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Abstract

In this thesis, we discuss systematic methods of finding conservation laws for
systems of partial differential equations (PDEs). We first review the direct
method of finding conservation laws. In order to use the direct method, one
first seeks a set of conservation law multipliers so that a linear combination
of the PDEs with the multipliers will yield a divergence expression. Once a
set of conservation law multipliers is determined, one proceeds to find the
fluxes of the conservation law.

As the solution to the problem of finding conservation law multipliers is
well-understood, in this thesis we focus on constructing the fluxes assuming
the knowledge of a set of conservation law multipliers. First, we derive a
new method called the flux equation method and show that, in general,
fluxes can be found by at most computing a line integral. We show that
the homotopy integral formula is a special case of the line integral formula
obtained from the flux equations. We also show how the line integral formula
can be simplified in the presence of a point symmetry of the PDE system
and of the set of conservation law multipliers. By examples, we illustrate
that the flux equation method can derive fluxes which would be otherwise
difficult to find. We also review existing known methods of finding fluxes
and make comparison with the flux equation method.
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Chapter 1

Introduction

A conservation law of a system of partial differential equations (PDEs) is a
divergence expression which vanishes on solutions of the PDE system. The
origin of conservation laws stems from physical principles such as conserva-
tion of mass, momentum and energy. Furthermore, conservation laws have
applications in the study of PDEs such as in showing existence and unique-
ness of solutions for hyperbolic systems of conservation laws [1], and as well
as in developing numerical methods such as finite element methods [2, 3].
Naturally, two questions that one might ask are:

1) How does one find conservation laws for a given PDE system?

2) And if so, can one find conservation laws systematically?

Traditionally, conservation laws were derived from rather ad-hoc approaches.
Although there is a well-known systematic method of finding conservation
laws for variational PDEs due to Noether [4], the applicability of Noether’s
method is limited by the fact that there are many interesting PDE systems
which are not variational as written. To tackle the above two questions at
once, a systematic approach of finding conservation laws, called the direct
method, has been developed recently [5–7]. There are two main steps to the
direct method:

1) Determine a set of conservation law multipliers so that a linear combina-
tion of the PDEs with the conservation law multipliers yields a divergence
expression.

2) Having determined a set of conservation law multipliers, find the cor-
responding fluxes to obtain the conservation law.

It is known that conservation law multipliers can be found using the method
of Euler operator. In this thesis, our focus is on tackling the general prob-
lem of finding fluxes once a set of conservation law multipliers has been
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Chapter 1. Introduction

determined. In Chapter 2, we present the background on conservation law
multipliers and their equivalence classes. Then, we will highlight the inti-
mate connection of conservation law multipliers and conservation laws of a
given PDE system.

In Chapter 3, we present a new method called the flux equation method.
From the flux equations, the key result is that, in general, fluxes can be found
by at most computing a line integral. Various examples will illustrate the
computational efficiency and simplicity of using the flux equation method to
derive conservation laws. We also show how the line integral formula can be
simplified in the presence of a point symmetry of the PDE system and a set
of conservation law multipliers. By examples, we will use the flux equation
method to derive conservation laws which are otherwise difficult to find with
existing known methods.

In Chapter 4, we review known methods of finding fluxes and make com-
parison with the flux equation method. We will discuss general methods of
constructing fluxes such as the matching method and the homotopy integral
formula, as well as more specialized methods such as Noether’s Theorem
and the method of a non-critical scaling symmetry. In particular, we will
show that the homotopy integral formula is in fact a special case of the line
integral formula obtained from the flux equations.
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Chapter 2

Conservation Laws and
Conservation Law
Multipliers

This chapter introduces the background material on conservation laws for
PDEs. In general, there are many conservation laws for a given PDE sys-
tem such as trivial conservation laws. Since trivial conservation laws do not
give new information specifically about a PDE system, it is natural to con-
sider conservation laws up to equivalence in a manner to be made precise
later. The central objects in the study of conservation laws are the sets of
conservation law multipliers. The key property of sets of conservation law
multipliers is that their existence implies the existence of conservation laws.
Conversely, it turns out for non-degenerate PDE systems, every conservation
law up to equivalence must arise from a set of conservation law multipliers.
In general, the correspondence between sets of conservation law multipliers
and equivalent conservation laws can be many-to-one. However, if a PDE
system admits a Cauchy-Kolvalevskaya form and the sets of conservation
law multipliers satisfy some mild conditions, then there is a one-to-one cor-
respondence between each set of conservation law multipliers and each set
of equivalent conservation laws.

2.1 Conservation Laws

Before defining conservation laws for PDEs, we first introduce some notation.
Let R = {Rσ(x, u, ∂u, . . . , ∂ku) = 0}Nσ=1 be a system of N PDEs defined

on a domain1 D ⊂ Rn with at most k-th order partial derivatives of u(x) =
(u1(x), . . . , um(x)) with respect to x = (x1, . . . , xn).

Using standard notations, we denote Ck(D) as the family of functions
which are continuously differentiable in D up to the k-th order. We call
functions belonging to the family C∞(D) smooth functions.

1We will always refer to a domain as a connected open subset of Rn.
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2.1. Conservation Laws

To avoid confusion that may arise, we use u(x) = (u1(x), . . . , um(x)) ex-
clusively to denote a solution of the PDE system R with Ck(D) components.
By equality of mixed partial derivatives, for any V (x) = (V 1(x), . . . , V m(x))
with Ck(D) components and a fixed r = 0, . . . , k, there are

(
n+r−1

r

)
different

r-th order partial derivatives of V ρ(x) for each component ρ = 1, . . . ,m.
Hence for each r = 0, . . . , k, we define the Euclidean space Ur ' Rm(n+r−1

r )

labelled by U = (U1, . . . , Um) and its prolongation. The concept of prolon-
gation is best explained by an example. Let n = 2, m = 2 and U = V (x, y)
with C2(D) components. Then at each (x, y) ∈ D, we have the following
points:

(U1, U2) = (V 1, V 2)
∣∣
(x,y)
∈ U0 ' R2,

(U1
x , U

1
y , U

2
x , U

2
y ) = (V 1

x , V
1
y , V

2
x , V

2
y )
∣∣
(x,y)
∈ U1 ' R4,

(U1
xx, U

1
xy, U

1
yy, U

2
xx, U

2
xy, U

2
yy) = (V 1

xx, V
1
xy, V

1
yy, V

2
xx, V

2
xy, V

2
yy)
∣∣
(x,y)
∈ U2 ' R6.

We denote all the Euclidean spaces U0, . . . ,Uk by the k-th prolonged space2

U (k) = U0× · · · × Uk and we denote the k-th prolongation of a point U ∈ U0

by the point U (k) ∈ U (k). For example, if n = 2, m = 2, and U = V (x, y)
with C2(D) components, then U (2) is the point in the second prolonged
space U (2) given by

U (2) = (V 1, V 2, V 1
x , V

1
y , V

2
x , V

2
y , V

1
xx, V

1
xy, V

1
yy, V

2
xx, V

2
xy, V

2
yy)
∣∣
(x,y)
∈ U (2) ' R12.

Note that since each Ur has m
(
n+r−1

r

)
many components, U (k) has in total

m
∑k

r=0

(
n+r−1

r

)
= m

(
n+k
k

)
components; i.e. U (k) ' Rm(n+k

k ).
For convenience, we often use square brackets [x, U ] to denote the de-

pendences for functions defined on D ×U (k). For example, given a function
f : D×U (k) → R, we use f [x, U ] to denote the value of f evaluated at x ∈ D
and U (k) ∈ U (k); i.e. f(x, U (k)) and f [x, U ] mean the same expression. For
example, the expressions of the PDEs of R can be denoted as Rσ[x, U ] for
each σ = 1, . . . ,m. In particular, Rσ[x, U ] vanishes for all σ = 1, . . . ,m on
any Ck(D) solution U = u(x) of the PDE system R.

As usual, a function f : D×U (k) → R is continuous at (x, U (k)) ∈ D×U (k)

if f is continuous at both x ∈ D and U (k) ∈ U (k) ' Rm(n+k
k ). Similarly,

f : D×U (k) → R is differentiable at (x, U (k)) ∈ D×U (k) if f is differentiable
at both x ∈ D and U (k) ∈ U (k) ' Rm(n+k

k ). For example, the function
2The k-th prolonged space U (k) defined here is a simplified version of the k-th order jet

space. For details, see [8] for generalizations.
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2.1. Conservation Laws

f [x, U ] =
√

(Ux)2 + (Uy)2 is differentiable (in fact smooth) everywhere on
D and U (k)\{0}.

We also use the repeated index summation convention throughout unless
otherwise specified.

Definition 2.1.1. Let D′ × V(k) be an open connected subset of D × U (k).
A local conservation law of the PDE system R is a divergence expression
which vanishes on solutions u(x) of the PDE system R defined on D′×V(k);
more precisely, there exists smooth functions {Φi : D′ × V(k) → R}ni=1 such
that for any x ∈ D′ and any Ck(D′) solution u(x) ∈ V(k),

DiΦi[x, U ]
∣∣
U=u(x)

= 0. (2.1)

A global conservation law is a local conservation law which holds on D×U (k);
i.e. D′ × V(k) can be extended to all of D × U (k).

The expressions {Φi : D′×V(k) → R}mρ=1 are called fluxes and Di denotes
the total derivative with respect to xi which is a differential operator acting
on smooth functions defined on D × U (k) given by,

Di =
∂

∂xi
+
∑
|J |≤k

Uρ
J+î

∂

∂UρJ
,

where we have used the multi-index notation for the capital index J and î.

Definition 2.1.2. A multi-index J = (j1, . . . , jn) is a vector with n compo-
nents of nonnegative integers, where |J | =

∑n
i=1 ji denotes the length of J .

For example, points in U (k) can be efficiently labelled by using the multi-
index notation; i.e. if U = V (x) with C |J |(D) components, then we denote
for each component ρ = 1, . . . ,m,

UρJ =
∂j1

∂xj1
· · · ∂

jn

∂xjn
V ρ(x),

where we define UρJ = Uρ if J is the null multi-index 0 = (0, . . . , 0). The
multi-index notation is also useful when we need to take multiple total
derivatives at once. For example, we denote

DJ = D1 · · ·D1︸ ︷︷ ︸
j1times

D2 · · ·D2︸ ︷︷ ︸
j2times

· · ·Dn · · ·Dn︸ ︷︷ ︸
jntimes

.
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2.1. Conservation Laws

On occasions, we use î to denote the multi-index which has a one in the i-th
component and zeros in all other components.

In general, two multi-indices I, J can be added and subtracted component-
wise provided that each component remains nonnegative. For example, if
U = V (x) with C |J |+1(D) components, we denote

Uρ
J+î

=
∂j1

∂xj1
· · · ∂

ji+1

∂xji+1
· · · ∂

jn

∂xjn
V ρ(x).

Example 2.1.3. Let R[(t, x1, . . . , xn), u(t, x1, . . . , xn)] = ut−
∑n

i=1 uxixi = 0
be the heat equation in n spatial dimensions with D = [0,∞)× Rn.

Defining Φt[(t, x1, . . . , xn), U ] = U and Φi[(t, x1, . . . , xn), U ] = −Uxi for all
i = 1, . . . , n, one can see that these fluxes yield a global conservation law

DtΦt[(t, x1, . . . , xn), U ] +DiΦi[(t, x1, . . . , xn), U ]
∣∣∣
U=u(t,x1,...,xn)

=

(
Ut −

n∑
i=1

Uxixi

)∣∣∣∣∣
U=u(t,x1,...,xn)

= 0.

Example 2.1.4. Let R[(t, x), u(t, x)] = ut + ucux + uxxx = 0 be the gen-
eralized Korteweg-de Vries (KdV) equation in one spatial dimension with
D = [0,∞)× R and c > −2.

Letting Φt[(t, x), U ] = U2

2 and Φx[(t, x), U ] = Uc+2

c+2 +UUxx− U2
x

2 , these fluxes
yield a global conservation law

DtΦt[(t, x), U ] +DxΦx[(t, x), U ]
∣∣∣
U=u(t,x)

= U(Ut + U cUx + Uxxx)|U=u(t,x)

= 0.

Example 2.1.5. Let R[(t, x), u(t, x)] = utt − (c2(u)ux)x = 0 be a nonlinear
wave equation with smooth wave speed c(u) in one spatial dimension with
D = [0,∞)× R.

Defining Φt[(t, x), U ] = xtUt − xU and Φx[(t, x), U ] = −xtc2(U)Ux
+t
∫ U

c2(µ)dµ, one can verify these fluxes yield a global conservation law

DtΦt[(t, x), U ] +DxΦx[(t, x), U ]
∣∣∣
U=u(t,x)

= xt(Utt − (c2(U)Ux)x)
∣∣
U=u(t,x)

= 0.

The PDEs presented so far all possess global conservation laws.
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2.1. Conservation Laws

Example 2.1.6. Let R[(t, x, y), u(t, x, y)] = ut −
√
u2
x + u2

y = 0 be the 2D
flame equation.

Since R[(t, x, y), U ] is smooth everywhere except at 0 ∈ U (k), the 2D
flame equation has only local conservation laws, as we will see in Chapter 3.

To motivate the definition of conservation laws, let’s discuss how conser-
vation laws can arise naturally in the study of PDEs. Firstly, if the PDE
system R has an additional time variable t ∈ [0,∞); i.e. D = [0,∞) × Ω
for some bounded spatial domain Ω ⊂ Rn, then integrating a global conser-
vation law over x = (x1, . . . , xn) ∈ Ω and applying the divergence theorem
yields

Dt

∫
Ω

Φt[(t, x), u(t, x)]dnx = −
∫
∂Ω

Φi[(t, x), u(t, x)]dSi.

Hence, if each Φi[(t, x), u(t, x)] vanishes on the boundary ∂Ω for all t ∈
[0,∞), then

∫
Ω Φt[(t, x), u(t, x)]dnx is a conserved quantity in time. Sec-

ondly, if we multiply a global conservation law by any compactly supported
smooth function φ(x) on D, i.e. φ(x) is smooth and vanishes on the bound-
ary ∂Ω, then integrating by parts yields

0 =
∫

Ω
φ(x)DiΦi[x, u(x)]dnx = −

∫
Ω

Φi[x, u(x)]Diφ(x)dnx. (2.2)

Thus, this could yield a weaker formulation of the PDE system R; since
each of the Φi[x, u(x)] may contain only up to (k−1)-th order of derivatives
of u(x)3.

The study of existence and regularity of solutions of the PDE system R
and their relation to conservation laws is not the subject matter of this thesis.
Our main focus here is to derive fluxes for a given PDE system R. Thus
to avoid vacuous statements such as the existence of conservation laws to a
PDE system with no Ck(D) solutions, we adopt a simplifying assumption
that the PDE system R of interest has a solution u(x) of the PDE system R
defined on some open neighbourhood of x ∈ D that is sufficiently smooth4.
How smooth the solutions need to be will depend on the particular PDE
system R. For example, we will assume throughout that a solution u(x) of

3In general, the set of fluxes can depend up to the maximal order of derivatives ap-
pearing in the PDE systems and in the set of conservation law multipliers; see [12] or later
in Chapter 2 and 3.

4This is the case if the PDE system R admits a Cauchy-Kovalevskaya form. See
Appendix B.
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2.2. Equivalence Class of Conservation Laws

a k-th order PDE system R has at least k times continuously differentiable
components. We leave the extension of the results on conservation laws of
weak solutions for future investigations.

