.39)

In order to obtain more nonlocally related PDE systems, @skslocal CLs of
the PDE systeni (3.34). If one considers the multipliers efftrm (A, A?) =
(A1(u,v, X, T), As(u,v, X, T)), through the direct method, one can show that there
are only four multipliers holding for alt(u). These multipliers and their corre-
sponding CLs are given by

(ALAD =(L,0): x -1, =0, (3.35)
(AL, A2 =(0,1): x,— (Cz(u)t)v =0, (3.36)
(ALAY) = (=X, T): (tX)u— (W) 0, (3.37)
and
(A% A7) = (-v.u) © (ux+vi), — (vx+ ucz(u)t)v =0. (3.38)

From the above four CLs, one obtains four potential systeisgotential system
(3.34) given by
Xv = 1,
XU = 2(u)tV’
Py =1t
pu =X

(3.39)
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Xy = 1y,
= cA(ulty,
X = Uy (3.40)
qV = X5
0 = CA(ut.
Xy = 1y,
XU = Cz(u)tVa
rv — tX, (341)
. X2 + cA(u)t?
u— 2 .
and
Xy = ty,
= A(ulty,
X = U (3.42)
Py = UX+ Vi,
pu = VX+ uc?(ut.

Now we construct subsystems. After excluding the dependanble x or t
from the potential system (3.34), one obtains two subsystem

X = (€72 (U)X) (3.43)

and
tuu = C2(U)twy. (3.44)

In [24], it was shown that the nonlinear wave equation (3.24¢ potential
systems((3.29)=(3.82), the PDEs (3.43) and (3.44) are riyitv@nlocally related.
Let 71 denote these nonlocally related PDE systems.

One can show that the potential systems (3.89)—(3.42) ateaifyinonlocally
related and nonlocally related to each PDE systeffin

Moreover, excluding the dependent variakler t from the four potential sys-
tems of the potential system (3134) leads to additionalaaily related PDE sys-
tems. Take the PDE system (3.39) for example. Since the GB)& equivalent
to the following CL

Dy(uty - t) - Dy (ud(u)ty) = O, (3.45)
the PDE system (3.39) is locally related to the following P&&tem
Xy = ty,
% = St (3.46)
= uty =1,
Yu = UG (Uty.
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Excludingx from the PDE systemni (3.46), one obtains the following PDEesys

tuu = (Cz(u)tv)v ,
o= Uty —t, (3.47)
Yu = UG (Uty.

In [24], it was shown that the PDE system (3.47) is nonlocedlated to each
PDE system irv1. Moreover, one can show that the PDE system (3.47) is nonlo-
cally related to potential systenis (3.39)—(3.42).

In summary, a tree of nonlocally related PDE systems inmglthe nonlinear
wave equation (3.24) is shown in Figure 3.1.

B39) [@B40)] |@B4D)] [@B42)

NV

1B32)] |(B3D)] |[@B30)] |B29) = @B34) |B4))

NN

Figure 3.1: A tree of nonlocally related PDE systems for thelimear wave equa-
tion (3.24).

One can obtain a larger tree of nonloncally related PDE sysii€ one takes
into account thé-plet potential systems.

3.3 Nonlocal symmetries

In the previous section, we showed that one can obtain nahfots of a given
PDE systenR{x,t; u} (3.1) from its potential systems. For example, the local CL
(3.37) of the PDE system (3.34) is a nonlocal CL of the PDE4B.4h particular,
nonlocal CLs arising from potential systems must have mligtis involving at
least one potential variable. However, all local CLs of asysbem ofR{x, t; u}

are local CLs oR{x, t; u} [25]. Analogous to nonlocal CLs, symmetries of a given
PDE system are not limited to local symmetries. Symmethes are not local
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3.3. Nonlocal symmetries

symmetries are calledonlocal symmetriedHow to find nonlocal symmetries is a
significant problem in symmetry analysis. Lie's algorithmoyides a simple and
applicable way to find local symmetries. However, there dagsexist a uniform
way to find nonlocal symmetries. In this section, we presexystematic procedure
to seek nonlocal symmetries B x, t; u} from its nonlocally related PDE systems.
It is shown that unlike nonlocal CLs, both potential systeand subsystems in a
tree of nonlocally related PDE systems can yield nonlocairegtries oR{x, t; u}.
Let S{x, t;u, v} with v = (vl,...,vk) be ak-plet potential system of the PDE
systemR{x, t; u} (3.1). Suppos&(x, t; u, v} has a point symmetry given by

X = X+ &€(x t,u,V) + O(£),

t=t+er(xt,u,v) + O(?),
e . (3.48)
=Uu+en'(xt,uv)+0(9), i=1...,m

a
V=vi+edxtuv+0@E?), j=1,....k

with infinitesimal generator
0 d 0 & d
- E: i _ E i —
X = &(xt,u, v)ax+r(x, t,u, V)8t+i:1 n(xt,u, V)aui +j:1§ (% t,u, V)avi' (3.49)

The symmetry[(3.48) leaves the solution manifoldSp%, t; u, v} invariant. Since
the solution sets dB{x, t; u, v} andR{x, t; u} are equivalent, by projection, the one-
parameter group of transformations (3.48) leads to a mghat maps any solu-
tion of R{x, t; u} to a solution ofR{x, t; u}. Thus the one-parameter group of trans-
formations|(3.48) induces a symmetryRifx, t; u} with corresponding infinitesimal
generator

g 9 d A d
X = &(x,t,u, v)& + (X, t,u, V)E + Z 7'(x t,u, v)m. (3.50)
i=1

If the infinitesimals £(x, t, u, v), (X, t, u, V), 7' (X, t, u, v))_ do not depend explic-
itly on the_nonlocal varia~ble, ie., €(xtu,v), (X t,u,v), 7' (X t,u,v)) = (£(xt, u),
(% t, u), 7'(x t, u)), thenX becomes

X = &(xt u)2 +1(xt u)ﬁ+zm: H(x, t u)i (3.51)
- 9 Ly aX 9 Ly at I::Ln 9 by 8ula .

which impliesX only yields a point symmetry dR{x, t; u}.

If the infinitesimals £(x, t, u, v), 7(X, t, u,v), n‘(x, t,u,v)) essentially depend on
the nonlocal variabley, then the one-parameter group of transformations (3.48)
defines a nonlocal symmetry Bf{x, t; u}.
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Definition 3.3.1 The infinitesimal generatar (3.50), obtained by projectibsome
infinitesimal point symmetry of &-plet potential systen${x, t; u, v} of R{x, t; u},
generates @otential symmetrpf R{x, t; u} if the infinitesimals of [(3.50) depend
explicitly on one or more components of

From the above discussion, one has proved the following#med25, 29, 32].

Theorem 3.3.2 A potential symmetry oR{x, t; u} is a nonlocal symmetry dR{x,
t; uj.

Since the solution sets of all systems in a tree of related 83&ms are equiv-
alent, local symmetries of any system yield symmetries efather systems in the
tree. However, for locally related subsystem (in the sef3éeoreni 3.2.14), one
has the following theorem [25].

Theorem 3.3.3 Any local symmetry of a locally related subsystéttx, t; ut, ...,
u™1} ofa PDE systenR{x, t; u} is a projection of some local symmetryRfx, t; u}
onto the variable space &x, t;ut,..., u™1}.

The correspondence between the solutions of a given PDEmsyahd those
of its nonlocally related subsystems is not one-to-ones fassible that nonlocal
symmetries of a given PDE system can arise from local syniesetf its nonlo-
cally related subsystems.

Example 3.3.4 Consider the nonlinear flusion equation(314) for example. The
point symmetry classification of the nonlineaftdsion equation (3/4), modulo the
equivalence transformations

t = aat + ay,
X = agX + ap,
U= agu + as, (3.52)
K= %ZK,
a
where areay, ..., ag are arbitrary constants witlyasag # 0, is presented in Table

3.1 [79].
The point symmetry classification of the potential systénd)3modulo its
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3.3. Nonlocal symmetries

Table 3.1: Point symmetry classification for the nonlineidiudion equation (3/4)

K(u) # admitted point symmetries
arbitrary | 3| X1 =2, X, = 4, X3 = x(,—x +2t3
W u+#0)| 4| Xq, Xo, X3, Xg = Xa_x + #Uau
e 4] Xq, Xz, X3, X5 = x& + 22
us | 5] Xq, Xo, Xa, Xa (u = —8), Xe = X% — 3xu

equivalence transformations

t=agt + ay,

X = agX + ayV + as,

i ag + azu

ag+ayu’ (3.53)

V= agX+ ayV+ ag,

_ 2

K = (ag + agu) K,

a
whereay, . .., ag are arbitrary constants with (azay — asag) # 0, is listed in Table

3.2 [25, 82].

Table 3.2: Point symmetry classification for the potentyatem [(3.5)

K(u) # admitted point symmetries
_ i)
arb|trary 4 Y ('),)X’ Y2 (3t’ Y X{)_)( + 2t ot + V{)V’
Ya=5
Www#0) | 5| Y1Y2YsYsYs= xax 2uf +(1+2)vE
e 5] Y1,Y2 Y3 Ya Ye=x2 +2§u+(2x+v) z
Y1, Y2, Y3. Y4, Y5 (u=-2),
Y7=-xv& + (xu+vud + 2tZ,
Yg= —x(2t + V)& + 422 + u(bt + 2xuv+ V) &
u2 00 +4tVav’
_ 2
= F(v, t) - uG(v, t)au’ _ _
where(F(v, t), G(v, 1)) is an arbitrary solution
of the linear systemfF; = G,, F, = G
1 e/larctam 5 Y11 Y21 Y3; Y4;
e Yo=vZ + tZ —(1+u)L - x2

Moreover, we present the point symmetry classification efibuplet potential
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3.3. Nonlocal symmetries

system|[(3.19) in Table 3.3 [25], modulo its equivalencedfamations

= agayt + a,

X = a;lagx + asa; 'ag,

U = a5u + aas,

V = agazagX + azagV + ay,

2 2 1. 2.2 2

= aw + aZasV + 1a585%° + A5a685X + g,
1.2

=a, a;°K,

(3.54)
W
K

and

1-au (3.55)
V.

K = (1 - agu)®kK,
whereay, ..., ag are arbitrary constants witdyayag # 0.

Comparing Tables 3.1, 3.2 ahd 3.3, it is immediate to corchhdt for some
special cases df(u), the potential system (3.5) and the couplet potentialesgst
(3.19) yield nonlocal symmetries of the nonlineaffasion equation(3/4). For
example, whei(u) = Tluzeﬂamta”“, Y gandZ, yield the same nonlocal symmetry
of the nonlinear dtfusion equation(314). In addition, the couplet potentiaitegn
(3.19) could also yield nonlocal symmetries of the potérdistem [(3.5). For
example, the symmet®g yields a nonlocal symmetry of the potential systemi(3.5)
whenK(u) = u‘%; the symmetryZg yields a nonlocal symmetry of the potential
system|[(3.5) whelK(u) = u 3.

Proposition 3.3.5 The sym4metryx6 yields a nonlocal symmetry of the potential
system|[(3.5) withK(u) = u~s.

Proof. Suppose the symmetX; yields a local symmetry of the potential system
(3.5) withK(u) = u s, Consequently, there must exist &diential functionf [u, v]
such that, in evolutionary fornXg = (-=3xu — qux)a% + f[u, V]a% is a local sym-
metry of the potential system (3.5). Singe= u, v; = u‘%ux anduy; = (u‘%ux)x,
one can restrict[u, v] to be of the formf(x, t, u, v, Uy, Uxx, ...) depending orx, t, u
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Table 3.3: Point symmetry classification for the potentyastem [(3.19)

K(u) # | admitted point symmetries
_ 3 i) — — 0 —
arbitrary 5| 417 ox. ¥ Vf’_%zz U Z3 PR 24 = Ga»
Z5: XE( +2tm +Vm+2€l’%
Z1,29,23,2Z4,Zs,
u“(ﬂ;&O) 6 21_26324{)5 1 2 0 2a(1 1\ 9
6—X5(+l—lUm+( +H)Vm+ (Y( +p)%
o 6 Z3,22,23,2Z4,7Zs,
Z7=xZ +2L +(2x+V) & JZ (X +2a) 2
- 7 51,_22,2263, Z;;,h Zg, Zg (,g =-3),
g =X X XUm - Q’m
u_% 7 Zlv ZZI Z3, Z41 251 26 (l'l = _%)1
Zg=(xv—a)& - 3uvd - v?2 —vol
Zlv ZZI Z3, Z41 251 26 (l'l = _2) >
Zio= —(X\a/+ @) + (2xu+ v)uZ + 22
—V(l’{)—a,
Zy1 = —(6xt+ VP + 2va) & + 422
-2 - +U(10t + 4xuv+ 2ue + V) 2
+atve — (2t + V)l
Zo = F(v, )& - WGV, ) + H(v,1)Z,
where(F(v, 1), G(v, 1), H(v, 1)) is an arbitrary
solution of the linear system:
FV:G,HV:F,Ht:G
Leﬂarctanu 21,223,723, 24, Zs,
1+U2 6 V—x2 9

— vyl o _ 2\ 0 _ v 0 0
Zip= Vg + At — A+ W) - X5 + 555
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3.4. Nonlocally related systems in three or more dimensions

and the partial derivatives af with respect tax. Firstly, supposée|[u, v] is of the
form f(x,t,u, v, uy). Applying >~<g’°) to the potential system (3.5), one obtains

fx + fqu + f\/VX + fuquX = —3XU - XZUX,

3.56
fe + fule + fove + fu Uik = %(3XU+ XZUX)U_%UX + Dy(-3xu— qux)u_% ( )

on every solution of the potential system (3.5). After maképpropriate substitu-
tions and equating the cfieients of the ternmuyy, one obtainsf, = 0. By simi-

lar reasoning, one can show thiix, t, u, v, uy, Uxy, ...) has no dependence on any
partial derivative ofu with respect tox. Hencef[u, V] is of the form f(x,t, u,v).
Consequently, iXg yields a local symmetry of the nonlinearfidision equation
(4.45) withK(u) = u‘%, thenXg must be a point symmetry of the corresponding
potential systemni (315).

