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Abstract

The frameworks of Baikov-Gazizov-Ibragimov (BGI) and Fushchich-Shtelen (FS) approximate symmetries

have proven useful for many examples where a small perturbation of an ordinary or partial differential

equation (ODE, PDE) destroys its local exact symmetry group. For the perturbed model, some of the

local symmetries of the unperturbed equation may (or may not) re-appear as approximate symmetries.

Approximate symmetries are useful as a tool for systematic construction of approximate solutions. While for

algebraic and first-order differential equations, to every point symmetry of the unperturbed equation, there

corresponds an approximate point symmetry of the perturbed equation, for second and higher-order ODEs,

this is not the case: a point symmetry of the original ODE may be unstable, that is, not have an analogue

in the approximate point symmetry classification of the perturbed ODE. We show that such unstable point

symmetries correspond to higher-order BGI approximate symmetries of the perturbed ODE, and can be

systematically computed. We present a relation between BGI and FS approximate point symmetries for

perturbed ODEs. Multiple examples of computations of exact and approximate point and local symmetries

are presented, with two detailed examples that include a fourth-order nonlinear Boussinesq ODE reduction.

Examples of the use of higher-order approximate symmetries and approximate integrating factors to obtain

approximate solutions of higher-order ODEs, including Benjamin-Bona-Mahony ODE reduction are provided.

The frameworks of BGI and FS approximate symmetries are used to study symmetry properties of partial

differential equations with a small parameter. In general, we show that unlike in the ODE case, unstable

point symmetries of an unperturbed PDE do not necessarily yield local approximate symmetries for the

perturbed equation. We classify stable point symmetries of a one-dimensional wave model in terms of BGI

and FS frameworks. We find a connection between BGI and FS approximate local symmetries for a PDE

family. We classify approximate point symmetries for a family of one-dimensional wave equations with

a small nonlinear term, and construct a physical approximate solution for a family that includes a one-

dimensional wave equation describing the wave motion in a hyperelastic material with a single family of

fibers. For this model, we find wave breaking times numerically and using the approximate solution. A

complete classification of exact and approximate point symmetries of the two-dimensional wave equation

with a general small nonlinearity is presented.

We investigate approximate conservation laws of systems of perturbed PDEs. We apply the direct mul-

tiplier method to obtain new approximate conservation laws for perturbed PDEs including nonlinear heat

and wave equations. We show that the direct method generalizes the Noether’s theorem for construction of

approximate conservation laws by proving that an approximate multiplier corresponds to an approximate

local symmetry of an approximately variational problem. We present two formulas relating to construct ad-

ditional approximate conservation laws for a system of perturbed PDEs. We illustrate these formulas using

perturbed wave equation and nonlinear telegraph system. An application for using approximate conservation

laws to construct potential systems and approximate potential symmetries is provided.
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1 Introduction to Exact and Approximate Lie

Symmetries, Conservation Laws

1.1 Introduction

In the nineteenth century, Sophus Lie introduced the notion of continuous groups, known as Lie groups. The

original Lie’s aim was that of setting a general theory for the integration of ordinary differential equations

(ODEs) [1]. He pointed out that the order of an ODE could be reduced by one if it is invariant under a one-

parameter Lie group of point transformations. A symmetry of a system of algebraic or differential equations

is a transformation that maps solutions of the system to other solutions. One important type of symmetries

is local symmetries, where the components of the dependent variables in their generators depend at most on

finite number of derivatives of the dependent variables. Local symmetries include point, contact and higher-

order symmetries. Lie symmetry groups have seen significant development over the last century, relating to

symmetry reduction and solution of differential equations, integrating factors, conserved quantities and local

conservation laws, integrability, nonlocal extensions, invertible and non-invertible mappings between different

classes of differential equations, and more [2–7].

The important feature of the Lie group theory lies in the possibility of replacing the nonlinear conditions

of invariance of the system of differential equations under a group of transformations by linear conditions that

reflects the infinitesimal invariance of the system under the generators of the Lie group of transformations.

This infinitesimal criterion leads to an over-determined system of linear partial differential equations (PDEs)

satisfied by the components of the infinitesimal generators. So, Lie groups of symmetries can be systematically

computed. Several symbolic softwares have been developed for this task [8, 9].

Perturbed equations are equations differing from some canonical or otherwise well understood model by

extra term(s) with involving a small parameter ε. This small perturbation disturbs the symmetry group

properties of the unperturbed equations in the sense that the perturbed model admits fewer point and local

symmetries than the unperturbed model since a perturbed equation cannot have more symmetries holding

for all values of ε than a given value of ε, including ε = 0. In fact, one usually needs to solve a perturbed

model, which is more complex than the unperturbed one. In particular, exact solutions to the perturbed

model may not be known and there are not enough symmetries to obtain them. Another important aspect

for considering the perturbed models is that the mathematical properties of perturbed and unperturbed

models can be very different. For example, Euler system is hyperbolic but Navier-Stokes system, that can
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be considered a perturbation of Euler equations, is parabolic. A class of Lie symmetry-like transformations

which are useful in studying the symmetry properties of the perturbed differential equations and/or provide

new symmetries for these equations are called approximate Lie symmetries.

Several approximate Lie symmetry methods have been developed to study symmetry properties of per-

turbed models, and relate and compare them to symmetry structure of the unperturbed equations. An

approximate symmetry transformation method (referred to here as the BGI method) was introduced by

Baikov, Gazizov and Ibragimov [10–12], where the approximate symmetry generator is expanded in a per-

turbation series. A different approach to approximate symmetries, developed by Fushchich and Shtelen (FS

method) [13], combines a perturbation technique with the symmetry group method by expanding the depen-

dent variables in a Taylor series in the small parameter, and approximately replacing the original equations

by a system of equations that are coefficients at different powers of the parameter. The classical Lie symme-

try method is applied to obtain symmetries of the new system. The BGI and Fushchich-Shtelen approaches

are not equivalent. They have been compared and used to obtain approximate symmetries and approximate

solutions for several PDE models [14–16]. Burde [17] developed a new approach for approximate symmetries

by constructing equations that could be reduced by exact transformations to an unperturbed equation and

at the same time would coincide approximately with the perturbed equation. In this thesis, we consider the

BGI and FS approaches.

Through seeking approximate symmetries for perturbed differential equations, different kinds of approx-

imate symmetries can appear: trivial approximate symmetries, exact symmetries inherited from the un-

perturbed equations as they stand and new (genuine) approximate symmetries. The latter are the most

important type that are useful in constructing new approximate solutions for the perturbed models [18–22].

The algorithm for the computation of approximate symmetries for a perturbed model consists of two steps

starts by finding the exact local symmetry of the unperturbed equation. Then in the following step, one

finds the approximate symmetry components through set of determining equations. These equations may

have some constraints on the exact symmetry components leads to some exact local symmetries disappear

from the approximate symmetry classification of the perturbed model. BGI and FS approximate symmetries

have been found for many models, including ODEs and PDEs (e.g., [10–13,22–26]). However, it has not been

clarified under what conditions point or local symmetries of unperturbed equations can become unstable,

disappearing from the classification of approximate symmetries of a perturbed system of the same differential

order, and what form they therefore take.

The majority of differential equations involve arbitrary parameters or arbitrary functions. These param-

eters have physical meanings and assume values in some ranges or belong to certain classes. For example, if

the viscosity in Navier–Stokes equations is zero, then one obtains the Euler equations which have different

symmetry properties. Thus, to study the symmetry properties of system of differential equations involving

arbitrary elements, one needs to investigate what happens to symmetries as these parameters assume special

values. Namely, one needs to find the symmetry group classification for a class of system of differential equa-
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tions depending on the values of the arbitrary elements (see, e.g., [23, 27–32]). Equivalence transformations,

which are transformations that map each system from the class to another system of the same class, are

useful in simplifying the group symmetry classification by considering only forms of the arbitrary elements

that are not related by an equivalence transformation [33–35]. While BGI and FS approximate symmetry

classifications have been found for some perturbed models (see,e.g., [23,36] and references therein), the exact

and approximate (BGI and FS) symmetry classification for perturbed models has not been considered and

compared in details in the literature.

In the study of differential equations, conservation laws have many important uses. They describe the

familiar physical conserved quantities like energy, mass, momentum and so on. They are used to study the

basic properties of the solutions and to develop numerical methods. They are also used in construction of

potential systems [4, 37, 38]. Emmy Noether proved that for a system of differential equations arising from

a variational principle, every conservation law of the system corresponds to a variational symmetry of the

system [39]. Another method for finding conservation laws is the direct method [5, 6], which it is more

general than Noether’s theorem since it is applicable to any system of differential equations and includes all

conservation laws obtained from the Noether’s theorem. The symmetry action on a known conservation law

for any system of differential equations could yield new conservation laws for the given system [4,40]. In the

case of system of ODEs, a conservation law for a system is equivalent to the first integral or constant of the

motion of the system [41].

The study of approximate symmetries led naturally to extension to approximate variational symme-

tries [42], approximate Noether’s theorem and approximate conservation laws for system of perturbed dif-

ferential equations that has an approximate Lagrangian [23, 43]. It also led to study of approximate conser-

vation laws for any perturbed differential equation without resource to variational principle. In particular,

the approximate invariance condition under the approximate symmetry generator was used to construct ap-

proximate conservation laws [44, 45]. Similar to the exact case, the direct method is the most efficient way

to construct approximate conservation laws for differential equations with a small parameter since it is not

assumed that any approximate symmetries are known, nor that the equations are approximately equivalent to

the Euler-Lagrange equations of a variational problem. Following the direct method, approximate multipliers

and approximate conservation laws were found for some perturbed models [46].

In this thesis we focus on exact and approximate (BGI and FS) symmetries for perturbed differential

equations, and we study approximate conservation laws for perturbed PDEs. The thesis is organized as

follows.

In the current chapter, we recall the definitions of Lie groups and Lie algebras [4,47], including Lie groups

of point transformations [3]. We review the framework of Lie point and local symmetries, in comparison with

the BGI [10–12] and Fushchich-Shtelen [13] approximate symmetry frameworks for differential equations

involving a small parameter. Finally, we overview the direct method and Noether’s theorem for constructing

conservation laws [37].
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In Chapter 2, we consider exact and approximate local symmetries of algebraic and ordinary differential

equations with a small parameter. In particular, we show that for algebraic and first-order differential

equations, to every point symmetry of the unperturbed equation, there corresponds an approximate point

symmetry of the perturbed equation. We find a connection between BGI and FS approximate symmetries

of a perturbed first-order ODE. We investigate the BGI and FS approximate symmetries of the perturbed

higher-order ODEs. We construct general formulas for the determining equations of BGI and FS approximate

symmetries of a perturbed ODE that simplify the calculations of approximate symmetry components and

help in studying the stability of the exact point symmetries of the unperturbed model. It is shown that

point symmetries of the unperturbed equation may indeed disappear from the classification of approximate

point symmetries of the perturbed model, and conditions for that are given. We consider point and higher-

order local exact and approximate symmetries of second and higher-order ODEs in evolutionary form, and

show that a point or local symmetry of the unperturbed equation usually yields a higher-order (generally, of

order n − 1) BGI approximate symmetry of the perturbed model and we present a systematic way to find

approximate symmetry components for approximate symmetries that correspond to every point and local

symmetry of the unperturbed equation. We show for a family of perturbed higher-order ODEs that a genuine

BGI approximate point symmetry yields a genuine FS approximate point symmetry for the same family.

Relations between exact and BGI approximate symmetries are considered in detail for two examples, including

a nonlinearly perturbed second-order ODE, and a fourth-order ODE arising as a traveling wave reduction

of the Boussinesq partial differential equation modeling shallow water wave propagation [48]. Finally, we

determine the approximate integrating factors of perturbed first-order ODEs using BGI approximate point

symmetries and we show that the components of an approximate integrating factor of a perturbed first-order

ODE defines a BGI approximate point symmetry of the same ODE. We find the determining equations of

approximate integrating factors, and show how these determining equations and higher-order approximate

symmetries can be used to obtain approximate solutions of perturbed Boussinesq and Benjamin-Bona-Mahony

(BBM) ODEs [49].

In Chapter 3, we study exact and approximate local symmetries of perturbed partial differential equations.

We show that in general, unlike the higher-order ODEs, an unstable point symmetry of the unperturbed PDE

does not yield a higher-order approximate symmetry of the perturbed equation. An illustration of unstable

point symmetry of a one dimensional wave equation is given. We classify stable point symmetries in the

sense of BGI and FS frameworks for a wave equation according to the form of the arbitrary function in

the perturbation term. BGI and FS frameworks are different approaches which give different approximate

symmetry structures however we find some connection between the two frameworks for a general PDE in

solved form. For some stable point symmetries as BGI, there is a corresponding higher-order FS approximate

symmetry.

The study of wave propagation in nonlinear elastic materials has numerous applications in the study of

complex materials [50], medical imaging [51], and other areas [52]. Of particular interest are hyperelastic
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solids, a class of materials that act as ideal elastic solids. In particular, the stress within a hyperelastic solid

is related to the deformation through a strain energy density function. The displacements in hyperelastic

materials in one and two dimensions are modeled respectively by the nonlinear wave equations

utt = R(ux)uxx, u = u(x, t), (1.1)

utt =
(
uxK(u2

x + u2
y)
)
x

+
(
uyK(u2

x + u2
y)
)
y
, u = u(t, x, y), (1.2)

where R and K are related to the stored energy functions [53,54], (here and below subscripts denote partial

derivatives). First, we study the symmetry properties of the family (1.2). Then, having exact symmetries

computed for the one- and two-dimensional linear wave equations, we classify the exact and the approximate

symmetries of the perturbed models

utt = (c2 + εT (ux))uxx, u = u(x, t), (1.3)

utt =
(
ux[c2 + εQ(u2

x + u2
y)]
)
x

+
(
uy[c2 + εQ(u2

x + u2
y)]
)
y
, u = u(t, x, y), (1.4)

where c > 0 and ε is a small positive parameter that stands for a combination of the Mooney–Rivlin and

the standard reinforcement terms (anisotropy material parameter). The above perturbed models include

equations that describe the motion in the fiber-reinforced elastic solids such as biological membranes when

fiber effects are relatively small (see, e.g. [53, 55]). We construct a general approximate solution of the

perturbed one-dimensional wave equation (1.3) with T (ux) = usx. In particular, for s = 2, we find the finite-

time singularities for a certain initial-boundary value problem using the approximate solution and numerical

methods, respectively.