2.2 Equivalence Class of Conservation Laws

Given two local conservation laws of the PDE system R both defined on
D′ × V(k), adding them together yields another local conservation law and
multiplying a local conservation law by a scalar over R also yields a local
conservation law. Thus, the set of local conservation laws for a given PDE
system R defined on D′ × V(k) satisfies the axioms of a vector space.

Definition 2.2.1. The vector space over R of local conservation laws of the
PDE system R defined on D′ × V(k) with component addition and scalar
multiplication is denoted by

C̃L(R;D′×V(k)) =

{
(Φ1, . . . ,Φn)

∣∣∣∣∣ Each Φi : D′ × V(k) → R smooth,
DiΦi[x, U ]

∣∣
U=u(x)

= 0

}
.

We simply use C̃L(R) to denote C̃L(R;D × U (k)).

In practice, some (local or global) conservation laws are not as useful as
others. For example, this is the situation if a conservation law arises through
differential identities, such as

Dx(e) +Dy(π) = 0,

Dx(Uy) +Dy(−Ux) = Uyx − Uxy = 0.

Moreover, if for some smooth functions Ciσ,J [x, U ], a conservation law has
fluxes of the form

Φi[x, U ] =
∑

σ,|J |≤k

Ciσ,J [x, U ]DJR
σ[x, U ],

then Φi[x, u(x)] = 0 identically on any solution u(x) of the PDE system R.
For example,

Dx(e−U
2
R1[(x, y), U ]) +Dy(cos(xy)DxR

2[(x, y), U ])
∣∣∣
U=u(x)

= 0.

8



2.3. Euler Operator

These two types of conservation laws are called trivial conservation laws.
Since trivial conservation laws do not provide new information specifically
about the PDE system R, we are only interested in finding non-trivial con-
servation laws. Hence, we consider two conservation laws as equivalent if
the difference between their flux components yields a trivial conservation
law. This leads to the following definition of an equivalence class of local
conservation laws.

Definition 2.2.2. CL(R;D′ × V(k)) = {[Φ] : Φ ∈ C̃L(R;D′ × V(k))} is
the set of equivalence classes of local conservation laws of the PDE system
R, where Φ,Ψ ∈ C̃L(R) are equivalent if and only if Φ − Ψ is a trivial
conservation law. Again, we simply use CL(R) to denote CL(R;D×U (k)).

To keep the notations simple, we will often just use Φ in short to denote
the equivalence class of [Φ], while keeping in mind that conservation laws
are distinguished up to their equivalence.

2.3 Euler Operator

Definition 2.3.1. The Euler operator with respect to component Uρ for
ρ = 1, . . . ,m, denoted by Eρ, is a differential operator acting on smooth
functions defined on D × U (k) given by

Eρ =
∑
|J |≤k

(−1)|J |DJ
∂

∂UρJ
. (2.3)

If m = 1, we omit the subscript ρ and simply write E as the Euler operator.

The fundamental property of the Euler operator is captured in the fol-
lowing theorem.

Theorem 2.3.2. Let D′ be a bounded5 simply-connected open subset of D
and let V(k) be a connected open subset of U (k). For any smooth function
f : D′×V(k) → R, there exists smooth functions {Φi : D′×V(k) → R}ni=1 such
that f [x, U ] = DiΦi[x, U ] everywhere on D′×V(k) if and only if Eρ(f [x, U ]) =
0 everywhere on D′ × V(k) for all ρ = 1, . . . ,m.

5If D′ is unbounded, an additional assumption on f is needed to warrant interchanging
the order of differentiation and integration as we will see in the course of the proof. For
example, the order of differentiation and integration can be interchanged provided there

is an integrable function g(x) on D′ such that

˛̨̨̨
∂f [x, U ]

∂UρI

˛̨̨̨
≤ g(x) for every multi-index I

with |I| ≤ k and at every point in V(k).

9



2.3. Euler Operator

Proof. Suppose f [x, U ] = DiΦi[x, U ] identically on D′ × V(k). Choose any
U (k) ∈ U (k). Then for any s ∈ R and any smooth function ξ(x) = (ξ1(x), . . . ,
ξm(x)) compactly supported on D′, the divergence theorem yields:

d

ds

∫
D′
f [x, U + sξ(x)]dnx =

d

ds

∫
∂D′

Φi[x, U + sξ(x)]dSi

=
d

ds

∫
∂D′

Φi[x, U ]dSi = 0.

Since D′ is compact, we can interchange the derivative and the integral sign
of the above expression and evaluate the integral at s = 0:

0 =
(
d

ds

∫
D′
f [x, U + sξ(x)]dnx

)∣∣∣∣
s=0

=
∫
D′

d

ds

(
f [x, U + sξ(x)]

)∣∣∣∣
s=0

dnx

=
∫
D′

∑
|J |≤k

∂f

∂UρJ
[x, U ]DJ (ξρ(x)) dx

=
∫
D′

∑
|J |≤k

(−1)|J |
(
DJ

∂f

∂UρJ

)
[x, U ]ξρ(x)dx =

∫
D′
Eρ(f [x, U ])ξρ(x)dx,

where the second last equality follows from repeatedly integrating by parts
for each multi-index J and the fact that ξ(x) vanishes on the boundary of D′.
Since ξρ(x) can be chosen to be any smooth functions compactly supported
on D′ and Eρ(f [x, U ]) is continuous on D′, Eρ(f [x, U ]) = 0 identically for
all x ∈ D′ for all ρ = 1, . . . ,m. Since this is true for an arbitrary choice of
U (k) ∈ V(k), the forward implication is proved.

We delay the proof of the converse of this theorem until Chapter 3 when
we have access to a fundamental divergence identity relating the Euler op-
erator.

The connectedness assumption on V(k) in Theorem 2.3.2 is crucial. Con-
sider the expression f [x, U ] = Ux

U which is smooth on two disconnected
subsets V(k)

+ = {U (k) ∈ U (k)
∣∣U > 0} and V(k)

− = {U (k) ∈ U (k)
∣∣U < 0}.

On V(k)
+ , ln(U) is well-defined and Dx(ln(U)) = Ux

U = f [x, U ]. While
on V(k)

− , ln(−U) is well-defined and Dx(ln(−U)) = −Ux
−U = f [x, U ]. Thus

even though E(f [x, U ]) = 0 everywhere on V(k) = V(k)
+ ∪ V(k)

− , there can-
not be a single smooth function Φx[x, U ] which equals ln(U) on V(k)

+ and
simultaneously equals ln(−U) on V(k)

− !

10



2.3. Euler Operator

Example 2.3.3. Let R[(t, x1, . . . , xn), u(t, x1, . . . , xn)] = ut−
∑n

i=1 uxixi = 0
be the heat equation in n spatial dimensions with D = [0,∞)× Rn.

The expression of the heat equation itself is a divergence expression defined
on the entire D × U (k) since

R[(t, x1, . . . , xn), U ] = Ut −
∑
i=1n

Uxixi

= Dt (U) +Dxi (−Uxi) .

Thus, according to Theorem 2.3.2, the expression R[(t, x1, . . . , xn), U ] should
vanish identically on D×U (k) upon applying the Euler operator E . Indeed,
this is the case since

−Dt
∂

∂Ut

(
R[(t, x1, . . . , xn), U ]

)
= −Dt(1) = 0,

Dxixi
∂

∂Uxixi

(
R[(t, x1, . . . , xn), U ]

)
= Dxixi(−1) = 0.

Hence, summing the above expressions yields E(R[(t, x1, . . . , xn), U ]) = 0
identically on D × U (k).

Example 2.3.4. Let R[(t, x), u(t, x)] = ut + ucux + uxxx = 0 be the gen-
eralized KdV equation in one spatial dimension with D = [0,∞) × R and
c > −2.

The product of U with the expression of the generalized KdV equation itself
is a divergence expression defined on D × U (k) since

U ·R[(t, x), U ] = UUt + U c+1Ux + UUxxx

= Dt

(
U2

2

)
+Dx

(
U c+2

c+ 2
+ UUxx −

U2
x

2

)
.

Hence, according to Theorem 2.3.2, the expression U · R[(t, x), U ] should
vanish identically on D×U (k) upon applying the Euler operator E . Indeed,
this is the case since

∂

∂U

(
U ·R[(t, x), U ]

)
= Ut + (c+ 1)U cUx + Uxxx,

−Dt
∂

∂Ut

(
U ·R[(t, x), U ]

)
= −Dt(U) = −Ut,

−Dx
∂

∂Ux

(
U ·R[(t, x), U ]

)
= −Dx(U c+1) = −(c+ 1)U cUx,

−Dxxx
∂

∂Uxxx

(
U ·R[(t, x), U ]

)
= −Dxxx(U) = −Uxxx.

11



2.4. Conservation Law Multipliers

Thus, summing the above expressions yields E
(
U ·R[(t, x), U ]

)
= 0 identi-

cally on D × U (k).

2.4 Conservation Law Multipliers

Definition 2.4.1. Let D′ × V(k) be a subdomain (i.e. a connected open
subset) of D × U (k). A set of smooth functions {Λσ : D′ × V(k) → R}mσ=1

is called a set of local conservation law multipliers of the PDE system R if
there exists smooth functions {Φi : D′ × V(k) → R}ni=1 such that everywhere
on D′ × V(k):

Λσ[x, U ]Rσ[x, U ] = DiΦi[x, U ]. (2.4)

A set of global conservation law multipliers of the PDE system R is a set of
local conservation law multipliers of the PDE system R which is defined on
all of D × U (k).

Thus equivalently, by Theorem (2.3.2), {Λσ : D′×V(k) → R}mσ=1 is a set
of local conservation law multipliers of the PDE system R if and only if

Eρ(Λσ[x, U ]Rσ[x, U ]) = 0, everywhere on D′ × V(k) for all ρ = 1, . . . ,m.
(2.5)

Hence to find a set of conservation law multipliers, one can proceed to solve
the system of PDEs (2.5) for the unknowns Λσ[x, U ].6

From the definition of a set of local conservation law multipliers, we see
immediately that the existence of a set of local conservation law multipliers
implies the existence of a local conservation law.

Theorem 2.4.2. Suppose {Λσ : D′×V(k) → R}mσ=1 is a set of local conserva-
tion law multipliers of the PDE system R, then there exists a corresponding
local conservation law for the PDE system R.

Proof.

DiΦi[x, U ]
∣∣∣
U=u(x)

= Λσ[x, U ]Rσ[x, U ]
∣∣∣
U=u(x)

= Λσ[x, u(x)]Rσ[x, u(x)] = 0.

Example 2.4.3. Let R[(t, x1, . . . , xn), u(t, x1, . . . , xn)] = ut−
∑n

i=1 uxixi = 0
be the heat equation with D = [0,∞)× Rn.

6This procedure using Euler operators to find sets of conservation law multipliers is
discussed thoroughly in [7].
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2.4. Conservation Law Multipliers

One can see easily that one choice of a global conservation law multiplier
is Λ[(t, x), U ] = 1 since

1 ·R[(t, x), U ] = Dt(U)−Dxi(Uxi).

In general, 1 is always a conservation law multiplier if R[(t, x), U ] is already
a divergence expression.

Example 2.4.4. Let R[(t, x), u(t, x)] = ut + ucux + uxxx = 0 be the gener-
alized KdV equation in 1D with D = [0,∞)× R and c > −2.

One can see that Λ[x, U ] = U is a global conservation law multiplier
since

U(Ut + U cUx + Uxxx) = Dt

(
U2

2

)
+Dx

(
U c+2

c+ 2
+ UUxx −

U2
x

2

)
.

Example 2.4.5. Let R[(t, x), u(t, x)] = utt−(c2(u)ux)x = 0 be the nonlinear
wave equation with smooth wave speed c(u) with D = [0,∞)× R.

One can check that Λ[x, U ] = xt is a global conservation law multiplier
since

xt(Utt−(c2(U)Ux)x) = Dt(xtUt−xU)+Dx

(
−xtc2(U)Ux + t

∫ U

c2(µ)dµ
)
.

There is a partial converse to Theorem 2.4.2, i.e. every global conserva-
tion law of the PDE system R up to equivalence of trivial conservation laws
arises from a set of global conservation law multipliers. In particular, this
is the case if we assume the PDE system R is non-degenerate7.

Theorem 2.4.6. Suppose the PDE system R is non-degenerate. If there
exist smooth functions {Φi : D×U (k) → R}ni=1 where DiΦi[x, U ]

∣∣
U=u(x)

= 0
on any smooth solution u(x) of the PDE system R, then there exists a set
of global conservation law multipliers {Λσ : D × U (k) → R}mσ=1 and a trivial
conservation law with fluxes {Ψi : D × U (k) → R}ni=1 such that everywhere
on D × U (k):

Di(Φi[x, U ]−Ψi[x, U ]) = Λσ[x, U ]Rσ[x, U ].
7See Appendix A for the definition of non-degenerate PDEs.

13



2.4. Conservation Law Multipliers

Proof. From Theorem A.0.5 from Appendix A, DiΦi[x, U ]
∣∣
U=u(x)

= 0 on
any smooth solution of a non-degenerate system R if and only if there exist
smooth functions Aσ,J [x, U ] such that

DiΦi[x, U ] =
∑

σ,|J |≤k

Aσ,J [x, U ]DJR
σ[x, U ] (2.6)

for any (x, U (k)) ∈ D × U (k). By repeatedly integrating by parts on each
multi-index J of equation (2.6), we see that

DiΦi[x, U ] = DiΨi[x, U ] +
∑

σ,|J |≤k

(−1)|J |DJ(Aσ,J [x, U ])Rσ[x, U ],

where Ψi[x, U ] =
∑

σ,|J |≤k

Ciσ,J [x, U ]DJR
σ[x, U ] for some smooth Ciσ,J [x, U ],

i.e. {Ψi[x, U ]}ni=1 are trivial fluxes.
Letting Λσ[x, U ] =

∑
|J |≤k

(−1)|J |DJ(Aσ,J [x, U ]), then everywhere on D×U (k):

Di(Φi[x, U ]−Ψi[x, U ]) = Λσ[x, U ]Rσ[x, U ].

Hence, given a non-degenerate PDE system R, equivalence classes of
global conservation laws are intimately connected with global conservation
law multipliers. In general, given a PDE system R, there can be many sets
of conservation law multipliers that give rise to the same equivalence class
of conservation laws. However, one can show that if the PDE system R
admits a Cauchy-Kovalevskaya form8 with a certain condition on the form
of global conservation law multipliers, then each equivalence class of global
conservation laws of the PDE system R can be identified with one set of
global conservation law multipliers of the PDE system R. To state this
more precisely, we define the vector space over R of global conservation law
multipliers for the PDE system R as:

Definition 2.4.7. The vector space over R of global conservation law mul-
tipliers of the PDE system R with component-wise addition and scalar mul-
tiplication is denoted by

8See Appendix B for the definition of PDEs with a Cauchy-Kovalevskaya form.
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2.4. Conservation Law Multipliers

M(R) =

(Λ1, . . . ,Λm)

∣∣∣∣∣∣
Λσ : D × U (k) → R smooth for σ = 1, . . . ,m
Φi : D × U (k) → R smooth for i = 1, . . . , n
Λσ[x, U ]Rσ[x, U ] = DiΦi[x, U ] on D × U (k)

 .