Comparing Tables 3.1 and 3.2, one immediately sees that symniXs does
not yield a point symmetry of the corresponding potentiagtam [(3.5). This fol-
lows from the fact that wheK(u) = u‘%, the potential system (3.5) has no point
symmetry whose infinitesimal components correspondingewariablesx, t) are
the same as those fofs. HenceXg yields a nonlocal symmetry of the potential
system|[(3.5) withK(u) = u s,

Remark 3.3.6 Propositiori_3.3.5 shows that a local symmetry of a subsystesn
given PDE system can yield a nonlocal symmetry of the givei Bifstem, since
the point symmetryXg of the nonlinear dtusion equation (314), as a subsystem of
(3.5), yields a nonlocal symmetry of the potential syster)(3

3.4 Nonlocally related systems in three or more
dimensions

In previous sections we showed how to construct nonlocalgted PDE systems
for a PDE system with two independent variables, and howecsush nonlocally
related PDE systems to find nonlocal symmetries and nonfotalfor the given

PDE system. Now consider a PDE syst&tx; u} with n (n > 3) independent

variablesx = (X1, ..., x") andm dependent variablas= (u',...,u™), given by
R7[u =0, o=1,...,s (3.57)

The situation in the case of > 3 independent variables is more complicated
than in the case of two independent variables, since thast saveral dierent
types of CLs in higher dimensions. In this section, we preaaystematic method
for the construction of nonlocally related PDE systemsRék; u} (3.57) using
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3.4. Nonlocally related systems in three or more dimensions

divergence-type CLs [V, 25, 43,/44]. For nonlocally rela®E systems arising
from lower-degree CLs, one can refer to [25, 43, 44] for maiks.
SupposeR{x; u} (3.57) has a local CL given by

n
div(e[u]) = > Did'[u] = 0. (3.58)
=]
By introducingn? potential variables/¥ (j,k = 1,...,n) with vik = —XI, one

obtainsn potential equations

n
YoVl =o'y, i=1...n (3.59)
=1

Sincevi = —\XI, the potential equations (3159) only invol?&-2 potential vari-
ables, saw® (j < k). It is straightforward to show that the system of potential
equations[(3.59) is equivalent to the CL (3.58). Note thatdysstem of potential
equations[(3.59) is under-determined. In particular, gfetesn of potential equa-
tions (3.59) is invariant under the transformations

Vi 5 vl 4+ Dk, (3.60)

wherew'k arew arbitrary functions that are components of a totally an-
tisymmetric tensor. Hence the system of potential equsat({@b9) has an infinite
number of point symmetries

9
Xgauge= Z DkW”km, (3.61)
i,j,K

which are calledauge symmetries
The system of potential equations (3.59) together with ilergPDE system
R{x; u} (3.57) yields gotential systen${x; u, v} of R{x; u}, given by

R[u =0, o=1,...,s
n
YoMl =al[, i=1...n (3.62)
j=1
As in the case of two dependent variables, one can show thapdtential
systemS{x; u, v} (3.62) is nonlocally related tB{x; u} (3.57).

Example 3.4.1 Consider a PDE systefR{Xx, y, z u} with three independent vari-
ables. Supposi{x,y, z, u} has a local CL

div(@'[u]) = 0. (3.63)
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3.4. Nonlocally related systems in three or more dimensions

Hence one can introduce three potential variables (v%, v2, v3) to obtain three
potential equations

vy - v; = 0],

vz — Vg = O7[u], (3.64)

V; — vy = ®[u].
Therefore, a potential systeBix,y, z u,v} of R{x,y, z, u} is given byR{x,y, z u}

and the system of potential equations (8.64). The potesyistemS{x, y, z u, v} is
invariant under the transformations

VLV R) — (VA V) + (Dw[u], Dyw[u], Dwu]). (3.65)

It follows that the gauge symmetries 8fx, y, z u, v} are given by
0 0 0

Due to the under-determined property of the potential systhe situation for
seeking nonlocal symmetries isfidirent in three or more independent variables
case. The following important theorem shows nonlocal sytrigsecannot arise
from the under-determined potential syst&w; u, v} (3.62) [7, 25].

Theorem 3.4.2 Each local symmetry of an under-determined potential sy S{e;
u, v} (38.62) projects onto a local symmetry Rfx; u} (3.57).

In order to eliminate the gauge freedom of the potentiaksy§{ x; u, v} (3.62),
itis necessary to add gauge constraintS{tq u, v}. The choice of gauge constraints
will depend on particular problems. But the correspondirgige-constrained
(determined) potential syste®(x; u, v} must have the property: all solutions of
S{x; u, v} can be obtained from the squtionsé{fx; u,v}. Examples of gauge con-
straints for the potential system (3164):

o divergence gauge: divf = vy + v + V3 =0,
e algebraic gaugeX =0,k =1 or 2 or 3,
¢ Poincaré gaugex\! + yv + zV2 = 0.

If x represents the time, i.& = t, the following gauge constraints are fre-
quently used in applications:
e Lorentz gaugey; — V& — V3 = 0,

¢ Cronstrom gaugetv! — yv2 — 2\ = 0.
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3.5. Relationships between local symmetries of PDE systems

It is shown that a determined potential system could yieldowal symmetries
of a given PDE system with three or more independent vasaple25, 43, 44].
However, not all determined potential systems can yieldaeah symmetries of a
given PDE system. For example, consider the wave equation

A determined potential system is obtained by adding thertargauge to its under-
determined potential system. Hence the determined pateystem is given by

ViV = g,
Vy =V = —Ux,

3.68
F — (369
Vo2 =0,

It turns out that there exist point symmetries of the potdrsystem|[(3.68) that
project onto nonlocal symmetries of the wave equation (3B, 44]. However,
it is also shown that if one replaces the Lorentz gauge byitleggence gauge, the
algebraic gauge, the Poincaré gauge, or the Cronstromegaagnonlocal sym-
metries of the wave equation (3167) arise from these deteunpotential systems
[25, 44].

Similar to the case of two independent variables, one castagt a tree of
nonlocally related PDE systems Bfx; u} (3.57). In seeking additional CLs for
the potential systems, there is a similar result to Theorgh?20 [25, 26, 63].

Theorem 3.4.3 SupposeR{x; u} (3.57) has a CLL(3.58). Le#{x; u,v} be the po-
tential system oR{x; u} consisting ofR{x; u} and the potential equations (3/59).
Then each CL o§{x; u, v}, arising from multipliers that do not involve the potential
variablesv, is equivalent to a local CL dR{x; u}.

It is important to note that Theorem 3.4.3 does not hold footzmtial system
with a gauge constraint [25]. Moreover, unlike the situatior nonlocal symme-
tries, nonlocal CLs can arise from both determined and uddtarmined potential
systems [11, 25].

3.5 Relationships between local symmetries of PDE
systems

As discussed in Section 3.3, affextive way to seek nonlocal symmetries of a
given PDE system is to apply Lie’s algorithm to PDE systensstiee of nonlocally
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3.5. Relationships between local symmetries of PDE systems

related PDE systems. It has been shown that both potensigeg and subsystems
can yield nonlocal symmetries. Does there exist any relalipp between local
symmetries of a given PDE system and those of its potentsénys?

In next new theorem, a correspondence between local symeselra given
PDE system having precisely linearly independent local CLs and those of its
potential systems is presented.

Theorem 3.5.1 Suppose a PDE systeRyx, t; u} with two independent variables
(x,t) andm dependent variablas= (u?, ..., u™) given by

R7[u =0, o=1,...,5s (3.69)

has precisehyn linearly independent local CLs. Then any local symmetryhaf t
PDE systenR{x, t; u} (3.69) can be obtained by projection of some local symmetry
of its n-plet potential system.

Proof. Letthen local CLs ofR{x, t; u} (3.69) be given bypi¥![u] + Dy (-®I[u]) =
0 for some densitie¥ /[u] and fluxes-®I[u], j = 1, ..., n. Then the corresponding
n-plet potential system dR{x, t; u} (3.69) is given by

vk =i,
vi=oi[u, j=1...n (3.70)
R7[u =0, o=1,...,s

m
SupposeX = Zni[u]% is a local symmetry ofR{x,t;u} (3.69). It sufices
i=1
to prove that there exist functions[u,v], j = 1, ..., n, such thatY = X +
n
. o . .
Z 'u, vl v is a local symmetry of the-plet potential system (3.70).

=1
Applying the corresponding infinite prolongation

n
0) _ g() iru v itV
V=X D VI + ) Dadlu V=
J:]_ J J
to the functions _ _
Vi - U,
v/ -@l[u], j=1....n (3.71)

RI[U], o=1,...,5s
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3.5. Relationships between local symmetries of PDE systems

one obtains _ A _
DU,V - XU,

DU, V] - X0i[u], j=1,....n, (3.72)
ORI, o=1....s

ThenY is a local symmetry of the-plet potential systeni (3.70) if and only[if (3172)
vanishes on any solutiorJ(V) = (u,v) = (u(x,t), v(x,t)) of the n-plet potential
system[(3.70). From Theorem 2.2.3Rjs a local symmetry oR{x, t; u} (3.69) if
and only if its infinite prolongatiox ™ satisfies

ORI =0, o=1,...,5 (3.73)

on any solution oR{x, t; u} (3.69). Hence the equations (3.73) hold on any solution
of then-plet potential systen (3.70). Therefore, ifiizes to prove that there exist
some functiong’[u, v] so that the equations

DUV = XKWy,

| ) (3.74)
Di'[u V] = X @)U, j=1,...,n,

hold on any solution of the-plet potential system (3.70).

Theoreni 2.3.16 shows that a symmetry maps fluxes (denditids)xes (den-
sities). SinceX is a local symmetry ofR{x, t;u} (3.69), the entriesPi[u] =
£ CNpip and —difu] = X (-®i[u]), j = 1,.... n, must be densities and fluxes
of CLs of R{x, t; u} (3.69), i.e., foreach = 1, ..., n, Da¥I[u] + Dy (—&)j[u]) =0is
a CL of R{x, t; u} (38.69). SinceR{x,t;u} (3.69) has precisely linear independent
local CLs, it follows that, foreach=1,...,n,

K] = P = 3 alwk(u] + T,
k=1

Kol = i) = 3 alok[u] + S'[ul,
k=1

(3.75)

for some constanta), k = 1, ..., n, andD;T/[u] - DXSj_[u] = 0is a trivial CL of
R{x t;u} (3.69). In particular, for eachh = 1, ..., n, T![u] = Al[u] + B![u] and
Si[u] = Fi[u] + GI[u], whereD:Al[u] — DyFI[u] = 0 is a first kind trivial CL and
D{BI[u] — DyG![u] = 0 is a second kind trivial CL. It follows that¥[u], F/[u])
vanish on any solution dR{x, t; u} (3.69), and hence’{[u], Fi[u]) vanish on any
solution of then-plet potential systeni (3.70). Sinc8!{u], G![u]) yield a null
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3.5. Relationships between local symmetries of PDE systems

divergence, according to Theorem 213.3, there exists sometién HI[u] such
thatB![u] = DxH'[u] andG'[u] = D¢H’[u].
Now let/![U, V] be the functions

{j[U,V]:Zalj(Vk+Hj[U], j=1....n (3.76)
k=1

Then, on any solutionl, V) = (u,v) = (u(x, t), v(x, t)) of the n-plet potential sys-
tem (3.70), one has

DU ] = ) alvk + DyHI[ = ) a¥i{u] + BIl]
k=1 k=1

= > al¥Mu] + BI[u] + Alfu] = " al¥M{u] + T[u]
k=1 k=1

= X®wiy),
(3.77)

n

D[u] = ) &l + DHIU = Y 2l {u] + GI[u]

k=1 k=1
= > &l + Gl + FI[ul = ) al@ku] + S[u
k=1 k=1

= x®oi, j=1....n

Hence,i[u,v], j = 1,..., n, given by [3.76) wheny, V) = (u,V) is a solution of
the n-plet potential system (3.70), satisfy the equations (8.74
By construction,

n
Z[Z AV + HJ[U])
-1
is a local symmetry of tha-plet potential systemi (3.70), whose projection is the
m
- 0 .
local symmetryX = Z n'[u]w of the given PDE systeR{x, t;u} (3.69). 0O
Remark 3.5.2 The proof of Theorem_3.5.1 shows how to directly construet th

local symmetryY of the n-plet potential systeni (3.70) femy local symmetryX
of a given PDE systerR{x, t; u} (3.69) which has preciselylocal CLs.

Corollary 3.5.3 Consider a PDE systeR({x, t; u} with two independent variables
(x,t) andm dependent variablas= (u', ..., u™) given by

R7[u =0, o=1,...,s (3.78)
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3.5. Relationships between local symmetries of PDE systems

Suppose)A( is a local symmetry in evolutionary form &{x, t; u} and D;¥'[u] —
Dy®'[u] = 0,i = 1,..., k, are linearly independent local CLs Bfx, t; u} (3.78).
If foreachv=1,...,k the CL
o (%) v o (o) oy _
D{x Wu®—04x QND‘O
is equivalent to the CL

k
Dy [Z 3¥[u

i=1

=0,

k
— Dy [Z aiv(Di [u]

i=1

for some constants, i=1,...,k thenX can be obtained by projection of some
local symmetry of the corresponditkgplet potential system given by

Vi = W[,
V=0u, i=1...k (3.79)
R7[u =0 o=1,...,s

Proof. The proof in Theorern 3.5.1 can be directly extended tdtpket potential
system|(3.709). O

Remark 3.5.4 Both Theorem 3.5/1 and Corollary 3.5.3 hold for PDE systeiitts w
three or more independent variables, since one can diexiiynd the above proofs
to such PDE systems.

Example 3.5.5 Consider the nonlinear flusion equation

U = (u‘%ux) . (3.80)
X

From Tables 3.1 and 3.3, one sees that all point symmetriggeafonlinear dfu-
sion equation[(3.80) can be obtained by projection of soniat ggmmetry of its
2-plet potential systenm (3.119). For this example, we itlatst how to use Theorem
3.5.1 to obtain this conclusion.

Consider the point symmetey = —xzaiX + 3xu§u of the nonlinear dtusion
equation|(3.80), whose evolutionary form is given%y: (Bxu+ xzux)ﬁ‘—’u. Using
the direct method and Theorem 2.3.13, one can show that tilenear difusion

equation[(3.80) has exactly two linearly independent |@iz given by

U — (u‘%ux) =0, (3.81)

X
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3.5. Relationships between local symmetries of PDE systems

(xu); — (xu‘%ux + 3u‘%) =0. (3.82)

X
From Theoreni_3.511, the point symmeﬁ(yof the nonlinear dfusion equation
(3.80) can be obtained by projection of some local symm¥étof its 2-plet poten-
tial system given by

Vy = U,
Vi = U 3Uy,

‘ X (3.83)
ay = XU,

4 _1
@t = XU 33Uy + 3U7 3,

HereW![u] = u, ®'[u] = U3y, P2[u] = xu, ®2[u] = XU 3Ux+3u~3. In particular,
one can explicitly findy without applying the Lie’s algorithm to the 2-plet potehtia
system|(3.83). Applying the corresponding infinite prolatign % to the fluxes
of the CL (3.81), one obtains

X (P{u]) = X&) = 3xu+ Uy = XU+ XUy + 2xU

= ¥2[u] + THu],

oo oo (3.84)
X! )(<I>1[u]) = i) = 3u s + xuduy - %xzu‘%ui + 32U 3 Uy,
= ®?[u] + SY[u],
whereD;T[u] — DyS*[u] = 0 is the trivial CL given by
Di(XPUy + 2xU) — Dy (—%’xzu‘%ui + XU 3 Uy — XUy + xzut)
(3.85)

= Dy(Dy(x?u)) — Dy (x2 (—%u‘%ui + 32U 3 Uy — ut) + Dt(xzu)) =0.