In Chapter 4, we consider approximate conservation laws for perturbed PDEs. We review the definitions

of approximate conservation laws and approximate multipliers and Noether’s theorem for finding approx-

imate conservation laws. Following the direct method, we find approximate conservation laws for some

perturbed PDEs including perturbed wave and heat equations. We show that new approximate conservation

laws, which do not arise from the exact conservation laws of the perturbed equation, can be obtained. We

show, like in the case of exact conservation laws, that the direct method includes Noether’s theorem for

construction of conservation laws in sense that the approximate local multipliers correspond to approximate

Noether symmetries of the variational problem. We derive two formulas to construct additional approximate

conservation laws from known approximate conservation laws using the action of an invertible approximate

transformation. In the first formula, we show that if an invertible approximate transformation maps a given

perturbed PDE system to another perturbed PDE system, then each conservation law of the first PDE sys-

tem is mapped to a conservation law for the transformed PDE system. The second formula uses the action

of the approximate point symmetry of a system of perturbed PDEs on a given set of approximate multipliers

of a known approximate conservation law for this system to find new set of approximate multipliers. If the
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transformed set of approximate multipliers are independent of the given set of approximate multipliers, then

one gets a new approximate conservation law for the given system. We apply these formulas to construct

new approximate conservation laws for perturbed wave equations and nonlinear telegraph system [56]. As

an application, we find potential systems and approximate conservation laws for a nonlinear wave equation.

Chapter 5 contains a discussion and some open problems.

In Appendix A, we present Maple code for computations of approximate local symmetries and approximate

conservation laws. This code can be used to find approximate local symmetries and approximate conservation

laws for perturbed differential equations.

A part of Chapter 2 is published jointly with my supervisor Alexey Shevyakov [57]. Another part of

Chapter 2 has been submitted for publication. Sections 3.7.2 and 3.7.3 are based on the contribution by

Brian Pitzel.

1.2 Exact Lie symmetries

1.2.1 Notation

Let f(x), g(x) : R→ R. We say f = O(g) as x→∞ if there exist a positive real number k and a real number

x0 such that

|f(x)| ≤ k|g(x)|

for all x ≥ x0. For some real number b, we write f = O(g) as x → b if there exists positive real numbers λ

and k such that for all x with |x− b| < λ,

|f(x)| ≤ k|g(x)|.

In other words, if f = O(g) as x → b, then |f(x)/g(x)| is bounded in a neighbourhood of b, where f/g is

defined [58].

We say that f = o(g) as x→ b if

lim
x→b

f(x)

g(x)
= 0.

1.2.2 Lie groups and Lie algebras

A function f : E →M between two topological spaces is continuous if, whenever A is an open subset in M ,

f−1(A) is open in E. If f is one-to-one and both f and f−1 are continuous, then f is called a homeomorphism

and E and M are said to be homeomorphic [59].

Definition 1.2.1. An n-dimensional manifold is a set E, together with a countable collection of subsets Pi,

called coordinate charts, and one-to-one functions τi : Pi → Qi onto connected open subsets Qi of Rn, called

local coordinate maps, satisfying [4]:
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1. The coordinate charts cover E ⋃
i

Pi = E.

2. The composite map

τj ◦ τ−1
i : τi(Pi ∩ Pj)→ τj(Pi ∩ Pj)

is a smooth function.

3. If p ∈ Pi, p̃ ∈ Pj are distinct points of E, then there exist open subsets M of τi(p) in Qi and M̃ of τj(p̃)

in Qj such that

τ−1
i (M) ∩ τ−1

j (M̃) = φ.

Example 1.2.1. The simplest n-dimensional manifold is Rn. There is a single coordinate chart P = Rn,

with local coordinate map given by the identity: τ = id : Rn → Rn.

Definition 1.2.2. A Lie group is an abstract group and a smooth n-dimensional manifold so that multipli-

cation G×G → G: (a, b)→ ab and inverse G → G: a→ a−1 are smooth.

Example 1.2.2. (a) (Rn,+) is an abelian Lie group.

(b) Consider the general linear group

GL(n,R) = {A ∈M(n,R) : detA 6= 0}.

Since the determinant map is continuous, GL(n,R) is an open subset of the spaceM(n,R) of all n×nmatrices.

But M(n,R) is isomorphic to Rn2

. Thus GL(n,R) is an n2-dimensional manifold. Matrix multiplication and

inversion are smooth maps. Hence, GL(n,R) is a Lie group.

Let f : M→ S be a smooth map between the smooth manifolds M and S. f maps each parameterized curve

C = {Θ(t) : t ∈ I} on M to a parameterized curve C̃ = {Θ̃(t) = f (Θ(t)) : t ∈ I} on S . Hence f induces a

map from the tangent vector dΘ(t)/dt to C at x = Θ(t) to the corresponding tangent vector dΘ̃(t)/dt to C̃

at f(x) = f (Θ(t)) = Θ̃(t). This map is called the differential of f and denoted by [4]

df (dΘ/dt) =
d

dt
(f (Θ(t))) .

Let G be a Lie group. For any g ∈ G, the right multiplication map

Rg : G→ G

defined by Rg(h) = hg is a diffeomorphism. A vector field X on G is called right invariant if

dRg(X(h)) = X(hg)

for all g and h in G, where dRg is the differential of Rg.
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Definition 1.2.3. The Lie algebra of a Lie group G is the vector space of all right invariant vector fields on

G.

Remark 1.2.1. Any right invariant vector field is completely determined by its value at the identity e

because

X(g) = dRg(X(e))

for all g ∈ G. Conversely, any tangent vector X to G at the identity uniquely determines a right invariant

vector field on G since

dRg(X(h)) = dRg(dRh(X(e))) = d(Rg ◦Rh)(X(e)) = dRhg(X(e)) = X(hg).

Therefore the Lie algebra g of the Lie group G can be identified by the tangent space G at the identity e

g ' TeG

Definition 1.2.4. A Lie algebra is a vector space g over F(R or C) with a skew-symmetric F-bilinear map

(the Lie bracket, or commutator) [ , ]:g× g→ g which satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. [X,Y ] = XY − Y X. (1.5)

Example 1.2.3. The space of all n× n matrices gl(n,R) with the Lie bracket [A,B] = AB −BA being the

matrix commutator is the Lie algebra of GL(n,R) with dimension n2.

Commutator table

It is useful to arrange commutators in a table, where [Xj , Xk] is the entry of the intersection of jth row with

kth column. The commutator table is represented by a skew-symmetric matrix with zeros on its diagonal.

Example 1.2.4. Consider the special linear group

SL(2,R) = {A ∈ GL(2,R) : detA = 1}.

Its Lie algebra is sl(2,R): the Lie algebra of all 2× 2 matrices with trace 0. We use the basis

e =

0 1

0 0

 , f =

0 0

1 0

 , h =

1 0

0 −1

 . (1.6)

for sl(2,R), then the commutation of the above matrices yields

[e, f ] = h, [h, f ] = −2f, [h, e] = 2e.

In table form, one has
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e f h

e 0 h −2e

f −h 0 2f

h 2e −2f 0

Table 1.1: Commutator table for the matrices (1.6).

1.2.3 One-parameter Lie group of point transformations

We now consider Lie groups of transformations acting on Rn.

Definition 1.2.5. Let x = (x1, x2, ..., xn) ∈ D ⊂ Rn. The set of transformations

(xi)∗ = T i(x; a), i = 1, .., n (1.7)

defined for each x ∈ D and parameter a in a set M ⊂ R, with φ(a, b) defining a law of composition of

parameters a and b in M , forms a one-parameter group of transformations on D if the following conditions

hold:

1. The transformations are one-to-one and onto D,

2. (M,φ) is a group,

3. Each T i(x; a0) = xi for the identity element a0 and for each x in D,

4. If (xi)∗ = T i(x; a), (xi)∗∗ = T i(x∗, b), then (xi)∗∗ = T i(x, φ(a, b)).

Definition 1.2.6. The one-parameter group of transformations (1.7) is a one-parameter Lie group of trans-

formations if:

1. M is an interval in R,

2. T i is infinitely differentiable with respect to x in D and an analytic function of a ∈M ,

3. φ(a, b) is an analytic function of a and b.

Example 1.2.5. An example of the Lie group of point transformation is the group of translations in the

plane

x∗ = T 1(x, y; a) = x+ a,

y∗ = T 2(x, y; a) = y.
(1.8)

Repeating the transformations

x∗∗ = T 1(x∗, y∗; b) = x+ a+ b, y∗∗ = T 2(x∗, y∗; b) = y.

Here φ(a, b) = a+ b, and a = 0 corresponds to the identity element.
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Remark 1.2.2. A multi-parameter Lie group of point transformations is given by [60]

x∗ = T (x; a),

with x = (x1, ..., xn) and parameters a = (a1, ..., ar). Each parameter leads to an infinitesimal generator with

infinitesimals given by

ξki(x) =
∂(xi)∗

∂ak

∣∣∣∣
a=0

, k = 1, ..., r, i = 1, ..., n.

If an nth order ODE admits an r-parameter Lie group of transformations, 2 ≤ r ≤ n, with an r-dimensional

solvable Lie algebra, then the order of the given ODE can be reduced by r. Throughout this thesis, we only

consider one-parameter Lie groups of transformations.

1.2.4 Infinitesimal transformations

Let

(xi)∗ = T i(x; a) (1.9)

be a one-parameter Lie group of transformations. A Taylor expansion of it about a = 0 is given by

(xi)∗ = xi + a

[
∂T i(x, a)

∂a

∣∣∣∣
a=0

]
+

1

2
a2

[
∂2T i(x, a)

∂a2

∣∣∣∣
a=0

]
+ ...

= xi + a

[
∂T i(x, a)

∂a

∣∣∣∣
a=0

]
+O(a2).

One denotes

ξi(x) =

[
∂T i(x, a)

∂a

∣∣∣∣
a=0

]
.

The components of ξ(x) = (ξ1(x), ξ2(x), ..., ξn(x)) are called the infinitesimals of the Lie group of transfor-

mations (1.9). The transformation x+ aξ(x) is called the infinitesimal transformation of (1.9).

Definition 1.2.7. Let ξ1(x), ξ2(x), ..., ξn(x) be the infinitesimals of the Lie group of transformations (1.9),

then the infinitesimal generator (operator) of (1.9) is given by

X = ξi(x)
∂

∂xi
, (1.10)

where (as well as below, where appropriate) summation in repeated indices is assumed.

Example 1.2.6. For the group of translations (1.8), one has

ξ1(x, y) =
∂x∗

∂a

∣∣∣∣
a=0

= 1, ξ2(x, y) =
∂y∗

∂a

∣∣∣∣
a=0

= 0.

Hence, the infinitesimal generator for (1.8) has the form

X = ξ1(x, y)
∂

∂x
+ ξ2(x, y)

∂

∂y
=

∂

∂x
.

The following theorem shows that one can reconstruct the global Lie group (1.9) from its infinitesimals [60].
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Theorem 1.2.1 (Lie’s First Theorem). The one-parameter Lie group of point transformations (1.9) is

equivalent to the solution of the initial-value problem

d(xi)∗

da
= ξi (x∗) , (xi)∗

∣∣
a=0

= xi. (1.11)

Example 1.2.7. Consider the infinitesimal generator

X = y
∂

∂x
− x ∂

∂y
. (1.12)

For this generator, the Lie’s equations (1.11) simplifies to

dx∗

da
= y∗,

dy∗

da
= −x∗,

x∗
∣∣
a=0

= x, y∗
∣∣
a=0

= y.

(1.13)

Differentiating the first equation of (1.13) with respect to a, one gets a second-order ODE

d2x∗

da2
+ x∗ = 0,

which has a solution

x∗ = C1 sin a+ C2 cos a. (1.14)

Using the initial condition x∗
∣∣
a=0

= x, one finds C2 = x. Differentiate (1.14) and then substitute a = 0, one

has

C1 =
dx∗

da

∣∣
a=0

= y∗
∣∣
a=0

= y.

Consequently, x∗ has the form

x∗ = y sin a+ x cos a.

Similarly, one can find that

y∗ = y cos a− x sin a.

Hence, the Lie group of point transformations that corresponds to the generator (1.12) is the rotation group

in the plane by the angle a.

1.2.5 Point symmetries

Before proceeding to symmetry of differential equations, we consider a simpler case: symmetries of algebraic

equations.

Point symmetries of algebraic equations

A system of algebraic equations is given by

Fσ(x) = 0, σ = 1, ..., N, (1.15)

where F 1, ..., FN are smooth real-valued functions defined for each x ∈ Rn.
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Definition 1.2.8. A real-valued function R(x) is called an invariant function of the Lie group of transfor-

mations (1.9) (or invariant under (1.9)) if for all x ∈ D ⊂ Rn and a ∈ M ⊂ R such that (1.9) is defined,

R(x∗) ≡ R(x). (1.16)

An important feature of Lie group theory is the possibility of replacing the nonlinear condition for the

invariance of a function under the Lie group of transformations (1.9) by linear condition of infinitesimal

invariance under the corresponding infinitesimal generator of (1.9). This infinitesimal criterion is the key for

the determination of the symmetry groups of the differential equations. Starting from the simpler case of

invariant functions, the following theorem holds [4].

Theorem 1.2.2. An infinitely differentiable function R(x) is invariant under the Lie group of transforma-

tions (1.9) if and only if

XR(x) ≡ 0 (1.17)

for all x ∈ Rn, where (1.17) is defined.

Example 1.2.8. Consider the one-parameter Lie group of translations

x∗ = x+ a, t∗ = t− a (1.18)

with the corresponding infinitesimal generator

X =
∂

∂x
− ∂

∂t
. (1.19)

Then the function R(x, t) = x+ t is invariant under (1.18) since

R(x∗, t∗) = R(x+ a, t− a) = R(x, t).

Using the infinitesimal generator (1.19), one has

XR = 1− 1 = 0.

In fact, every invariant of the group (1.18) is of the form R̃(x, t) = r(x+ t), where r is an arbitrary function

of its argument.

Remark 1.2.3. If F = (F 1, ..., FN ) is an invariant function under the Lie group of transformations (1.9),

then clearly every level set of F is invariant under (1.9). However it is not true that if the solution set

{x : F (x) = 0} is invariant under (1.9), then F is invariant under (1.9).

For example, the set {(x, y), xy = 0} is invariant under the Lie group of scaling transformations

x∗ = ax, y∗ = ay, a > 0. (1.20)

Whereas, F (x, y) = xy is not invariant under (1.20) since F (ax, ay) = a2xy 6= F (x, y) for a 6= 1. However, if

every level set of F is invariant under the Lie group of transformations (1.9), then F itself is invariant under

(1.9).
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Remark 1.2.4. Consider a system of algebraic equations (1.15). The invariance of this system under a

transformation of x is the invariance of the solution set (in this case, a hypersurface in Rn), which does not

require each function Fσ to be an invariant function. In particular, the following infinitesimal criterion of

invariance of the solution set of (1.15) holds [4] .

Theorem 1.2.3. Suppose that the system of algebraic equations (1.15) is of maximal rank, meaning that

the Jacobian matrix
(
∂Fσ/∂xi

)
is of rank N at every solution x of the system. Then, the Lie group of

transformations (1.9) is a symmetry of the system (1.15) if and only if

XF σ = 0 (1.21)

when Fσ = 0, σ = 1, ..., N.

The maximal rank condition in Theorem 1.2.3 is important. For instance, consider the function g(x, y) =

(y − 1)2. The solution set for g is the line {y = 1} which is not invariant under the rotation group given in

Example 1.2.7 with symmetry generator X = y ∂/∂x− x ∂/∂y. However,

Xg = 2x(y − 1) = 0

when g(x, y) = 0, hence the infinitesimal condition (1.21) is satisfied but the maximal rank condition does

not hold since ∇g = (0, 2y − 2) vanishes on the solution set.