Theorem 2.4.8. If the PDE system R has a Cauchy-Kovalevskaya form
with respect to the variable xi and each set of global conservation law multi-
pliers in M(R) does not contain Uρ

î
, Uρ

2̂i
, . . . , Uρ

kî
, then there is an one-to-one

linear correspondence between CL(R) and M(R).

Proof. See [6].

From now on, we will focus on PDE systems that admits a Cauchy-
Kovalevskaya form. In particular, N = m, i.e. the number of PDEs of R
must match the number of dependent variables present in the PDE system
R.
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Chapter 3

Flux Equations and Line
Integral Formula

In this chapter, we present the main result of this thesis; i.e. the flux equa-
tions and a line integral formula for the equivalent fluxes. In particular,
given a set of conservation law multipliers of a PDE system R, the corre-
sponding equivalent fluxes must satisfy the flux equations. Moreover, the
equivalent fluxes can be found by using a line integral formula derived from
the flux equation. We also show how the line integral formula can be sim-
plified in the presence of a point symmetry of the PDE system and a set
of conservation law multipliers. This chapter will begin by showing a fun-
damental divergence identity. From the divergence identity, we derive the
flux equations and consequently the line integral formula. Examples will be
presented to illustrate the applicability and computational efficiency of the
flux equation method.

3.1 The Flux Equations

We first derive an elementary divergence identity which essentially comes
from integration by parts. Before presenting the result, we first need to
extend the utility of the multi-index notation introduced in Definition 2.1.2.

Definition 3.1.1. A finite sequence of multi-indices {Jl}rl=0 is an incre-
mentally increasing sequence if Jl = Jl−1 + îl for all l = 1, . . . , r and for
some sequence {il}rl=1 ⊂ N.

For example, if J0 = (0, 2, 1), J1 = (1, 2, 1), J2 = (1, 2, 2) and J3 =
(1, 3, 2), then the sequence {Jl}3l=0 is incrementally increasing, where i1 = 1,
i2 = 3 and i3 = 2. Note that if {Jl}rl=0 is an incrementally increasing
sequence, |Jl| = |J0|+ l.

To save writing, we will from now on implicitly assume the dependence on
[x, U ] when the argument [x, U ] is omitted for functions defined on D′×V(k).
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3.1. The Flux Equations

Theorem 3.1.2. Let f : D′ × V(k) → R and g : D′ × V(k) → R be smooth
functions. Then for any multi-index P with r = |P | ≤ k and any incremen-
tally increasing sequence {Jl}rl=0 with J0 = 0 and Jr = P , everywhere on
D′ × V(k), one has

(DP f)g = f(−1)|P |(DP g) +
r∑
l=1

(−1)l−1Dil

[
(DP−Jl−1−îlf)(DJl−1

g)
]
.

Proof. For any (x, U (k)) ∈ D′ × V(k), we prove this by induction on r.
For r = 0, J0 = 0 = P and hence employing the empty sum notation:

(DP f)g = fg = f(−1)|P |(DP g)

= f(−1)|P |(DP g) +
r∑
l=1

(−1)l−1Dil

[
(DP−Jl−1−îlf)(DJl−1

g)
]
.

For r > 0, notice that {Jl}r−1
l=0 is also an incrementally increasing sequence

with J0 = 0 and Jr−1 = P − îr. Hence by the induction hypothesis, since
|Jr−1| = r − 1:

(DP f)g = (DJr−1+îr
f)g = (DJr−1(Dirf))g

= (Dirf)(−1)r−1(DJr−1g)

+
r−1∑
l=1

(−1)l−1Dil

[
(DJr−1−Jl−1−îl(Dirf))(DJl−1

g)
]

= f(−1)r(Dir(DJr−1g)) + (−1)r−1Dir

[
f(DJr−1g)

]
+

r−1∑
l=1

(−1)l−1Dil

[
(DP−Jl−1−îlf)(DJl−1

g)
]

= f(−1)|P |(DP g) + (−1)r−1Dir

[
(DP−Jr−1−îrf)(DJr−1g)

]
+

r−1∑
l=1

(−1)l−1Dil

[
(DP−Jl−1−îlf)(−DJl−1

)g
]

= f(−1)|P |(DP g) +
r∑
l=1

(−1)l−1Dil

[
(DP−Jl−1−îlf)(DJl−1

g)
]
.

There is one particular incrementally increasing sequence which will be
convenient to use.
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3.1. The Flux Equations

Definition 3.1.3. A finite sequence {Jl}rl=0 is an ordered incrementally
increasing sequence if it is an incrementally increasing sequence and the
sequence {il}rl=1 ⊂ N satisfies il ≤ il+1 for l = 1, . . . , r − 1.

For example, if J0 = (0, 0, 0), J1 = (1, 0, 0), J2 = (1, 1, 0) and J3 =
(1, 2, 0), then the sequence {Jl}3l=0 is ordered incrementally increasing.

Given any multi-index P = (p1, p2, . . . , pn), let {Jl}rl=0 be the unique
ordered incrementally increasing sequence such that J0 = 0 and Jr = P .
It’s straightforward to verify that

for 0 ≤ l ≤ |P(1)| : Jl = l1̂;

for |P(1)| ≤ l ≤ |P(2)| : Jl = P(1) + (l − |P(1)|)2̂;

(by induction)
... ;

for |P(i−1)| ≤ l ≤ |P(i)| : Jl = P(i−1) + (l − |P(i−1)|)̂i,

where P(i) denotes the first i indices of P ; i.e. P(i) = (p1, p2, . . . , pi, 0, . . . 0)
and for convenience we define P(0) = 0.

Given two multi-indices I = (i1, . . . , in) and J = (j1, . . . , jn), we denote
J ≤ I if jl ≤ il for all l = 1, . . . , n. Thus, by choosing the ordered incremen-
tally increasing sequence for Theorem 3.1.2, we obtain the following.

Corollary 3.1.4. Let f : D′ × V(k) → R and g : D′ × V(k) → R be smooth
functions, then for any multi-index P with |P | ≤ k, everywhere on D′×V(k):

(DP f)g = f(−1)|P |(DP g)+
n∑
i=1

Di

 ∑
P(i−1)≤J≤P(i)−î

(−1)|J |(DP−J−îf)(DJg)

 .

Proof. Pick any point in (x, U (k)) ∈ D′ × V(k). Choosing {Jl}rl=0 be the
ordered incrementally increasing sequence in Theorem 3.1.2 yields:

(DP f)g = f(−1)|P |(DP g) +
r∑
l=1

(−1)l−1Dil

[
(DP−Jl−1−îlf)(DJl−1

g)
]

For any l such that |P(i−1)| < l ≤ |P(i)|, Jl = P(i−1)+(l−|P(i−1)|)̂i and il = i.
In other words, as l − 1 ranges from |P(i−1)| to |P(i)| − 1, P(i−1) ≤ Jl−1 ≤
P(i−1) + (pi − 1)̂i = P(i) − î. Thus the set of multi-indices {Jl−1 : |P(i−1)| <
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3.1. The Flux Equations

l ≤ |P(i)|} is the same as the set of multi-indices {J : P(i−1) ≤ J ≤ P(i)− î}.
Hence, by summing over i = 1, . . . , n first, we can rearrange the sum as:

(DP f)g = f(−1)|P |(DP g)+
n∑
i=1

Di

 ∑
P(i−1)≤J≤P(i)−î

(−1)|J |(DP−J−îf)(DJg)

 .

Now we are in the position to prove a fundamental divergence identity
that relates to the Euler operator Eρ.

Theorem 3.1.5. Let f : D′ × V(k) → R be a smooth function and also let
γ : [a, b]→ V(k) be a differentiable curve9. Then for any x ∈ D and s ∈ [a, b],

d

ds
f [x, γ(s)] = ηρ[x, γ(s)]Eρ(f [x, γ(s)]) +DiΨi(η, f)[x, γ(s)]

where ηρ[x, γ(s)] = dγρ(s)
ds and

Ψi(η, f)[x, γ(s)]

=
∑
|I|≤k−1
I(i−1)=0

∑
|J |≤k−|I|−1

J(i)=J

(−1)|J |
(

(DIη
ρ)

(
DJ

∂f

∂Uρ
I+J+î

))
[x, γ(s)].

Proof. Since by definition of V(k), γρP (s) = DP (γρ(s)), applying the chain
rule on any x ∈ D′ yields

d

ds
f [x, γ(s)] =

∑
|P |≤k

∂f

∂UρP
[x, γ(s)]

dDP (γρ(s))
ds

=
∑
|P |≤k

∂f

∂UρP
[x, γ(s)]DP η

ρ[x, γ(s)]. (3.1)

9A differentiable curve γ : [a, b]→ V(k) ⊂ U (k) is a differentiable curve which preserves
the structure of U (k); i.e. if Uρ = γρ(s) then each components of γ(s) in the prolonged
space U (k) must satisfy UρI = DI(U

ρ) = DI (γρ(s)) = γρI (s) for any multi-index I. For
example, for any x ∈ D and any smooth function V (x) = (V 1(x), . . . , V m(x)), we can
define the linear curve γ : [0, 1] → U0 defined by γρ(s) = sV ρ(x). By preserving the
differentiable structure of U (k), γ(s) prolongs to a differentiable curve γ : [0, 1] → U (k)

with components γρI (s) = DI (sV ρ(x)) = sV ρI (x).

19



3.1. The Flux Equations

Using Corollary 3.1.4, for each multi-index P and at each point in D′×V(k):

(DP η
ρ)

∂f

∂UρP
= ηρ(−1)|P |

(
DP

∂f

∂UρP

)

+
n∑
i=1

Di

 ∑
P(i−1)≤J≤P(i)−î

(−1)|J |(DP−J−îη
ρ)
(
DJ

∂f

∂UρP

) .

Combining equation (3.1) with the definition of the Euler operator Eρ yields

d

ds
f [x, γ(s)] = ηρ[x, γ(s)]

∑
|P |≤k

(−1)|P |
(
DP

∂f

∂UρP

)
[x, γ(s)]

+
n∑
i=1

Di

 ∑
|P |≤k

P(i−1)≤J≤P(i)−î

(−1)|J |
(

(DP−J−îη
ρ)
(
DJ

∂f

∂UρP

))
[x, γ(s)]


= ηρ[x, γ(s)]Eρ(f [x, γ(s)])

+
n∑
i=1

Di

 ∑
|P |≤k

P(i−1)≤J≤P(i)−î

(−1)|J |
(

(DP−J−îη
ρ)
(
DJ

∂f

∂UρP

))
[x, γ(s)]

 .
To simplify this further, notice that J ≤ P(i) − î implies J has zero entries
after the i-th element; i.e. J(i) = J . Moreover, for P(i−1) ≤ J , the multi-
index I = P − J − î has zero entries in the first (i − 1)-th elements; i.e.
I(i−1) = 0. Hence, we can substitute for P = I+J+î with conditions J(i) = J

and I(i−1) = 0. In particular, since |I|+ |J |+ 1 = |I + J + î| = |P | ≤ k, we
can rewrite the sum as

d

ds
f [x, γ(s)] = ηρ[x, γ(s)]Eρ(f [x, γ(s)])

+Di

 ∑
|I|≤k−1
I(i−1)=0

∑
|J |≤k−|I|−1

J(i)=J

(−1)|J |
(

(DIη
ρ)

(
DJ

∂f

∂Uρ
I+J+î

))
[x, γ(s)]

 .
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3.1. The Flux Equations

Using this divergence identity, we can now complete the proof of the
Euler operator property; i.e. the converse of Theorem 2.3.2 from Chapter 2.

Proof of the converse of Theorem 2.3.2. Suppose the converse is true, i.e.
Eρ(f [x, U ]) = 0 everywhere on D′ × V(k) for all ρ = 1, . . . ,m. Then by
Theorem 3.1.5, for any differentiable curve γ : [a, b]→ V(k):

d

ds
f [x, γ(s)] = DiΨi(η, f)[x, γ(s)]. (3.2)

Fix any (x, U (k)) ∈ D′ ×V(k) and pick a smooth function c(x) = (c1(x), . . . ,
cm(x)) such that the k-th prolongation at c(x) is in V(k). Since V(k) is
connected and hence V0 is path-connected, we can find a differentiable curve
γ : [a, b] → V0 such that γ(a) = c(x) and γ(b) = U . Prolonging γ to the
curve γ : [a, b] → V(k) and integrating equation (3.2) for such a curve γ
yields

f [x, γ(b)]− f [x, γ(a)] =
∫ b

a
DiΨi(η, f)[x, γ(s)]ds

⇒ f [x, U ]− f [x, c(x)] = Di

∫ b

a
Ψi(η, f)[x, γ(s)]ds.

Note that the resulting value of the integral is independent of the choice of
γ(s) and hence it is well-defined. Since D is simply-connected, we can find
smooth Θi(x) for all 1 ≤ i ≤ n such that DiΘi(x) = f [x, c(x)] everywhere
in D. Hence, everywhere on D:

f [x, U ] = Di

[
Θi(x) +

∫ 1

0
Ψi(η, f)[x, γ(s)]ds

]
.

Since this is true for any (x, U (k)) ∈ D′ × V(k), the converse is proved.

Using Theorem 3.1.5, we also obtain the following corollary by restricting
γ(s) to flows under evolutionary vector fields10.

Definition 3.1.6. A differential operator X acting on smooth functions
defined on D × U (k),

X = ξi(x, U)
∂

∂xi
+ ηρ(x, U)

∂

∂Uρ
+

∑
0<|I|≤k

ηρI [x, U ]
∂

∂UρI
,

10See Appendix C for more details on flows and evolutionary vector fields.
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3.1. The Flux Equations

is called a vector field if the smooth functions {ξi : D × U (k) → R}ni=1,
{ηρ : D × U (k) → R}mρ=1 and {ηρI : D × U (k) → R}mρ=1,I satisfy the relation
everywhere on D × U (k) given by

ηρI [x, U ] = DI

(
ηρ(x, U)− ξi(x, U)Uρi

)
+ ξi(x, U)Uρ

I+î
.

Definition 3.1.7. A vector field X̂ is an called an evolutionary vector field
if ξi(x, U) = 0 for all i = 1, . . . , n, i.e.,

X̂ =
∑
|I|≤k

(DIη
ρ[x, U ])

∂

∂UρI
.

Definition 3.1.8. The flow under an evolutionary vector field X̂ starting
at U ∈ U (k)

0 is the unique differentiable curve γ : (a − ε, a + ε) → U0 such
that γ(a) = U and for all ρ = 1, . . . ,m,

d

ds
γρ(s) = ηρ[x, γ(s)], (3.3)

for all s ∈ (a− ε, a+ ε), i.e., the flow γ(s) of X̂ is the unique solution to the
ODE system (3.3) satisfying the initial condition γ(a) = U . The prolonged
flow γ : (a− ε, a+ ε)→ U (k) is the prolonged curve obtained from preserving
the differentiable structure of U (k), i.e., γρI (s) = DIγ

ρ(s).

Corollary 3.1.9. Let X̂η be an evolutionary vector field and f : D′×V(k) →
R be a smooth function. Then everywhere on D′ × V(k),

X̂η(f [x, U ]) = ηρ[x, U ]Eρ(f [x, U ]) +DiΨi(η, f)[x, U ],

where Ψi(η, f)[x, U ] is as given in Theorem 3.1.5.