Applying the corresponding infinite prolongatioh(oo) to the fluxes of the CL
(3.82), one obtains

%) (¥2[ul) = X (xu) = 3%%u + Cuy = T2[U],

. o (3.86)
X )((DZ[U]) = X xuSuy + 3u73) = U S U — ‘§"x3u‘%u§ = S?[u),
whereD;T?[u] — DyS?[u] = 0 is the trivial CL given by
Dy(Dy(>3U)) — DX(Dt(x?’u) + 53U B Uy — gu—%ui - ut)) - 0. (3.87)

It follows that the constants and the functidd$[u], j = 1, 2, in [3.76) are given

by
ay=0 a,=1 8 =0 a =0, H'[u] = Xu, H[u] = Xu.

61



3.6. Summary

ConsequentlyY = X + (@ + X2U)Z + x3uL = X + (@ + ¥v) 2 + x2ayZ, which
is the evolutionary form for the point symmetry= X + a%.

Besides being useful for obtaining nonlocal CLs and norlegmmetries of

a given PDE systerR{x; u}, nonlocally related CL systems &{x; u} have vari-

ous other important applications. For instance, one camasical symmetries
to construct new solutions, which are not invariant sohgiof local symmetries,
of R{x; u} arising from invariant solutions of its nonlocally relatBdDE systems
[41]. In [37], it was shown that new solutions can also arigenf the “nonclas-
sical symmetries” of nonlocally related PDE system®R¢x; u}. In addition, one

can construct nonlocal mappings that linearize a given P{ies through its
nonlocally related CL systems |25]. The well-known Hopfl€transformation

(see [52]) that linearizes Burgers’ equation can be obththeough its potential
system [59, €0]. One can also construct a nonlocal mappiagntfaps a scalar
PDE with variable cofiicients to a linear PDE with constant ¢beients through
its nonlocally related CL systems [33, 34]. Moreover, in,[Bhco and Bluman
used nonlocal symmetries to obtain CLs of a given PDE.

3.6 Summary

In this chapter, we presented the known CL-based methodfwstraicting nonlo-
cally related CL systems of a given PDE system. Such norjocelated CL sys-
tems are important in obtaining nonlocal CLs, nonlocal swtries and new exact
solutions of a given PDE system. Besides the known resubltsintvoduced two
new results in this chapter. Theorém 312.7 showed that forpgetential systems
written in Cauchy-Kovalevskaya form, arising from two navial and linearly in-
dependent local CLs, the potential variable in one systeamisnlocal variable of
the other system. Theorém 3.,5.1 showed that any local symiofes PDE system
having preciselyn local CLs must be a projection of some local symmetry of its
correspondingi-plet potential system.
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Chapter 4

Symmetry-based Method for
Constructing Nonlocally Related
PDE Systems

4.1 Introduction

In Chapter 3, we presented the CL-based method for conistgusbnlocally re-
lated CL systems of a given PDE system and the method forreatisiy subsys-
tems. Moreover, some important applications of nonlocadlgted PDE systems,
such as using nonlocally related PDE systems to find nonlegametries and
nonlocal CLs, were presented.

In the CL-based method, to construct nonlocally related Rp&ems of a
given scalar PDE, it is necessary that the given PDE has sit teee nontrivial
CL. A natural problem is how to construct nonlocally relafdE systems for a
scalar PDE that has no nontrivial CL. For example, consitenbnlinear reaction-
diffusion equation

Ut — Uxx = Q(U), (4.1)

where the reaction teri@(u) is an arbitrary constitutive function.

According to Theorem _2.3.13, one can find all local CLs of tlomlimear
reaction-difusion equation[(4]/1) by the direct method. In particulasutices
to consider multipliers of the form. = A(X, t, U, Uy, Uxx, Uxxx). Applying the di-
rect method, one obtains thatU; — Uxx — Q(U)) is a divergence form if and only
if A satisfies the following equations:

Au=0, Ay, =0, Ay,=0 Ay, =0,
AAtx + AAyxx — Ax(Axx + At) = 0,
AAt + AAixx — At(Axx + At) = 0,

(4.2)

From equations (412), one immediately concludes that,rigmenlinear func-
tion Q(u), the nonlinear reaction-iusion equation[(4/1) has no nontrivial local
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4.2. Nonlocally related PDE systems arising from point syatrias

CL. Consequently, it is impossible to construct a nonlgcadlated PDE system of
the nonlinear reaction-flusion equation (4/1) via the CL-based method.

In this chapter, we introduce a new systematic method totaarishonlocally
related PDE systems which can be applied to a PDE systemdkatdnontrivial
CL. In particular, we show that, for any given PDE system, alocally related
PDE system arises naturally from each point symmetry of ihengPDE system.
Consequently, one can extend a tree of nonlocally relatdd $[3tems by adding
this method to Procedure 3.2115 for the construction ofedfaonlocally related
PDE systems.

Unlike the CL-based method, the symmetry-based method ealiréctly ap-
plied to a PDE system with three or more independent vasaliere importantly,
nonlocal related PDE systems arising from the symmetrgdasathod are deter-
mined. In addition, by various examples, it is shown that @locally related PDE
system arising from a point symmetry of a given PDE systemnidcaiso yield
nonlocal symmetries of the given PDE system.

4.2 Nonlocally related PDE systems arising from point
symmetries

Consider a PDE systeiR({x, t; u} of order| with two independent variable, ()
andmdependent variablas= (u', ..., u™) given by

R[] = R7(x,t,u,0u,0%y,...,0'u)=0, o=1,...,s (4.3)

Suppose the PDE systelR1x t; u} (4 3) has a point symmetry with infinitesi-
mal generatoX = &(x,t, u) +T(Xt u) +Zn (% t, u)— By introducing the

canonical coordinates correspondm@(to

X = X(x,t,u),
T =T(xt,u), (4.4)
U'=U'(xtu), i=1....,m
satisfying

XX =0,

XT =0,

Xul=1,

XU'=0 i=2...,m

(4.5)
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4.2. Nonlocally related PDE systems arising from point syatrias

one maps into the canonical forny = a% while the PDE systerR{x, t; u} (4.3)
becomes the invertibly equivalent PDE systBfX, T; U} in terms of the canoni-
cal coordinatesX, T, U). Since an invertible transformation maps a symmetry of a
PDE system to a symmetry of the transformed systéris, the infinitesimal gen-
erator of a point symmetry RX, T; uj}. Consequentlyﬁ{x T; U} is invariant
under translations ib®. It follows thatR{X, T; U} is of the form

RO(X,T,0,8U,...,8U)=0, o=1,...,5 (4.6)

whereU = (U2,...,U™).
Introducing two new variables andg, related to the first partial derivatives of
U1, one obtains the equivalent PDE systBfX, T; U, a, 8} given by

a = U%,
B = Uy, @.7)
RXT,U,a,p00,....,07%,03,80)=0, oc=1...,5

whereR7 (X, T,U, @, 8,00, ...,0" a,d18,8'U) = 0Ois obtained fromk” (X, T, U,
du,...,d'U) = 0 after making the appropriate substitutions. The PDE syste
R{X,T;U,a,B} (@.7) is called thentermediate systemf R{X, T; U} (4.6).

According to Theorerh 3.2.14, the PDE systBiX, T; U, «, 8} (4.7) is locally
related to the PDE systeR{X, T; U} (4.6), and hence locally related to the given
PDE systenR{x, t; u} (4.3).

Excluding the dependent variablé! from the PDE systeniR{X, T; U, @, 3}
(4.7), one obtains the equivalent PDE sysﬂEhX T:U,a,pB)

ax =B,
s ] 1 -1 al-1n Alr] (4.8)
R°(X,T,U,a,B,0U,...,0 "a,d " B,0U)=0, o=1,...,s
According to Theorem 3.2.14, since the PDE syste(X, T;U, a8} (4.8)
is obtained by excludingJ! from the PDE systeniR{X, T; U, a, 8} (4.7), which
cannot be expressed as a local functiompf3 and their derivatives, it follows
that the PDE systerR{X, T; U, @, 8} (4.8) is nonlocally related to the PDE sys-
tem R{(X, T; U, e, B} (@.7). In particular, if &5, U2,...,U™ = (f(xt),g(x1),
h2(x, 1), ..., hM(x 1)) solves the PDE systeR{X, T; U a, /3 (4.8), there exists a
spectrum of functions)! = h'(x, t) + C, whereC is an arbitrary constant, such that
(@.8,ULU% ..., U™ = (f(x1), g(x 1), ht(x.1) + C,h*(x1),...,h"(x, 1)) solves
the intermediate systeR{X, T; U, a, 8} (@.7). By projection, l(J1 uz,...,um =
(hi(x,t) + C,h?(x 1), ..., h™(x, t)) is a solution of the PDE systeRr{X T U }(4.6).
Thus the correspondence between the solutions of the Pmﬁmmx T:U,a,pB)

65



4.2. Nonlocally related PDE systems arising from point syatrias

(4.8) and those of the PDE systd%{lX,T; U} (4.8) is not one-to-one. It follows
that the PDE systerR{X, T; U, @, 8} (&.8) is nonlocally related to the PDE system
R{X,T;U} (4.8), and hence nonlocally related to the given PDE sy$¢rt; u}
4.3).

Since the way one constructs the PDE sysfe(m, T:U,a,pB) (4.8)is in the re-
verse direction of the construction for a potential system call the PDE system
R(X,T;U,a, B} (4.8) aninverse potential systen&ince the inverse potential sys-
tem arising from a point symmetry of a given PDE system is oally related to
the given PDE system, we use the terminologylocally related symmetry-based
systento denote an inverse potential system.

Based on the above discussions, one has proved the folldhé&agem.

Theorem 4.2.1 Any point symmetry of a given PDE systeR{x, t; u} (4.3) yields
a nonlocally related PDE system (inversevpotentigl systditt)e given PDE sys-
temR{x,t; u} (4.3) given by the PDE systeR{X, T; U, a,8} (4.8).

Remark 4.2.2 Connection between the symmetry-based method and thesgid-ba
method. The symmetry-based method to obtain a nonlocally relatel By3tem
does not require the existence of a nontrivial local CL ofv@giPDE system. Thus
the new method is complementary to the CL-based method fataecting nonlo-
cally related PDE systems. In particular, for the CL-basethwd, the constructed
system is a potential system of the given PDE system. Foryimenetry-based
method, since the intermediate system is locally relatetidayiven PDE system,
one can treat the intermediate system as the starting PO&nsydn this sense,
for the symmetry-based method, the starting PDE system istenfial system
of the final constructed system (the inverse potential sypstdt follows that the
symmetry-based method is in the reverse direction of théo&ed method.

Remark 4.2.3 The situation for a PDE system with at least three indepetgetit
ables. The symmetry-based method can be adapted to a PDE systeim hasat
least three independent variables. Without loss of geiberebnsider a scalar PDE
R{x; u} with n > 3 independent variables= (x!,..., x") and one dependent vari-
ableu:

R(x, u, du, 82y, . ..,d'u) = 0. (4.9)

Suppose the scalar PO x; u} (4.9) has a point symmetry with the infinitesimal
generatoiX. The canonical coordinates correspondingto

X =X(xu), i=1,...,n

U = U(xt,u), (4.10)
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4.2. Nonlocally related PDE systems arising from point syatrias

satisfying _
XX'=0, i=1,...,n,

4.11
XU =1, ( )

mapsX into the canonical fornY = % In terms of K, T, U) coordinates, the
given scalar PDIR{x; u} (4.9) becomes the invertibly related PIREX; U} (X =

(X%,...,XM) of the form
R(X,dU, 8°U,...,0'U) = 0. (4.12)

Introducing the new variables = (al,...,a"), related to the first partial
derivatives ofU, one obtains the equivalent locally related intermedigtstesn

R{X; U, a} given by _
@ =Uyx, i=1,...,n,

R(X, @, 0c...,07 ) =0,
where R(X, @, da, ...,8"2a) = 0 is obtained fromR(X,dU,d?U,...,8'U) = 0O

after making the appropriate substitutions. Excludihgrom the PDE system
R{X; U, a} (4.13), one obtains the inverse potential sysk{X; o}

(4.13)

i i _ P
axj—axi_O, i,j=1,...,n,

. (4.14)
R(X, @, da,...,0  a) = 0.

By construction, one can show that the inverse potentiabeyé{x; a) (4.14) is
nonlocally related to the scalar PO X; U} (4.12), hence nonlocally related to
the scalar PDIR{x; u} (4.9). Moreover, since the inverse potential syst%f)(; al
(4.14) has curl-type CLs, it could possibly yield nonlocatsnetries of the scalar
PDER{x; u} (4.9) from local symmetries of the inverse potential syst%{)(; al
(4.14) [25, 43, 44].

Corollary 4.2.4 Consider an evolutionary scalar P¥EX, t; u}, invariant under-
translations iru, given by

U = F(X 1,0, . ..,8\U). (4.15)

LetB = dxu = Uyx. Then the scalar PDE
Bt = DyF (X1, 8,048, . .., 0 1) (4.16)
is a locally related subsystem of an inverse potential aystethe PDER{x, t; u}

@.15).
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Proof. Introducing the new variablesandg, related to the first partial derivatives
of u, one obtains the following locally related intermediatsteynR{x, t; u, «, 8}
of the given PDER{x, t; u} (4.15):

@ =,
B = U, (4.17)

a=F(X1,B 0B,...,02p).

Excluding the dependent variablefrom the iptermediate systelﬁa{x,t; u,a, S}
(4.17), one obtains the inverse potential sysk{¥, T; U, a, 5}

ax = ﬁt9

4.18
@ =F(X1,B,0,...,052p). (4.18)

From the previous discussion, the PDE syst:ém, T;U, e, B} (4.18) is nonlocally
related tol(4.117). FuArthermore, one can exclude the deperdeablea from the
PDE systenR{X, T; U, a, 8} (4.18) to obtain the scalar PO x, t; 8}

Bi = DyF(X.1, 8,058, ..., 0% 1B). (4.19)

Since the exclgded variable can be expressed from the equations of the PDE
systemR{X, T; U, «, 8} (4.18) in terms of3 and its devrivativeg, the PDE{x,t; 8}
(4.19) is locally related to the inverse potential systeX, T; U, a,8} (4.18). O

4.3 Examples of inverse potential systems arising from
point symmetries

In the previous section we introduced a new systematic symgrbased method
to construct nonlocally related PDE systems (inverse piatesystems) of a given
PDE system. Such equivalent PDE systems are nonlocalkgddia the given PDE
system. In this section, we illustrate this method by sdvwamples.