Point symmetries of differential equations

In analogy with the infinitesimal criterion of Theorem 1.2.3 for system of algebraic equations, we review the

infinitesimal criterion of invariance of a system of differential equation that enable us to check whether or not

a given Lie group is a symmetry for the system of differential equations and also to find the global symmetry

group of the given system.

Let x = (x1, ..., xn), n ≥ 1, and u(x) = (u1(x), ..., um(x)), m ≥ 1 denote respectively independent and

dependent variables of a given problem. We denote by ∂ku the set of coordinates

uµi1i2...ik =
∂kuµ

∂xi1 · · · ∂xik

that correspond to all kth-order partial derivatives of u with respect to x for µ = 1, ...,m, ij = 1, ..., n,

j = 1, ..., k.

Definition 1.2.9. The total derivative operator with respect to the independent variable xi is given by

Di =
∂

∂xi
+ uµi

∂

∂uµ
+ uµij

∂

∂uµj
+ . . .+ uµii1i2...in

∂

∂uµi1i2...in
+ . . . . (1.22)

A general system of N differential equations is given by

Fσ[u] ≡ Fσ(x, u, ∂u, . . . , ∂ku) = 0, k ≥ 1, σ = 1, 2, ..., N. (1.23)
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In (1.23) and below, Fσ[u] and similar notation denotes differential functions (i.e., functions depending on

x, u, and derivatives of u up to some prescribed order s), defined in a domain of the jet space Js(x|u). (The

latter is viewed as a multi-dimensional space with coordinates x, u, ∂u, . . . , ∂su.)

A smooth solution of the system (1.23) is a smooth function u = f(x) such that f and its derivatives

∂jf, j = 1, ..., k satisfy the constraints of (1.23), i.e.

Fσ(x, f, ∂f, . . . , ∂kf) = 0, σ = 1, 2, ..., N.

Definition 1.2.10. A one-parameter Lie group of transformations (1.9) in the space of the problem variables

(x, u) is given by

(xi)∗ = f i(x, u; a) = xi + aξi(x, u) +O(a2), i = 1, 2, . . . , n,

(uµ)∗ = gµ(x, u; a) = uµ + aηµ(x, u) +O(a2), µ = 1, 2, . . . ,m,
(1.24)

with the group parameter a, and the corresponding infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ
, (1.25)

where

ξi(x, u) =
∂f i

∂a

∣∣∣∣
a=0

, ηµ(x, u) =
∂gµ

∂a

∣∣∣∣
a=0

denote the infinitesimal components (see, e.g., [4, 37,61] and references therein).

Prolongation

Consider the one-parameter Lie group of transformations (1.24) with one independent variable x and one

dependent variable u(x):

x∗ = f(x, u; a) = x+ aξ(x, u) +O(a2),

u∗ = g(x, u; a) = u+ aη(x, u) +O(a2).
(1.26)

The group of transformations (1.26) can be prolonged to (x, u, u′, ..., u(k))-space, k ≥ 1 by requiring that the

transformations (1.26) preserve the contact conditions

du = u′dx, du(k) = u(k+1)dx.

The first-prolongation of (1.26) can be found as follows:

du∗ = dg(x, u; a) = gxdx+ gudu, dx∗ = df(x, u; a) = fxdx+ fudu.

Consequently,

(u′)∗ =
du∗

dx∗
= g1(x, u, u′; a) =

gx + u′gu
fx + u′fu

=
Dg

Df

Similarly, the kth prolongation of (1.26) is given by

(u(k))∗ = gk(x, u, u′, ..., u(k); a) =
Dgk−1(x, u, u′, ..., u(k−1); a)

Df
, k ≥ 2.
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From equation (1.26), one has

(u′)∗ =
aηx + u′(1 + aηu) +O(a2)

1 + aξx + au′ξu +O(a2)
= u′ + a

(
ηx + (ηu − ξx)u′ − u′2ξu

)
+O(a2).

The function η(1)(x, u, u′) = ηx + (ηu − ξx)u′ − u′2ξu is the first prolongation of the infinitesimal η(x, u). In

the same way, one can find the extended infinitesimals η(k), k ≥ 2:

(u(k))∗ =
D
(
u(k−1) + aη(k−1) +O(a2)

)
D(x+ aξ +O(a2))

=
u(k) + aDη(k−1) +O(a2)

1 + aDξ +O(a2)

= u(k) + a
(
Dη(k−1) − u(k)Dξ

)
+O(a2)

= u(k) + aη(k)(x, u, u′, ..., u(k)) +O(a2).

Definition 1.2.11. The kth prolongation of the Lie group of transformations (1.24) is the following group

of transformations

(xi)∗ = xi + aξi(x, u) +O(a2),

(uµ)∗ = uµ + aηµ(x, u) +O(a2),

(uµi )∗ = uµi + aη
(1)µ
i (x, u, ∂u) +O(a2),

...

(uµi1i2...ik)∗ = uµi1i2...ik + aη
(k)µ
i1i2...ik

(x, u, ∂u, . . . , ∂ku) +O(a2)

(1.27)

acting on the (x, u, ∂u, . . . , ∂ku) jet space.

The extended infinitesimals η
(1)µ
i , η

(k)µ
i1i2...ik

appearing above are given by the prolongation formulas [3]

η
(1)µ
i = Diη

µ − uµjDiξ
j , η

(s)µ
i1i2...ik

= Disη
(s−1)µ
i1i2...is−1

− uµi1i2...is−1j
Disξ

j , (1.28)

µ = 1, 2, . . . ,m, i, ij = 1, 2, . . . , n for s = 1, 2, . . . , k. Di is the total derivative operator given by (1.22).

Similar to the Lie group of transformations (1.24), the corresponding infinitesimal generator is prolonged

to an infinitesimal generator acting on the (x, u, ∂u, . . . , ∂ku) jet space.

Definition 1.2.12. The kth prolongation of the infinitesimal generator (1.25) is

X(k) = ξi
∂

∂xi
+ ηµ

∂

∂uµ
+ η

(1)µ
i

∂

∂uµi
+ . . .+ η

(k)µ
i1i2...ik

∂

∂uµi1i2...ik
, k ≥ 1. (1.29)

Now we review the definition and the infinitesimal criterion for invariance of system of differential equa-

tions (1.23) under the one-parameter Lie group of transformations (1.24).

Definition 1.2.13. The system of differential equations (1.23) is invariant under the Lie group of point

transformations (1.24) if and only if its kth prolongation (1.27) leaves invariant the solution manifold of the

system (1.23). In this case, the one-parameter Lie group of point transformations (1.23) is called a point

symmetry of the system (1.23).
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To apply Theorem 1.2.3 to the system of differential equations (1.23), we need a corresponding maximal

rank condition for (1.23).

Definition 1.2.14. The system of differential equations (1.23) is of maximal rank if the Jacobian matrix

J [u] =

(
∂Fσ

∂xi
,

∂Fσ

∂uµi1i2...ik

)
of (1.23) with respect to (x, u, ∂u, . . . , ∂ku) is of rank N whenever Fσ = 0, σ = 1, ..., N.

Theorem 1.2.4. Suppose (1.23) is a system of differential equations of maximal rank. Let (1.25) be the

infinitesimal of the one parameter Lie group of point transformations (1.24) and (1.29) be its kth prolongation.

If for each σ = 1, 2, ..., N,

X(k)Fσ(x, u, ∂u, . . . , ∂ku) = 0 (1.30)

when Fσ = 0. Then the transformation (1.24) is admitted by the system (1.23), or is a point symmetry of

the system (1.23).

Proof. [4].

Example 1.2.9. Consider the Lie group of rotations

x∗ = y sin a+ x cos a, y∗ = y cos a− x sin a. (1.31)

The corresponding infinitesimal generator is

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
= y

∂

∂x
− x ∂

∂y
. (1.32)

The first prolongation of (1.32) is given by

X(1) = y
∂

∂x
− x ∂

∂y
+ η(1)(x, y, yx)

∂

∂yx
, (1.33)

where η(1) can be found using the formula (1.28):

η(1) = Dxη − yxDxξ = −(y2
x + 1).

Consider now the first-order ODE

F (x, y, y′) = (y − x)y′ + y + x = 0. (1.34)

Here and below, we use primes to denote derivatives. The Jacobian matrix of F is given by

J =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂y′

)
= (1− y′, 1 + y′, y − x)

which is of rank 1. Applying the prolonged generator (1.33) to the ODE (1.34), one has

X(1)F = y
∂F

∂x
− x∂F

∂y
− (y′2 + 1)

∂F

∂y′

= y(1− y′)− x(1 + y′)− (y′2 + 1)(y − x)

= −y′ ((y − x)y′ + y + x))

= 0
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when F = 0. Hence the infinitesimal criterion (1.30) in Theorem 1.2.4 is satisfied. It follows that the ODE

(1.34) admits the rotation group (1.31).

To construct the most general symmetry group of the system of differential equations (1.23) using the

infinitesimal method given in Theorem 1.2.4, it is necessary to add a nondegeneracy condition [4].

Definition 1.2.15. The system of differential equations (1.23) is locally solvable at the point

(x0, u0, ∂u0, . . . , ∂
ku0) ∈ S = {(x, u, ∂u, . . . , ∂ku) : F [u] = 0} ⊂ Js(x|u)

if there exists a smooth function u = f(x) defined in a neighbourhood of x0 which has the initial conditions

∂ku0 = f (k)(x0). The system is locally solvable if it is locally solvable at every point of S. A system

of differential equations (1.23) is nondegenerate if at every point (x0, u0, ∂u0, . . . , ∂
ku0) ∈ S, it is both of

maximal rank and locally solvable.

Theorem 1.2.5. Let (1.23) be a nondegenerate system of differential equations. Let (1.25) be the infinitesi-

mal of the one parameter Lie group of point transformations (1.24) and (1.29) be its kth prolongation. Then

the transformation (1.24) is a point symmetry of the system (1.23), if and only if for each σ = 1, 2, ..., N,

X(k)Fσ[u] = 0 (1.35)

holds on solutions of (1.23).

Proof. [4].

For the one-parameter Lie group of transformations (1.24), the evolutionary (characteristic) form provid-

ing the same mapping between solutions is the one-parameter family of transformations given by

(xi)∗ = xi, i = 1, 2, . . . , n,

(uµ)∗ = uµ + aζµ[u] +O(a2), µ = 1, 2, . . . ,m,
(1.36)

with the evolutionary component ζµ[u] = ηµ(x, u)− uµi ξi(x, u) and infinitesimal generator

X̂ = ζµ[u]
∂

∂uµ
. (1.37)

The infinitesimal generator (1.37) is the characteristic form (or the evolutionary form) of the infinitesimal

generator (1.25) [37].

Computation of Lie point symmetries

Finding the Lie point symmetries for the system of differential equations (1.23) consists of the following steps.

1. Find the prolonged infinitesimal generator X(k) in terms of arbitrary functions ξi(x, u) and ηµ(x, u).

2. Apply the extended generator X(k) to the N differential equations (1.23). Then substitute the N

differential equations and their differential consequences into the N equations (1.30).
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3. The resulting equation from the previous step is a polynomial in the remaining derivatives of u. Setting

to zero the coefficients of the derivatives of u leads to a system of linear PDEs in ξi(x, u) and ηµ(x, u)

called the set of determining equations for the point symmetries of Fσ[u](1.23).

4. Solve the determining equations for the infinitesimals ξi and ηµ.

Remark 1.2.5. The set of determining equations is an over-determined system of linear PDEs in ξi and ηµ.

In solving the determining equations, the following cases can arise.

• The only solution for the determining equations is the trivial solution ξi = ηµ = 0. In this case, the

system of differential equations (1.23) has no point symmetries.

• The general solution of the determining equations has finite number s of arbitrary constants. Then the

system (1.23) admits s-dimensional Lie algebra of point symmetry generators.

• The general solution of the determining equations contains an infinite number of arbitrary constants or

arbitrary functions of (x, u). In this case, the system (1.23) admits an infinite set of point symmetry

generators.

When the symmetry components ξi and ηµ are found, one can construct the global Lie group of point

transformations using the system of ODEs (1.11) (see, e.g., [3, 4, 62,63]).

Example 1.2.10. Consider the linear heat equation

ut = uxx. (1.38)

The infinitesimal generator for the PDE (1.38) has the form

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (1.39)

The determining equations (1.30) to find exact point symmetries of (1.38) reads

X(2)(ut − uxx)

∣∣∣∣
ut=uxx

= (η
(1)
t − η(2)

xx )

∣∣∣∣
ut=uxx

= 0, (1.40)

where the prolonged infinitesimals η
(1)
t and η

(2)
xx are given by (1.28). Equation (1.40) leads to a split system

of linear PDEs in ξ1, ξ2 and η given by

ξ1
u = 0, ξ2

x = 0, ξ2
u = 0, ηuu = 0,

2ξ1
x − ξ2

t = 0, 2ηxu − ξ1
xx + ξ2

t = 0, ηt − ηxx = 0.

(1.41)

Solving the determining equations (1.41), one finds that the heat equation admits infinite number of point

symmetries given by

X∞ = α(x, y)
∂

∂u
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with αt = αxx, and six additional point symmetries given by

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = u

∂

∂u
, X4 = t

∂

∂x
− 1

2
xu

∂

∂u
,

X5 = x
∂

∂x
+ 2t

∂

∂t
, X6 = xt

∂

∂x
+ t2

∂

∂t
−
(

1

2
tu+

1

4
x2

)
u
∂

∂u
.

(1.42)

The global Lie group of point transformations corresponds to the symmetry generator X6 can be found by

solving the ODEs
dx∗

da
= x∗t∗,

dt∗

da
= (t∗)2,

du∗

da
= −

(
t∗

2
+

(x∗)2

4

)
u∗

with x∗ = x, t∗ = t and u∗ = u when a = 0. Solving the above system leads to the one-parameter Lie group

of point transformations

x∗ =
x

1− at
, t∗ =

t

1− at
, u∗ =

(√
1− at e

−ax2
4(1−at)

)
u

admitted by the heat equation (1.38).

1.2.6 Contact and higher-order symmetries

A significant generalization of the point symmetry group (1.36) can be obtained by allowing the evolutionary

infinitesimal components ζµ[u] to depend on higher derivatives of u.

Definition 1.2.16. Consider the case of n independent variables x = (x1, ..., xn) and one dependent variable

u(x). A contact transformation is a transformation given by

(xi)∗ = f i(x, u, ∂u), i = 1, 2, . . . , n,

u∗ = g(x, u, ∂u),

(ui)
∗ = hi(x, u, ∂u),

(1.43)

which is one-to-one in some domain D in (x, u, ∂u) and preserves the contact condition du = uidx
i:

du∗ = (ui)
∗d(xi)∗. (1.44)

It is assumed that f i, g depend essentially on the first derivative of u. Otherwise, a contact transformation

is a point transformation.