Proof. Choose any (x, U (k)) ∈ D′×V(k) and let γ : (−ε, ε)→ V0 be the corre-
sponding flow of the evolutionary vector field of X̂η with γ(0) = U . Prolong
γ to the curve γ : (−ε, ε) → V(k). Then by the property of evolutionary
vector fields and Theorem 3.1.5,

X̂η(f [x, U ]) =
d

ds
f [x, γ(s)]

∣∣∣∣
s=0

=
(
ηρ[x, γ(s)]Eρ(f [x, γ(s)]) +DiΨi(η, f)[x, γ(s)]

)∣∣∣
s=0

= ηρ[x, U ]Eρ(f [x, U ]) +DiΨi(η, f)[x, U ],

where the last step follows from the definition of flows. Since this is true for
any (x, U (k)) ∈ D′ × V(k), the corollary is proved.
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In particular, applying Corollary 3.1.9 to the special case when f [x, U ] =
Λσ[x, U ]Rσ[x, U ], where {Λσ : D′ × V(k) → R}mσ=1 is a set of local conserva-
tion law multipliers of the PDE system R, yields:

Corollary 3.1.10. Let {Λσ : D′ × V(k) → R}mσ=1 be a set of local conser-
vation law multipliers of the PDE system R and let X̂η be an evolutionary
vector field. Then everywhere on D′ × V(k),

X̂η(Λσ[x, U ]Rσ[x, U ]) = DiΨi(η,ΛσRσ)[x, U ],

where Ψi(η,ΛσRσ)[x, U ] is as given in Theorem 3.1.5.

Proof. Set f [x, U ] = Λσ[x, U ]Rσ[x, U ] in Corollary 3.1.9 and apply equation
(2.5).

Now we are in the position to present the main result of this thesis; i.e.
the flux equations.

Theorem 3.1.11. Let {Λσ : D′×V(k) → R}mσ=1 be a set of local conservation
law multipliers of the PDE system R. Then for any i = 1, . . . , n, ρ =
1, . . . ,m and multi-index I, the equivalent fluxes {Φi : D′ × V(k) → R}ni=1

must satisfy everywhere on D′ × V(k):

∂Φi

∂UρI
[x, U ] =


∑

|J |≤k−|I|−1
J(i)=J

(−1)|J |
(
DJ

∂(ΛσRσ)
∂Uρ

I+J+î

)
[x, U ], if I(i−1) = 0,

0, if I(i−1) 6= 0.
(3.4)

Proof. Choose any (x, U (k)) ∈ D′ × V(k). By Corollary 3.1.10 and the com-
mutativity property of total derivatives with evolutionary vector fields 11,

DiΨi(η,ΛσRσ)[x, U ] = X̂η(Λσ[x, U ]Rσ[x, U ])
= X̂η(DiΦi[x, U ])
= DiX̂η(Φi[x, U ]),

for any smooth functions {ηµ : D′×V(k) → R}mµ=1. Thus, up to equivalences,
for each i = 1, . . . , n and everywhere on D′ × V(k):

11See Appendix C.
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3.1. The Flux Equations

X̂η(Φi[x, U ]) = Ψi(η,ΛσRσ)[x, U ]

⇒
∑
|P |≤k

(DP η
µ)
∂Φi

∂UµP
=

∑
|P |≤k−1
P(i−1)=0

(DP η
µ)

∑
|J |≤k−|I|−1

J(i)=J

(−1)|J |
(
DJ

∂(ΛσRσ)
∂Uµ

I+J+î

)
.

(3.5)

Fix any i = 1, . . . , n, ρ = 1, . . . ,m and multi-index I = (i1, . . . , in).
We now prove the flux equations by induction on r = |I|. For r = 0, i.e.
I = 0, choose ηµ[x, U ] = δµρ , where δρρ = 1 and δµρ = 0 if µ 6= ρ. Thus,
DP η

µ[x, U ] = 0 if 0 < |P | or µ 6= ρ and equation (3.5) simplifies to

∂Φi

∂Uρ
=

∑
|J |≤k−1
J(i)=J

(−1)|J |
(
DJ

∂(ΛσRσ)
∂Uρ

I+J+î

)
,

which agrees with the flux equation for the case when I = 0, as I(i−1) = 0
is automatically satisfied for all i = 1, . . . , n.

By the induction hypothesis for r = |I| > 0, the flux equations are
satisfied for all multi-indices P such that |P | < r. Hence, for any smooth
functions {ηµ : D′ × V(k) → R}mµ=1, equation (3.5) reduces to

∑
r≤|P |≤k

(DP η
µ)
∂Φi

∂UµI
=

∑
r≤|P |≤k−1
P(i−1)=0

(DP η
µ)

∑
|J |≤k−|I|−1

J(i)=J

(−1)|J |
(
DJ

∂(ΛσRσ)
∂Uµ

I+J+î

)
.

(3.6)

Now choose ηµ[x, U ] =
δµρxI

I!
, where xI = (x1)i1 · · · (xn)in and I! = i1! · · · in!.

Thus, DP η
µ[x, U ] = 0 if r < |P | or P 6= I or µ 6= ρ, i.e. the only summand

left in equation (3.6) is the term involving P = I and µ = ρ. If I(i−1) = 0,
the right hand side of equation (3.6) further simplifies to

∂Φi

∂UρP
=

∑
|J |≤k−r−1
J(i)=J

(−1)|J |
(
DJ

∂(ΛσRσ)
∂Uρ

I+J+î

)
.

Otherwise, the right hand side of equation (3.6) is an empty sum, i.e., if

I(i−1) 6= 0, then
∂Φi

∂UρI
= 0.
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For convenience, we write out explicitly the flux equations that will be
useful for the subsequent examples.

3.1.1 Example: The Flux Equations for a Third-order
Scalar PDE

Consider the case n = 3, m = 1, k = 3 with (x1, x2, x3) = (t, x, y). This is
the case for any third order scalar PDE, R[(t, x, y), u(t, x, y)] = 0, with three
variables t, x and y and with a set of conservation law multipliers involving
derivatives up to at most third order.

Given a multiplier Λ[(t, x, y), U ] of the scalar PDE, we first write out the
flux equations (Theorem 3.4) for Φt[(t, x, y), U ]. Since t is identified with
x1, then for any multi-index I = (i1, i2, i3), the condition 0 = I(1−1) = 0
is always satisfied. Also for the multi-index J = (j1, j2, j3), the condition
J(1) = J implies J = (j1, 0, 0). Hence the flux equations for Φt[(t, x, y), U ]
should only sum over all J = (j1, 0, 0) with |J | ≤ 2− |I|. This leads to the
following set of equations:

∂Φt

∂U
=

∂

∂Ut
(ΛR)−Dt

∂

∂Utt
(ΛR) +DtDt

∂

∂Uttt
(ΛR) ,

∂Φt

∂Ut
=

∂

∂Utt
(ΛR)−Dt

∂

∂Uttt
(ΛR) ,

∂Φt

∂Ux
=

∂

∂Utx
(ΛR)−Dt

∂

∂Uttx
(ΛR) ,

∂Φt

∂Uy
=

∂

∂Uty
(ΛR)−Dt

∂

∂Utty
(ΛR) ,

∂Φt

∂Utt
=

∂

∂Uttt
(ΛR) ,

∂Φt

∂Utx
=

∂

∂Uttx
(ΛR) ,

∂Φt

∂Uty
=

∂

∂Utty
(ΛR) ,

∂Φt

∂Uxx
=

∂

∂Utxx
(ΛR) ,

∂Φt

∂Uxy
=

∂

∂Utxy
(ΛR) ,

∂Φt

∂Uyy
=

∂

∂Utyy
(ΛR) . (3.7)
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Next, we write out the flux equations (Theorem 3.4) for Φx[(t, x, y), U ].
Since x is identified with x2, then for any multi-index I = (i1, i2, i3), the
condition 0 = I(2−1) = I(1) is satisfied when I = (0, i2, i3). Also for the multi-
index J = (j1, j2, j3), the condition J(2) = J implies J = (j1, j2, 0). Hence
the flux equations for Φx[(t, x, y), U ] should only sum over all J = (j1, j2, 0)
with |J | ≤ 2− |I|. This leads to the following set of equations:

∂Φx

∂U
=

∂

∂Ux
(ΛR)−Dt

∂

∂Utx
(ΛR)−Dx

∂

∂Uxx
(ΛR)

+DtDt
∂

∂Uttx
(ΛR) +DtDx

∂

∂Utxx
(ΛR) +DxDx

∂

∂Uxxx
(ΛR) ,

∂Φx

∂Ut
= 0,

∂Φx

∂Ux
=

∂

∂Uxx
(ΛR)−Dt

∂

∂Utxx
(ΛR)−Dx

∂

∂Uxxx
(ΛR) ,

∂Φx

∂Uy
=

∂

∂Uxy
(ΛR)−Dt

∂

∂Utxy
(ΛR)−Dx

∂

∂Uxxy
(ΛR) ,

∂Φx

∂Utt
= 0,

∂Φx

∂Utx
= 0,

∂Φx

∂Uty
= 0,

∂Φx

∂Uxx
=

∂

∂Uxxx
(ΛR) ,

∂Φx

∂Uxy
=

∂

∂Uxxy
(ΛR) ,

∂Φx

∂Uyy
=

∂

∂Uxyy
(ΛR) . (3.8)

Finally, we write out the flux equations (Theorem 3.4) for Φy[(t, x, y), U ].
Since y is identified with x3, then for any multi-index I = (i1, i2, i3), the
condition 0 = I(3−1) = I(2) is satisfied when I = (0, 0, i3). Also for the
multi-index J = (j1, j2, j3), the condition J(3) = J is always satisfied. Hence
the flux equations for Φy[(t, x, y), U ] should sum over all J with |J | ≤ 2−|I|.
This leads to the following set of equations:
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∂Φy

∂U
=

∂

∂Uy
(ΛR)−Dt

∂

∂Uty
(ΛR)−Dx

∂

∂Uxy
(ΛR)−Dy

∂

∂Uyy
(ΛR)

+DtDt
∂

∂Utty
(ΛR) +DtDx

∂

∂Utxy
(ΛR) +DtDy

∂

∂Utyy
(ΛR)

+DxDx
∂

∂Uxxy
(ΛR) +DxDy

∂

∂Uxyy
(ΛR) +DyDy

∂

∂Uyyy
(ΛR) ,

∂Φy

∂Ut
= 0,

∂Φy

∂Ux
= 0,

∂Φy

∂Uy
=

∂

∂Uyy
(ΛR)−Dt

∂

∂Utyy
(ΛR)−Dx

∂

∂Uxyy
(ΛR)−Dy

∂

∂Uyyy
(ΛR) ,

∂Φy

∂Utt
= 0,

∂Φy

∂Utx
= 0,

∂Φy

∂Uty
= 0,

∂Φy

∂Uxx
= 0,

∂Φy

∂Uxy
= 0,

∂Φy

∂Uyy
=

∂

∂Uyyy
(ΛR) . (3.9)

At first glance, the flux equations do not appear to be symmetric with
respect to each of the variables t, x and y. Indeed, one can derive a sym-
metric set of flux equations but at the expense of introducing weighting
constants. However, as we will see shortly in applications, whether or not
the flux equations are symmetric is immaterial because any solution of the
flux equations will lead to the equivalent fluxes that correspond to a given
set of conservation law multipliers.

3.1.2 Example: The Flux Equations for a Second-order
System of Two PDEs

Now consider the case n = 2, m = 2, k = 2 with (x1, x2) = (t, x). This
is the case for any second order system of two PDEs {Rσ[(t, x), (u1(t, x),
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u2(t, x))] = 0}2σ=1, with two variables t and x and with a set of conservation
law multipliers involving second order derivatives.

Given a set of multipliers {Λσ[(t, x), (U1, U2)]}2σ=1, we first write out
the flux equations (Theorem 3.4) for Φt[(t, x), (U1, U2)]. Since t is identified
with x1, then for any multi-index I = (i1, i2), the condition 0 = I(1−1) = 0 is
always satisfied. Also for the multi-index J = (j1, j2), the condition J(1) = J
is satisfied when J = (j1, 0). Hence the flux equations for Φt[(t, x), (U1, U2)]
should sum over all J with ≤ |J | ≤ 1 − |I|. This leads to the following set
of equations:

∂Φt

∂U1
=

∂

∂U1
t

(ΛR)−Dt
∂

∂U1
tt

(ΛR) ,

∂Φt

∂U2
=

∂

∂U2
t

(ΛR)−Dt
∂

∂U2
tt

(ΛR) ,

∂Φt

∂U1
t

=
∂

∂U1
tt

(ΛR) ,

∂Φt

∂U2
t

=
∂

∂U2
tt

(ΛR) ,

∂Φt

∂U1
x

=
∂

∂U1
tx

(ΛR) ,

∂Φt

∂U2
x

=
∂

∂U2
tx

(ΛR) . (3.10)

Similarly, we write out the flux equations (Theorem 3.4) for Φx[(t, x), U ].
Since x is identified with x2, then for any multi-index I = (i1, i2), the
condition 0 = I(2−1) = I(1) is satisfied when I = (0, i2). Also for the multi-
index J = (j1, j2), the condition J(2) = J is always satisfied. Hence the flux
equations for Φx[(t, x), U ] should sum over all J with |J | ≤ 1 − |I|. This
leads to the following set of equations:
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∂Φx

∂U1
=

∂

∂U1
x

(ΛR)−Dt
∂

∂U1
tx

(ΛR)−Dx
∂

∂U1
xx

(ΛR) ,

∂Φx

∂U2
=

∂

∂U2
x

(ΛR)−Dt
∂

∂U2
tx

(ΛR)−Dx
∂

∂U2
xx

(ΛR) ,

∂Φx

∂U1
t

= 0,

∂Φx

∂U2
t

= 0,

∂Φx

∂U1
x

=
∂

∂U1
xx

(ΛR) ,

∂Φx

∂U2
x

=
∂

∂U2
xx

(ΛR) . (3.11)

3.2 The Line Integral Formula

Given a set of local conservation law multipliers {Λσ : D′×V(k) → R}mσ=1, a
solution to the flux equations yields a corresponding equivalent set of fluxes
{Φi : D′ × V(k) → R}ni=1. In particular, the solution can be given by the
following line integral formula.

Theorem 3.2.1. Let D′ be a simply-connected subdomain of D and V(k) be
a connected open subset of U (k). Pick any (x, U (k)) ∈ D′ × V(k) and any
differentiable curve γ : [a, b] → V(k) such that γ(a) = c(x) and γ(b) = U ,
where c(x) = (c1(x), . . . , cm(x)) is any smooth function such that the k-th
prolongation of c(x) is in V(k). If {Λσ : D′ × V(k) → R}mσ=1 is a set of
local conservation law multipliers of the PDE system R, then {Φi : D′ ×
V(k) → R}ni=1 are the corresponding equivalent fluxes if and only if for all
i = 1, . . . , n,

Φi[x, U ] =
∫ b

a
Ψi(η,ΛσRσ)[x, γ(s)]ds, (3.12)

where Ψi(η,ΛσRσ)[x, U ] is as given in Theorem 3.1.5.