4.3.1 Nonlinear reaction-dffusion equation

Consider the nonlinear reactionfidision equation (411). As stated in Section 4.1,
the nonlinear reaction-fiusion equation[(411) has no local CL for any nonlinear
term Q(u). Thus it is impossible to construct nonlocally related PB&tems of
the nonlinear reaction-flusion equation_(411) by the CL-based method.
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4.3. Examples of inverse potential systems arising fromtgimmetries

In contrast, the nonlinear reactiorfdision equation(4]/1) has point symme-
tries. Thus one can construct nonlocally related PDE systeinthe the nonlin-
ear reaction-dfusion equation[(411) through the symmetry-based methad-int
duced in Section 4.2. The point symmetry classification efrtbnlinear reaction-
diffusion [4.1) is presented in [47, 49] and exhibited in Tablk shodulo the group
of equivalent transformations (2/71).

Table 4.1: Point symmetry classification for the reactioffitdion equation (411)

Q(u) # admitted point symmetries
arbitrary | 2| Xy =£&, X, =
@+ 0.1) | 3] Xy, Xo, Xz = us, —(a- D2 - EIxZ
e 3| X1, X, X4 = ——t——lx%
ulnu 4 | X1, X, X5:ué§u, _Zetélx_XUéélu

(I) The case whenQ(u) is arbitrary

For arbitraryQ(u), the nonlinear reaction-fifusion equatiori (4/1) has the exhibited
two point symmetriesX; andX,. Therefore, using the symmetry-based method
one can use interchanges »fand u and alsot and u to construct two inverse
potential systems of the nonlinear reactioffuliion equation (411).

(I-a) Inverse potential system arising from X

After an interchange of the variablgsndu, the nonlinear reaction-fifusion equa-
tion (4.1) becomes the invertibly related PDE given by

- Q(u
g = Y= QUG (4.20)
Xu
Corresponding to the invariance of PDE (4.20) under traiosis of its depen-
dent variablex, one obtains the following locally related intermediatstsyn for
the nonlinear reaction-flusion equation (411) by introducing two new variables:

V=X,
W= X, (4.21)
W= Vu— Q(U)V3

V2

Excludingx from the intermediate systeimn (4]/21), one obtains the ieveosential

69



4.3. Examples of inverse potential systems arising fromtgimmetries

system of the PDE system (4121) given by

Vi = Wy,
Vu — Q(U)VB (4.22)
W= =

In addition, one can exclude from the PDE system (4.22) to get the scalar PDE

- (vu— Q(U)va) |

> (4.23)

By construction, the scalar PDE (4123) is a locally relatedsystem of the PDE
system|[(4.22). Moreover, since the scalar PDE (4.23) is ih #€n and the non-
linear reaction-dtusion equation (4/1) has no local CL, from Remark 2.3.1%)t f
lows that there is no invertible transformation that reddtee scalar PDE (4.23) and
the nonlinear reaction-flusion equationi (4]/1). Therefore, the scalar PDE (4.23) is
nonlocally related to the nonlinear reactiortfdsion equation (411).

(I-b) Inverse potential system arising from X,

After an interchange of the variableandu, the nonlinear reaction-flusion equa-
tion (4.1) becomes

t2 — QU3 + t2tyy — 2tytytyy + t2tuy = O, (4.24)

which is not in solved form and has mixed derivatives.

Corresponding to the invariance of PDE (4.24) under traiosia of its depen-
dent variablet, one introduces two new variables = ty andg = t, to obtain
the locally related intermediate system of the nonlineactien-difusion equation
(4.1) given by

a = 1y,
B=1, (4.25)
B — QU)B® + BPay — 2aBay + a?By = 0.
Excludingt from the intermediate systern (4125), one obtains anotherse po-
tential system of the nonlinear reactiorffdsion equation_(411) given by
ay—PBx =0,
B? = QUIB® + BPax — 20Bay + By = 0,

which is nonlocally related to the nonlinear reactioffttiion equation (411).

(4.26)

The constructed inverse potential systems for the nonliresction-dffusion
equation[(4.1)Q(u) is arbitrary) are illustrated in Figure 4.1.
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@1)

RN

@.22), @.23) (@.26)

Figure 4.1: The constructed inverse potential systemshi®mbnlinear reaction-
diffusion equation (4/1)(u) is arbitrary), with the arrows pointing to the inverse
potential systems.

(1) Inverse potential system arising from Xz when Q(u) = u?

WhenQ(u) = u?, (a # 0, 1), the nonlinear reactiondlusion equation (411) has one
additional point symmetrys. For simplicity, we consider the case whanr= 3,
i.e., Q(u) = ud. Canonical coordinates induced Xy are given by

X = Xxu,

t
T= 2 (4.27)
U=-Inx

In (X, T,U) coordinates, the corresponding nonlinear reactidfusion equation
(4.1) becomes the invertibly related PDE

—3U% - 2XU3 — X3U3 — UZUt + 10T UZUT + Uxx — 4T UtUxx

2112 2112 _ 2 _ (4'28)
+4T UTUxx+4T UXUTT+4TU)(UTX 8T UxUTUTx—O.

Accordingly, introducing the new variables = Ux andB = Uy, one obtains
the locally related intermediate system of the nonlineactien-dttusion equation
(4.1) given by

a = Uy,

B=Ur,

- 3a? - 2Xa® - X3a® - &?B + 10T 2B + ax — 4T Bax

+ 4T2B%ax + 4T%a%Br + 4TaBx — 8T%apBBx = 0.

(4.29)

ExcludingU from the intermediate system (4129), one obtains an additinverse
potential system of the corresponding nonlinear readliffitsion equation (411)
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given by

at = Bx,
—3a? - 2Xa® - X3a® - &?B + 10Ta?B + ax — 4T Bax (4.30)
+ 4T2B%ax + 4T2a?Br + 4TaPBx — 8T2%eBBx = 0,

which is nonlocally related to the nonlinear reactioffuion equatiori (4/1). More-
over, comparing the number of point symmetries of the PDEesy$4.29) and the
PDE system((4.26), one is able to show there is no invertialestormation relat-
ing these two systems. Hence, the PDE system(4.29) is radlylaelated to the
PDE system (4.26).

The constructed inverse potential systems for the nonliresction-dffusion
equation[(4.1) Q(u) = u) are illustrated in Figure 4.2.

@.1)

RN

(@22, (A23)] |@30)] |@26)]

Figure 4.2: The constructed inverse potential systemshimbnlinear reaction-
diffusion equation (4]11)J(u) = u?), with the arrows pointing to the inverse poten-
tial systems.

(1) Inverse potential system arising from X4 when Q(u) = €*

WhenQ(u) = €, the nonlinear reaction-fiusion equation (4/1) admits one addi-
tional point symmetry<4. Canonical coordinates induced Ky are given by

X=u+2Inx,

t
T= 2z (4.31)
U=-2Inx

In (X, T,U) coordinates, the corresponding nonlinear reactidfusion equation
(4.1) becomes the invertibly related PDE

- 2U% - 2U3 — €U3 — UZUT + BT UTUZ + 4Uxx — 8TUTUxx

2112 2112 _ 2 _ (4'32)
+ 4T UTUxx+4T UXUTT+8TU)(UTX 8T UxUTUTx—O.
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It follows that the introduction of the new variablés= Uy andy = Uy yields
the locally related intermediate system of the nonlineactien-difusion equation
(4.1) given by

¢ = Ux,

Y =Ur,

- 207 — 2¢° — €°¢° - 6%y + 6Ty + 4px — 8T ygpx
+ AT%Y%px + AT%¢%yt + 8T Py — 8Ty = 0.

(4.33)

ExcludingU from the intermediate systern (4/33), one obtains a thirdrse po-
tential system of the corresponding nonlinear reactidfusion {(4.1) given by

éT =YX,
— 207 = 26° — &¢° — §°y + 6T 9%y + 4gx — BTyYgpx (4.34)
+ 4Ty px + AT2¢7yr + 8T dyx — 8T 2y = O,

which is nonlocally related to the nonlinear reactioffuiion equation (4]/1). Sim-

ilar to the situation in (Il), one can show that the PDE systemonlocally related
to the PDE systeni (4.26).

The constructed inverse potential systems for the nonliresction-dffusion
equation[(4.1)Q(u) = €") are illustrated in Figure 4.3.

@1)

RN

|@22)(@23)| |@33)| |@26)

Figure 4.3: The constructed inverse potential systemshimbnlinear reaction-
diffusion equation (411)J(u) = "), with the arrows pointing to the inverse poten-
tial systems.

(IV) The case whenQ(u) = ulnu

WhenQ(u) = ulnu, the nonlinear reaction-ilusion equation_(4/1) has two addi-
tional point symmetrieXs andXeg.

(IV-a) Inverse potential system arising from Xg
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Canonical coordinates induced Ry are given by

X=X
T =t, (4.35)
U=ellnu

In (X, T,U) coordinates, the corresponding nonlinear reactidfusiobn equation
(4.1) becomes
Ut = Uxx +e'UZ. (4.36)

Thus one introduces the new variabless Ux andq = Ut to obtain the locally
related intermediate system of the nonlinear reactidiiuglon equation (411) given
by

p=Ux,

q=Ur, (4.37)
q=px+e'p’.
ExcludingU from the intermediate system (4137), one obtains the ieveogential
system of the corresponding nonlinear reactidfiudion [(4.1) given by
Pt = 0x,
q=px+e'p”
In addition, excludingg from the inverse potential system (4.37), one obtains the
locally related subsystem of the inverse potential sys&B8) given by

(4.38)

pr = Pxx + 2¢" ppx, (4.39)

which isin a CL form. The PDE (4.39) is in a CL form and the noalr reaction-
diffusion equatiori(4]1) has no local CL. Hence the FDE {4.39)ntocally related
to the nonlinear reaction4dlusion equation (411).

(IV-b) Inverse potential system arising from Xg
Canonical coordinates induced Ry are given by

x2

X=e7u,

T=t (4.40)
1

U==etx
2

In (X, T,U) coordinates, the corresponding nonlinear reactidfusiobn equation
(4.1) becomes
e ?TUyxx + 2XU§( —4X1In XU§(

Ur =
T au2

(4.41)
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Hence, introducing the variables= Uy ands = Ur, one obtains the locally re-
lated intermediate system of the corresponding nonlinezction-difusion equa-
tion (4.1) given by

r = Ux,
s=Ur, (4.42)
e 2Try + 2Xr3 — 4XIn Xr3

4r?
ExcludingU from the intermediate system (4142), one obtains the ieveosential
system of the corresponding nonlinear reactidfiudion (4.1) given by

It =5x,
. e 2Try + 2Xr3 — 4XIn Xr3 (4.43)
4r2 ’
In addition, excludings from the inverse potential systeimn (4.42), one obtains the
locally related subsystem of the inverse potential sysiedt) given by

. (e‘ZTrx+2Xr3—4XIn Xr3)
T= :
X

e (4.44)

which isin a CL form. The PDE (4.44) is in a CL form and the noalr reaction-
diffusion equation_(4]1) has no local CL. Thus the PDE (4.44) idawally related
to the nonlinear reaction4diusion equation (411).

The constructed inverse potential systems for the nomliresction-difusion
equation[(4.1)Q(u) = ulnu) are illustrated in Figure 4.4.

N

|(438) (439)| |@22) (4.23)| |@26)] |@43)@49)]

Figure 4.4: The constructed inverse potential systemshimmbnlinear reaction-
diffusion equation[(4/1)@(u) = ulnu), with the arrows pointing to the inverse
potential systems.

4.3.2 Nonlinear dffusion equation
Consider the scalar nonlineafdision equation

Ve = K (Vx) Vi, (4.45)
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whereK (vy) is an arbitrary constitutive function. The point symmettgssifica-
tion of the locally related PDE systern (B8.5) of the nonlinddfusion equation
(4.45) is listed in Table 312, modulo its group of equivake@ansformations. By
projection of the symmetries in Takle B.2, one obtains tfmatarbitrary K (vy),
there are are four point symmetries of the nonlinedfudion equation[(4.45),
namely,Y: = 2,Yo =2, Yz =xZ& + 2t2 + v andY, = 2.

() Inverse potential system arising from Y;

Since the nonlinear ffusion equation[(4.45) is invariant under translations of it
independent variablg one can interchangeandv to generate an invertibly related
PDE of the nonlinear diusion equation (4.45) given by

K (%) %

.
Introducing new variable® = x, andy = X;, one obtains the locally related inter-
mediate system of the nonlineaffdision equation (4.45) given by

Xt = (446)

W= XV’

y=>% ) (4.47)
K (&) w

=

Excludingx from the PDE system (4.47), one obtains the inverse poteysiem
of the nonlinear dtusion equation (4.45) given by
Wt = yVa
K (V\ll) Wy (4.48)
w2
Moreover, one can exclude the variapheom the PDE system (4.48) to obtain
the locally related subsystem of the inverse potentialesgs@.48) given by

1
W = {M] : (4.49)

W2
(1N Inverse potential system arising from Y»

Since the nonlinear ffusion equation[(4.45) is invariant under translations ®f it
independent variable one can interchangeandv to obtain an invertibly related
PDE of the PDE[(4.45) given by

t
t\% - K (_t_x) (ztvtxtxv - t)z(tvv - t\%txx) = 0 (450)

vV
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Introducing new variables = t, andg = tx, one obtains the locally related inter-
mediate system of the nonlineaffdision equation (4.45) given by

@ =ty,
B=te (4.51)
@’ - K (—'g) (ZQ/B’@X - BPay - azﬂx) =0.

Excludingt from the PDE systemi _(4.51), one obtains the inverse potesysiem
of the nonlinear dtusion equation (4.45) given by

ax = By,

@’ - K (—'g) (ZQ/B’@X - BPay - azﬂx) =0.

(4.52)

(111 Inverse potential system arising from Y 3

Since the nonlinear ffusion equation (4.45) is invariant under the scaling symme-
try generated by 3 = Xa% + 2t§t + v(,%, one can use the corresponding canonical
coordinate transformation given by

t

X = F,

T2V (4.53)
X’

V =Inx

to map the nonlinear ffusion equation_(4.45) into the invertibly related PDE

1+ T Vr + 2XVx
Vr
— 8X2Vx V1 Vrx + 4XPVEVrT +2XVx V2 + 4X2V2Vyx) = 0.

