Discrete Mathematical Modeling of Powder Bed 3D Printing Process

Travis Black, Alexei Cheviakov, Christopher Duffy

Department of Mathematics and Statistics, University of Saskatchewan

3D Printers \& Applications

Powder bed printers are machines in which a heat source melts the 2D cross section of the object into the bed of powdered material. Then another layer of powder is swept over and sintered onto the previous layer.

3D printing is a cutting edge technology with multiple applications:

- Cooling channels which conform to the contours of the object for improved thermal dissipation.
- Building parts with complex geometry which would be difficult and expensive to manufacture with traditional methods.
- The option to build and test prototypes during the development phase.

Heat Source Model

- Heat flux from laser: $q_{i_{\text {laser }}}=Q \frac{r_{i}{ }^{3}}{r_{\text {laser }}{ }^{3}}$ where Q is the total power of the laser, r_{i} is the radius of the particle, $r_{\text {laser }}$ is the radius of the laser.
- Heat flux between two particles: $q_{i j}=k_{t}\left(T_{j}-T_{i}\right)$ where k_{t} is the heat transfer coefficient, and T_{i}, T_{j} are the temperatures of particle i and j.
- Total heat flux: $q_{i}=q_{i_{\text {laser }}}+\sum_{j=1}^{N} q_{i j}$
- Temperature update for particle i :
$T_{i}^{t+\Delta t}=T_{i}^{t}+\frac{q_{i}^{t}}{m_{i} C_{p}} \Delta t$ where T_{i}^{t} is the initial temperature, q_{i}^{t} is the total initial energy flux, m_{i} is the mass, and C_{p} is the specific heat capacity of particle i.
- If particle i and j are in contact and both above the sintering temperture a bond is formed between them.

Diagram hamew of heat source and bonding between
particles. [1]

The Powder Bed Model

Our Algorithm:

- Every new sphere is randomly generated from chosen distribution.
- If two or more particles are in contact they can spawn a new sphere.
- The location of the new sphere is determined by solving a system of equations relating to the location and radii of the parent particles.
 new sphere.

The distribution of powder particle size was determined to be a Weibull distribution: $f(x ; \lambda, k)=\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{(-x / \lambda)^{k}}$
x is the diameter of the particle, $k=3.55$ is the shape parameter, $\lambda=31.4 \mu \mathrm{~m}$ is the scale parameter, the average diameter is $28.3 \mu \mathrm{~m}$ [2].

The distribution of spheres closely matches the probability density function from which the radii were randomly drawn.

Building the Powder Bed

Once the cube is filled with spheres the bed is created by exploiting the symmetry of the cube. By reflecting the cube about its face it is possible to determine the contacts between two joined cubes.

NSERG
CRSNG

Simulated Print of a Square

Conclusions

Summary: An algorithm was developed to fill a cube with spheres of random radii. Symmetry of the cube was used to build a simulated powder bed. A discrete model of the 3D printing process was developed to study the affect of varying printing parameters.

Conclusions: The packing of particles will affect the final object. The path the laser takes will affect the internal bonding of the object. Residual heat from previous laser passes will affect the building process and must be taken into consideration.

References

[1] John G Michopoulos, Athanasios P lliopoulos, John C Steuben, Andrew J Birnbaum, and Samuel G Lambrakos
On the multiphysics modeling challenges for metal additive manufacturing processes.
Additive Manufacturing, 22:784-799, 2018.
[2] Adriaan B Spierings and Gideon Levy.
Comparison of density of stainless steel 3161 parts produced with selective laser melting using different powder grades.
In Proceedings of the Annual International Solid Freeform Fabrication Symposium, pages 342-353. Austin, TX, 2009.