Proof. Suppose {Φi : D′×V(k) → R}ni=1 are the equivalent fluxes for the set
of local conservation law multipliers {Λσ : D′ × V(k) → R}mσ=1. By the flux
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equations and the fundamental theorem on line integrals:

Φi[x, U ] = Φi[x, c(x)] +
∫ b

a

∑
|I|≤k−1

∂Φi

∂UρI
[x, γ(s)]

dγρI (s)
ds

ds

= Φi[x, c(x)]

+
∫ b

a

∑
|I|≤k−1
I(i−1)=0

∑
|J |≤k−|I|−1

J(i)=J

(−1)|J |
(
DJ

∂(ΛσRσ)
∂Uρ

I+J+î

)
[x, γ(s)]

dγρI (s)
ds

ds

= Φi[x, c(x)] +
∫ b

a
Ψi(η,ΛσRσ)[x, γ(s)]ds,

where the last step follows from dγ(s)
ds = η[x, γ(s)]. Since {Θi(x) =

Φi[x, c(x)]}ni=1 is a set of trivial fluxes, the forward implication is proved.
Conversely, suppose {Φi : D′ × V(k) → R}ni=1 satisfies equation (3.12). By
Corollary 3.1.5 and since {Λσ : D′ × V(k) → R}mσ=1 is a set of local conser-
vation law multipliers, for all s ∈ [a, b] one has

d

ds
(ΛσRσ)[x, γ(s)] = DiΨi(η,ΛσRσ)[x, γ(s)].

Hence, integrating the above equation for s yields:

(ΛσRσ)[x, U ]− (ΛσRσ)[x, c(x)] = Di

∫ b

a
Ψi(η,ΛσRσ)[x, γ(s)]ds

= DiΦi[x, U ].

Since D′ is simply-connected, we can find trivial fluxes {Θi(x)}ni=1 such that
DiΘi(x) = (ΛσRσ)[x, c(x)]. In other words, {Φi : D′ × V(k) → R}ni=1 is the
corresponding set of equivalent fluxes for the set of local conservation law
multipliers {Λσ : D′ × V(k) → R}mσ=1.

In order to use the line integral formula, we must choose a differentiable
curve γ(s) such that its range is defined on all of V(k) and as well as a smooth
function c(x) such that its k-th prolongation is defined in V(k) for all x ∈ D′.
Moreover, in practice, we would like the resulting integrals to be ”simple”
enough to be computed explicitly in order to determine the explicit form of
the fluxes. To the best knowledge of the author, unfortunately there isn’t a
systematic way to choose γ(s) and c(x) that guarantees simple integrations
for the line integral formula.
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Nonetheless, typically in applications, D′ × V(k) is the entire D × U (k)

(i.e. 0 ∈ V(k)). Often in this case, a linear curve γ : [a, b] → U0 defined
by γ(s) = sU will lead to simple integrations for line integral formula. If
0 /∈ V(k), then we must in general choose an appropriate curve γ(s) so that
its range avoids the singularity at 0. As we will discuss in Chapter 4, a
special case of this is the homotopy integral formula in [5] where we would
choose γ(s) = sU + (1 − s)c(x) for some non-vanishing smooth function
c(x). However, there is still no guarantee that this choice of curve will lead
to simple integrations.

3.2.1 Example: Generalized KdV Equation

Consider the generalized KdV equation with c > −2:

R[(t, x), u(t, x)] = ut + ucux + uxxx = 0. (3.13)

Since in this case, n = 2 < 3, m = 1 and k = 3, we can use the flux equations
(3.7) and (3.8). Using the Euler operator method to find conservation law
multipliers, it can be shown that Λ[(t, x), U ] = U is a global conservation law
multiplier for the generalized KdV equation (3.13). Hence, for this choice
of Λ[(t, x), U ] = U , the flux equations for Φt[(t, x), U ] and Φx[(t, x), U ] are
given by

∂Φt

∂U
= U,

∂Φx

∂U
= U c+1 + Uxx,

∂Φx

∂Ux
= −Ux,

∂Φx

∂Uxx
= U,

where all other partial derivatives of Φt[(t, x), U ] and Φx[(t, x), U ] are zero.
Since both R[(t, x), U ] and Λ[(t, x), U ] are smooth everywhere on D × U (k),
we can choose γ : [0, 1] → U0 to be the linear curve defined by γ(s) = sU .
By prolonging γ(s), the line integral formula (Theorem 3.2.1) yields
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Φt[(t, x), U ] =
∫ 1

0

∂Φt

∂U
[(t, x), γ(s)]

dγ(s)
ds

ds

=
∫ 1

0
(sU)Uds

=
U2

2
,

Φx[(t, x), U ] =
∫ 1

0

(
∂Φx

∂U
[(t, x), γ(s)]

dγ(s)
ds

+
∂Φx

∂Ux
[(t, x), γ(s)]

dDxγ(s)
ds

+
∂Φx

∂Uxx
[(t, x), γ(s)]

dDxDxγ(s)
ds

)
ds

=
∫ 1

0

(
((sU)c+1 + sUxx)U + (−sUx)Ux + (sU)Uxx

)
ds

= U c+2

∫ 1

0
sc+1ds+ UUxx

∫ 1

0
2sds− U2

x

∫ 1

0
sds

=
U c+2

c+ 2
+ UUxx −

U2
x

2
.

Indeed, one can readily verify that these fluxes correspond to the global
conservation law multiplier Λ[(t, x), U ] = U of equation (3.13):

U(Ut + U cUx + Uxxx) = Dx

(
U c+2

c+ 2
+ UUxx −

U2
x

2

)
+Dt

(
U2

2

)
.

3.2.2 Example: 1D Nonlinear Wave Equation

Consider the 1D nonlinear wave equation with smooth wave speed:

R[(t, x), u(t, x)] = utt − (c2(u)ux)x = utt − 2c(u)c′(u)u2
x − c2(u)uxx = 0.

(3.14)
Since in this case, n = 2 < 3, m = 1, k = 2 < 3, we can again use

the flux equations (3.7) and (3.8). Using the Euler operator method to
find conservation law multipliers, it can be shown that Λ[(t, x), U ] = xt is
a global conservation law multiplier for the nonlinear wave equation (3.14).
Hence, for this choice of Λ[(t, x), U ] = xt, the flux equations for Φt[(t, x), U ]
and Φx[(t, x), U ] are given by
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∂Φt

∂U
= −x,

∂Φt

∂Ut
= xt,

∂Φx

∂U
= −2xtc(U)c′(U)Ux + tc2(U),

∂Φx

∂Ux
= −xtc(U)2,

where again all other partial derivatives of Φt[(t, x), U ] and Φx[(t, x), U ] are
zero. As both R[(t, x), U ] and Λ[(t, x), U ] are smooth everywhere on D×U (k),
we could again choose the linear curve for γ(s). Instead, we illustrate in this
example that choosing γ : [0, 1]→ U0 to be the polynomial curve defined by
γ(s) = spU for any p > 0 leads to the same equivalent fluxes for all p > 0.
Indeed, this is true in general since the the line integral formula holds for
any differentiable curve γ(s). Hence, the line integral formula yields

Φt[(t, x), U ] =
∫ 1

0

(
∂Φt

∂U
[(t, x), γ(s)]

dγ(s)
ds

+
∂Φt

∂Ut
[(t, x), γ(s)]

dDtγ(s)
ds

)
ds

=
∫ 1

0

(
(−x)psp−1U + (xt)psp−1Ut

)
ds

= xtUt − xU,

Φx[(t, x), U ] =
∫ 1

0

(
∂Φx

∂U
[(t, x), γ(s)]

dγ(s)
ds

+
∂Φx

∂Ux
[(t, x), γ(s)]

dDxγ(s)
ds

)
ds

=
∫ 1

0

(
(−2xtc(spU)c′(spU)spUx + tc2(spU))psp−1U

+(−xtc2(spU))psp−1Ux

)
ds

= −xtUx
∫ 1

0

(
2ps2p−1Uc(spU)c′(spU) + psp−1c2(spU)

)
ds

+ t

∫ 1

0
c2(spU)psp−1Uds

= −xtUx
∫ 1

0

d

ds

(
spc2(spU)

)
ds+ t

∫ U

0
c2(µ)dµ

= −xtUxc2(U) + t

∫ U

0
c2(µ)dµ.
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Indeed, one can readily verify that these are the equivalent fluxes for the
global conservation law multiplier Λ[(t, x), U ] = xt of equation (3.14):

xt
(
Utt − 2c(U)U2

x − c2(U)Uxx
)

= Dx

(
−xtUxc2(U) + t

∫ U

0
c2(µ)dµ

)
+Dt (xtUt − xU) .

3.2.3 Example: Nonlinear Telegraph System

Consider the nonlinear telegraph system:

R1[(t, x), (u1(t, x), u2(t, x))] = u2
t − ((u1)2 + 1)u1

x − u1 = 0,
R2[(t, x), (u1(t, x), u2(t, x))] = u1

t − u2
x = 0. (3.15)

Since in this case, n = 2, m = 2, k = 1 < 2, we can use the flux equa-
tions (3.10) and (3.11). Using the Euler operator method to find conser-
vation law multipliers, it can be shown that Λ1[(t, x), (U1, U2)] = t and
Λ2[(t, x), (U1, U2)] = x − t2

2 together form a set of global conservation law
multipliers for the nonlinear telegraph system (3.15). Hence, for this set of
conservation law multipliers, the flux equations for Φt[(t, x), (U1, U2)] and
Φx[(t, x), (U1, U2)] are given by

∂Φt

∂U1
= x− t2

2
,

∂Φt

∂U2
= t,

∂Φx

∂U1
= −t((U1)2 + 1),

∂Φx

∂U2
=

t2

2
− x.

Since Rσ[(t, x), (U1, U2)] and Λσ[(t, x), (U1, U2)] are smooth everywhere on
D × U (k) for σ = 1, 2, we can choose γ : [0, 1] → U0 to be the linear curve
defined by γ(s) = (γ1(s), γ2(s)) = s(U1, U2). By prolonging γ(s), the line
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3.2. The Line Integral Formula

integral formula yields

Φt[(t, x), (U1, U2)]

=
∫ 1

0

(
∂Φt

∂U1
[(t, x), γ(s)]

dγ1(s)
ds

+
∂Φt

∂U2
[(t, x), γ(s)]

dγ2(s)
ds

)
ds

=
∫ 1

0

((
x− t2

2

)
U1 + tU2

)
ds

=
(
x− t2

2

)
U1 + tU2,

Φx[(t, x), (U1, U2)]

=
∫ 1

0

(
∂Φx

∂U1
[(t, x), γ(s)]

dγ1(s)
ds

+
∂Φx

∂U2
[(t, x), γ(s)]

dγ2(s)
ds

)
ds

=
∫ 1

0

(
−t((sU1)2 + 1)U1 +

(
t2

2
− x
)
U2

)
ds

= −t(U1)3

∫ 1

0
s2ds+

((
t2

2
− x
)
U2 − tU1

)∫ 1

0
ds

= −
(

(U1)3

3
+ U1

)
t+
(
t2

2
− x
)
U2.

One can easily verify that these form the equivalent fluxes for the set of global
conservation law multipliers Λ1[(t, x), (U1, U2)] = t,Λ2[(t, x), (U1, U2)] =
x− t2

2 of equation (3.15):

t(U2
t − ((U1)2 + 1)U1

x − U1) +
(
x− t2

2

)
(U1

t − U2
x)

= Dx

(
−
(

(U1)3

3
+ U1

)
t+

(
t2

2
− x
)
U2

)
+Dt

((
x− t2

2

)
U1 + tU2

)
.

In [9], integral formulas for fluxes were derived by other means. Since the
line integral formula is a general theorem, it is not a coincidence that the
integral formulas from [9] correspond precisely with the line integral formula
in this case.

Rather than picking γ(s) randomly and seeing if it will lead to simple
integrations, we should take advantage of the freedom in choosing γ(s) in
the line integral formula. In particular, we can simplify the line integral
formula by making use of the symmetries12 of both the PDE system R and
the sets of conservation law multipliers.

12See Appendix C for details on symmetries.
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Theorem 3.2.2. Suppose the hypotheses of Theorem 3.2.1 are satisfied and
further suppose X̂η is the generator of a point symmetry of the PDE equa-
tions of R. Let γ : [a, b] → V(k) be the corresponding flow of X̂η such
that γ(a) = c(x) and γ(b) = U . The equivalent fluxes from Theorem 3.2.1
simplify to

Φi[x, U ] =
∫ b

a

∑
|I|≤k−1
|J |≤k−|I|−1
I(i−1)=0
J(i)=J

(−1)|J |
(

(DIη
ρ)

(
DJ

(
Λσ

∂Rσ

∂Uρ
I+J+î

)))
[x, γ(s)]ds.

Proof. We can rewrite each of the fluxes Φi[x, U ] from Theorem 3.2.1 as

Φi[x, U ] =
∫ b

a

∑
|I|≤k−1
|J |≤k−|I|−1
I(i−1)=0
J(i)=J

(−1)|J |
(

(DIη
ρ)

(
DJ

(
Λσ

∂Rσ

∂Uρ
I+J+î

))

+(DIη
ρ)

(
DJ

(
∂Λσ

∂Uρ
I+J+î

Rσ

)))
[x, γ(s)]ds. (3.16)

Since X̂η is the generator of a point symmetry of a (non-degenerate) PDE
systemR, by Theorem C.0.14 there exists a smooth matrix {Aσµ[x, U ; s]}mσ,µ=1

which satisfies Rσ[x, γ(s)] = Aσµ[x, U ; s]Rµ[x, U ] under the flow γ(s) of X̂η

for all s ∈ [a, b]. Hence, substituting Rσ[x, γ(s)] = Aσµ[x, U ; s]Rµ[x, U ] in
equation (3.16) shows that∫ b

a

∑
|I|≤k−1
|J |≤k−|I|−1
I(i−1)=0
J(i)=J

(−1)|J |
(

(DIη
ρ)

(
DJ

(
∂Λσ

∂Uρ
I+J+î

Rσ

)))
[x, γ(s)]ds

is a trivial flux.

In other words, there are potentially fewer integrations required to find
the equivalent fluxes if we choose the curve γ(s) to be the flow under a
symmetry generator X̂η of the PDE system R. Furthermore, we can obtain
further simplifications for the equivalent fluxes if X̂η is a generator of a point
symmetry for the set of local conservation law multipliers {Λσ : D′×V(k) →
R}mσ=1.
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Definition 3.2.3. An evolutionary vector field X̂η is called the genera-
tor of a point symmetry of the set of local conservation law multipliers
{Λσ : D′ × V(k) → R}mσ=1 if for any solution v(x) of the system of equa-
tions {Λσ[x, v(x)] = 0}mσ=1, the flow γ(s) under X̂ with γ(a) = v(x) satisfies
Λσ[x, γ(s)] = 0 for all x ∈ D′ and all s ∈ (a− ε, a+ ε) for some ε > 0.

Note that if the system of equations {Λσ[x, v(x)] = 0}mσ=1 is non-degenerate
and X̂ is the generator of a point symmetry of the set of local conserva-
tion law multipliers {Λσ : D′ × V(k) → R}mσ=1, then by Theorem C.0.14,
there exists a smooth matrix {Bν

σ[x, U ; s]}mσ,ν=1 such that Λσ[x, γ(s)] =
Λν [x, U ]Bν

σ[x, U ; s] for all s ∈ (a − ε, a + ε). From now on, we will always
assume that the system of equations {Λσ[x, v(x)] = 0}mσ=1 is non-degenerate.