- VXV'|2' +K ( )(—4XVTVTX + V11 + 4XVx V77 — V12—

(4.54)

Introducing new variableg = Vx andy = Vg, one obtains the locally related
intermediate system of the nonlineaffdsion equation_(4.45) given by

¢ = Vx,
¥ = Vr,
— ¢l//2 + K (%) (—4Xl//l//x + YT + AXpyT — 1/12 (455)

—8X2purx + AX2¢Pur + 2Xpu” + 4X2y ¢y ) = 0.
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ExcludingV from the intermediate systemn (4/55), one obtains the ieveosential
system of the nonlinear flusion equation (4.45) given by

¢T = Yx,

1+ Ty +2X¢
— o K(—
P + J

—8X%pynx + AX2Pyr + 2Xpy? + X%y ) = O,

)(—4wax + U + AXpyT — Y2 (4.56)

(IV) Inverse potential system arising from Y4

From its invariance under translations of its dependeritlbe v, one can apply
directly the symmetry-based method to the equation (4 4&}ingu = vy, Z = v,
one obtains the corresponding locally related intermedigistem of the nonlinear
diffusion equation_(4.45) given by

u= VXv
Z=\, (4.57)
z = K(u)uy.

Excludingv from the intermediate system (4/57), one obtains the ieveosential
system of the nonlinear flusion equation (4.45) given by

ut=zx,

z= K(U)uy. (4.58)

Excludingzfrom the PDE systen (4.58), one obtains the locally relatds$gstem
of the inverse potential system (4.58) given by the nonlim#dusion equation

U = (K (U) Ux)x - (4.59)

Remark 4.3.1 In fact, the above procedure is in the reverse direction Gfni:x
ple[3.2.5 and Example_3.2/12, in which the given PDE is thdimear dffusion
equation[(4.59). In particular, in Example 312.5 and Exan$P.12, we start with

the nonlinear dtfusion equation[ (4.59), and use the CL-based method to obtain
the nonlinear dtusion equation[(4.45). Conversely, in the above exampke, th
nonlinear dffusion equation[(4.45) is the starting PDE. We finally corcdtthe
nonlocally related nonlinear filusion equation (4.59) through the symmetry-based
method.
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(IV) Inverse potential system for the the nonlinear dffusion equation (4.59)

Now take as the given PDE the nonlineaffasion equation[(4.59). The point
symmetry classification for the nonlineaffdision equation (4.59) is presented in
Table[3.1, modulo its group of equivalence transformatidrsere are three point
symmetries of the nonlinearftlision equation (4.59) for arbitrakg(u): X, = %(,
X2 = £ andX3 = xZ + 2tZ. Therefore, one can construct three inverse potential
systems of the nonlinear félision equation[(4.59) through the symmetry-based
method. TakeX; for example. From its invariance under translations,ione can
employ the hodograph transformation interchangi@amdu to obtain the invertibly

related PDE of the nonlinearftlision equation (4.59):
K
Xt = —(ﬁ) . (4.60)
Xu Jy

Accordingly, letp = x, andqg = X;, one obtains the following locally related
intermediate system of the nonlineaffdsion equation (4.59):

P = Xu,
q=>x,

__(@) (4.61)
q= p )

Excluding the variablex from the PDE system (4.61), one obtains the inverse po-
tential system of the nonlinearftlision equation (4.59) given by
pt = qU’
B _(K(u)) (4.62)
P )y

Finally, after excluding the variablgfrom the PDE system (4.62), one obtains the
locally related subsystem of the inverse potential sys&Bg| given by

_ (KW
P = ( . )uu. (4.63)

The constructed inverse potential system for the nonlidg&usion equation
(4.45) are indicated in Figure 4.5.
4.3.3 Nonlinear wave equation

As a third example, we construct a further nonlocally rela®E system of the
nonlinear wave equation
U = (C2(U)ux)x, (4.64)
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//\\

|(458) @59)| | (4.48) (4.49)|

@.62), (4.63)

Figure 4.5: The constructed inverse potential system ferntinlinear dfusion
equation((4.45), with the arrows pointing to the inverseeptill systems.

with an arbitrary constitutive functioa(u).

In Section 3.2, a tree of equivalent PDE systems was constitiar the nonlin-
ear wave equation (4.64). We now use point symmetries ofdif@iing potential
system of the nonlinear wave equation (4.64):

VX:ut9

v = () (4.65)

to obtain nonlocally related PDE systems of the nonlineareneguation[(4.64).
For arbitraryc(u), the potential system (4.65) has the following point syrrigs:
Yi=2,Y2=2,Y3=2,Ys=x& +t2 andY, whereY., represent the
infinite number of point symmetries arising from the lineation of the potential
system[(4.65) through the hodograph transformation @heenrge of independent
and dependent variables).

Due to its invariance under translationsviandt, the PDE system (4.65) has a
point symmetry with the infinitesimal generatgf— 6% Corresponding canonical

coordinates yield an invertible point transformation ad fbrm:

X=X

| T=uy,
0 Ucztsv, (4.66)

V=vw

The transformation (4.66) maps the potential sysiem (4r@b)the invertibly
related PDE system
VxUr = VrUx -1=0,

V1 + cA(T)Ux — A(T)Vx = 0, (4.67)
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4.4. Examples of nonlocal symmetries arising from the sytryrtsased method

which is invariant under translations thandV.
First of all, by excluding the dependent variabérom the PDE system (4.67),
one obtains the following subsystem given by

Urt + ¢4(T) (CZ(T)Uxx — UxxU2 — UrtUZ - 2U7x + 2UTxUTUx)

(4.68)

— 2¢(T)¢/(T) (Ux - UxUr) = 0.

which, in turn, is an equivalent PDE for the nonlinear waveagpn (4.64).
Secondly, by excluding the dependent varidbl&om the PDE system (4.67),

one obtains another subsystem given by

c(T) (V>2<VTT — 2VxV1Vrx + VxxVE — c3(T)Vxx) —2¢(T)VZVr =0, (4.69)
which, in turn, is another equivalent PDE for the nonlineavgequation (4.13).

Remark 4.3.2 In terms of &, u, v) coordinates, the equation (4169) becomes
C(U) (VEVuu — 2VVVi + ViV — C(U)Vie) — 2¢/ (UVZVy = O, (4.70)

It is straightforward to check the equatian (4.70) is inladytrelated to the PDE
(3.43) after interchanging andv. However, in next section we will show that the
equation [(4.68) is nonlocally related to any PDE system tcoced in Example
3.2.21.

4.4 Examples of nonlocal symmetries arising from the
symmetry-based method

In the previous section, we constructed several inversengiat systems for the
nonlinear reaction-diusion equatior (4]1), the nonlineaffdision equations (4.45)
and [(4.59), and the nonlinear wave equation (4.64). For tmdimear reaction-
diffusion equation (4]1), one can show that each point symméthg@onstructed
inverse potential systems yields no nonlocal symmetry efribnlinear reaction-
diffusion equation (411). In this section, it is shown that far tlonlinear diusion
equations((4.45) and (4.59), and the nonlinear wave equ@ié4), nonlocal sym-
metries can arise from some of the constructed inverse fataystems. Most
importantly, some previously unknown nonlocal symmetees obtained for the
nonlinear wave equation (4.64).
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4.4. Examples of nonlocal symmetries arising from the sytryrtsased method

4.4.1 Nonlocal symmetries of nonlinear dfusion equation

As shown in Proposition_3.3.5, the nonlineaftfdsion equation (4.59) has a point
symmetryXg that induces a nonlocal symmetry of the PDE system (3.5)ceSin
the nonlinear dfusion equation (4.45) is locally related to the PDE systess) (&
follows thatXg also yields a nonlocal symmetry of the nonlinedfuliion equation
(4.45).

Now consider the class of scalar PDEs (4.49). The equivaleaosformations
for this class of PDEs arise from the six generators

0 0 2K 0 0 0

E]_:a—v, E2=8—VV+W6—K, E3=Wa—vv+2Ka—K,

(4.71)
Eievl okl Bt k2 g2
4= v oK’ °T et CaKT T ar

Thus the group of equivalence transformations for the ddBOEs[(4.49) is given

by
V=agVv+a,

t=ast + ag,

W = ayW + ap, (4.72)

— a(auw+ a)?

K- a5(as : 2) K
ag W

whereay, ..., ag are arbitrary constants witgasas # 0.

In Table[4.2, we present the point symmetry classificatiothefPDE [(4.49),
modulo its group of equivalence transformatians (4.72).

’

By similar reasoning as in the proof of Proposition 3.3.5¢ ean show that,
for K(u) = u‘%, the point symmetrys of the PDE[(4.49) yields a nonlocal sym-
metry of the PDE system (4.47), which is locally related ® tionlinear dtusion
equation[(4.45). Henc¥s yields a nonlocal symmetry of the nonlineaffdsion
equation((4.45).

Moreover, comparing Tablés 3.1 andl|4.2, one also sees theat k() = u‘%,
since its infinitesimal component for the variahléhas an essential dependence
on the variables, the symmetry s of the PDE[(4.49) yields a nonlocal symmetry
of the nonlinear diusion equation[(4.59), which cannot be obtained through its
potential syster (315). By similar reasoning, whéfu) = u=2, one can show that
the symmetrie¥s, V7 andV,, of the PDE((4.49) yield nonlocal symmetries of the
nonlinear difusion equation (4.59).

Remark 4.4.1 Comparing Tables 3.3 and 4.2, for the nonlinedfugion equation
(4.59), one concludes that the nonlocal symmetries yietyeds, Vg, V7 andV,
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4.4. Examples of nonlocal symmetries arising from the sytryrtsased method

Table 4.2: Point symmetry classification for the PDE (4.49)

K (1/w) K(u) # | admitted point symmetries im, ¢/, w) coordinates
arbitrary | arbitrary | 3 [ Vi=2,Vo=2 Vy=2t2 +v2

wH Nz 4 | V1,V2, V3, Va=(2+pvE - 2w

w3 U3 |5 |V, V2, V3, Va (= -3), Vs = 3w — 22

V1, V2, V3, Vg4 (u = -2), Vg = -vwZ + 2tZ,
w2 u? | oo | Vz=4t22 +avtd — (2t + VA )wi,

Ve = G(t, V)2, whereG(t, v) satisfiess; = Gyy

oW’

Table 4.2: Point symmetry classification for the PDE (4.49nfinued)

K (1/w) K(u) # | admitted point symmetries i, {7, u) coordinates

arbitrary | arbitrary | 3 | V1, V2, V3

wH U 4 | V1,V2,V3, V4= (Q2+pvE + 202
5

ou
w V1, Vo, Vs, Vg (u = -3), Vs = -3uvZ — 22

au v

V1, Va2, V3, V4 (u = -2), Vg = uvZ + 2tZ,

wINy
|
(RN

W2 U2 | V7= 428 + avtd + (2t + V2)u, N
Ve = —WG(t, V)4, whereG(t, v) satisfies
G, = Gy,

correspond to the nonlocal symmetries yieldedZsy Z19, Z11 andZ., respec-
tively.

In addition, consider the PDE (4.)63). The equivalence foansations of the
class of PDEs (4.63) arise from the six generators

P P P p p
Ei= 2 Ep=ul+2kZ, Ez=pl+2kZ
L=ow 27Tk BT Pep TNk

PR 5 5 P p (4.73)
Eiot2 K2, Es=2 Eg=w?Z —3upZ —2kuZ.
4Tk BT e T8 T Y an TP T M ak

Hence, the five-parameter group of equivalence transfoonsbf the PDE class
(4.63), arising from the first five generators [of (4.73), igegi by

p = azp, (4.74)
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4.4. Examples of nonlocal symmetries arising from the sytryrtsased method

whereay, ..., as are arbitrary constants widpazas # 0.
The generatoiEg yields the additional one-parameter group of equivalence
transformations given by

q= u
T l-agu’
t=t (4.75)
p=(1-asu)’p,
K = (1 - agu)’K,

whereag is an arbitrary constant.
In Table[4.8, we present the point symmetry classificatiothefPDE [(4.63),
modulo its group of equivalence transformations.

Table 4.3: Point symmetry classification for the PDE (4.63)

K (u) # | admitted point symmetries
arbitrary [ 2 | Wy =&, W, =2t + p%
"z 3| W1, Wy, W3 =2uZ + (u— 2)p%
e 3| Wi, Wo, Wy =24 +psit
Leﬂarctam 3 Wi, Wo,
1+ Ws = 2(1+ u?) & — p(6u - /l)%
u? 4 | W1, Wp, W3 (u = -2), Wg = u*%; - 3pugs

Similar to the situation in Propositidn_3.3.5, whigifu) = Tluzeﬂa“’tam, the
point symmetryWs of the PDE [(4.68) yields a nonlocal symmetry of the cor-
responding intermediate system (4.61), which is locallgtesl to the nonlinear
diffusion equation[(4.59). Hend&'5 yields a nonlocal symmetry of the nonlin-
ear dffusion equation (4.59) witK (u) = rluzeﬂamtam. By similar reasoning, the
symmetryWg also yields a nonlocal symmetry of the nonlinedfu$ion equation
(4.59) withK(u) = u™2.

Taking the equivalence transformatian (4.75) into corsitien, one can ob-
tain more nonlocal symmetries for the nonlineaffu$ion equation[(4.59) from
the corresponding PDE (4.63). In particular, the equivademansformatior (4.75)
mapsu into (1 + agl)~¢*2, e into (1 + %m‘ze@. Moreover, the symme-
tries W3 and W4 are mapped int&W3 and W4 respectively. One can show that
whenK(u) = w(1 + agu)~¢+2), W3 = 2u(1 + agl) 2 — p(6agu — u + 2)%; when
K(U) = (1+ agU) 26T, Wy = 2(1+ agu)?2; — p(6a2u + 636 — 1)5. Similar
to the situation in Propositidn 3.3.5, one can show tgtandW, yield nonlocal
symmetries of the corresponding nonlinedfusion equations (4.59).
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4.4. Examples of nonlocal symmetries arising from the sytryrtsased method

Remark 4.4.2 Comparing Tables 3.2 and 4.3, for the nonlinedfudion equa-
tion (4.59), one concludes that wh&ifu) = rluzeﬂa“’tam, the nonlocal symme-
try yielded byWs corresponds to the nonlocal symmetry yieldedYay When
K(u) = u=?, the nonlocal symmetry yielded MW corresponds to a nonlocal sym-

metry yielded byY ..

4.4.2 Nonlocal symmetries of nonlinear wave equation

We now use the PDE (4.68) to find previously unknown nonlogaireetries of
the nonlinear wave equation (4164).

In [3], the point symmetry classification is given for thesdaf nonlinear wave
equations[(4.64), which is presented in Table 4.4, modslgribup of equivalence
transformations:

X=ayX+ ay,
t = at + as,
U = agu + ag, (4.76)
c= :—;c,
whereay, ..., ag are arbitrary constants witda ayaz # 0.