Definition 1.2.17. A one-parameter Lie group of contact transformations is given by

(xi)∗ = xi + aξi(x, u, ∂u) +O(a2), i = 1, 2, . . . , n,

(u)∗ = u+ aη(x, u, ∂u) +O(a2),

(ui)
∗ = ui + η

(1)
i (x, u, ∂u) +O(a2),

(1.45)

with infinitesimal generator

X = ξi
∂

∂xi
+ η

∂

∂u
+ η

(1)
i

∂

∂ui
. (1.46)
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Theorem 1.2.6. The transformations (1.45) with infinitesimal generator (1.46) define a one-parameter Lie

group of contact transformations if and only if

∂η

∂ui
− uj

∂ξj

∂ui
= 0, i = 1, ..., n.

Proof. [37].

Higher-order local transformations generalize the Lie group of point transformations (1.36) by allowing

the infinitesimal components to depend on higher derivatives of u.

Definition 1.2.18. A one-parameter higher-order evolutionary local transformation is a transformation of

the form

(xi)∗ = xi, i = 1, 2, . . . , n,

(uµ)∗ = uµ + aζµ(x, u, ∂u, ..., ∂su) +O(a2), µ = 1, 2, . . . ,m
(1.47)

acting on the space of functions u = u(x). The corresponding infinitesimal generator is given by

X̂ = ζµ[u]
∂

∂uµ
, (1.48)

where each ζµ[u] = ζµ(x, u, ∂u, ..., ∂su) is a certain differential function.

To compute the higher-order terms in (1.47), one needs to extend the infinitesimal generator (1.48) to act

on derivatives of u by requiring that the contact conditions (1.44) are preserved.

Definition 1.2.19. The prolongation of (1.48) is defined by [4]

X̂∞ = ζµ
∂

∂uµ
+ ζ

(1)µ
i

∂

∂uµi
+ . . .+ ζ

(p)µ
i1i2...ip

∂

∂uµi1i2...ip
+ . . . , (1.49)

where the higher-order components are computed using

ζ
(1)µ
i = Diζ

µ, ζ
(p)µ
i1i2...ip

= Dipζ
(p−1)µ
i1i2...ip−1

, (1.50)

for µ = 1, . . . ,m; i, ij = 1, . . . , n, p = 2, 3, . . ..

The system of differential equations (1.23) is invariant under a one-parameter local transformation (1.47)

if and only if its kth extension

X̂(k) = ζµ
∂

∂uµ
+ ζ

(1)µ
i

∂

∂uµi
+ . . .+ ζ

(k)µ
i1i2...ik

∂

∂uµi1i2...ik
(1.51)

leaves invariant the solution manifold of (1.23) in the space (x, u, ∂u, ..., ∂ku). In this case, we call the

one-parameter local transformation a local symmetry of the system (1.23).

The infinitesimal criterion for the invariance of the system of differential equations (1.23) under a one-

parameter local transformation (1.47) is given in the following theorem [37].
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Theorem 1.2.7. Let (1.48) be the infinitesimal generator for a one-parameter local transformation (1.47)

of order s ≥ 0, and (1.51) be its prolongation. Then the local transformation (1.47) is a local (point, contact

or higher-order) symmetry of the system (1.23) if and only if for each σ = 1, 2, ..., N,

X̂(k)Fσ(x, u, ∂u, . . . , ∂ku) = 0 (1.52)

holds on solutions of (1.23) and their differential consequences up to order s.

Example 1.2.11. The infinitesimal generator

X̂ =
(
uxxx + 3uxuxx + u3

x

) ∂

∂u

corresponds to a third-order symmetry for the potential Burgers’ equation,

ut = uxx + u2
x. (1.53)

For more details about contact and higher-order transformations, see [64–66].

1.2.7 Solutions of differential equations using symmetries

One of the most important applications of Lie symmetries is the integration of ODEs and the construction

of invariant solutions for the PDEs [4, 37].

Reduction of order of ODEs

Consider the first-order ODE
dy

dx
= F (x, y). (1.54)

Assume that the ODE (1.54) admits a one-parameter Lie group of point transformations

x∗ = x+ aξ(x, y) +O(a2),

y∗ = y + aηµ(x, y) +O(a2),
(1.55)

with the corresponding symmetry generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (1.56)

The general solution of the ODE (1.54) can be found from the infinitesimals ξ(x, y), η(x, y) using canonical

coordinates or determination of an integrating factor [3].

For any Lie group of point transformations (1.55), there exist canonical coordinates r(x, y), s(x, y) satis-

fying Xr = 0 and Xs = 1 so that (1.55) becomes a translation group

r∗ = r, s∗ = s+ a. (1.57)

In terms of the canonical coordinates, the ODE (1.54) becomes

ds

dr
=
sx + syF (x, y)

rx + ryF (x, y)
= G(r, s). (1.58)

21



The invariance of (1.58) under the Lie group of transformations (1.57) yields the ODE

ds

dr
= M(r),

with general solution

s(x, y) =

∫
M(r)dr + C

for some constant C.

The ODE (1.54) can be rewritten in the form

A(x, y) dx+B(x, y) dy = 0. (1.59)

This equation is exact if Ay = Bx. In this case the solution can be found implicitly. Otherwise, we can

multiply it by an integrating factor µ(x, y):

µ(x, y) =
1

Aξ +B η
(1.60)

to get an exact equation. Conversely, if µ (1.60) is an integrating factor for (1.54), then ξ and η are the

infinitesimals of the point symmetry X (1.56) for the ODE (1.54).

The method of canonical coordinates extends to the integration of higher order ODEs [60].

Theorem 1.2.8. Suppose a one-parameter Lie group of point transformations (1.55) is a point symmetry of

a higher-order ODE

y(n) = F (x, y, y′, ..., y(n−1)), n > 1. (1.61)

Let r(x, y), s(x, y) be the corresponding canonical coordinates. Then the ODE (1.61) reduces to an (n − 1)-

order ODE
dn−1z

drn−1
= M

(
r, z,

dz

dr
, ...,

dn−2z

drn−2

)
,

where z = ds/dr.

An alternative method to reduce the order of the ODE (1.61) is the method of differential invariants.

Indeed, suppose that the ODE (1.61) admits the Lie group of transformations (1.55). Then

X(n)(y(n) − F )
∣∣
y(n)=F

= 0,

where X(n) is the prolongation of (1.56) given by

X(n) = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ η(1)(x, y, y′)

∂

∂y′
+ ...+ η(n)(x, y, y′, ..., y(n))

∂

∂y(n)
.

The solution of the corresponding characteristic system

dx

ξ(x, y)
=

dy

η(x, y)
=

dy′

η(1)(x, y, y′)
= · · · = dy(n)

η(n)(x, y, y′, ..., y(n))

yields n+ 1 invariants

u(x, y), v1(x, y, y′), ...., vn(x, y, y′, ..., y(n)), (1.62)
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which satisfy Xu = 0, X(k)vk(x, y, y′, ..., y(k)) = 0, k ≥ 1. Since u(x, y) and v1(x, y, y′) = v(x, y, y′) are

invariants under the kth prolongation of (1.55), k ≥ 1. It follows that dv/du is invariant under the (k + 1)th

prolongation of (1.55) since (dv/du)∗ = dv∗/du∗ = dv/du. By induction, one finds that

dv

du
,
d2v

du2
, ... ,

dn−1v

du

are invariants under the nth prolongation of (1.55). These invariants are called differential invariants of nth

prolongation of (1.55). Using these invariants, the ODE (1.61) reduces to an (n− 1)-order ODE

R

(
u, v,

dv

du
, ...,

dn−1v

du

)
= 0.

Remark 1.2.6. The method of differential invariants using point symmetries of the ODE (1.61), generalizes

naturally to using admitted contact symmetries and higher-order symmetries (e.g., [3]).

Invariant solutions of PDEs

A surface (or curve) F (x) = 0 is an invariant surface (or curve) of the one-parameter Lie group of transfor-

mations (1.9) if and only if F (x∗) = 0 when F (x) = 0.

Definition 1.2.20 (Classical method). u = f(x) is an invariant solution of the PDE system (1.23) corre-

sponding to the point symmetry (1.24) admitted by (1.23) if and only if

1. uµ = fµ, µ = 1, ...,m is an invariant surface of the Lie group of transformations (1.24),

2. u = f(x) solves the system of PDEs (1.23).

It follows that, u = f(x) is an invariant solution of the PDE system (1.23) resulting from the point symmetry

X (1.25) or, equivalently, X̂ (1.37) if and only if

1.

X (uµ − fµ)
∣∣
u=f(x)

= 0, µ = 1, ...,m, (1.63)

2.

Fσ[u]
∣∣
u=f(x)

= 0. (1.64)

One can find the invariant solution u = f(x) by solving the system of equations (1.63) and (1.64) through

two different ways.

(I) Invariant form method

The general solution of (1.63) is found by solving the corresponding characteristic system of ODEs

dx1

ξ1(x, u)
= · · · = dxn

ξn(x, u)
=

du1

η1(x, u)
= · · · = dum

ηm(x, u)
. (1.65)
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If

R1(x, u), ..., Rn−1(x, u), q1(x, u), ..., qm(x, u)

are functionally independent invariants of (1.65) with Jacobian

J =
∂(q1, ..., qm)

∂(u1, ..., um)
6= 0.

Then the general solution of the invariant surface condition (1.63) is given by

qµ(x, u) = Qµ
(
R1, ..., Rn−1

)
, (1.66)

where Qµ is an arbitrary function of its arguments, µ = 1, ...,m. The variables R1, ..., Rn−1 are called

the similarity variables. If the PDE system (1.23) is transformed by the corresponding invertible point

transformation into a PDE system with independent variables R = (R1, ..., Rn), and dependent variables

q = (q1, ..., qm), then the transformed PDE system admits the translation point symmetry

(Ri)∗ = Ri, (Rn)∗ = R∗, (qµ)∗ = qµ. i = 1, ..., n− 1, q = 1, ...,m.

It follows that the variable Rn does not appear explicitly in the transformed PDE system, and hence the

transformed PDE system has particular solutions given by (1.66). Consequently, the PDE system (1.23)

has invariant solutions implicitly given by the invariant form (1.66). These invariant solutions are found

by solving a reduced system of differential equations with n − 1 independent variables R1, ..., Rn−1, and m

dependent variables q = (q1, ..., qm).

(II) Direct substitution method

This method can be used when one is unable to solve the characteristic system (1.65). Assume, without loss

of generality, that ξn 6= 0. Then the PDE system (1.63) can be written as

∂uµ

∂xn
=
ηm(x, u)

ξn(x, u)
−
n−1∑
i=1

∂uµ

∂xi
, µ = 1, ...,m. (1.67)

The substitution of (1.67) in the PDE system (1.23) leads to a reduced system of differential equations in

the dependent variables u1, ..., um, the independent variables x1, ..., xn−1, and the parameter xn. A solution

u = Θ(x1, ..., xn−1;xn) of the reduced system yields the invariant solution of the given PDE system (1.23)

provided that equations (1.63) are satisfied.

Example 1.2.12. Consider the linear wave equation

utt = uxx (1.68)

that admits a scaling symmetry

x∗ = eax, t∗ = eat, u∗ = u, (1.69)
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with generator

X = x
∂

∂x
+ t

∂

∂t
. (1.70)

The solution of the corresponding characteristic equations

dx

x
=
dt

t
=
du

0

leads to the invariant solution form

u = φ(α) = φ
(x
t

)
. (1.71)

The substitution of (1.71) into (1.68) reduces the wave equation (1.68) to an ODE

(1− α2)
d2φ

dα2
− 2α

dφ

dα
= 0, (1.72)

which has a general solution

φ = C1 ln

(
α− 1

α+ 1

)
+ C2. (1.73)

Hence, one obtains the solution

u(x, t) = C1(ln(x− t)− ln(x+ t)) + C2 (1.74)

for the linear wave equation (1.68), invariant with respect to (1.69).

More examples of invariant solutions of PDEs appear in [3, 60, 67–70]. Another method of obtaining

solutions of PDEs is the nonclassical method introduced by Bluman [71]. Here, one finds ξi(x, u), ηµ(x, u), i =

1, ..., n, µ = 1, ...,m so that (1.25) is a nonclassical symmetry of the augmented PDE system consisting of the

given PDE system (1.23), the invariant surface condition equations

ηµ(x, u)− ξi(x, u)
∂uµ

∂xi
= 0, µ = 1, ...,m, (1.75)

and the differential consequences of (1.75). A solution of a given system of PDEs (1.23) is a nonclassical

solution if it is an invariant solution of the augmented system and does not arise as an invariant solution

for (1.23) from its local symmetries. Nonclassical solutions have been obtained for some PDE models (e.g.,

[72, 73]).

Remark 1.2.7. Lie symmetries help in finding the general solution for an ODE. Whereas for a PDE, we

only get symmetry-invariant solution, which is a small subset of the general solution.

1.2.8 Equivalence transformations

For PDE/ODE models that include arbitrary constitutive functions and/or constant parameters, one is inter-

ested in classifying their Lie point/local symmetries. At the first step towards the classification of symmetries

of a system of differential equations involving arbitrary elements, it is essential to find the equivalence trans-

formations for this system. An equivalence transformation maps the given differential equation to another

differential equation from the same general class [33–35].
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Consider a system of differential equations

Fσ[u;Q] = Fσ(x, u, ∂u, ..., ∂ku,Q) = 0, σ = 1, ..., N (1.76)

contains q constitutive functions and/or parameters Q = (Q1, ..., Qq). These functions may depend on

particular independent and dependent variables and derivatives of dependent variables.

Definition 1.2.21. A one-parameter Lie group of equivalence transformations of the system (1.76) is given

by

(xi)∗ = f i(x, u; a), i = 1, ..., n,

(uµ)∗ = gµ(x, u; a), µ = 1, ...,m,

(Qν)∗ = hν(x, u,Q; a), ν = 1, ..., q

(1.77)

which maps a system (1.76) into another system of differential equations Fσ[u∗;Q∗] in the same family.

Example 1.2.13. Consider the one-dimensional heat equation

ut = Q(ux)uxx. (1.78)

The equivalence transformations for the PDE (1.78) have the form [74]

t∗ = C1t+ C2, x∗ = C3x+ C4, u∗ = C5u, Q∗(u∗) =
C2

3

C1
Q(u), (1.79)

where C1, ..., C5 are arbitrary constants and C1 > 0. The corresponding infinitesimal generators are given by

X1 = t
∂

∂t
− 1

2
Q

∂

∂Q
, X2 =

∂

∂t
, X3 = x

∂

∂x
+Q

∂

∂Q
, X4 =

∂

∂x
, X5 = u

∂

∂u
. (1.80)

A symmetry classification problem of a system of differential equations (1.76) is to classify the family

(1.76) into subfamilies with the property that all differential equations in the same subfamily have the same

symmetries. Equivalence transformations can be used to simplify the symmetry classification by finding the

classification of the family (1.76) modulo the group of the equivalence transformations admitted by (1.76).

1.3 Approximate Lie symmetries

Here we give an introduction to approximate symmetry methods for regularly perturbed differential equations.