Theorem 3.2.4. Suppose the hypotheses of Theorem 3.2.1 are satisfied and
suppose X̂η is the generator of a point symmetry of the PDEs of R and of
the set of local conservation law multipliers {Λσ : D′ × V(k) → R}mσ=1. Let
γ : [a, b] → V(k) be the corresponding flow of X̂η such that γ(a) = c(x) and
γ(b) = U . The equivalent fluxes simplify to

Φi[x, U ] =
∫ b

a

∑
|I|≤k−1
|J |≤k−|I|−1
I(i−1)=0
J(i)=J

(−1)|J |(DIη
ρ[x, γ(s)])

⌈
DJ

(
Λν [x, U ]

Bν
σ[x, U ; s]

∂Rσ

∂Uρ
I+J+î

[x, γ(s)]

)⌋
ds

where {Bν
σ[x, U ; s]}mσ,ν=1 is a smooth matrix that satisfies

Λσ[x, γ(s)] = Λν [x, U ]Bν
σ[x, U ; s].

Proof. Substituting Λσ[x, γ(s)] = Λν [x, U ]Bν
σ[x, U ; s] for the integral for-

mula in Theorem 3.2.2 yields the desired result.

The main advantage of Theorem 3.2.4 is that the dependence on the
parameter s in the set of local conservation law multipliers {Λν [x, γ(s)]}mν=1

is factored out from the line integral formula which can lead to simpler
integrations. As we will see in the next example, this theorem can lead to
explicit algebraic formulas for the equivalent fluxes. For convenience, we
state Theorem 3.2.4 for the scalar case, i.e. m = 1.

Corollary 3.2.5. Suppose the hypotheses of Theorem 3.2.1 are satisfied
and suppose X̂η is the generator of a point symmetry of the PDEs of R
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3.2. The Line Integral Formula

and the set of local conservation law multipliers Λ : D′ × V(k) → R. Let
γ : [a, b] → V(k) be the corresponding flow of X̂η such that γ(a) = c(x) and
γ(b) = U . The equivalent fluxes further simplify to

Φi[x, U ] =
∫ b

a

∑
|I|≤k−1
|J |≤k−|I|−1
I(i−1)=0
J(i)=J

(−1)|J |(DIη[x, γ(s)])
⌈
DJ

(
Λ[x, U ]

B[x, U ; s]
∂R

∂Uρ
I+J+î

[x, γ(s)]

)⌋
ds

where B[x, U ; s] is a smooth function satisfying Λ[x, γ(s)] = Λ[x, U ]B[x, U ; s].

3.2.4 Example: 2D Flame Equation

Consider the 2D flame equation:

R[(t, x, y), u(t, x, y)] = ut −
√
u2
x + u2

y = 0. (3.17)

Note that R[(t, x, y), U ] is only smooth on D and V(k) = U (k)\{0}. Thus the
conservation laws for the 2D flame equation must be local. Nonetheless, we
will show that the line integral formula leads to new local conservation laws
for the 2D flame equation.

Since n = 3, m = 1, k = 1 < 3 for the 2D flame equation, we
can use the flux equations (3.7), (3.8) and (3.9). Using the Euler op-
erator method to find conservation law multipliers, it can be shown that
Λ[(t, x, y), U ] = f(Ux, Uy)(UxxUyy − U2

xy) is a local conservation law multi-
plier of the flame equation (3.17), where f(·, ·) is any smooth function of its
arguments. To save writing, denote H[(t, x, y), U ] = UxxUyy − U2

xy. Hence,
for this conservation law multiplier, the flux equations for Φt[(t, x, y), U ],
Φx[(t, x, y), U ] and Φy[(t, x, y), U ] are given by
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∂Φt

∂U
= fH,

∂Φx

∂U
=

∂f

∂Ux
HR− fH Ux√

U2
x + U2

y

−Dx

(
fUyyR

)
,

∂Φx

∂Ux
= fUyyR,

∂Φx

∂Uy
= −2fUxyR,

∂Φy

∂U
=

∂f

∂Uy
HR− fH Uy√

U2
x + U2

y

+ 2Dx

(
fUxyR

)
−Dy

(
fUyyR

)
,

∂Φy

∂Uy
= fUxxR,

where all other partial derivatives of Φt[(t, x, y), U ], Φx[(t, x, y), U ] and
Φt[(t, x, y), U ] are zero.

Since R[(t, x, y), U ] is smooth everywhere except at 0 ∈ U (k), we can still
choose γ : [ε, 1] → U0 to be a linear curve γ(s) = sU provided that ε > 0.
It will turn out in the end that the fluxes are still well-defined in the limit
ε→ 0. Thus, by prolonging γ(s), the line integral formula yields

Φt[(t, x, y), U ]− Φt[(t, x, y), εU ] =
∫ 1

ε

∂Φt

∂U
[(t, x, y), γ(s)]

dγ(s)
ds

ds

=
∫ 1

ε
f(sUx, sUy)H[(t, x, y), sU ]Uds

= UH[(t, x, y), U ]
∫ 1

ε
s2f(sUx, sUy)ds,
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Φx[(t, x, y), U ]− Φx[(t, x, y), εU ]

=
∫ 1

ε

(
∂Φx

∂U
[(t, x, y), γ(s)]

dγ(s)
ds

+
∂Φx

∂Ux
[(t, x, y), γ(s)]

dDxγ(s)
ds

+
∂Φx

∂Uy
[(t, x, y), γ(s)]

dDyγ(s)
ds

)
ds

=
∫ 1

ε

[(
∂f

∂Ux
(sUx, sUy)H[(t, x, y), sU ]R[(t, x, y), sU ]

− f(sUx, sUy)H[(t, x, y), sU ]
sUx√

(sUx)2 + (sUy)2

−Dx

(
f(sUx, sUy)sUyyR[(t, x, y), sU ]

))
U

+
(
f(sUx, sUy)sUyyR[(t, x, y), sU ]

)
Ux

−2
(
f(sUx, sUy)sUxyR[(t, x, y), sU ]

)
Uy

]
ds

= −UUxH[(t, x, y), U ]√
U2
x + U2

y

∫ 1

ε
s2f(sUx, sUy)ds

+R[(t, x, y), U ]
(
UH[(t, x, y), U ]

∫ 1

ε
s3 ∂f

∂Ux
(sUx, sUy)ds

+ (UyyUx − 2UxyUy)
∫ 1

ε
s2f(sUx, sUy)ds

)
− UDx

(
UyyR[(t, x, y), U ]

∫ 1

ε
s2f(sUx, sUy)ds

)
,
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Φy[(t, x, y), U ]− Φy[(t, x, y), εU ]

=
∫ 1

ε

(
∂Φy

∂U
[(t, x, y), γ(s)]

dγ(s)
ds

+
∂Φy

∂Uy
[(t, x, y), γ(s)]

dDyγ(s)
ds

)
ds

=
∫ 1

ε

[(
∂f

∂Uy
(sUx, sUy)H[(t, x, y), sU ]R[(t, x, y), sU ]

− f(sUx, sUy)H[(t, x, y), sU ]
sUy√

(sUx)2 + (sUy)2

+ 2Dx

(
f(sUx, sUy)sUxyR[(t, x, y), sU ]

)
−Dy

(
f(sUx, sUy)sUyyR[(t, x, y), sU ]

))
U

+
(
f(sUx, sUy)sUxxR[(t, x, y), sU ]

)
Uy

]
ds

= −UUyH[(t, x, y), U ]√
U2
x + U2

y

∫ 1

ε
s2f(sUx, sUy)ds

+R[(t, x, y), U ]
(
UH[(t, x, y), U ]

∫ 1

ε
s3 ∂f

∂Uy
(sUx, sUy)ds

+ (UxxUy)
∫ 1

ε
s2f(sUx, sUy)ds

)
+ 2UDx

(
UxyR[(t, x, y), U ]

∫ 1

ε
s2f(sUx, sUy)ds

)
− UDy

(
UyyR[(t, x, y), U ]

∫ 1

ε
s2f(sUx, sUy)ds

)
.

Since both Φx[(t, x, y), U ] and Φy[(t, x, y), U ] contain terms proportional
to R[(t, x, y), U ] or total derivatives of R[(t, x, y), U ] (i.e. those terms form
trivial fluxes), the equivalent fluxes for the multiplier Λ[(t, x, y), U ] are given
by
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Φt[(t, x, y), U ]− Φt[(t, x, y), εU ] = UH[(t, x, y), U ]
∫ 1

ε
s2f(sUx, sUy)ds,

Φx[(t, x, y), U ]− Φx[(t, x, y), εU ] = −UUxH[(t, x, y), U ]√
U2
x + U2

y

∫ 1

ε
s2f(sUx, sUy)ds,

Φy[(t, x, y), U ]− Φy[(t, x, y), εU ] = −UUyH[(t, x, y), U ]√
U2
x + U2

y

∫ 1

ε
s2f(sUx, sUy)ds.

Since {Φt[(t, x, y), 0],Φx[(t, x, y), 0],Φy[(t, x, y), 0]} are all trivial fluxes,
substituting the expression for H[(t, x, y), U ] and taking the limit as ε → 0
yields the equivalent fluxes for the multiplier Λ[(t, x, y), U ] given by

Φt[(t, x, y), U ] = U(UxxUyy − U2
xy)
∫ 1

0
s2f(sUx, sUy)ds, (3.18)

Φx[(t, x, y), U ] = −
UUx(UxxUyy − U2

xy)√
U2
x + U2

y

∫ 1

0
s2f(sUx, sUy)ds, (3.19)

Φy[(t, x, y), U ] = −
UUy(UxxUyy − U2

xy)√
U2
x + U2

y

∫ 1

0
s2f(sUx, sUy)ds. (3.20)

Indeed, through a long and involved calculation, one can verify that for
any smooth function f(Ux, Uy), the fluxes {Φt[(t, x, y), U ],Φx[(t, x, y), U ],
Φy[(t, x, y), U ]} given by equations (3.18), (3.19) and (3.20) satisfy

f(Ux, Uy)(UxxUyy − U2
xy)(Ut −

√
U2
x + U2

y )

= Dt

(
Φt[(t, x, y), U ] + Θt[(t, x, y), U ]

)
+Dx (Φx[(t, x, y), U ] + Θx[(t, x, y), U ])
+Dy (Φy[(t, x, y), U ] + Θy[(t, x, y), U ]) ,

where {Θt[(t, x, y), U ],Θx[(t, x, y), U ],Θy[(t, x, y), U ]} is a set of trivial fluxes.
Without knowing the explicit expression of f , equations (3.18), (3.19)

and (3.20) are the general expressions for the equivalent fluxes that corre-
spond to the conservation law multiplier Λ[(t, x, y), U ] = f(Ux, Uy)(UxxUyy−
U2
xy) of the flame equation (3.17). However, if f is a homogeneous function

in its arguments (i.e. f(Ux, Uy) has the property that for some constant p,
f(sUx, sUy) = spf(Ux, Uy) for all s ∈ R), then we would obtain algebraic
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expressions for the equivalent fluxes. In particular, if p > −3, then equations
(3.18), (3.19) and (3.20) simplify to

Φt[(t, x, y), U ] = U(UxxUyy − U2
xy)
∫ 1

0
sp+2f(Ux, Uy)ds

=
U(UxxUyy − U2

xy)f(Ux, Uy)
p+ 3

, (3.21)

Φx[(t, x, y), U ] = −
UUx(UxxUyy − U2

xy)√
U2
x + U2

y

∫ 1

0
sp+2f(Ux, Uy)ds

= −
UUx(UxxUyy − U2

xy)f(Ux, Uy)

(p+ 3)
√
U2
x + U2

y

, (3.22)

Φy[(t, x, y), U ] = − UUy√
U2
x + U2

y

∫ 1

0
sp+2f(Ux, Uy)ds

= −
UUy(UxxUyy − U2

xy)f(Ux, Uy)

(p+ 3)
√
U2
x + U2

y

. (3.23)

Note that we can arrive at the same result much quicker by using the line in-
tegral formula (Corollary 3.2.5) which makes use of a point symmetry of the
PDE system and of the conservation law multiplier. Indeed, the evolution-
ary vector field X̂ =

∑
|I|≤k UI

∂
∂UI

is the generator of a scaling symmetry
of R[(t, x, y), U ] and of Λ[(t, x, y), U ], provided that f(·, ·) is a homogeneous
function. In particular, the flow γ : [ε, 1] → V(k) under X̂ starting at
γ(1) = U is given by γ(s) = sU . Since Λ[(t, x, y), γ(s)] = sp+2Λ[(t, x, y), U ],
B[(t, x, y), U ; s] = sp+2. Thus using the simplified integral formula from
Corollary 3.2.5, we get the same result as in (3.21), (3.22) and (3.23) by
taking ε→ 0.

In [7] and [10], the algebraic fluxes given by equations (3.21), (3.22) and
(3.23) were found using a specialized method that employs a non-critical
scaling symmetry ([11]). As discussed in Chapter 4, the non-critical scaling
symmetry method is in fact a special case of the line integral formula ob-
tained from Corollary 3.2.4. Moreover, the simplified line integral formula
from Corollary 3.2.4 also works for other point symmetries as well. In other
words, if both of the PDE system R and the set of conservation law multipli-
ers of the PDE system R admit a common point symmetry, then Corollary
3.2.4 can be used to simplify the integrations required in the line integral
formula.
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Chapter 4

Known Methods to Find
Conservation Laws

In this chapter, we review some general and specialized methods of finding
conservation laws for a PDE system R, given a known set of conservation
law multipliers. Each method has its own advantages and disadvantages in
its applicability and computational efficiency in finding conservation laws.
We compare these methods with the flux equation method and highlight
their similarities and differences in finding conservation laws.

4.1 Matching Method

We first outline the matching method for finding conservation laws for the
PDE system R and illustrate this method by an example.

Given that {Λσ[x, U ]}mσ=1 and {Rσ[x, U ]}mσ=1 depend at most on the k-th
order derivatives of U , then according to [12] the set of fluxes {Φi[x, U ]}ni=1

will also depend at most on the k-th order derivatives of U . Thus, from the
definition of a set of local conservation law multipliers {Λσ : D′ × V(k) →
R}mσ=1 of a PDE system R, the corresponding fluxes {Φi : D′×V(k) → R}ni=1

must satisfy everywhere on D′ × V(k):

Λσ[x, U ]Rσ[x, U ] = DiΦi[x, U ]

=
∂Φi

∂xi
[x, U ] +

∑
|J |≤k

Uρ
J+î

∂Φi

∂UρJ
[x, U ]. (4.1)

Thus, matching the k-th order derivatives in equation (4.1) implies every-
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4.1. Matching Method

where on D′ × V(k):

Λσ[x, U ]Rσ[x, U ] =
∂Φi

∂xi
[x, U ] +

∑
|J |≤k−1

Uρ
J+î

∂Φi

∂UρJ
[x, U ], (4.2)

∑
|J |=k

Uρ
J+î

∂Φi

∂UρJ
[x, U ] = 0. (4.3)

Moreover, if the terms involving the k-th order derivatives of U are linear in
the expression Λσ[x, U ]Rσ[x, U ], it can be shown that the equivalent fluxes
{Φi[x, U ]}ni=1 will depend at most on the (k − 1)-th order derivatives of U
([12]). In particular, equation (4.3) would be automatically satisfied. Hence
assuming the set of fluxes {Φi[x, U ]}ni=1 depends at most on the (k − 1)-
th order derivatives of U , then matching the k-th order derivatives on both
sides of equation (4.2) yields a set of determining equations for {Φi[x, U ]}ni=1.
Solving this set of determining equations yields {Φi[x, U ]}ni=1 up to additive
functions that depend at most on the (k − 2)-th order derivatives of U . By
matching successively lower order of derivatives of U in equation (4.2), the
matching method will yield Φi[x, U ] up to an additive function depending
only on x. This procedure is best illustrated by an example.