Table 4.4: Point symmetry classification for the nonlineavevequation (4.64)

c(u) # | admitted point symmetries
arbitrary [ 3 | Xa= £, Xo= &, Xz =x2Z +t&
W (u#0) | 4] X1, Xz, X3, Xg = uxZ +u
e 4] X1, Xz, X3, Xs = x& + &
u? 5 | X1, Xp, X3, Xa (u = -2), Xg = 22 + tul
us 5 | X1, X2, X3, Xa (u = —3), X7 = 22 — 3xu

The equivalence transformations for the PDE class (4.68¢ drom the five
generators

0 0 0
ST BTk BT
0 0 0 0 0 0 @.77)
E4:T6—T+X6—X+U6—U, E5:—T6—T+X6—X+Ca—c.

Correspondingly, the five-parameter group of equivaleraesformations for the
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4.4. Examples of nonlocal symmetries arising from the sytryrtsased method

class of PDEs (4.68) is given by

X = 8486X + 2, (4.78)
U=aU +ag,
C = asC,

whereay, ..., as are arbitrary constants witiyas # 0.
The point symmetry classification of the POE (4.68), modtdoeiquivalence
transformations (4.78), is presented in Table 4.5.

Table 4.5: Point symmetry classification for the PDE (4.68)

c(T) c(u) # | admitted point symmetries iX(T,U) coordinates
Wy = au’WZ— ax»

W3 = (X + f cE)dé) & + UL

Wi, Wa, W3 (¢(T) = T#),

arbitrary | arbitrary | 3

TH W |4
Wy=TE + (2u+ DXL + (u+ UL
— al
W5 =37 + ZXW +U 30
T—2 u—2 5 W11 W21 W3 (C(T) = _2) W4 (/l = —2),
2.0 0
T-3 i |5 | WuWa W3 (C(T) =T°%), Wa (= -3,

2
W7 = (XT - 3T3)3T+(XT" %)%

Table 4.5: Point symmetry classification for the PDE (4.@®8nfinued)

c(T) c(u) # 1 (X, u) components of admitted symmetries
arbitrary | arbitrary | 3 | Wo = 2, W3 = (x+ [ A(&)de)
W2, W3 (C(U) W),
T W 4
W, = u(,u + (2,u + 1)Xax
W5 (')u + 2X6—X
2 2 Wi, W2, W3 (C(U) =u?), Wy (u=-2),
T u S t+v 0
W6 U(t + V){)—u T {)_)(
T_% u_% 5 Wl, W2, W3 (C(U) =u 3) W4 (ﬂ ),
Wy = (xu-— ?;ua)l9u + (xu” - )5X
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Remark 4.4.3 In order to determine whether a symmeWy of the PDE [(4.68)
yields a nonlocal symmetry of the nonlinear wave equatiof4y it requires us
to trace back to the nonlinear wave equation (4.64) usind®DE system[(4.67).
Because one excludes the dependent variddi®mm the potential systen (4.67),
one needs to investigate how the varialblehanges under the action inducedWy
Sincep;1(2) = 2 - &, wherep~t is the inverse of the transformatidn (4.66), the
|nf|n|teS|maI components for the variablgsandu remain invariant when tracing
back. This is why we only present thg, (I components of admitted symmetries
in Table 4.5 (continued).

Proposition 4.4.4 The symmetrie$Vg andW?> yield nonlocal symmetries of the
PDE system (4.65).

Proof. If the symmetryWs yields a local symmetryVg of the potential system
(4.65 )Withc(u) = u"2, then, in evolutionary formiVe = (U% - TUUy + Ux)
+F[U,V]Z v+ Where the dierential functionF[U, V] must depend oiX, T u,Vv
and the partial derivatives & andV with respect taX andT. By applyingWs
to the corresponding PDE systelm (4.67) which is invertielated to the potential
system|(4.65), one can show tigtJ, V] must be of the fornk (X, T, U, V, Ux, UT).
Applying V~\/g’°) to the corresponding PDE systeim (4.67) and making apptepria
substitutions, one can prove that the resulting determiriquation system is in-
consistent. Henc®Vg yields a nonlocal symmetry of the potential systém (4.65)
with c(u) = u™2.

By similar reasoning, it turns out th&l{; also yields a nonlocal symmetry of

the potential system (4.65) wittfu) = u™3. O

Whenc(u) is arbitrary, in & t, u, v) coordinates\Vs = (x+ f cA(&)de) & + (t+
v)( One can show thatV; is a point symmetry of the potential system (4.65),
whose infinitesimal component for the variablaas an essential dependence on
v. By projection,W3 yields a nonlocal symmetry of the nonlinear wave equation
(4.64).

Whenc(u) = u?, the infinitesimal components for the variablesu) of the
symmetryWg depend on the variable By Remark 4.4.83Wg yields a nonlocal
symmetry of the nonlinear wave equation (4.64).

Whenc(u) = u‘z if the symmetryW?- yielded a Iocal symmetryV; of the
nonlinear wave equation (4.64), theé#, = W7 + f[u] 2 6t’ where the functiorf [u]
depends o, t, uand its derivatives. qugjl(av) av %, when tracing back to
the PDE systeni (4.65), the infinitesimal component for thatséev must be equal
to —f[u]. ThusW would also yield a local symmetry of the PDE systém (4.65),
which is a contradiction since/; yields a nonlocal symmetry of the PDE system
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4.5. Summary

(4.65). HenceWy yields a nonlocal symmetry of the nonlinear wave equation
(4.64).

Remark 4.4.5 One can show that the symmetri¢4, andWs yield point sym-
metriesWs = Wy + (u + 1)V andWs = Ws + V-2, of the PDE systeni (4.67)
respectively since in terms ok(t, u, v) coordinatesW = uZ + (2u + 1)x2 + (u +
g+ @+ 1vE = (u+1)Ys—YsandWs = & + 2x2 +t2 +vZ = Y4+ Y7
Hence, by projectionW, and W5 yield point symmetries of the nonlinear wave

equation((4.64).

Remark 4.4.6 Comparing the symmetries listed in [24], one sees that therss-
tries Wg andW> yield previously unknown nonlocal symmetries of the nosdin
wave equation (4.64).

4.5 Summary

In this chapter, we introduced a new systematic symmetsgdbanethod for con-
structing nonlocally related PDE systemsvérse potential systemsf a given
PDE system. The starting point for this methoaigy point symmetry of the given
PDE system. In the case of three or more independent vasiathie symmetry-
based method directly yields determined nonlocally relagstems for a given
PDE system, unlike the situation in the CL-based method &vbee must append
gauge constraints.

The symmetry-based method was shown to yield previouslyawk nonlo-
cally related systems for nonlinear reactiofffusion, nonlinear diusion and non-
linear wave equations. In addition, it was shown that naallgcelated symmetry-
based systems could yield nonlocal symmetries of a given 8B8t&m. Moreover,
some previously unknown nonlocal symmetries were obtafoedhe nonlinear
wave equation.
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Chapter 5

New Exact Nonclassical Solutions
of the NLK Equation

5.1 Introduction

An exact solution is of great interest for researchers,esihplays an essential
role in the analysis of a PDE system. A significant applicatd symmetries of a
given PDE system is the finding of exact solutions of the PDdEesy. The method
of using a local symmetry to construct exact solutions of &Rstem is called
Lie’s classical method21, 25, 29, 39, £3. 75, 30]. Moreover, reduction through
a point symmetry could lead to the solution of a boundary e/gdtoblem for a
given PDE system [16, 21]. In[15, 27], Lie’s classical methwas generalized to
the nonclassical methoth which one searches for “nonclassical symmetries” of a
given PDE system. In particular, “nonclassical symmeétras local symmetries
of an augmented PDE system consisting of the given PDE sydtarinvariant
surface condition and theirfiierential consequences. It follows that “nonclassical
symmetries” leave only submanifolds of solutions invariaonsequently, the
nonclassical method turns out to be useful for finding furgpecific solutions in
addition to those obtained by Lie’s classical method.

In this chapter, we first present the basic ideas of both ldissical method
and the nonclassical method. Then we apply the nonclassiettiod to obtain
previously unknown exact solutions of the dimensional NldGation [60] given
by

U = X2 (X* (et + Bu + yuz))x, (5.1)

wherea > 0,8 > 0 andy > 0 are arbitrary constants.

The NLK equation[(5.1), also known as the photoffudiion equation, was
first presented by Kompaneets [60], and in dimensionlesn,fafter appropriate
scalings ofx, t andu, can be written as

U = X2 (x4(ux +U+ uz))x, (5.2)

and

U = X2 (x4(ux + uz))x, (5.3)
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5.2. Lie’s classical method

whenps # 0 and the case with dominating induced scatteging 0 (> > u),
respectively. By construction, the solutions obtainedhgyrionclassical method of
course include the solutions obtained by Ibragimov [55)tigh classical symme-
try reductions. Correspondingly, these new solutionghfigk families of solutions
with initial conditions of physical interest. It is showraththree of these families
of solutions exhibit quiescent behaviour, i.F_.),whu(rx, t) = 0, and that the other

two families of solutions exhibit blow up behaviour, i.térﬂlu(x, t*) = oo for some
finite t* depending on a constant in their initial conditions. Mowe consider
nontrivial stationary solutions of (5.3). We exhibit fowamfilies of stationary so-

lutions not presented explicitly in [50] for the NLK equai®(5.2) and(5/3). We
show that two of these families of stationary solutions arstable.

5.2 Lie’s classical method

5.2.1 The invariant form method

In this section, we present the invariant form method forstautting invariant
solutions of a given PDE system [21, 25, 29, 39, 53, 75]. Gimrsh PDE system
R{x; u} of order| with n independent variables = (x, ..., x") andm dependent
variablesu = (ut,...,u™, given by

RO[U] = R(xu,du,...,0u)=0, o=1,...,s (5.4)

Suppose the PDE systeRix; u} (5.4) has a point symmetry with the infinitesimal
generator

PRI S I RN
X = i;g (U)o + ; M U)z (5.5)

Definition 5.2.1 A solutionu = f(x), with ¥ = f*(X), u = 1, ..., m, of the
PDE systenR{x; u} (5.4) is aninvariant solutionarising from the point symmetry
(5.5) if ¥ = f#(x) is an invariant surface of the point symmetry (5.5) for each
u=21....,m

From Definition 5.2.11, a function = f(x) is an invariant solution of the PDE
systemR({x; u} (5.4) arising from the point symmetry (5.5) if and onlyif= f(X)
satisfies the following two conditions:

X(u - f4(x)| 0, u=1,....,m (5.6)

u=f(x)

R(xu,du,...,d)| =0, o=1...,s (5.7)

u=f(x)
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5.2. Lie’s classical method

In order to obtain the invariants of the point symmeiry |(mbhe PDE system
R{x;u} (6.4), one can employ the characteristic method stated apteh 2, i.e.,
solve the following characteristic equations:

dxl__d>d“_du1__dum (5.8)
xu) a0y ptew) M)’ '
Suppose one obtaims+ m— 1 corresponding functionally independent invariants
given by

olxu), ..., "), FAxU), ..., "X ), (5.9)
with o ) (A )
w0 oM

) O aE Y (-10)

By introducing the new independent variabjes (y%, ..., y") and dependent vari-
ablesv = (V3,...,v™:

y=w'(xUu), i=1...,n-1,
y' = w"(xu), (5.11)
V=Hxu), u=1....m

with
X" (X, u) = 1,

one obtains the canonical coordinates corresponding tpdim symmetry[(5.5).
The point transformation corresponding to the canonicaldioates[(5.14) maps
the point symmetry (515) into the canonical form

~ 0

X = v (5.12)
Suppose the PDE systdrix; u} (5.4) becomes the transformed PDE sys&mv}
in the canonical coordinates (5/14). Since the transforPB& systemS{y; v}
has the translation point symmetry with the infinitesimaheatorX, it follows
that the transformed PDE systeS{y; v} does not depend explicitly on the new
independent variablg". Consequently, the transformed PDE syst8fyi v} has
particular solutions of the form

V=L Yy, p=1....m (5.13)

By the assumptior (5.10), one can solg, ..., Xn1 andu?, ..., u™ from
(5.14) interms ofy = (y-,....y™™"), v = (V.,...,v") and the remaining variable
X, i.e., _ o

Xk =a'%(xny,v), k=1,...,n-1,

o (5.14)
u =A% V) =4(Xy,Y), pu=1,....m
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5.2. Lie’s classical method

Therefore, for each solution= h(y), whereh(y) = (h(y),..., h"™(y)), of the trans-
formed PDE systerf¥{y; v}, there is a corresponding implicit solution

W= BAX, wx u), h(w(x, W), u=1,...,m, (5.15)

of the given PDE systerR{x; u} (5.4), wherew(x, u) = (' (X, U), ..., w"1(x, u)).
Moreover, one can show that the solution (5.15) is invanarter the point sym-
metry (5.5). In particular, if the point symmetry is of thefo

SN B 9
X = ;g (957 * JZz;nl(x, W5 (5.16)

then one can choose= w(X). It follows that the solution (5.15) becomes
U = B4 (X", w(X), h(w(X)), w=1,...,m (5.17)

which defines an explicit invariant solution of the given PBStemR{x; u} (5.4).

From the above discussion, one concludes that the invas@ations of a given
PDE system can be found by solving a reduced DE system imgpli@wer inde-
pendent variables.

Example 5.2.2 Consider the heat equation

ut = uXx, (518)
which has the point symmetry
0 0
X =2t— — Xxu—. 5.19
ox Xuau ( )
The invariants ofX are given by
x2
w=t (=uex, (5.20)

fort > 0. By introducing the canonical coordinates corresponting:

y1 =1,
X

Yo = o (5.21)
X2

V= uex,

one obtains the invertibly related PDE Dbf (5.18) given by
A3y, + 2Y1V — Vy,y, = O. (5.22)

92



5.2. Lie’s classical method

In order to obtain the invariant solution correspondingltimne seeks solutions of
PDE (5.22) of the fornv = h(y1). Consequently, the PDEE_(5/22) reduces to the
ODE

2y2hy, +yih = 0. (5.23)
The solution of the reduced ODE (5123) is given by
c
h(y1) = —. 5.24
(Y1) Wi (5.24)

wherec is an arbitrary constant. Hence the invariant solutionesponding toX
is given by
hype s = e (5.25)
g Wi

One can replace the point symmetry (5.5) by any local symynweith the in-
finitesimal generator

X=> Qi[u]i (5.26)

to obtain invariant solutions arising from a local symmée&)26). One can refer to
[29] for more details of the extension of Lie’s classical huet for finding invariant
solutions to local symmetries.