A general system of N algebraic or differential equations is given by

Fσ0 [u] ≡ Fσ0 (x, u, ∂u, . . . , ∂ku) = 0, k ≥ 0, σ = 1, 2, ..., N, (1.81)

and its first-order perturbation in terms of a small parameter ε is written as:

Fσ[u; ε] = Fσ0 (x, u, ∂u, . . . , ∂ku) + εFσ1 (x, u, ∂u, . . . , ∂ku) = o(ε). (1.82)
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1.3.1 Exact local symmetries of perturbed equations

The exact point symmetry generator of the system (1.82) is given by

Y = αi(x, u; ε)
∂

∂xi
+ βµ(x, u; ε)

∂

∂uµ
, (1.83)

and an exact point or higher-order local symmetry generator in evolutionary form is written as

Ŷ = ζµ(x, u, ∂u, ..., ∂su; ε)
∂

∂uµ
. (1.84)

Solving the determining equations (1.30), one finds exact symmetries of (1.82), holding for an arbitrary ε.

Since (1.82) is a family that includes an arbitrary element ε, the dimension of Lie algebra of point or local

symmetries holding for a general ε cannot exceed that for some fixed ε, including ε = 0. Therefore the family

(1.82) of perturbed differential equations will admit the same or smaller number of local symmetries than its

unperturbed version (1.81).

Example 1.3.1. Consider an ODE

y′′ = ε(y′)−1, (1.85)

which is a perturbed version of

y′′(x) = 0. (1.86)

Let

X0 = ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y

denote the point symmetry generator admitted by the ODE (1.86). The prolongation of X0 to the higher

order of (1.86) is given by

X0(2)

= X0 + η0(2)

(x, y, y′, y′′)
∂

∂y′′
.

The split determining equations (1.30) yield the general solution

ξ0 = C1x
2 + C3

xy

2
+ C7x+ C6y + C8, (1.87a)

η0 = C1xy + C2x+ C3
y2

2
+ C4y + C5, (1.87b)

where Ci are arbitrary constants [4]. The resulting eight-parameter Lie group of point symmetries of (1.86)

is spanned by the generators

X0
1 = xy

∂

∂y
+ x2 ∂

∂x
, X0

2 = x
∂

∂y
, X0

3 =
y2

2

∂

∂y
+
xy

2

∂

∂x
,

X0
4 = y

∂

∂y
, X0

5 =
∂

∂y
, X0

6 = y
∂

∂x
, X0

7 = x
∂

∂x
, X0

8 =
∂

∂x
.

(1.88)

It can be shown that the only symmetries of (1.86) that are also symmetries of (1.85), holding for an arbitrary

ε, are the translations

Y1 = X0
5 =

∂

∂y
, Y2 = X0

8 =
∂

∂x
. (1.89)
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Small perturbation in a differential equation destroys many useful symmetries, and this limits the applica-

bility of exact Lie group methods to perturbed problems. To overcome this inconvenient, some approximate

symmetry methods have been proposed in order to deal with differential equations involving small terms,

and the notion of approximate invariance has been introduced.

1.3.2 BGI approximate symmetries

Approximate symmetries present a tool to seek additional symmetry structure of the system of perturbed

equations (1.82) that are not its exact symmetries but rather preserve (1.82) approximately, up to o(ε) [23,75].

Definition 1.3.1. A one-parameter family of Baikov-Gazizov-Ibragimov (BGI) approximate point transfor-

mations with the parameter a, acting on the (x, u)-space, is given by

(xi)
∗

= f i(x, u; a, ε) = f i0(x, u; a) + εf i1(x, u; a) + o(ε), i = 1, ..., n,

(uµ)
∗

= gµ(x, u; a, ε) = gµ0 (x, u; a) + εgµ1 (x, u; a) + o(ε), µ = 1, ...,m,
(1.90)

where f ij , g
µ
j are sufficiently smooth functions.

The infinitesimal generator of the family of transformations (1.90) is given by

X = X0 + εX1

=
(
ξi0(x, u) + εξi1(x, u)

) ∂

∂xi
+ (ηµ0 (x, u) + εηµ1 (x, u))

∂

∂uµ
,

(1.91)

where

ξij =
∂f ij(x, u; a)

∂a

∣∣∣∣
a=0

, ηµj =
∂gµj (x, u; a)

∂a

∣∣∣∣
a=0

, j = 0, 1, i = 1, ..., n, µ = 1, ...,m

are the infinitesimal components.

Remark 1.3.1. In certain cases, such as for differential equations involving several terms involving different

orders of the small parameter ε, one can seek approximate symmetries with generators of the form

X =
(
ξi0(x, u) + εξi1(x, u) + ...+ εpξip(x, u)

) ∂

∂xi
+
(
ηµ0 (x, u) + εηµ1 (x, u) + ...+ εpηµp (x, u)

) ∂

∂uµ

for an arbitrary order p ≥ 1 [23]. In this thesis, we consider the first-order of precision in ε, p = 1.

Similarly to the exact symmetry groups, one can reconstruct the global family of approximate transfor-

mations from its generator [23].

Theorem 1.3.1. For any BGI approximate generator (1.91), the solution of the approximate Cauchy problem
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df i0
da

= ξi0(f0, g0),
df i1
da

=

n∑
k=1

∂ξi0
∂xk

∣∣∣∣
(x,u)=(f0,g0)

fk1 + ξi1(f0, g0),

f i0
∣∣
a=0

= xi, f i1
∣∣
a=0

= 0, i = 1, ..., n,

dgµ0
da

= ηµ0 (f0, g0),
dgµ1
da

=

m∑
k=1

∂ηµ0
∂uk

∣∣∣∣
(x,u)=(f0,g0)

fk1 + ηµ1 (f0, g0),

gµ0
∣∣
a=0

= uµ, gµ1
∣∣
a=0

= 0, µ = 1, ...,m.

(1.92)

determines the BGI approximate transformation (1.90).

Example 1.3.2. Let n = 1, and consider a generator

X = (1 + εx)
∂

∂x
. (1.93)

If (1.93) is treated as a generator of an approximate transformation (1.90), with ξ0(x) = 1 and ξ1(x) = x,

the Lie’s equations (1.92) become

df0

da
= 1, f0

∣∣
a=0

= x,
df1

da
= f0, f1

∣∣
a=0

= 0,

with the solution f0 = x+ a, f1 = ax+ a2/2, leading to the global approximate transformation

x∗ = x+ a+ ε

(
ax+

a2

2

)
. (1.94)

If (1.93) is considered as an exact generator of a Lie group, then solving the Lie’s equation (1.11) yields the

global group

x∗ = xeaε +
eaε − 1

ε
= x+ a+ ε

(
ax+

a2

2

)
+ ε2

(
a2

2
x+

a3

6

)
+ . . . , (1.95)

where the Taylor expansion of the transformed x in the small parameter contains the approximate transfor-

mation (1.94) as the first three terms.

Determining equations. Stable symmetries

Let G be a BGI approximate point transformation (1.90). A system of perturbed algebraic or differential

equations (1.82) is approximately invariant with respect to G if

Fσ(x∗, u∗, ∂u∗, . . . , ∂ku∗; ε) = o(ε), σ = 1, ..., N,

whenever Fα(x, u, ∂u, . . . , ∂ku; ε) = 0 for α = 1, ..., N .

Definition 1.3.2. The family (1.90) of BGI approximate point transformations defines a BGI approximate

point symmetry of the PDE (1.82) if it satisfies the approximate invariance condition of (1.82) under the

action of (1.91):

(X0 (k) + εX1 (k))(Fσ0 [u] + εFσ1 [u])

∣∣∣∣
F0[u]+εF1[u]=0

= o(ε), σ = 1, ..., N. (1.96)
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In (1.96), O(1) and O(ε) terms must vanish independently. It is easy to see that the O(1) term yields the

determining equation (1.30) for the invariance of the unperturbed equation (1.81) under a point transforma-

tion X0 (1.51). Hence the following result holds [23].

Theorem 1.3.2. Let the equations (1.82) be approximately invariant under the approximate point transfor-

mation (1.90) with the generator (1.91) such that ξ0, η0(x, u) 6= 0. Then the infinitesimal operator

X0 = ξi0(x, u)
∂

∂xi
+ ηµ0 (x, u)

∂

∂uµ
(1.97)

is a generator of an exact symmetry group for the unperturbed equations (1.81).

The converse of the above result does not always hold. Indeed, as it will be seen in examples below,

if X0 (1.97) generates an exact point symmetry group of the unperturbed PDE (1.81), there may be no

corresponding BGI transformation (1.90) that approximately preserved the perturbed PDE (1.82). The

following definition is important.

Definition 1.3.3. Suppose X0 (1.97) is a generator of an exact point symmetry group of the unperturbed

PDE (1.81). If the perturbed PDE (1.82) admits an approximate generator X (1.91) with its O(1) part given

by X0, then X0 corresponds to a stable point symmetry of the unperturbed PDE (1.81) (in the BGI sense).

Otherwise, it corresponds to an unstable point symmetry of (1.81).

Below in this thesis, Definition 1.3.3 will be used not only for BGI approximate point symmetries, but

more generally, for BGI and FS approximate point and local symmetries.

Remark 1.3.2. Solving the determining equations (1.96) to calculate first-order BGI approximate point

symmetry components for equations (1.82) with a small parameter can be subdivided in the following steps:

1. Compute an exact point/local symmetry generator X0 of the unperturbed equations (1.81) using de-

termining equations (1.52) for exact local or point symmetries.

2. Find the corresponding first-order deformation (the part X1 of the generator (1.91)) using the equation

X1(k)

Fσ0

∣∣∣∣
Fσ0 =0

= H[u], (1.98)

where H is obtained from the coefficients of ε in

−X0(k)

(Fσ0 + εFσ1 )

∣∣∣∣
Fσ0 +εFσ1 =0

, σ = 1, ..., N. (1.99)

The first-order condition (1.98) may (or may not) contain additional conditions on the components ξi0, η0 of

the unperturbed symmetry generator X0 (1.97). This leads to the symmetry generated by X0 being unstable

(or respectively, stable). If all symmetries of the equations (1.81) are stable, the perturbed equations (1.82)

are said to inherit the symmetry structure of the unperturbed equations [23].
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Higher-order BGI approximate symmetries

Similarly to exact local transformations with generators of the form (1.48), one can define more general local

approximate BGI transformations with generators in evolutionary form given by

X̂ = X̂0 + εX̂1 = (ζµ0 [u] + εζµ1 [u])
∂

∂uµ
. (1.100)

Approximate local (including point, contact, and higher-order) BGI symmetries of the perturbed PDE (1.82)

can be found using the same procedure as described above for BGI approximate point symmetries. In

particular, the analog of the first-order condition (1.98) takes the form(
ζµ1

∂

∂u
+ (ζ

(1)µ
1 )i

∂

∂ui
+ . . .+ (ζ

(p)µ
1 )i1i2...ip

∂

∂ui1i2...ip

)
Fσ0

∣∣∣∣
F0=0

= H[u], (1.101)

where the higher-order components are computed using the equations (1.50).

Theorem 1.3.2, the stability definition 1.3.3 concerning stability conditions of approximate symmetries

directly carry over to the case of general local BGI symmetries.

Approximate commutator

Let ξij(x, u), ηij(x, u), j = 0, 1, i = 1, ..., n and µ = 1, ...,m be smooth functions, the approximate operator is

a differential operator given by

X =
(
ξi0(x, u) + εξi1(x, u)

) ∂

∂xi
+ (ηµ0 (x, u) + εηµ1 (x, u))

∂

∂uµ
.

Definition 1.3.4. The approximate commutator for the approximate operators X1, X2 is given by

[X1, X2] = X1X2 −X2X1 + o(ε). (1.102)

Similar to an exact operator, the approximate operator satisfies

1. linearity: [c1X1 + c2X2, X3] = c1[X1, X3] + c2[X2, X3] + o(ε),

2. skew-symmetric: [X1, X2] = −[X2, X1] + o(ε),

3. Jacobi identity: [X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = o(ε)

for any approximate operators Xq and arbitrary constants cj [76, 77].

Example 1.3.3. Consider the approximate operators

X1 =
∂

∂x
+ εx

∂

∂t
, X2 =

∂

∂t
+ εt

∂

∂x
.

One finds

[X1, X2] = ε2
(
x
∂

∂x
− t ∂

∂t

)
.

The linear span of X1, X2 is not an exact Lie algebra. However, up to o(ε), these operators are approximately

commuted.
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1.3.3 Fushchich-Shtelen approximate symmetries

Unlike the BGI approach where the symmetry generator is expanded in a power series in terms of the small

parameter, the Fushchich-Shtelen method [13] applies the perturbation technique to the solution u(x) and

the given system of differential equations. In particular, the solution is written as

u(x; ε) = v(x) + εw(x) +O(ε2) (1.103)

with components uµ(x) = vµ(x) + εwµ(x), µ = 1, ...,m. Substituting (1.103) into the system of perturbed

equations (1.82) with a small parameter, expanding the result, and setting to zero the O(1) and O(ε) terms

independently, one obtains a system of 2N equations on v(x) and w(x) without the small parameter, given

by

Gσ1 [v, w] ≡ Fσ0 [v] = 0, (1.104a)

Gσ2 [v, w] ≡ (Fσ0 )v · w + (Fσ0 )vi · wi + (Fσ0 )vij · wij + ...+ (Fσ0 )vi1i2...ik
· wi1i2...ik + Fσ1 [v] = 0. (1.104b)

It is clear that the first equations (1.104a) are independent of w, and the second equations (1.104b) are

linear in w, with the linear operator being the Frèchet derivative of the Fσ0 [v]. We refer to equations (1.104)

as the Fushchich-Shtelen system for the system (1.82). The system (1.104) approximates the given system

of differential equations (1.82), in the sense that each exact solution pair (v(x), w(x)) of (1.104) yields an

approximate solution (1.103) of the given system (1.82) up to the order o(ε).

Definition 1.3.5. The Lie group of point transformations with the group parameter a

(xi)
∗

= f i(x, v, w; a) = xi + aλi(x, v, w) +O(a2), i = 1, ..., n,

(vµ)
∗

= gµ(x, v, w; a) = vµ + aφµ1 (x, v, w) +O(a2), µ = 1, ...,m,

(wµ)
∗

= hµ(x, v, w; a) = wµ + aφµ2 (x, v, w) +O(a2)

(1.105)

with the generator

Z = λi(x, v, w)
∂

∂xi
+ φµ1 (x, v, w)

∂

∂vµ
+ φµ2 (x, v, w)

∂

∂wµ
(1.106)

defines a FS approximate point symmetry of the perturbed equations (1.82) if it is an exact Lie point symmetry

group of the Fushchich-Shtelen system (1.104).

In a similar manner, a generalized local (point or higher-order) transformation group in the evolutionary

form

(xi)
∗

= xi, i = 1, ..., n,

(vµ)
∗

= vµ + aψµ1 [v, w] +O(a2),

(wµ)
∗

= wµ + aψµ2 [v, w] +O(a2), µ = 1, ...,m

(1.107)

with the generator

Ẑ = ψµ1 [v, w]
∂

∂vµ
+ ψµ2 [v, w]

∂

∂wµ
(1.108)
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defines a local (point or higher-order) FS approximate symmetry of the PDE (1.82) if it is a local symmetry

of the Fushchich-Shtelen system (1.104).