Example 4.1.1. Generalized KdV equation

Consider the generalized KdV equation with c > −2:

R[(t, x), u(t, x)] = ut + ucux + uxxx = 0.

Recall from earlier examples, Λ[(t, x), U ] = U is a (global) conservation
law multiplier for the generalized KdV equation, i.e., everywhere on D×U (k):

U(Ut + U cUx + Uxxx) = DtΦt[(t, x), U ] +DxΦx[(t, x), U ]. (4.4)

We now use the matching method to find the corresponding fluxes.
First, we must deduce the dependence of the highest order of UρI appearing
in Φx[(t, x), U ] and Φt[(t, x), U ]. For the multiplier Λ = U , we find that
Φt(t, x, U, Ut, Ux) and Φx(t, x, U, Ut, Ux, Uxx) would suffice, i.e., everywhere
on D × U (k):

U(Ut + U cUx + Uxxx) = [Φt
t + Φt

UUt + Φt
UtUtt + Φt

UxUxt]
+[Φx

x + Φx
UUx + Φx

UxUxx + Φx
UtUtx + Φx

UxxUxxx].
(4.5)
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4.1. Matching Method

Note that this step is unnecessary with the flux equation method because
the flux equations automatically give all the dependences of U (k) ∈ V(k). As
equation (4.5) holds everywhere on D × U (k), the functional dependence on
each of UρI must match on both sides of (4.5). Hence, we proceed sequentially
by equating the coefficients of successively lower orders of UρI and solving
each of the corresponding PDEs. In this case, equating the coefficients of
the highest order Uxxx in equation (4.5) yields everywhere on D × U (k):

Φx
Uxx = U ⇒ Φx = UUxx +A(t, x, U, Ut, Ux) (4.6)

for some unknown function A(t, x, U, Ut, Ux). From equation (4.6), we de-
duce that Φx

U = Uxx +AU and Φx
Ux

= AUx . Hence, equating the coefficients
of Uxx in equation (4.5) shows that everywhere on D × U (k):

AUx = −Ux ⇒ A(t, x, U, Ut, Ux) = −U
2
x

2
+B(t, x, U, Ut) (4.7)

for some unknown function B(t, x, U, Ut). Next equating the coefficients of
Utt in equation (4.5), we find that everywhere on D × U (k):

Φt
Ut = 0⇒ Φt = C(t, x, U, Ux) (4.8)

for some unknown function C(t, x, U, Ux). Finally, matching the coefficients
of Uxt in equation (4.5) yields everywhere on D × U (k):

Φx
Ut + Φt

Ux = 0.

Note from equations (4.7) and (4.8), Φx
Ut

= BUt , Φt
Ux

= CUx . Since B does
not depend on Ux and C does not depend on Ut, we can conclude that
everywhere on D × U (k):

BUt = −CUx = E(t, x, U) ⇒ B(t, x, U, Ut) = UtE(t, x, U) + F (t, x, U),
(4.9)

C(t, x, U, Ux) = −UxE(t, x, U) +G(t, x, U),
(4.10)

where E(t, x, U), F (t, x, U) and G(t, x, U) are some unknown functions to
be determined. It’s worth noting here that the efficiency of matching coef-
ficients depends on the sequence in which they are matched. For example,
since Utt and Uxt have the same order, one could just as well equate the Uxt
coefficients first then follow by the Utt coefficients. However, we would not
obtain the simplification as above until much later. Also, the possibility this
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4.2. Homotopy Integral Formula

kind of inefficiency does not occur with the line integral method because the
procedure is not iterative. Continuing on, matching the coefficients of Ux
and Ut in equation (4.5) yields respectively,

FU −Et = U c+1 ⇒ F (t, x, U) =
U c+2

c+ 2
+
∫ U

Et(t, x, µ)dµ+H(t, x), (4.11)

GU + Ex = U ⇒ G(t, x, U) =
U2

2
−
∫ U

Ex(t, x, µ)dµ+ I(t, x), (4.12)

for some unknown functions H(t, x) and I(t, x). Since H(t, x) and I(t, x))
are independent of variables in U (k), they are trivial fluxes. Note also for
any smooth function E(t, x, U), everywhere on D × U (k):

Dx

(
UtE(t, x, U) +

∫ U

Et(t, x, µ)dµ
)

+Dt

(
−UtE(t, x, U) +

∫ U

Ex(t, x, µ)dµ
)

= 0, (4.13)

i.e., equation (4.13) is a differential identity and hence a trivial conservation
law. Thus combining equations (4.6) through (4.13), the matching method
yields the equivalent fluxes

Φx[(t, x), U ] = UUxx −
U2
x

2
+
U c+2

c+ 2
,

Φt[(t, x), U ] =
U2

2
.

Indeed from direct computation, one can verify that everywhere on D×U (k):

U(Ut + U cUx + Uxxx) = Dx

(
UUxx −

U2
x

2
+
U c+2

c+ 2

)
+Dt

(
U2

2

)
.

4.2 Homotopy Integral Formula

Given a set of conservation law multipliers of the PDE system R, the ho-
motopy integral formula ([6]) is an integral formula for the fluxes of the
corresponding conservation law. Its main advantage is that it provides an
explicit formula for the fluxes, as opposed to successively solving and inte-
grating a system of PDEs when using the matching method. It has been
pointed out in [7, 10] that one drawback of the homotopy integral formula is
that the convergence of the integral formula depends on making choices of
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4.3. Noether’s Theorem

functions in order to avoid singularities in U (k) that the sets of conservation
law multipliers or the PDEs themselves may have. As we will see next, the
homotopy integral formula is in fact a special case of the line integral formula
(Theorem 3.2.1) obtained from the flux equations and hence we expect the
line integral formula to have a better chance at remedying this convergence
issue.

Theorem 4.2.1. Let D′ be a simply-connected subdomain of D and let V(k)

be a convex subset of U (k). Pick any (x, Uk) ∈ D′ × V(k) and any smooth
function c(x) = (c1(x), . . . , cm(x)) such that the k-th prolongation of c(x)
is in V(k). If {Λσ : D′ × V(k) → R}mσ=1 is a set of local conservation law
multipliers of the PDE system R, then the equivalent fluxes are given by

Φi[x, U ] =
∫ 1

0
Ψi(η,ΛσRσ)[x, sU + (1− s)c(x)]ds, (4.14)

where Ψi(η,ΛσRσ) : D′ × V(k) → R is as defined in Theorem 3.1.5.

Proof. Let γ(s) : [0, 1] → V(k) be the linear curve by prolonging γρ(s) =
sUρ + (1 − s)cρ(x). Hence, ηρ[x, γ(s)] = dγρ(s)

ds = U − cρ(x). Since V(k) is
a convex subset (and hence connected), Ψi(η,ΛσRσ)[x, γ(s)] is defined for
all s ∈ [0, 1]. Hence, applying the line integral formula (Theorem 3.2.1)
obtained from the flux equations proves the homotopy integral formula.

Since the homotopy formula is a special case of the general line integral
formula when we restrict to the linear curve γ(s) = sU + (1 − s)c(x), we
refer the reader for examples in Chapter 3.

4.3 Noether’s Theorem

In her celebrated paper [4], Noether presented a method to find local con-
servation laws for PDE systems which admit a variational principle. If a
PDE system admits an action functional, then the extremals of the action
functional yields precisely the PDE system given by the Euler-Lagrange
equations. Noether showed that if a PDE system admits a variational prin-
ciple and there exists a point symmetry of the action functional, then one
can obtain the fluxes of a local conservation law explicitly without integra-
tion. Here, we outline a generalization of Noether’s theorem which includes
higher-order symmetries due to Boyer [13]. Before we present this result, we
need to introduce a few definitions.
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4.3. Noether’s Theorem

Definition 4.3.1. Given a smooth function L : D × U (k) → R, the action
functional of J : U (k) → R is the integral expression given by

J [U ] =
∫
D
L[x, U ]dnx.

The smooth function L[x, U ] is called the Lagrangian.

Definition 4.3.2. Let J : U (k) → R be an action functional and let A(D) be
a family of functions defined on D. A function V (x) = (V 1(x), . . . , V m(x))
belonging to A(D) is an extremal of the action functional over A(D) if for
any smooth function ξ(x) = (ξ1(x), . . . , ξm(x)) compactly supported on D

d

ds
J [V + sξ]|s=0 = 0.

For our purpose, we will take A(D) to be the family of smooth functions
satisfying some given boundary conditions of the PDE system R.

Theorem 4.3.3. If U = V (x) is a smooth extremal function of the action
functional J : U (k) → R with the associated Lagrangian function L : D ×
U (k) → R, then it must satisfy the Euler-Lagrange equations:

Eρ(L[x, U ])|U=V (x) = 0 for all ρ = 1, . . . ,m.

Proof. We omit the details since we have basically already shown this during
the course of the proof of the Euler operator property in Theorem 2.3.2.

Definition 4.3.4. A PDE system R admits a variational principle if the
PDEs of the system are precisely those given by the Euler-Lagrange equa-
tions; i.e. there exists a Lagrangian function L : D × U (k) → R such that
the PDEs of R are given by

Rσ[x, u(x)] = Eσ(L[x, U ])|U=u(x) = 0 for all σ = 1, . . . ,m.

Definition 4.3.5. The flow under the generator X̂η is called a variational
symmetry of the action functional J : U (k) → R if X̂η leaves the Lagrangian
function L : D×U (k) → R to within a divergence expression, i.e., there exist
some smooth functions {Ai : D × U (k) → R}ni=1 such that everywhere on
D × U (k):

X̂η(L[x, U ]) = DiA
i[x, U ].

Now we are in the position to prove (Boyer’s generalization of) Noether’s
theorem ([7]).
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4.3. Noether’s Theorem

Theorem 4.3.6. Suppose the PDE system R has a variational principle
with the Lagrangian function L : D′ × V(k) → R. Further suppose that
X̂η =

∑
|I|≤k(DIη

ρ[x, U ]) ∂
∂UρI

is the generator of a variational symmetry

for the action functional J : D′ × V(k) → R. For each i = 1, . . . , n, let
Ψi(η,L) : D′ × V(k) → R be as defined in Theorem 3.1.5. Then

• The smooth functions {ηρ : D′ × V(k) → R}mρ=1 form a set of local
conservation law multipliers of the PDE system R.

• Everywhere on D′ × V(k), the corresponding fluxes are given by

Φi[x, U ] = Ai[x, U ]−Ψi(η,L)[x, U ]. (4.15)

Proof. By Theorem 3.1.9 of Chapter 3, everywhere on D′ × V(k):

X̂η(L[x, U ]) = ηρ[x, U ]Eρ(L[x, U ]) +DiΨi(η,L)[x, U ]. (4.16)

Since the PDE system R admits a variational principle and has a variational
symmetry generated by X̂η, equation (4.16) simplifies to

DiA
i[x, U ] = ηρ[x, U ]Rρ[x, U ] +DiΨi(η,L)[x, U ]

⇒ ηρ[x, U ]Rρ[x, U ] = Di

(
Ai[x, U ]−Ψi(η,L)[x, U ]

)
. (4.17)

Since equation (4.17) holds everywhere on D′×V(k), {ηρ : D′×V(k) → R}mρ=1

forms a set of local conservation law multipliers for the PDE system R and
the smooth functions {Φi : D′×V(k) → R}ni=1 as defined by equation (4.15)
are the corresponding equivalent fluxes.

Hence, in order to use Noether’s theorem to find a conservation law for a
given PDE system R, we must first determine if the PDE system R admits
a variational principle. Due to a criteria by Volterra [14], we can determine
precisely when a given PDE system R admits a variational principle. To
state this criteria, we need to introduce a few more definitions.

Definition 4.3.7. The linearization operator Lσρ of the PDE system R with
respect to components σ = 1, . . . ,m is a differential operator with its action
on any smooth functions {F ρ : D × U (k) → R}mρ=1 defined by

Lσρ (F ρ[x, U ]) =
∑
|I|≤k

∂Rσ

∂UρI
[x, U ]DIF

ρ[x, U ].
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4.3. Noether’s Theorem

Definition 4.3.8. The adjoint operator L∗σρ of the PDE system R with
respect to components ρ = 1, . . . ,m is a differential operator with its action
on any smooth functions {F ρ : D × U (k) → R}mρ=1 defined by

L∗σρ (F ρ[x, U ]) =
∑
|J |≤k

(−DJ)
(
∂Rσ

∂UρJ
[x, U ]F ρ[x, U ]

)
.

Definition 4.3.9. A PDE system R is called self-adjoint or variational
if the linearization operator Lσρ and the adjoint operator L∗σρ are equal as
differential operators, i.e., for any smooth functions {F ρ : D×U (k) → R}mρ=1,
everywhere on D × U (k):

Lσρ (F ρ[x, U ]) = L∗σρ (F ρ[x, U ]).

Theorem 4.3.10. Suppose D is a star-shaped domain. A PDE system R
(as written) defined on the entire D × U (k) admits a variational principle if
and only if the PDE system R is self-adjoint. If so, the Lagrangian function
is given by

L[x, U ] =
∫ 1

0
UρRρ[x, sU ]ds.

Proof. See [8] or [14].

Hence, if a given PDE system R is not self-adjoint as written, then one
cannot use Noether’s theorem to find conservation laws. Moreover, in the
case if the PDE systemR is self-adjoint, there may still be difficulties in com-
puting the Lagrangian function explicitly as given by the integral formula
in Theorem 4.3.10. The direct method of finding sets of conservation law
multipliers and then their corresponding equivalent fluxes does not depend
on whether the PDE system R admits a variational principle. In particular,
the flux equation method, the matching method and the homotopy integral
formula can be used regardless of whether the PDE system R is self-adjoint
or not.

Secondly, even if the given PDE system R admits a variational principle,
we still need to find a variational symmetry for the action functional. These
two obstacles highlight the key disadvantages of Noether’s theorem when
compared to the direct method in finding conservation laws.

Example 4.3.11. Generalized KdV equation

Consider the generalized KdV equation with c > −1:

R[(t, x), u(t, x)] = ut + ucux + uxxx = 0.
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4.4. Non-critical Scaling Symmetry

After computing the linearization and adjoint operators, it follows that the
generalized KdV equation as written above is not variational. However,
through the change of variable U = Vx, the generalized KdV equation is
transformed into a variational PDE [7]:

R′[(t, x), v(t, x)] = R[(t, x), vx(t, x)] = vxt + (vx)cvxx + vxxxx = 0,

where the Lagrangian function is given by,

L[(t, x), V ] =
(Vxx)2

2
− (Vx)c+3

(c+ 1)(c+ 2)
− VxVt

2
.

Moreover, the evolutionary vector field X̂η is the generator of a variational
symmetry of the transformed equation where η[(x, t), V ] = Vx. Indeed,

X̂η(L[(t, x), V ]) = VxxVxxx −
(c+ 3)(Vx)c+2Vxx

(c+ 1)(c+ 2)
− VxxVt

2
− VxVxt

2

= Dx

(
(Vxx)2

2
− (Vx)c+3

(c+ 1)(c+ 2)
− VxVt

2

)
.