The invariant form method can be applied to a boundary vatablem for a
PDE system provided the symmetry of the given PDE systemledses invariant
the boundary and the boundary conditions [16, 21, 29]. Maecahis method
can also be applied to the nonlocally related PDE systemgnfea PDE system,
which possibly yields further exact solutions of the givddEPsystem [41].

5.2.2 The direct substitution method

If one is unable to solve the characteristic equations (6r&) can employ the direct
substitution method to resolve such a dilemma [25]. Withoss of generality, one
can assume thgf'(x, u) # 0. From the condition (5!6), it follows that

(X, U) — Zg(x u)——O u=1. (5.27)
i=1

Solving for 24 o from the system of equations (5/27), one obtains

o _ p(x) _”i £xu) o

= - =0 =1,...,m 5.28
X" En(xu) & En(x,u) X A= S (5.28)
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5.3. The nonclassical method

Thus the terms involving derivatives afwith respect tax” appearing in the PDE
systemR({x; u} (5.4) can be expressed in terms»pfu and derivatives ofi with
respect tox™= (x,...,x"1). Then one obtains a reduced DE system involving
n -1 independent variables r dependent variablag and the parameter variable
X", A solutionu = f(X; X") of the reduced DE system yields an invariant solution
of the PDE systerR{x; u} (5.4) provided the equations (5/28) are satisfied.

5.3 The nonclassical method

In the nonclassical method, for a given PDE system one seghmetries that
leave only a submanifold of the solution manifold invariaBtich a “nonclassical
symmetry” maps solution surfaces not in the submanifoldutéeses that are not
solutions of the PDE system.

Consider a PDE systeR{x; u} (5.4). In the nonclassical method, instead of
seeking local symmetries of the PDE systRiix; u} (5.4), one seeks local symme-
tries that leave invariant a submanifold of the solution ricdeh of the PDE system
R{x; u} (5.4). In particular, one seeks functiafiéx, u), ni(x,u),i=1,...,n, j =1,
..., m, so that

n i a m J 8
X = igg (o + ; (xU)= (5.29)

is a “symmetry” (“nonclassical symmetry”) of the submaidfowhich is the aug-
mented PDE systerA{x; u} consisting of the given PDE systeR{x; u} (5.4), the
invariant surface condition equations

ou”
o =0, v=1,....m (5.30)

(6 u,0u) = (6 W) = ) £(x )
i=1

and their diferential consequences. Consequently, one obtains anedeerdned
set of nonlinear determining equations for the unknown tions £'(x, u), n)(x, u),
i=1,....,nj=1,....,m

For any given “nonclassical symmetry”, one can employ eithe invariant
form or the direct substitution method to find the invariasiiion corresponding
to such a “nonclassical symmetry”.

Definition 5.3.1 A solutionu = f(x) of a given PDE systenR{x;u} (5.4) is a
nonclassical solutionif u = f(x) arises from a “nonclassical symmetry” Rfx; u}
(5.4), and does not arise as an invariant solution of thengRIeE systenR{x; u}
(5.4) with respect to its local symmetries.
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5.4. Nonclassical analysis of the NLK equation

Indeed, for any functiong'(x,u), pl(x,u), i = 1,...,n, j = 1,...,m, the fol-
lowing expressions

m n i

on’ g o

XOP(xudu) = Y (— - Y —=—)-11, y=1,...,m (5.31)
; ou ) oul gx

where X is the first order prolongation oX, vanish onl”(x,u,du) = 0, v =
1,...,m. Therefore, the nonclassical method includes Lie’s atatshethod.

In the nonclassical method, invariance of a given PDE sy®éxnu} (5.4) is
replaced by invariance of the augmented PDE sysd¢riu}. Consequently, it is
possible to find symmetries leaving invariant the augmerRB& systemA{x; u}
which are not symmetries of a given PDE systBix; u} (5.4). In turn, this can
lead to further exact solutions of a given PDE syst{r; u} (5.4).

When a given PDE is a scalar PDE with two independent vasablee needs
only to consider two essential cases when solving the detarghequations for
(E(x,t,u), 7(x, t,u), p(x, t,uw). Letxt = x, X2 = t, &8 = &(x.t,u), £ = 7(X t,u).
If the infinitesimal generatoX = £(x.t,u)& + 7(X t,u)& + n(x t,u)Z generates
a “nonclassical symmetry” of the PDE systdrix; u} (5.4), then so doe¥ =
p(x, t, X, wherep(x, t, u) is any smooth function. It follows that #f # 0, one can
setr = 1, so that only two cases need to be consideted:l andr = 0, ¢ = 1.

In [4E], Clarkson and Kruskal introduced a method (the direethod) to ob-
tain exact solutions of a scalar PDE with two independenilées. In the direct
method, one aims to find exact solutions of the form

u(x, t) = 8(x, t,w(2)) with z=z(x,t), (5.32)

whered andz are functions of the indicated variables. By substitut/B@Z2) into
the given PDE, one obtains an ODE. After solving the resgilttDE, one can
obtain exact solutions for the given PDE. In [74], it was shaWat the nonclas-
sical method is more general than the direct method. Fudiseussions of the
nonclassical method can be foundin [46, 47,51, 65, 77, 78].

Other discussions and extensions of obtaining exact soluf a given PDE
system appear in [22, 41, £3, 89]

5.4 Nonclassical analysis of the NLK equation

In this section, we use the nonclassical method to obtainaxaet solutions of the
NLK equation [36].

95



5.4. Nonclassical analysis of the NLK equation

5.4.1 Invariant solutions of the NLK equation

As stated in Ibragimov [55], the NLK equation (5.1) descsitan interaction of
free electrons and electromagnetic radiation, specificéilk interaction of a low-
energy homogeneous photon gas with a rarefied electron gasgthCompton
scattering In equation[(5.1)u is the density of the photon gas (photon number
density),t is a dimensionless time and= % whereh is Planck’s constanand

v is the photon frequency Thenhy denotes thephoton energy T is the elec-
tron temperatureandk is Boltzmann’s constantThe termsu andu? in equation
(5.1) correspond tepontaneous scatteringcompton &ect) andinduced scatter-
ing, respectively [71, 95]. The Kompaneets model has beentigatsd in many
publications, and some numerical and analytical solutleme been obtained for
the NLK equation[(5./1) [13, 50, 55, 71, 72, 86, 88, 95, 96].

By applying Lie’s classical method to the NLK equation {(5.8)e is able to
obtain its corresponding invariant solutions. In/[55], iasvshown that the NLK
equation((5.8) has two point symmetries

0 0 0

Xo = X— —U—.

Xy = 2.
1= 5t ax  ou

Using these two point symmetries, Ibragimov obtained twis sg&invariant solu-
tions given by
1

) = ————~, 5.33
u(x, t) 1= 2 (5.33)
wherea; is an arbitrary constant, and

u(xt) = ﬂxz) with z = xe®, (5.34)

wherea; is an arbitrary constant an#{z) satisfies the ODE
144 ’ 2
2"+ (2p+2-2)¢ +(¢* - ¢) =0,

5.4.2 Nonclassical symmetries of the NLK equation

The nonclassical method is now applied to the NLK equati®n2) @nd [(5.3) re-
spectively. Here the invariant surface condition equaltiecomes

E(X T, U)uy + T(X, T, U)Ur = (X t, u). (5.35)

(1) Nonclassical symmetries of the NLK equation(5.2)

(I-a) The case whenr = 1
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5.4. Nonclassical analysis of the NLK equation

The nonclassical method applied[to (5.2) yields the follmwetermining equation
system for the infinitesimalg(x, t, u), n(x, t, u)).

21~ 8xn ~ 2 day + AUPE + AU+~ X Dxny + A

— 252Uny — X2y — 8XUPEy + AXUn, — 8XUE, = 0,
4 - 2x%n + 2572 — & — 2CUE — 2% + 26 — 12XWPE, - 12Xy (5.36)
— X+ Ko — Xobx — 2%Ex = 0,
e~ 20y ~ MXPUEy ~ BXEy — Xnuu — 2% = O,
X2éuu = 0.
The solution of the determining equation systém (5.36)\ismby

{f(x, t,u) =0,

n(x.t,u) = 0. (5.37)

Hence the corresponding “nonclassical symmetry” is

_9
s oot

which directly results from the point symmetr.
(I-b) The case whenr=0andé =1
In this case, the determining equation f@K, t, u) is given by

Axupy — X1 — 2y — AU — 407 — 41 + 1 — Xorpuy — By — 67

5.38
— 26%n% — X + AxUPrpy — 25Uy — 12XU7 — 2417y = O, (5.38)

One is unable to find the general solution of (5.38). Hence ranst consider
ansatze to obtain particular solutions of (5.38). If onasiders an ansatz of the
formn = f(x,t) + g(x, t)u + h(x, t)u®, one obtains

n(x t,u) = i u-us, (5.39)
whereb; is an arbitrary constant. The corresponding “nonclassigaimetry” is

0 b 0
Y2:—+(F}—u—uz)%.
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5.4. Nonclassical analysis of the NLK equation

(I Nonclassical symmetries of the NLK equation(5.3)

(ll-a) The case whenr =1

The nonclassical method applied[to (5.3) yields the follmwetermining equation
system for the infinitesimalg(x, t, u), n(x, t, u)).

APE — BXUPEy — % — 25Uy — 8XUp — X1k + Tt

+ 4XUZ77u + 264 — 4xny = 0,
Xobxx — LOXUPE, — 2XPUEy — 2éxé — & — 26Pn + 4¢

2 (5.40)
2 2,2 _
+7+2§u77_ XNy — 4XEx = 0,
2)(fou - 4X2'~fu - 8Xéy — 266, — X277uu =0,
Xzfuu =0.
The solutions of the determining equation system (5.40paen by
X, t,u) = boX,
§0xt.U) = b (5.41)
n(x t,u) = —bou,
whereb, is an arbitrary constant, and
X, t,u) = —2x2U,
£ ) (5.42)
n(x,t,u) = 4xu? — 2u.

The solution[(5.41) yields the “nonclassical symmetry”

0o 0 0
Y3 = nga—X + a - sz%,

which directly results from the point symmetKs + byX,. The solution [(5.42)
yields the “nonclassical symmetry”

0

Y4 = -2x%Uu—

4 X ”ax

which does not result from any point symmetry [of (5.3).
(II-b) The case whenr =0and¢é =1

In this case, the determining equation #gK, t, u) is given by

0 0
— + (4xP - 2u)—
+8t+(x u)au,

— 4n — A% — Bxapx — 2X7my — 12XUn — 25202 — 2X2Uny + 1t (5.43)
+ 4XU277u - X277xx - 2X277’7xu - X277277uu =0. .

98



5.4. Nonclassical analysis of the NLK equation

If one considers an ansatz of the forme= f(x,t) + g(x, t)u + h(x, t)u?, the deter-
mining equation[(5.43) has solutions

bye 2 (x— 2bz — 2bse?)u
tu) = , 5.44
O = e ® % T x(bat bae %) (5-44)
1 2u
) 5.45
Y = T e (549)
b6 2
77(X, ta u) = F - us, (546)

wherebs, by, bs andbg are arbitrary constants.
Hence, the corresponding “nonclassical symmetries” arengby

Ve = 0 + b4e‘2t + (X— 2bs — 2b4e‘2t)u 0
T x| @z + e X —x)  x(bs+baeZ—x) |ou’
vooOd |1 2o
® T ox T | 1L+ bse?) x| au’

and p h p
_ Y kY
Y=ot Ga g

5.4.3 New exact solutions of the NLK equation

It is obvious that the invariant solutions arising frofm andY 3 are those obtained
by Ibragimov [55], given by solutions (5.83) arid (5.34). Mover, the invariant
solution corresponding t¥, is the stationary solution obtained by Dubinov [50]
for the NLK equation[(5.2).

Consider the “nonclassical symmetry’, of the NLK equation[(5.3). Using
the direct substitution method, one seeks solutions of Big §/stem

{ Ut = 4X(Uy + U%) + X%(Uyy + 2ULk), (5.47)
U = 2X°Uly + (4XP — 2u). (5.48)
After equating the right hand sides 6f (5.47) and (5.48), atains

AXUy + XCUyy + 2U = 0. (5.49)

The solution of[(5.49) is given by

A(t) + B(t)x

ux,t) = 2

(5.50)
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5.4. Nonclassical analysis of the NLK equation

where A(t) and B(t) are arbitrary functions. Substituting (5150) into _(5.4@he
obtains an ordinary flierential equation (ODE) system fa(t) and B(t):

{ A'(t) + 2A(t) — 2A(1)B(t) = 0, (5.51)
B'(t) + 2B(t) — 2B(t)* = 0. (5.52)
From (5.52), one obtainB(t) = 0 or B(t) = ﬁ, wherec; is an arbitrary con-

stant. In particular, there are three families of solutiemenB(t) £ 0. In terms of
an arbitrary constartg, —co < tg < oo, these solutions are given by

B(t) = %[1 —tanhf + to)], where 0< B(t) < 1;

B(t) <0, if t> —tp,

1
B(t) = = [1 — coth t h
=3M-co ¢+O)]’Were{B(t)>1, if t< —to

B(t) = 1.

If B(t) £ 0, one ha#\(t) = —cB(t), wherec is an arbitrary constant. B(t) = O,
one hasA(t) = c,e2, wherec; is an arbitrary constant. Therefore, there are four
families of solutions of((5)3).

X—C
F1: u(xt) = v [1 - tanht + to)] ; (5.53)
. X_ C .
Fo o u(xt) = oVl [1 - cotht + to)]; (5.54)
F3z: u(xt) = %; (5.55)
: ¢
R U(X, t) = @ (556)

The first two families of solution§¥; and &, are new and cannot be obtained
through classical symmetry reductions.

The corresponding initial conditiongx, 0) = U(x) are given by the following.
() The family &1:

(I-a) U(x) =259 with 0 < b < 1, ¢ < 0, on the domain & x < co. Such aJ(x)
is illustrated in Figuré 511 (a). The corresponding sohsiof (5.3) are given by

u(x 1) = XZ;XZC [1 — tanh¢ + to)] (5.57)
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5.4. Nonclassical analysis of the NLK equation

with constantgg = 2 In( 1) 0<b< 1andc < 0, valid forx > 0,t > 0. For
each value o, the solutionu(x, t) is monotonically decreasing as a function of
t. Moreovertlimu(x, t) = 0 for anyx > 0. The evolution of a solution(x,t) is

illustrated in Figuré 51 (b).