It is important to know whether the FS approximate symmetry structure of a PDE (1.82) with a small

parameter is in some sense inherited from exact local symmetries of the unperturbed PDE (1.81). Similarly

to the BGI case, one can define stable and unstable symmetries in the Fushchich-Shtelen framework.

Definition 1.3.6. Suppose X̂0 = ζµ0 [u] ∂/∂uµ (1.100) is a generator of an exact local symmetry group of

the unperturbed equations (1.81). If the perturbed equations (1.82) admit an approximate FS symmetry

with generator (1.108) where the v-part ψµ1 [v, w] ≡ ζµ0 [v], then X̂0 corresponds to a stable point symmetry

of the unperturbed PDE (1.81) (in the FS sense). Otherwise, it corresponds to an unstable point symmetry

of (1.81).

Similarly to the case for BGI approximate symmetries, a FS approximate symmetry of a system of

equations (1.82) given by (1.108) may be unstable because the second symmetry determining equation for

the Fushchich-Shtelen system (1.104)

Ẑ(k)Gσ2 [v, w]

∣∣∣∣
G1[v,w]=G2[v,w]=0

= 0, σ = 1, ..., N

could contain additional conditions on the v-components ψµ1 [v, w] in (1.108).

1.3.4 Trivial approximate symmetries

Trivial BGI approximate symmetries

Consider a local BGI approximate transformation with the evolutionary generator (1.100):

X̂ = X̂0 + εX̂1 = (ζµ0 [u] + εζµ1 [u])
∂

∂uµ
, µ = 1, ...,m.

The determining equations (1.96) for the generator (1.100) to define an approximate local symmetry of the

perturbed equations (1.82) with a small parameter split into the O(1) part (1.30) and O(ε) part (1.98) with H

defined by (1.99). Suppose that the O(1) part of the generator vanishes: X̂0 = 0. In that case, the O(1) part

(1.30) of the approximate symmetry determining equations is satisfied identically, and (1.99) yields H = 0.

Consequently, the O(ε) part (1.98) of the determining equations (1.96) becomes

X̂1 (k)Fσ0 [u]

∣∣∣∣
F0[u]=0

= 0. σ = 1, ..., N, (1.109)

which means that such X̂1 must be a local symmetry generator of the unperturbed equations (1.81). The

opposite is also true: if X̂0 is a local symmetry generator of the unperturbed equations (1.81), then

X̂ = εX̂0 (1.110)
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is a BGI approximate symmetry generator of the perturbed equations (1.82). In the light of the above, we

call a BGI approximate symmetry that has a generator with vanishing O(1) part

X̂ = εX̂1 = εζµ1 [u]
∂

∂uµ
(1.111)

a trivial BGI approximate symmetry. This triviality relates not to the trivial action of such symmetries but

rather to the fact that every local symmetry X̂0 of the unperturbed equations (1.81) is guaranteed to yield

a BGI approximate symmetry of the perturbed equations (1.82) having the form (1.110). The local action

of a trivial BGI approximate symmetry in the evolutionary form defined by (1.111) is given by

(xi)∗ = xi, i = 1, 2, . . . , n,

(uµ)∗ = uµ + aεζµ1 [u] +O(a2), µ = 1, ...,m,
(1.112)

with the first Taylor term of the transformation having the order of smallness ∼ aε = o(a, ε).

Trivial FS approximate symmetries

In a parallel fashion, one can define a trivial FS approximate symmetry of the perturbed PDE (1.82) as one

for which the local generator (1.108) has a special form with the vanishing transformation component of the

O(1) part of the solution ψµ1 = 0, and ψµ2 [v, w] = ψµ2 [v]:

Ẑ = 0 + ψµ2 [v]
∂

∂wµ
. (1.113)

For FS local symmetries with the generator of the form (1.113), it is straightforward to show that ψµ2 [u] are

the evolutionary components of the local symmetry of the unperturbed equations (1.81) generated by

X̂0 = ψµ2 [u]
∂

∂uµ
. (1.114)

Indeed, the action of (1.113) on the first equations (1.104a) of Fushchich-Shtelen system is trivial, and the

action on the linear equations (1.104b) is equivalent to the local symmetry determining equation (1.52) of

the unperturbed equations (1.81).

1.3.5 Types of approximate symmetries

In the computation of BGI approximate symmetries of a PDE (1.82) with a small parameter, the following

three types of symmetries can arise.

1. BGI approximate symmetries with generators (1.100) having X̂0 6= 0, X̂1 = 0 correspond to exact local

symmetries of the perturbed equation (1.82) (see Section 1.3.1).

2. BGI approximate symmetries with generators having X̂0 = 0, X̂1 6= 0 correspond to trivial BGI

approximate symmetries.

3. Genuine BGI approximate symmetries have generators with both X̂0 and X̂1 6= 0.
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For FS approximate symmetries, the following types can arise.

1. Symmetries with the same action on O(1) solution part v and O(ε) solution part w correspond to exact

local symmetries of the perturbed equation (1.82). For example, an exact scaling symmetry with the

generator u ∂/∂u admitted by the perturbed equation (1.82) is equivalent to a FS scaling symmetry

with the generator v ∂/∂v + w ∂/∂w.

2. Trivial FS approximate symmetries.

3. Genuine FS approximate symmetries.

Genuine BGI and FS approximate symmetries are the main focus of the approximate symmetry study.

Example 1.3.4. Consider the second-order ODE

y′′ = ε(y′)−1 (1.115)

which is a perturbed version of the ODE (1.86). The latter has eight exact point symmetries given by (1.88).

Let

X = X0 + εX1
(
ξ0(x, y) + εξ1(x, y)

) ∂

∂x
+
(
η0(x, y) + εη1(x, y)

) ∂
∂y

be the approximate symmetry generator of (1.3.4), where X0 is an exact symmetry generator of the unper-

turbed ODE (1.86). The determining equations (1.96) for approximate symmetries yield

η1
xx + (2η1

xy − ξ1
xx)y′ + (η1

yy − 2ξ1
xy)y′

2 − ξ1
yyy
′3 = (3ξ0

x − 2η0
y)y′−1 + 4ξ0

y − η0
xy
′−2, (1.116)

where ξ0, η0 are exact symmetry components (1.87) computed in Example 1.3.1. The determining equations

(1.116) splits into the PDEs

η1
xx = 4C6, 2η1

xy − ξ1
xx = 0, η1

yy − 2ξ1
xy = 0, ξ1

yy = 0, (1.117)

for ξ1, η1, and the additional conditions

3ξ0
x − 2η0

y = 0, η0
x = 0

on the unperturbed symmetry components ξ0, η0 (1.87). These provide restrictions on free constants in

(1.87):

C1 = C2 = C3 = 0, C4 =
3

2
C7.

The remaining space of exact symmetry components ξ0, η0 reduces to

ξ0 =
2C4

3
x+ C6y + C8, η0 = C4y + C5.

The approximate components are found from (1.117) and have the form

ξ1(x, y) = a1x
2 +

a2

2
xy + a3x+ a4y + a5,

η1(x, y) = 2C6x
2 + a1xy +

a2

2
y2 + a6x+ a7y + a8.

(1.118)

Since the constants a1 . . . a8 and C4, C5, C6, C8 are free, the ODE (1.115) admits 12 approximate point

symmetries. These approximate symmetries can be divided into the following classes:
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1. Exact symmetries inherited from the unperturbed ODE (1.86), involving only O(ε0) components

X9 = X0
4 +

2

3
X0

7 , X10 = X0
5 , X12 = X0

8 . (1.119a)

2. A genuine approximate symmetry

X11 = X0
6 + 2εx2 ∂

∂y
(1.119b)

with O(ε0) part inherited from the stable symmetry X0
6 of the unperturbed ODE (1.86) (see (1.88)).

3. Eight trivial symmetries Xj = εX0
j , j = 1, 2, ..., 8, given by

X1 = ε

(
xy

∂

∂y
+ x2 ∂

∂x

)
, X2 = ε

(
x
∂

∂y

)
, X3 = ε

(
y2

2

∂

∂y
+
xy

2

∂

∂x

)
,

X4 = εy
∂

∂y
, X5 = ε

∂

∂y
, X6 = εy

∂

∂x
, X7 = εx

∂

∂x
, X8 = ε

∂

∂x
,

(1.119c)

corresponding to the free constants a1 . . . a8 in (1.118), having only O(ε) components, and arising from

each exact point symmetry (1.88) of the unperturbed ODE (1.86).

Concerning the “fate” of the exact point symmetries (1.88) of the unperturbed ODE (1.86) in the ap-

proximate symmetry classification (1.119) of the perturbed ODE (1.3.4), it turns out that only four exact

symmetries are stable: these are X0
5 , X0

6 , X0
8 and the linear combination

X0
s = X0

4 +
2

3
X0

7

that is contained in X9 of (1.119a). The other four symmetries of the unperturbed ODE (1.86) are unstable,

including the generators X0
1 , X

0
2 , X

0
3 in (1.88), and the transverse linear combination of X0

4 and X0
7 :

X0
u = X0

4 −
3

2
X0

7 . (1.120)

Now, we proceed to compute FS approximate symmetries for the perturbed ODE (1.115). Substituting

y(x) = v(x) + εw(x) into the ODE (1.115) leads to the FS system

v′′ = 0,

w′′ = (v′)
−1
. (1.121)

Since the first equation of the system (1.121) is equivalent to the unperturbed ODE (1.86), the exact symmetry

generator for the system the system (1.121) can be sought in the form

Z = ξ0(x, v)
∂

∂x
+ η0(x, v)

∂

∂v
+ ηw(x, v, w)

∂

∂w
,

where ξ0, η0 are the unperturbed symmetry components (1.87). The determining equation (1.30) applied to

the second ODE in (1.121) yields the following system of PDEs in ηw:

ηwxx =
3

2
C3x+ 3C6, ηwxv = 0, ηwvv = 0, ηww =

1

2
C3v + 3C7 − C4, (1.122)
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and additional conditions on the exact symmetry components (1.87) yield: C1 = C2 = 0. Hence, the exact

symmetries X1
0 and X2

0 of the unperturbed ODE (1.86) are unstable. The infinitesimal component ηw is

found from (1.122) and has the form

ηw = C3

(
1

4
x3 +

1

2
vw

)
+ (3C7 − C4)w +

3

2
C6 + a1v + a2x+ a3. (1.123)

Consequently, the system of ODEs (1.121) admits 9 exact symmetries (these are the approximate symmetries

of the perturbed ODE (1.115)) given by the following categories

1. Exact symmetries inherited from the exact symmetries of the unperturbed ODE (1.86).

Z1 = X5
0 (x, v) =

∂

∂x
, Z2 = X8

0 (x, v) =
∂

∂v
. (1.124)

2. Genuine FS approximate symmetries:

Z3 = x
∂

∂x
+ 3w

∂

∂w
, Z4 = v

∂

∂x
+

3

2
x2 ∂

∂w
, Z5 = v

∂

∂v
− w ∂

∂w
,

Z6 =
1

2
v2 ∂

∂x
+

1

2
xv

∂

∂v
+

(
1

4
x3 +

1

2
vw

)
∂

∂w

(1.125)

corresponding to the stable exact symmetries X0
7 , X0

6 , X0
4 (x, v) and X0

3 (x, v) of the unperturbed ODE

(1.86), respectively. Note that X0
3 is unstable in sense of BGI however it yields a new approximate

FS symmetry Z6 in (1.125). Also, in BGI case, there is only one new approximate symmetry (1.119b)

corresponding to the stable exact symmetry X0
6 .

3. Trivial FS approximate symmetries:

Z7 =
∂

∂w
, Z8 = x

∂

∂w
, Z9 = v

∂

∂w
. (1.126)

1.3.6 Approximate invariant solutions

Approximate symmetries are useful in constructing approximate invariant solutions for differential equation

with a small parameter [23].

Definition 1.3.7. An approximate function J(x, u; ε) = J0(x, u) + εJ1(x, u) + o(ε) is called an approximate

invariant of a BGI approximate point transformation (1.90) if

J(x∗, u∗; ε) = J(x, u; ε) + o(ε).

Theorem 1.3.3 ( [76]). An approximate function J(x, u; ε) = J0(x, u) + εJ1(x, u) +o(ε) is invariant under a

one-parameter family of BGI approximate point transformations (1.90) with approximate symmetry generator

(1.91) if and only if the identity

XJ(x, u; ε) = o(ε) (1.127)

holds.
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The determining equation (1.127) for finding the approximate invariants of the Lie group of BGI approx-

imate point transformations (1.90) splits into the system:

X0J0 = 0, X0J1 +X1J0 = 0.

Example 1.3.5. The perturbed wave equation

utt + εut = uuxx (1.128)

admits the approximate symmetry generator

X = u
∂

∂u
− t

2

∂

∂t
+ ε

(
tu

5

∂

∂u
− t2

20

∂

∂t

)
. (1.129)

Approximate invariants of (1.129) are given by

J(x, t, u; ε) = J0(x, t, u) + εJ1(x, t, u) + o(ε).

These invariants are determined using

X0J0 = 0, X0J1 = −X1J0,

which leads to the following system of first-order PDEs

u
∂J0

∂u
− t

2

∂J0

∂t
= 0,

u
∂J1

∂u
− t

2

∂J1

∂t
=
−tu

5

∂J0

∂u
+
t2

20

∂J0

∂t
.

(1.130)

The solution of the above system yields two functionally independent approximate invariants for the operator

(1.129) given by

J1 = x+ εθ(x, t2u), J2 = t2u+ ε

(
t3u

5
+ ϑ(x, t2u)

)
,

with arbitrary functions θ and ϑ. In the simple case when θ = ϑ = 0, an approximately invariant solution

given by the equation J2 ≈ φ(J1) has the form

u(x, t) =
φ(x)

t2 +
ε

5
t3
≈ φ(x)

(
1

t2
− ε

5t

)
. (1.131)

Substituting (1.131) into the PDE (1.128) yields the following ODE

d2φ

dx2
= 6, (1.132)

which has a solution

φ(x) = 3x2 + C1x+ C2,

where C1, C2 are arbitrary constants. Consequently,

u(x, t) = (3x2 + C1x+ C2)

(
1

t2
− ε

5t

)
(1.133)

is an approximate solution for the perturbed wave equation (1.128).
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Remark 1.3.3. One can readily verify that the remaining terms after substituting the approximate solution

(1.133) into the perturbed wave equation (1.128) are O(ε2).

In Fushchich-Shtelen framework, an approximate solution for the perturbed equations (1.82) can be found

by first finding the exact solution (v(x), w(x)) of the corresponding FS system (1.104) using the classical

methods (see Section 1.2.7), then the approximate solution u(x; ε) of (1.82) has the form (1.103).

1.4 Conservation laws and Noether’s theorem

Conservation laws have significant mathematical and physical applications including existence, uniqueness

and stability analysis, in various areas of science. Here, we assume that the system of differential equations

(1.23) is totally nondegenerate.