Hence, applying Noether’s Theorem (Theorem 4.3.6), we can conclude that
Λ[(t, x), V ] = Vx is a conservation law multiplier and the corresponding
equivalent fluxes are given by

Φt[(t, x), U ] = Φt[(t, x), V ] =
(Vx)2

2
=
U2

2
,

Φx[(t, x), U ] = Φx[(t, x), V ] =
(Vx)c+2

(c+ 2)
+ VxVxxx −

(Vx)2

2

=
U c+2

c+ 2
+ UUxx −

U2

2
.

4.4 Non-critical Scaling Symmetry

This method ([7, 10, 11]) also provides an explicit algebraic formula for the
fluxes without integration. The main drawback is its limited applicability
since in this formula the PDEs of R and a set of (local) conservation law
multipliers {Λσ : D′×V(k) → R}mσ=1 of the PDE systemR both must possess
a scaling symmetry which is non-critical.
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4.4. Non-critical Scaling Symmetry

Definition 4.4.1. Given a set of local conservation law multipliers {Λσ :
D′×V(k) → R}mσ=1 of the PDE system R, the generator of a scaling symme-
try X̂η of the PDE system R and of the set of conservation law multipliers
{Λσ : D′ × V(k) → R}mσ=1 is called non-critical, if there is a constant c 6= 0
and some trivial fluxes {Θi : D × U (k) → R}ni=1 such that everywhere on
D′ × V(k):

X̂η(Λσ[x, U ]Rσ[x, U ]) = cΛσ[x, U ]Rσ[x, U ] +DiΘi[x, U ].

Theorem 4.4.2. Suppose X̂η is the generator of a non-critical scaling sym-
metry of both the PDE system R and a set of conservation law multipliers
of the PDE system R, {Λσ : D × U (k) → R}mσ=1. Then the corresponding
equivalent fluxes {Φi : D′ × V(k) → R}ni=1 are given by

Φi[x, U ] =
1
c

Ψi(η,ΛσRσ)[x, U ],

where Ψi(η,ΛσRσ) is as given in Theorem 3.1.5.

Proof. By definition of a non-critical scaling symmetry and Theorem 3.1.10:

Di

(
Ψi(η,ΛσRσ)[x, U ]−Θi[x, U ]

)
= X̂η(Λσ[x, U ]Rσ[x, U ])−DiΘi[x, U ]

= cΛσ[x, U ]Rσ[x, U ]
= cDiΦi[x, U ].

Dividing by c on both sides yields the desired result.

Example 4.4.3. 2D Flame Equation

Consider again the flame equation defined on D × V(k), where
V(k) = U (k)\{0},

R[(t, x, y), u(t, x, y)] = ut −
√
u2
x + u2

y = 0.

Using the Euler operator method, it can be shown that this scalar PDE has
the set of local conservation law multipliers given by linear combinations of

Λ1[(t, x, y), U ] =
UxUyy − UyUxy

U3
y

,

Λ2[(t, x, y), U ] =
UyUxx − UxUxy

U3
x

,

Λ3[(t, x, y), U ] = f(Ux, Uy)(UxxUyy − U2
xy),

53



4.4. Non-critical Scaling Symmetry

where f(·, ·) is any arbitrary smooth function of its arguments.
If f(Ux, Uy) is a homogeneous function, then it’s easy to check that each

of the conservation law multipliers {Λj [x, U ]}3j=1 and the flame equation is
invariant under the scaling symmetry,

X̂η =
∑
|I|≤2

(DIη[(t, x, y), U ])
∂

∂UI
,

where η[(t, x, y), U ] = tUt + xUx + yUy. Furthermore, the generator of a
scaling symmetry satisfies

X̂η((ΛjR)[(t, x, y), U ]) = cj(ΛjR)[(t, x, y), U ] +DiΘij [(t, x, y), U ]

for some cj 6= 0 and trivial fluxes {Θij : D×V(k) → R}3i=1 for each j = 1, 2, 3,
i.e. X̂η is the generator of a non-critical scaling symmetry of the flame
equation and of the three conservation law multipliers. Hence, we can apply
Theorem 4.4.2 and the expression for Ψij [(t, x, y), U ] given by Theorem 3.1.5
to obtain the equivalent algebraic fluxes for each of the sets of conservation
law multipliers {Λj [x, U ]}3j=1:

Ψij [(t, x, y), U ] =
1
cj

ηρ ∑
|J |≤1

J(i)=J

(−1)|J |
(
DJ

(
Λj

∂R

∂Uρ
J+î

))
(4.18)

+
∑
|I|=1

I(i−1)=0

(DIη
ρ)Λj

∂R

∂Uρ
I+î

 [(t, x, y), U ]. (4.19)

Note that for the conservation law multiplier Λ3[(t, x, y), U ], the equivalent
algebraic fluxes in equation (4.19) were also obtained in Chapter 3 via the
line integral formula from Theorem 3.2.1 or the simplified line integral for-
mula from Theorem 3.2.5.
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Chapter 5

Conclusion

In this thesis, we presented the flux equation method for finding conservation
laws for PDEs arising from a given set of conservation law multipliers. By
examples, we showed how the flux equation method generalizes some of
the known methods of finding fluxes. In particular, we showed that the
homotopy integral formula is in fact a special case of the line integral formula
obtained from the flux equations. We also showed how the line integral
formula can be simplified when there is a point symmetry of the PDE system
and of the set of conservation law multipliers. In the case when the point
symmetry is a non-critical scaling symmetry, the line integral formula leads
to the same algebraic fluxes obtain by using the method of non-critical
scaling symmetry.

In light of the flux equation method, there are many new directions for
research. First, one can investigate whether the flux equation method can
produce new fluxes on PDE systems where existing methods of finding con-
servation laws have difficulties. Secondly, using a point symmetry of the
PDE system and of the set of conservation law multipliers, we have seen
how the line integral formula can be simplified for finding equivalent fluxes.
In some cases, this leads to algebraic expressions for the fluxes. It will be
interesting to see if this result can be extended for more general classes of
symmetries such as contact or higher-order symmetries. Thirdly, the flux
equations provide new possibilities for computing fluxes through the use of
symbolic software. Since the flux equations give the explicit dependence of
the fluxes automatically from the PDEs and a set of conservation law mul-
tipliers, it will be interesting to compare the efficiency of the flux equation
method with current methods using symbolic software [7, 10].

55



Bibliography

[1] Peter D. Lax. Hyperbolic Systems of Conservation Laws and the Math-
ematical Theory of Shock Waves. CBMS-NSF Regional Conference in
Applied Mathematics. Society for Industrial and Applied Mathematics,
1973.

[2] Randall J. LeVeque. Numerical Methods for Conservation Laws. Lec-
tures in Mathematics : ETH Zurich. Birkhauser Verlag, 1992.

[3] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu. The Runge-
Kutta Local Projection Discontinuous Galerkin Finite Element Method
for Conservation Laws. IV: The Multidimensional Case. Mathematics
of Computation, 54:545–581, 1990.

[4] E. Noether. Invariante Variationsprobleme, Nachr. König. Gesell.
Wisen. Göttingen, Math.-Phys. Kl. pages 235–257, 1918.

[5] Stephen C. Anco and George W. Bluman. Direct Construction of Con-
servation Laws from Field Equations. Phys. Rev. Lett., 78:2869, 1997.

[6] Stephen C. Anco and George W. Bluman. Direct construction method
for conservation laws of partial differential equations. Part II: General
treatment. European Journal of Applied Mathematics, 13:18, 2002.

[7] George W. Bluman, Alexei F. Cheviakov, and Stephen C. Anco. Appli-
cations of Symmetry Methods to Partial Differential Equations, volume
168 of Applied Mathematical Sciences. Springer New York, 2010.

[8] Peter Olver. Applications of Lie Groups to Differential Equations, vol-
ume 107 of Graduate Texts in Mathematics. Springer New York, second
edition, 1993.

[9] George W. Bluman and Temuerchaolu. Conservation laws for nonlinear
telegraph equations. Journal of Mathematical Analysis and Applica-
tions, 310:459–476, 2005.

56



[10] Alexei F. Cheviakov. Computation of fluxes of conservation laws. Jour-
nal of Engineering Mathematics, 66:25, 2010.

[11] Stephen C. Anco. Conservation laws of scaling-invariant field equations.
J. Phys. A, 36:8623–8638, 2003.

[12] P. J. Olver. Conservation laws and null divergences. Math. Proc. Camb.
Phil. Soc., 94:529–540, 1983.

[13] T.H. Boyer. Continuous symmetries and conserved currents. Ann.
Physics, 42:445–466, 1967.
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Appendix A

Non-degenerate PDEs

Let R be a PDE system {Rσ[x, u(x)] = 0}Nσ=1 defined on domain D. Let
u0(x) be a smooth function defined on D which satisfies the PDE system R
at x = x0. Then, the PDE system R is locally solvable at x0 ∈ D and at the
k-th prolongation of u0(x0) if there exists a smooth solution u(x) of the PDE
system R defined on some neighbourhood of x0 such that u(x0) = u0(x0).
Furthermore, the PDE system R is called locally solvable if it is locally
solvable at every x0 ∈ D and every smooth function u0 which satisfies the
PDE system R at x = x0.

The PDE system R has maximal rank if the N × (n+m
(
n+k
k

)
) Jacobian

matrix

J [x, U ] =
(
∂Rσ

∂xi
,
∂Rσ

∂UρI

)
[x, U ] (A.1)

has maximal rank on any smooth solution U = u(x) of the PDE system R.

Definition A.0.4. A PDE system R is called non-degenerate if it is both
locally solvable and has maximal rank.

Theorem A.0.5. Suppose the PDE system R is non-degenerate. Then a
smooth function f : D × U (k) → R vanishes on any smooth solution of the
PDE system R if and only if there exist smooth functions Aσ,J [x, U ] such
that

f [x, U ] =
∑

σ,|J |≤k

Aσ,J [x, U ]DJR
σ[x, U ].

Proof. See [8].
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Appendix B

Cauchy-Kovalevskaya Form

Definition B.0.6. Suppose a given PDE system R has N equations, n
independent variables and m dependent variables. Then the PDE system
R is said to be in Cauchy-Kovalevskaya form if it has the following two
properties:

1. N=m.

2. There exists a choice of variable z such that the highest derivative of
uσ with respect to z in the PDE system R can be isolated into an an-
alytic system, i.e., for some positive integers {Kσ}nσ=1, each equation
Rσ[x, u(x)] of the PDE system R can be written in the form

0 = Rσ[x, u(x)] =
∂K

σ
uσ

∂zKσ − Sσ[x, u(x)],

where Sσ[x, U ] is analytic in its arguments and all other partial deriva-
tives ∂kUσ

∂zk
appearing in Sσ[x, U ] have k < Kσ.

Definition B.0.7. A PDE system R admits a Cauchy-Kovalevskaya form
if there exists an analytic function f : D × U (k) → D × U (k) with analytic
inverse such that {Rσ[f [x, u(x)]] = 0}Nσ=1 is in Cauchy-Kovalevskaya form.

Example B.0.8. Suppose R is a scalar PDE of the form

0 = R[x, u] =
∂Ku

∂zK
− S[x, u],

where S[., .] is analytic with respect to its arguments and all partial deriva-
tives ∂kU

∂zk
in S[x, U ] have k < K. Then R is in Cauchy-Kovalevskaya form.

Theorem B.0.9. (Cauchy-Kovalevskaya) Suppose a PDE system R is in
Cauchy-Kovalevskaya form for the variable z. For any x ∈ D, let x = (z, x̃).
Then, for any (z0, x̃0) ∈ D and any analytic functions {fk(x̃)}K−1

k=1 defined
near the point x̃0, the PDE system R has an unique analytic solution u(z, x̃)
in some neighbourhood of (z0, x̃0) ∈ D that satisfies the data ∂ku

∂zk
(z0, x̃) =

fk(x̃) for all k < K.

Proof. See [8].
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Appendix C

Vector Fields, Flows and
Symmetries

Theorem C.0.10. Suppose X̂ is an evolutionary vector field13 and γ :
(a − ε, a + ε) → U0 is the flow14 of X̂ starting at U ∈ U0. Then for any
smooth function f : D × U (k) → R and for all s ∈ (a− ε, a+ ε):

d

ds
f [x, γ(s)] = X̂(f [x, γ(s)]).

Proof. This follows from the chain rule and the definition of γ(s).

Theorem C.0.11. Suppose X̂ is an evolutionary vector field. Then for any
smooth function f : D × U (k) → R and i = 1, . . . , n:

X̂(Di(f [x, U ])) = Di(X̂(f [x, U ])).

Proof. This follows from direct computation.

Definition C.0.12. Given a PDE system R defined on D, an evolutionary
vector field X̂ is called the generator of a point symmetry of the PDE system
R if for any solution u(x) of the PDE system, the flow γ(s) under X̂ with
γ(a) = u(x) satisfies

Rσ[x, γ(s)] = 0

for all σ = 1, . . . ,m, x ∈ D and all s ∈ (a − ε, a + ε) for some ε > 0. (I.e.
the transformation generated by the flow of X̂ maps a solution u(x) of the
PDE system R to another solution of the PDE system R.)

Theorem C.0.13. Given a non-degenerate PDE system R defined on D,
a vector field X is the generator of a point symmetry of the PDE system R
if and only if for all σ = 1, . . . ,m:

X(Rσ[x, U ])|U=u(x) = 0.

13See Definition 3.1.7 from Chapter 3.
14See Definition 3.1.8 from Chapter 3.
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Appendix C. Vector Fields, Flows and Symmetries

Proof. See [8].

Theorem C.0.14. Suppose the PDE system R is non-degenerate and X̂ is
the generator of a point symmetry of the PDE system R. Let γ : (a− ε, a+
ε)→ U0 be the corresponding flow under X̂ with γ(a) = U . Then there exists
a smooth matrix {Aσµ[x, U ; s]}mσ,µ=1 such that for all σ = 1, . . . ,m, x ∈ D
and s ∈ (a− ε, a+ ε):

Rσ[x, γ(s)] = Aσµ[x, U ; s]Rµ[x, U ].

Proof. Since X̂ is the generator of a point symmetry of a non-degenerate
PDE system R and γ(s) implicitly depends on U , then on any solution u(x)
of the PDE system R,

Rσ[x, γ(s)]|U=u(x) = 0.

Hence, by Theorem A.0.5, there exists smooth functions {Aσµ[x, U ; s]}mσ,µ=1

and {Aσµ,J [x, U ; s]}σ,µ,J such that:

Rσ[x, γ(s)] = Aσµ[x, U ; s]Rµ[x, U ] +
∑

0<|J |≤k
µ=1,...,m

Aσµ,J [x, U ; s]DJR
µ[x, U ]. (C.1)

By definition of the generator of a point symmetry X̂, the image of the
flow γ(s) under X̂ lies in U0. Hence, the image of the prolongation of
γ(s) at most lies in the k-th prolongation jet space U (k). In other words,
Rσ[x, γ(s)] contains at most k-th order derivatives of U for all σ = 1, . . . ,m.
Moreover, since each term DJR

µ[x, U ] in equation (C.1) contains derivatives
strictly higher than the k-th order, the sum in (C.1) must vanish for all
s ∈ (a− ε, a+ ε) and x ∈ D.
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