X X

(a) (b)
Figure 5.1: (aJU(x) :w, O<b<1,c<0,x>0. In(b),u(xt) is given by
(6.57) forx > 0,t > 0, with the arrow pointing in the direction of increasing

(I-b) U(x) =252 with 0 < b < 1, ¢ > 0, on the domairx > ¢. Such aU(x) is
illustrated in Flgure 5)2 (a). The corresponding solutioh¢5.3) are given by

u(x,t) = [1 tanh{ + tg)] (5.58)

with constantgo = In (% - 1), 0<b < 1andc> 0, valid forx > ¢, t > 0. For
each value ofk, the solutionu(x, t) is monotonically decreasing as a function of
t. Moreovert limu(x,t) = O for anyx > c. The evolution of a solutiomi(x, t) is

illustrated in Figuré 5.2 (b).
(I The family &, :

(Il-a) U(X) = b(x_c) with b < 0, ¢ > 0, on the domain & x < c. Such aU(x) is
illustrated in Flgure 5I3 (a). The corresponding solutioh¢5.3) are given by

u(x, t) = [1 cotht + to)] (5.59)
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=

oo
!

NS

oo
!

OT———T—T—T—T—T T 0
0 ¢ 2c 3¢ 4c 5¢ 6¢c Tc 8¢ 0 ¢ 2c 3¢ 4c 5¢ 6¢c Tc 8c
x x

(@) (b)

Figure 5.2: (aU(X) = b(x 9 0<b<1.c>0 x>c In(b),uxt)is given by
(5.58) forx>c,t >0, Wlth the arrow pointing in the direction of increasing

with constantso = 3In(1 - £), b < 0 andc > 0, valid for 0< x < ¢,t > 0. For
each value ofk, the solutionu(x, t) is monotonically decreasing as a function of
t. Moreovertlimu(x, t) = 0 for 0 < x < c. The evolution of a solution(x, t) is

illustrated in Figuré 5.3 (b).

(II-b) U(x) = b(x‘°> with b > 1, ¢ > 0, on the domairk > c. Such aU(x) is
illustrated in Flgure 5l4 (a). The corresponding solutioh¢5.3) are given by

u(xt) = [1 cothf + to)] (5.60)

with constantgo = 3 In (1 - %) b > 1 andc > 0, valid forx > ¢,0 < t < —tg. For
each value ok, the solutionu(x, t) is monotonically increasing as a functiontof
Moreovert IirrtwO u(x,t) = oo for each value ok > c. The evolution of a solution

u(x, t) is illustrated in Figuré 514 (b).

(Il-c) U(x) = b(x‘c) with b > 1, ¢ < 0, on the domairx > 0. Such aU(x) is
illustrated in Flgure 5)5 (a). The corresponding solutioh$5.3) are given by

u(x,t) = [1 cotht + to)] (5.61)

with constantgo = 2 In (l _ %) b > 1 andc < 0, valid forx > 0,0 < t < —to. For
each value ok, the solutionu(x, t) is monotonically increasing as a functiontof
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5.4. Nonclassical analysis of the NLK equation

Moreovert Iirp u(x,t) = oo for each value o > 0. The evolution of a solution
——lo
u(x, t) is illustrated in Figuré 515 (b).

| N

c
X X

(a) (b)

Figure 5.3: (@U(x) =252, b < 0,¢ > 0,0< x < c. In (b), u(x 1) is given by
(5.59) for 0< x < ¢, t > 0, with the arrow pointing in the direction of increasing

NS
oo
!
ENES
oo
!

Ot+———TT1T T T T T 7T Ot+—T—T—T1T T T T T 7T
0 ¢ 2¢ 3c 4c 5c 6¢c Tc 8¢ 0 ¢ 2¢ 3c 4c 5c 6¢c Tc 8¢

X

X

(@) (b)

Figure 5.4: (aJ(x) :w, b>1,c>0,x>c. In(b),u(xt)is given by [(5.60)
for 0 < x < ¢, 0 <t < —tg, with the arrow pointing in the direction of increasihg
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x x

(a) (b)
Figure 5.5: (QU(X) =259 b>1,c <0, x > 0. In (b), u(x t) is given by (5.61)

X2
for 0 < x< ¢, 0 < t < —tg, with the arrow pointing in the direction of increasing

5.4.4 Stationary solutions

Stationary solutions of the NLK equation (5.1) were found36] in terms of
the doubly degenerate Heun’s function (HeunD) and its dawe (HeunD’). A
stationary solutionu(x, t) = V(x) of the NLK equation[(5.3) satisfies the ODE

G
x4

for some constartdz which represent the photon flux in the frequency domain. One
can show that a nontrivial stationary solution

V/(X) + V2 = (5.62)

(5.63)

satisfies equation_(5.62) for some const@ntf and only if b = 1 andc is an

arbitrary constant. Consequentlyy = c2. Interestingly, the explicit family of
solutionsV(x) = % is not exhibited in [50]. Foc > 0, V(X) is exhibited in Figure
5.6 (a); forc < 0, V(X) is exhibited in Figuré 516 (b).

From the solutions obtained in the last subsection, one theg¢sll of these
nontrivial stationary solutions are unstable since a sligifange in the initial con-
dition will lead to a solution blowing up in finite time or degag to the trivial
stationary solution(x,t) = 0 ast — .
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0 T T T T T T T T 0
0 c 2¢ 3¢ 4c 5¢ 6 Tc 8 0
x x

(a) (b)
Figure 5.6: The stationary solutiof(x) = 2=, in (a)c > 0, in (b)c < 0.

Moreover, if one applies the “nonclassical symmetryy'to the NLK equation
(5.3), one obtains two more families of explicit stationapjutions,§s and .

The family of stationary solutiongs, in terms of an arbitrary positive constant
a, is given by
x+ atan(2)
—a

F5: V(X = (5.64)

valid on the domains:

(1) x> 2 illustrated in Figuré 5]7 (a);

(2) @&y < X < X, wherex € ((Zkﬂ)n, oy ) satisfiesx + atan(2) =0,
k=12,...,illustrated in Figuré 5.7 (b).

The family of stationary solutiongg, in terms of an arbitrary positive constant
a, Is given by
x — atanh(2)
X2 ’

Bo: V(¥ = (5-65)

valid on the domairx > &, wheres is the unique positive solution of the equation
a ; _ 2a

5 — atanh(2) = 0. The maximum value 0(x) occurs a = o = TTamewe D

in terms of the Lambert W function. Such a solution is illagdd in Figuré 5.8.
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n (2k+1)m (2k—-1)m
x x

(@) (b)

Figure 5.7: The stationary solutiof(x) = X+atan( ) ,in (@)x> 2, in (b) (2k+1)n <
X < Xg.

V(o)

X

Figure 5.8: The stationary solutic&xﬁmizn—r(g), X> 6.

5.5 Summary

In this chapter, we presented Lie’s classical method anddhelassical method for
the construction of exact solutions of a PDE system. Thensgd the nonclassical
method to obtain some previously unknown solutions of th&Miguation [(5.3)

106



5.5. Summary

[3€]. These solutions do not arise as invariant solutionfi®MNLK equation[(5.3)
with respect to its point symmetries. Moreover, the newliaoied exact solutions
are explicit solutions of_ (513) expressed in terms of elaiawgnfunctions. It was
further observed that these solutions explicit both qeesand blow up behaviour
depending on their initial conditions. It was also shownt ttedated stationary
solutions are unstable.
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Chapter 6

Concluding Chapter

6.1 Conclusions

In this thesis, we presented the basic ideas of symmetries,a@d their appli-
cations. In particular, we focused on nonlocally relatedEPfystems and their
applications, and the application of the nonclassical oekthrhe following new
results were obtained.

(1) In Theorem_3.2]7, for two potential systerﬁ’s{x,t; u, v} and S3{x, t; u, w},
arising from two nontrivial and linearly independent lo€ls of a given
PDE systenR{x, t; u}, we showed that iB'{x t; u, v} and S*(x, t; u,w} are
in Cauchy-Kovalevskaya form, then the potential variablis a nonlocal
variable ofS2{x, t; u,w} and the potential variabl is a nonlocal variable of
SYx, t;u, v.

(2) In Section 3.5, we investigated the relationship betwleeal symmetries
of a given PDE system and those of its potential systems. ticphar, in
Theoreni 3.5/1, we proved that any local symmetry of a givek Bistem
having preciselyn local CLs is a projection of some local symmetry of its
n-plet potential system.

(3) In Chapter 4, we introduced a new systematic symmetsgdamnethod to
construct nonlocally related PDE systems (inverse paksiistems) for
a given PDE system. The symmetry-based method is complamyetat
the well known CL-based method. Most importantly, the syrmpnbased
method can be directly applied to any PDE system that hasrd gginme-
try, no matter whether it has nontrivial local CLs, and no terahow many
independent variables it involves. In addition, by applythe symmetry-
based method, we constructed previously unknown nonjocalbted PDE
systems (inverse potential systems) for the nonlineaticeadiffusion equa-
tions, the nonlinear dliusion equations and the nonlinear wave equations.
Moreover, we also showed that for these example equatiorescan obtain
nonlocal symmetries (including previously unknown noalosymmetries)
from some of their inverse potential systems.
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(4) In Chapter 5, we applied the nonclassical method to thk Biuation. Con-
sequently, we obtained four families of solutions, two ofethare new and
cannot be obtained by the classical symmetry reductiongedder, we an-
alyze the behaviour of the solutions with initial conditibr{x) = 259 It
has been shown that a slight change @i the initial condition will lead to
significant change of the solutions of the NLK equation. Imtipalar, for
three cases dij(x) = @ the solutions of the NLK equation exhibit qui-
escent behaviour, and for two casesudfx) = w the solutions of the
NLK equation exhibit blow up behaviour. Finally, we obtainsome new
stationary solutions of the NLK equation.

6.2 Future work

Besides the results presented in the thesis, there areastik open problems that
arise from the work presented in this thesis.

6.2.1 To determine whether two PDE systems are nonlocally l&ted

In Chapters 3 and 4, we presented twifatient systematic methods for the con-
struction of nonlocally related PDE systems of a given PDéesy: the CL-based
method and the symmetry-based method. In [23], an extendexqure for the
construction of a tree of nonlocally related PDE systemsintasduced. However,
as stated in Remark 3.2117, it may béidult to determine whether two resulting
systems are nonlocally related. The first step to solve tliklpm would be to in-
vestigate the existence of an invertible transformatia télates two PDE system
in a resulting tree. There are several possible methodsatondth the problem.

(1) To investigate the number of point symmetries (contaeiraetries) of such
PDE systems (scalar PDES). If two PDE systems (scalar PDEsgkted
by an invertible transformation, then they must have theesanmber of
point symmetries (contact symmetries). It follows thatwbtPDE systems
(scalar PDES) in a resulting tree have &eatient number of point symme-
tries (contact symmetries), then they cannot be mappedcto @her by an
invertible transformation.

(2) To investigate the number of multipliers or local CLs o€k PDE systems.
If two PDE systems are related by an invertible transforomgtihen they
must have the same number of multipliers or local CLs. ltoie# that if
two PDE systems in a resulting tree have fiedent number of multipliers

109



6.2. Future work

or local CLs, then they cannot be mapped to each other by aamtiiole
transformation.

(3) Cartan’s method of equivalence (see [58, 76] and rebe®therein for more
details).

In general, to investigate whether two PDE systems in a treenanlocally
related, one needs to investigate whether there existsahflmuction that relates
the two PDE systems. Is the existence of a local functiorteélto the existence
of an invertible transformation? Can we find necessary afittEnt conditions to
determine whether two PDE systems are nonlocally related?

6.2.2 The existence of subsystems

Nonlocally related PDE systems can arise from subsystenasgdfen PDE sys-
tem. However, not all PDE systems can generate a subsysteagthexcluding
some dependent variables. Can we find necessary diicienut conditions so that
a given PDE system generates subsystems by excluding dageratiables? This
problem is also related to the extended procedure for amtstg nonlocally re-
lated PDE systems. To obtain more nonlocally related PDEeBys one can em-
ploy invertible transformations acting on a given PDE systéVhich invertible
transformations can lead to PDE systems that have subsstlnthere a relation-
ship between the existence of a nonlocally related subsyatel the existence of
a symmetry of the PDE system yielding the subsystem?

6.2.3 The relationship of symmetries of a given PDE system dn
those of its potential systems

In [1€], a conjecture about the construction of potentigtesns and the the rela-
tionship of symmetries of a given PDE system and those ofatsrial systems

was presented. In the case of two independent variablegpttjecture is as fol-

lows.

Conjecture 6.2.1 (1) The process of obtaining potential systesf$ = SU{x, t;
u, VA, S@ = S@x t;u, v, v@y, SN = SNy 1y, v D) Ny

of a given PDE systerR{x, t; u} terminates at some finitd where either

o SN can be linearized by some invertible point transformatim:
e SN has no further conservation law.

(2) The group of all point symmetries & yields, through projections, all
point symmetries of any subsystem $f¥ including R{x, t;u}, S, ..

SN

L]
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For the first conjecture, a key step would be to develop a eopait of Theo-
rem[2.3.13, i.e., to determine whether one can find all lo¢a & a PDE system.
For the second conjecture, we presented a related resudicio8 3.5. In partic-
ular, we proved that if a given PDE systdRix, t; u} has preciselyn local CLs,
then the local symmetries of iteplet potential system yield all local symmetries
of R{x, t; u}. A related question is whether one can find a relationshipéet lo-
cal symmetries of eackplet (1 < k < n) potential system oR{x, t; u} and those
of the n-plet potential system. More specifically, can each locatmetry of any
k-plet potential system be obtained by projection of somallsgmmetry of the
n-plet potential system? If the answer to this question isloes there exist a po-
tential system whose local symmetries includes all localragtries of eack-plet
potential system?

6.2.4 The application of the obtained nonlocal symmetries

In Chapters 3 and 4, we obtained some nonlocal symmetrieaabf given PDE.
Can these nonlocal symmetries yield new exact solutionsact €orresponding
given PDE? Can we use such nonlocal symmetries to obtain usafel inverse
potential systems? It is meaningful to continue to invedéghese problems in the
future.

6.2.5 Nonlocal symmetries for PDE systems with three or more
independent variables

The symmetry-based method for constructing nonlocallgteel PDE systems can
be directly applied to PDE systems with three or more inddpetivariables. For
the CL-based method, in order to obtain nonlocal symmetsfea given PDE
system with three or more independent variables from pialesystems arising
from divergence-type CLs, it is necessary to add gauge @nts to such under-
determined potential systems. However, there is no knowtesyatic procedure
to determine which gauge constraints yield nonlocal sympe®tSince the inverse
potential systems constructed by the symmetry-based mhethe determined, it
is expected that for some PDE systems with three or more @it variables,
one should be able to directly obtain nonlocal symmetriemftocal symmetries
of corresponding inverse potential systems. For physixainples of interest, it
would be worthwhile to investigate whether the symmetrgdasbmethod can gen-
erate inverse potential systems whose local symmetriediceetly yield nonlocal
symmetries for a given PDE system with three or more indepetneariables.
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