1.4.1 Local and global conservation laws

Definition 1.4.1. A local conservation law of PDE system (1.23) is a divergence expression

DiΦ
i[u] = D1Φ1[u] + ...+DnΦn[u] (1.134)

which vanishes on all solutions of PDE system (1.23). Φi[u] = Φi(x, u, ∂u, ..., ∂qu), i = 1, ..., n, are called the

fluxes of the conservation laws, and the highest derivative q is called the differential order of a conservation

law.

For a scalar PDE F [u] = 0 with two independent variables, the local conservation law (1.134) has the

form

DtΦ[u] +DxΨ[u] = 0. (1.135)

The corresponding global conservation law is given by

d

dt
Θ[u] =

d

dt

∫ b

a

Φ[u]dx = −Ψ[u]

∣∣∣∣b
a

. (1.136)

If the flux Ψ[u] vanishes on the boundary or at infinity or in the periodic case, then Θ defines a global conserved

quantity [78]. When the independent variables are the time and space variables, the local conservation law

(1.134) becomes

DtΦ[u] +DjΨ
j [u] = 0, j = 1, 2, 3.

The corresponding global form is given by

d

dt

∫
V

Φ[u]dV = −
∮
∂V

Ψ[u] · dS,

where V ⊆ R3 is a closed volume with smooth boundary surface ∂V and dS is the surface element. For

multidimensional PDE systems, several types of local and global conservation laws can arise such as surface-

flux and circulatory conservation laws [79].
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Example 1.4.1. Consider the Korteweg-de Vries equation given by

ut + uux + uxxx = 0, (1.137)

where u(x, t) is the amplitude of long surface waves on shallow water. The KdV equation (1.137) has an

infinite sequence of conservation laws of increasing order [80] that are found using the Lax pair. A Lax pair

refers to a set of time-dependent operators that satisfy a corresponding differential equation called the Lax

equation [81]. Finding the Lax par is an essential step in solving nonlinear partial differential equations using

the inverse scattering transform [82]. The KdV equation (1.137) can be viewed as a completely integrable

Hamiltonian system. It also provides resources for studying integrability of nonlinear differential equations.

Moreover, various physical solutions to the KdV equation can be presented explicitly in a simple way such

as solitons, rational solutions, positons and negatons [83].

In particular, the KdV equation (1.137) has a conservation laws for mass, momentum and energy, given,

respectively, by

Dt(u) +Dx( 1
2u

2 + uxx) = 0,

Dt(
1
2u

2) +Dx( 1
3u

3 + uuxx − 1
2u

2
x) = 0,

Dt(
1
6u

3 − 1
2u

2
x) +Dx( 1

8u
4 − uu2

x + 1
2 (u2uxx + u2

xx)− uxuxxx) = 0.

(1.138)

The local conservation laws (1.138) yield respectively the conserved integrals

I1 =

∫ b

a

u dx, I2 =

∫ b

a

1

2
u2dx, I3 =

∫ b

a

(
1

2
u2
x −

1

6
u3

)
dx. (1.139)

Equivalent conservation laws

A local conservation law (1.134) of the PDE system (1.23) could trivially hold in two different ways. The

first type, each of the fluxes of (1.7) vanishes on the solution of the system (1.23). The second type occurs

when a conservation law (1.7) vanishes identically as a differential identity. Trivial conservation laws apply

to any system of differential equations and provide no new information about the given system.

Example 1.4.2. Consider the PDE system

vx = u, vt = K(u)ux. (1.140)

The conservation law

Dt(u(u− vx) +Dx(2(vt −K(u)ux)=0

is a trivial conservation law of the first type, and

Dt(uxx)−Dx(utx) = 0
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is a trivial conservation law of the second type.

Definition 1.4.2. Two conservation laws DiΦ
i[u] = 0 and DiΨ

i[u] = 0 are equivalent if they differ by a

trivial conservation law. An equivalence class of conservation laws consists of all conservation laws equivalent

to some given nontrivial conservation law.

1.4.2 The multiplier method for construction of conservation laws

The direct method [5,6] provides an algorithmic approach to find conservation laws for any system of differ-

ential equations. Nontrivial conservation laws for a PDE system (1.23) arise from linear combinations of the

equations of the PDE system (1.2.5) with multipliers. A set of multipliers {Λσ[U ]}Nσ=1 yields a divergence

expression for the PDE system (1.23) if the identity

Λσ[U ]Fσ[U ] ≡ DiΦ
i[U ] (1.141)

holds for an arbitrary functions U(x). Then on solutions U(x) = u(x) of the PDE system (1.23), if Λσ[U ] is

non-singular, one obtains a local conservation law

Λσ[u]Fσ[u] = DiΦ
i[u] = 0. (1.142)

Remark 1.4.1. A multiplier Λσ[U ] is singular if it is a singular function when evaluated on solutions

U(x) = u(x) of the given PDE system (1.23). In practice, one is interested in non-singular sets of multipliers,

since considering singular multipliers can lead to arbitrary divergence expressions that are not conservation

laws of the given system. An example of a singular multiplier is Λσ[U ] = DiΦ
i[U ]/Fσ[U ] yields Λσ[U ]Fσ[U ] =

Di(NΦi[U ]), in terms of arbitrary functions Φ1[U ], ...,Φn[U ].

Definition 1.4.3. The Euler operator with respect to uµ, µ = 1, ...,m is given by

Euµ =
∂

∂uµ
−Di

∂

∂uµi
+ ...+ (−1)rDi1 ...Dir

∂

∂uµi1...ir
+ ..., r ≥ 1, µ = 1, ...,m. (1.143)

Theorem 1.4.1. The identities

Euµ
(
A
(
x, u, ∂u, ..., ∂`u

))
≡ 0

hold if and only if

A
(
x, u, ∂u, ..., ∂`u

)
= DiA

i(x, u, ∂u, ..., ∂`−1u)

for some functions Ai, i = 1, ..., n.

Proof. [4]

The following theorem shows that a given PDE system has a local conservation law if and only if there

exist local multipliers such that their linear combinations with the differential equations of the given PDE

system are annihilated by the Euler operator (1.143) [37].
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Theorem 1.4.2. A set of nonsingular local multipliers {Λσ(x, U, ∂U, ..., ∂lU)}Nσ=1 yields a local conservation

law for the PDE system (1.23) if and only if the set of identities

EUµ(Λσ(x, U, ∂U, ..., ∂lU)Fσ(x, U, ∂U, ..., ∂kU)) ≡ 0, µ = 1, ...,m, (1.144)

holds for arbitrary function U(x).

Theorem 1.4.2 leads to a systematic way for the construction of local conservation laws:

• For the PDE system (1.23), define a set of conservation law multipliers up to some specified order.

• Solve the determining equations (1.144) for arbitrary U(x) to find all such sets of multipliers.

• Find the corresponding fluxes satisfying

Λσ(x, U, ∂U, ..., ∂lU)Fσ(x, U, ∂U, ..., ∂kU)) ≡ DiΦ
i(x, U, ∂U, ..., ∂rU). (1.145)

• Each set of fluxes and multipliers yields a local conservation law

DiΦ
i(x, u, ∂u, ..., ∂ru) = 0,

holding for all solutions u(x) of the PDE system (1.23).

Example 1.4.3. Consider the KdV equation

F [u] = ut + uux + uxxx = 0. (1.146)

Consider zeroth order multipliers, Λ = Λ(x, t, U). The determining equation (1.144) for the multiplier Λ

reads

EU (Λ(x, t, U))(Ut + UUx + Uxxx) = 0. (1.147)

It follows that

(Λt + UΛx + Λxxx) + 3ΛxxUUx + 3ΛxUUU
2
x + ΛUUUU

3
x + 3ΛxUUxx + 3ΛUUUxUxx = 0. (1.148)

Equation (1.148) splits into three equations

Λt + UΛx + Λxxx = 0, ΛxU = 0, ΛUU = 0,

with solution provides three local multipliers

Λ1 = 1, Λ2 = U, Λ3 = tU − x, (1.149)

where Λ1, Λ2 yield the conservation law for mass, momentum (1.138). The third multiplier Λ3 yields a

conservation law for center of mass motion given by

Dt

(
1

2
tu2 − xu

)
+Dx

(
−1

2
xu2 + tuuxx −

1

2
tu2
x − xuxx+ ux

)
= 0.
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1.4.3 Noether’s theorem

Consider a functional

L[u] =

∫
Ω

L[u]dx (1.150)

defined on some domain Ω. The function L[u] is called a Lagrangian and the functional (1.150) is called an

action integral. A variational problem consists of finding the extremum of the action integral (1.150). The

following theorem holds [37].

Theorem 1.4.3. If a smooth function U(x) = u(x) is an extremum of an action integral L[u] with L[U ] =

L(x, U, ∂U, ..., ∂kU), then u(x) satisfies the equations

EuµL =
∂L

∂uµ
−Di

∂L

∂uµi
+ ...+ (−1)rDi1 ...Dik

∂L

∂uµi1...ik
= 0, µ = 1, ...,m, (1.151)

where Euµ is the Euler operator (1.143).

Definition 1.4.4. Equations (1.151) are called the Euler-Lagrange equations.

A PDE system admits a variational principle if the PDEs of the system are precisely given by the Euler-

Lagrange equations (1.151). Noether [39] considered transformations of the form

(xi)∗ = xi + aξi(x, u, ∂u, ..., ∂`u) +O(a2), i = 1, ..., n,

(uµ)∗ = uµ + aηµ(x, u, ∂u, ..., ∂`u) +O(a2), µ = 1, ...,m

that leaves the action integral (1.150) invariant and established a direct relationship between the symmetries

of the action integral and the conservation laws.

Definition 1.4.5. A Lie group of point transformations

(xi)∗ = xi + aξi(x, u) +O(a2), i = 1, 2, . . . , n,

(uµ)∗ = uµ + aηµ(x, u) +O(a2), µ = 1, 2, . . . ,m
(1.152)

is a variational symmetry group of the action integral (1.150) if∫
Ω∗
L[u∗]dx∗ =

∫
Ω

L[u]dx,

where Ω∗ is the image of Ω under the point transformation (1.152).

Theorem 1.4.4. A Lie group of point transformations (1.152) with infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ηµ(x, u)

∂

∂uµ
,

is a variational symmetry for the functional L[u] (1.150) if and only if

X(k)L+ LDiξ
i = 0. (1.153)

Proof. [4].
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For higher-order transformations (1.47) and the evolutionary form of (1.152) with infinitesimal generator

(1.48), the Noether identity (1.153) becomes

X̂(k)L = DiA
i

for some differential function A[u] = (A1[u], ..., An[u]). Variational symmetries are also called Noether trans-

formations. The following result hold [4]

Theorem 1.4.5. If the Lie group of point transformations (1.152) is a variational symmetry group of the

functional L[u], then (1.152) is a symmetry group of the Euler-Lagrange equations (1.151).

The converse of the above theorem is not true, that is, not every symmetry of the Euler-Lagrange equations

is a variational symmetry of the original variational problem.

Example 1.4.4. Consider the two-dimensional linear wave equation

utt = uxx + uyy, (1.154)

which is the Euler-Lagrange equation for the functional

L[u] =
1

2

∫∫∫ (
u2
t − u2

x − u2
y

)
dtdxdy.

The wave equation (1.154) admits rotation and inversion symmetries

X1 = t
∂

∂x
+ x

∂

∂t
, X2 = 2yt

∂

∂t
+ 2xy

∂

∂x
+ (t2 − x2 + y2)

∂

∂y
− yu ∂

∂u
.

For the rotation symmetry generator X1, one has X
(1)
1 = X1 − ux∂/∂ut − ut∂/∂ux. Hence, the identity

(1.153) reads

X
(1)
1

(
u2
t − u2

x − u2
y

2

)
+Dt(x) +Dx(t) = −uxut + utux = 0.

It follows that, X1 is a variational symmetry for the functional L and hence a variational symmetry for the

wave equation (1.154). For X2, the first prolongation has the form

X
(1)
2 = X2 − (3yut + 2tuy)

∂

∂ut
+ (2xuy − 3yux)

∂

∂ux
− (u+ 2tut + 2xux + 3yuy)

∂

∂uy
.

Applying X
(1)
2 to the Lagrangian L =

(
u2
t − u2

x − u2
y

)
/2, one has

X
(1)
2 L = −ut (3yut + 2tuy)− ux (2xuy − 3yux) + uy (u+ 2tut + 2xux + 3yuy)

= uuy − 6yL.

Equation (1.153) becomes

X
(1)
2 + LDiξ

i = uuy − 6yL+
(
Dt(2ty) +Dx(2xy) +Dy(t2 − x2 + y2)

)
L = uuy.

Consequently, X2 is not a variational symmetry for the functional L.
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For variational differential equations, local symmetries and local conservation laws are related using the

Noether’s first theorem [37].

Theorem 1.4.6. Suppose a PDE system (1.23) arises from a variational principle. Suppose a one-parameter

Lie group of point transformations (1.152) is a variational symmetry for the functional L[u] (1.150). Then

the functions

ζµ = ηµ − uµi ξ
i

form a set of multipliers for the PDE system (1.23).

Example 1.4.5. The linear wave equation F [u] = utt − c2uxx = 0 admits the time translation symmetry

X = ∂/∂t with evolutionary symmetry component ζ = −ut. Hence, one gets a multiplier Λ = ζ = −ut. The

corresponding conservation law is a conservation law of energy:

ΛF [u] = −ut(utt − c2uxx) = −Dt

(
u2
t + u2

x

2

)
+Dx

(
c2utux

)
= 0.

Remark 1.4.2. Noether’s theorem to find conservation laws is restricted to variational systems. However,

the direct method for finding conservation laws is applicable to any differential equation whether or not it is

variational.
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2 Exact and Approximate Symmetries of Algebraic

Equations and ODEs with a Small Parameter

2.1 Introduction

In Chapter 1, we have seen that under a perturbation of an ODE model, some exact point symmetries of the

original system may be unstable and totally disappear from the classification of approximate symmetries of

the perturbed model.

In this chapter, we follow the BGI and FS approximate symmetry frameworks to study the approximate

symmetry properties of perturbed algebraic equations and ODEs. In particular, we provide the relation

between exact and approximate symmetries of the original and perturbed algebraic and first-order ordinary

differential equations. In summary, to every exact Lie point symmetry of an unperturbed equation, there

correspond:

• an infinite set of exact Lie point symmetries of the perturbed equation,

• an infinite set of BGI and FS approximate point symmetries of the perturbed first-order ODE,

• an infinite set of BGI approximate point symmetries of the perturbed algebraic equation.

It follows that all point symmetries of algebraic systems and first-order ODEs are stable in the BGI and FS

approximate symmetry senses.

By analogy with ODE systems, for higher-order ODEs, it is natural to expect that the correct framework

is provided by local (including higher-order) symmetries. Indeed, we show that to every point or local

symmetry of an unperturbed ODE of second or higher order, there corresponds a local BGI approximate

symmetry of the perturbed ODE. We show how these higher-order approximate symmetries can be used to

construct approximate solution of a perturbed Boussinesq ODE and we validate this solution by comparing

it to numerical solutions of the Boussinesq equation.

We develop two approaches to construct approximate solutions for a perturbed ODE. In the first approach,

we use BGI approximate point symmetries to determine the approximate integrating factors and we derive

the determining equations of approximate integrating factors. We apply the approximate integrating factor

to find approximate solutions for perturbed Boussinesq and BBM ODEs. The second approach consists in

the approximate reduction of order of perturbed higher-order ODEs using admitted approximate contact and

higher-order symmetries.
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BGI and FS frameworks are different approaches which provide different approximate symmetry struc-

tures. For a class of perturbed higher-order ODEs, we show that a BGI approximate point symmetry yields

a FS approximate point symmetry for the same model. Also, we find a connection between BGI and FS

approximate point symmetries for a perturbed first-order ODE.

2.2 Exact and approximate point symmetries of algebraic equa-

tions

First we analyze the relationship between exact and approximate point symmetries of algebraic equations.

Let x = (x1, ..., xn) ∈ Rn, n ≥ 2. Let F0(x) be a sufficiently smooth scalar function. An algebraic equation

F0(x) = const (2.1)

defines a family of surfaces (curves) in Rn. A family of perturbed surfaces (curves) is given by

F (x; ε) = F0(x) + εF1(x) = const. (2.2)

2.2.1 Exact symmetries of unperturbed and perturbed algebraic equations

The exact symmetry generator of the unperturbed equation F0 = const is given by

X0 =

n∑
i=1

ξ0i(x)
∂

∂xi
. (2.3)

To find the infinitesimals, we apply the determining equations specifying the condition that every solution

curve of (2.1) is mapped into a solution curve of (2.1):

X0F0(x) =

n∑
i=1

ξ0i(x)
∂F0

∂xi
≡ 0. (2.4)

Assuming without loss of generality that ∂F0

/
∂x1 6= 0, one can solve for

ξ01 = −
n∑
i=2

ξ0i(x)
∂F0

∂xi

/
∂F0

∂x1
, (2.5)

keeping ξ02(x), ..., ξ0n(x) arbitrary functions that parameterise an infinite-parameter Lie algebra of point

symmetries of the family of surfaces (2.1). In the same fashion, an exact symmetry generator of the family

of perturbed equations (2.2) is given by

Y =

n∑
i=1

ηi(x; ε)
∂

∂xi
. (2.6)

Applying the determining equations to find exact symmetries of the perturbed equations (2.2), one has

Y F (x; ε) =

n∑
i=1

ηi(x; ε)

(
∂F0

∂xi
+ ε

∂F1

∂xi

)
≡ 0. (2.7)
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If at least one of the functions ∂F0

/
∂x1, ∂F1

/
∂x1 is nonzero, one can write

η1(x; ε) = −
n∑
i=2

ηi
(
∂F0

∂xi
+ ε

∂F1

∂xi

)/(
∂F0

∂x1
+ ε

∂F1

∂x1

)
(2.8)

in terms of arbitrary functions η2(x; ε), . . ., ηn(x; ε) that define the infinite-parameter symmetry generator

(2.6). From the comparison of (2.5) and (2.8), the following simple theorem is established.

Theorem 2.2.1. Suppose that the unperturbed algebraic equation (2.1) admits a point symmetry with in-

finitesimal generator (2.3). Then there exists a point symmetry generator (2.6) of the perturbed equation

(2.2) such that Y ≡ X0 when ε = 0.

Indeed, one can take ηi(x; ε) = ξ0i, i = 1, ..., n; then η1(x; ε) (2.8) matches ξ01 (2.5) when ε = 0. It follows

that all exact symmetries of the unperturbed equation (2.1) carry over to the perturbed family (2.2).

2.2.2 BGI approximate symmetries of a perturbed algebraic equation

Let

X = X0 + εX1 =

n∑
i=1

ξ0i(x)
∂

∂xi
+ ε

n∑
i=1

ξ1i(x)
∂

∂xi
(2.9)

be an BGI approximate point symmetry generator admitted by the family of perturbed surfaces (2.2), where

X0 is the exact symmetry generator of the unperturbed equations (2.1). Applying the determining equation

(
X0 + εX1

)
(F0 + εF1) = o(ε),

we find that the infinitesimals ξ1i satisfy

n∑
i=1

ξ1i(x)
∂F0

∂xi
= −

n∑
i=1

ξ0i(x)
∂F1

∂xi
. (2.10)

As in equation (2.5), if ∂F0

/
∂x1 6= 0, one can solve for

ξ11 = −

(
n∑
i=2

ξ1i(x)
∂F0

∂xi
+

n∑
i=1

ξ0i(x)
∂F1

∂xi

)/
∂F0

∂x1
, (2.11)

where the infinitesimals ξ12(x), . . ., ξ1n(x) are arbitrary functions. The family of perturbed equations (2.2)

consequently admits an infinite-parameter approximate symmetry generator

X = ξ01 ∂

∂x1
+

n∑
i=2

ξ0i(x)
∂

∂xi
+ ε

(
ξ11 ∂

∂x1
+

n∑
i=2

ξ1i(x)
∂

∂xi

)

=

εξ
01 ∂F1

∂x1
+

n∑
i=2

ξ0i

(
∂F0

∂xi
+ ε

∂F1

∂xi

)
+εξ1i ∂F0

∂xi

−∂F0

/
∂x1

 ∂

∂x1
+

n∑
i=2

(
ξ0i + εξ1i

) ∂

∂xi
. (2.12)

The following theorem holds.
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Theorem 2.2.2. For each exact symmetry generator (2.3) of the unperturbed algebraic equations (2.1), there

is a corresponding first-order deformation X1 such that (2.9) is an approximate BGI symmetry generator of

the family of perturbed equations (2.2).

It follows that every exact point symmetry of the unperturbed algebraic equation (2.1) is stable, that is, its

generator X0 is the O(1) part of some approximate symmetry generator (2.9) of the perturbed equation (2.2).

Moreover, due to the presence of additional arbitrary functions ξ1i, i = 2, . . . , n, the approximate symmetry

generator (2.12) of the family of perturbed equations (2.2) is more general than the exact symmetry generator

(2.6) of the same. We now consider a simple example in detail.

Example 2.2.1. Consider a family of circles in polar coordinates

F0(r, θ) = r = const, (2.13)

and a family of perturbed circles

F (r, θ) = r + εe−kθ = C = const, (2.14)

where k > 0 is a fixed constant. Let

X0 = ξ0(r, θ)
∂

∂r
+ η0(r, θ)

∂

∂θ

be the symmetry generator of the family of equations (2.13). Using the determining equations (2.4), one gets

ξ0 ≡ 0, η0 = η0(r, θ). Consequently, all symmetries of the family of circles (2.13) are given by

X0 = η0(r, θ)
∂

∂θ
. (2.15)

For example, if η0 = r, the corresponding global transformation is the one-parameter (a) Lie group

r∗ = r, θ∗ = θ + ar. (2.16)

The equations (2.16) transforms circles to circles and lines to spirals as shown in Figure 2.1.

For the perturbed circles (2.14), the exact symmetry generator can be sought in the form

Y = η1(r, θ)
∂

∂r
+ η2(r, θ)

∂

∂θ
. (2.17)

Using the formula (2.8), one gets η1 = εke−kθη2, where η2(r, θ) is an arbitrary function. Take, for example,

η2 = η0 = r. Then the perturbed equation (2.14) admits the Lie group of transformations:

r∗ = r∗(r, θ; a, ε) = r + aεkre−kθ + o(a),

θ∗ = θ∗(r, θ; a, ε) = θ + ar + o(a),

(2.18)

where
dr∗

da
= εkr∗e−kθ

∗
, r∗

∣∣∣∣
a=0

= r,

dθ∗

da
= r∗, θ∗

∣∣∣∣
a=0

= θ.
(2.19)
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> > 

(a)

> > 

(b)

Figure 2.1: The family of circles (2.13) (a) and their shape under the transformations (2.16) for

a = 0.03 (b). The radial lines are shown in blue for reference.

The above system is equivalent to

d2θ∗

da2
= εk

dθ∗

da
e−kθ

∗
, (2.20)

which has a solution

θ∗ =
1

k
ln

[
krekθ+a[kr+εe−kθ] + ε

kr + εe−kθ

]
. (2.21)

Using (2.19), r∗ takes the form

r∗ =
[kr + εe−kθ]rekθ+a[kr+εe−kθ]

krekθ+a[kr+εe−kθ] + ε
. (2.22)

Figure 2.2a shows the perturbation to the family of circles (2.13) caused by a small parameter (ε). Under

the transformations (2.18), the perturbed circles (2.14) are rotated counter-clockwise as shown in Figure

2.2b. The action of the exact transformations (2.21) and (2.22) on the perturbed circles (2.14) is shown in

Figure 2.2c.
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> > 

(a)

> > 

(b)

> > 

(c)

Figure 2.2: Family of perturbed circles (2.14) (a) and their graphs under the transformations (2.18)(b)

and under the transformations (2.21), (2.22) for a = 0.03, k = 0.5, ε = 0.3 (c).

The approximate symmetry generator for the perturbed equation (2.14) has the form

X = X0 + εX1 =
(
ξ0(r, θ) + εξ1(r, θ)

) ∂
∂r

+
(
η0(r, θ) + εη1(r, θ)

) ∂
∂θ
, (2.23)

where X0 is the exact symmetry generator given by equation (2.15). From the equation (2.11), one finds
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ξ1 = ke−kθη0, η1 = η1(r, θ). Thus, the approximate symmetry generator (2.23) becomes

X = η0 ∂

∂θ
+ ε

(
ke−kθη0 ∂

∂r
+ η1(r, θ)

∂

∂θ

)
. (2.24)

The term η0∂/∂θ in (2.24) corresponds to an exact symmetry of the unperturbed equation (2.13). It follows

that the exact symmetry generator (2.15) of (2.13) is stable. By taking η0 = r, the perturbed circles (2.14)

admit Lie group of approximate transformations given by

r∗ = r + aεkre−kθ + o(a), θ∗ = θ + ar + aεη1 + o(a), (2.25)

which coincides with (2.18) when η1 = 0.

In Figure 2.3, action of (2.25) on the perturbed circles (2.14) is shown when η1 = r 6= 0. If η1 = 0, Figure

2.3 would coincide with Figure 2.2b.

> > 

Figure 2.3: Perturbed circles under the transformation (2.25) for a = 0.03, k = 0.5, ε = 0.3 and

η1 = r.

Summarizing the above results, the following statement has been established.

Proposition 2.2.1. For any point symmetry X0 (2.3) of an algebraic equation (2.1), there exists a corre-

sponding point symmetry Y (2.6) of the perturbed equation (2.2). Moreover, in the BGI framework, any point

symmetry X0 (2.3) of (2.1) is stable; there always exists an approximate symmetry X (2.9) of the perturbed

equation (2.2) corresponding to X0.
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2.3 Exact and approximate point symmetries of first-order ODEs

We now analyze and compare the structures of exact point symmetries of perturbed and unperturbed first-

order ODEs, and approximate point symmetries of perturbed ODE models. Let

y′ = f0(x, y) (2.26)

denote a first-order ODE, and let

y′ = f0(x, y) + εf1(x, y) + o(ε) (2.27)

be its perturbation.

2.3.1 Exact symmetries of an unperturbed first-order ODE

Let X0 be an exact symmetry generator admitted by (2.26):

X0 = ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y
. (2.28)

To find exact point symmetries of (2.26), one prolongs the exact symmetry generator X0 to the first order:

X0(1)

= ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y
+ η0(1)

(x, y, y′)
∂

∂y′
, (2.29)

where η0(1)

(x, y, y′) is given by

η0(1)

= η0
x + (η0

y − ξ0
x)y′ − ξ0

yy
′2. (2.30)

Applying the determining equation (1.30) to find the exact symmetries of (2.26)

X0(1)

(y′ − f0(x, y))

∣∣∣∣
y′=f0(x,y)

= 0,

one obtains the following linear homogeneous first-order PDE:

η0
x + η0

yf0 − η0f0y − ξ0f0x − ξ0
xf0 − ξ0

yf
2
0 = 0 (2.31)

for two unknown functions ξ0(x, y) and η0(x, y). Taking, for example, ξ0(x, y) as an arbitrary function, one

can find η0(x, y) from the characteristic system

dx

1
=
dy

f0
= − dη0

η0f0y + ξ0f0x + ξ0
xf0 + ξ0

yf
2
0

. (2.32)

Note that the solution of the first characteristic equation is the solution of the differential equation (2.26)

itself. It follows that for any ξ0, one can find multiple η0 so that (2.28) is a symmetry of (2.26). In particular,

for an arbitrary ξ0 = ξ0(x, y), it is well known that the choice η0(x, y) = ξ0(x, y)f0(x, y) yields a point

symmetry of (2.26).
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Example 2.3.1. Consider a first order ODE (its perturbed version will be used below)

y′ = x. (2.33)

For example, for ξ0(x, y) = y, the PDE (2.31) becomes

η0
x + xη0

y = y + x2.

First, take η0 = ξ0f0 = xy. Then

X0
1 = x

∂

∂x
+ xy

∂

∂y
(2.34)

is a point symmetry for the ODE (2.33). More generally, using the method of characteristics, we have

dx

1
=
dy

x
=

dη0

y + x2
, (2.35)

which has a solution

η0(x, y) = xy +A

(
y − x2

2

)
, (2.36)

where A is an arbitrary function of its argument. The symmetry generator corresponding to the choice ξ0 = y

is given by

X0
2 = y

∂

∂x
+

(
xy +A

(
y − x2

2

))
∂

∂y
. (2.37)

2.3.2 Exact symmetries of a perturbed first-order ODE

Let

Y = ξ(x, y; ε)
∂

∂x
+ η(x, y; ε)

∂

∂y
(2.38)

be an exact symmetry generator of the perturbed equation (2.27). The prolongation of the symmetry gener-

ator Y is given by

Y (1) = Y + η(1)(x, y, y′; ε)
∂

∂y′
,

where

η(1) = ηx + (ηy − ξx)y′ − ξyy′2.

The determining equation (1.30)

Y (1)(y′ − f0 − εf1)

∣∣∣∣
y′=f0+εf1

= 0

yields the following PDE

ηx + (f0 + εf1)ηy − η(f0y + εf1y )− (f0x + εf1x)ξ − (f0 + εf1)ξx − (f0 + εf1)2ξy = 0. (2.39)

Again, for an arbitrary ξ(x, y), one can obtain the following characteristic system to solve for η(x, y; ε):

dx

1
=

dy

f0 + εf1
= − dη

η(f0y + εf1y ) + (f0x + εf1x)ξ + (f0 + εf1)ξx + (f0 + εf1)2ξy
. (2.40)
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If ξ = ξ(x, y; ε) depends on ε analytically, then so does η = η(x, y; ε); when ε = 0, the symmetry (2.38) of

the perturbed ODE (2.27) reduces to the exact point symmetry (2.28) of the unperturbed ODE (2.26). In

particular, note that η(x, y; ε) = ξ(x, y; ε)(f0(x, y) + εf1(x, y)) solves the PDE (2.39), where ξ is an arbitrary

function. Hence, by taking an arbitrary ξ with ξ(x, y; 0) = ξ0, one obtains η with η(x, y; 0) = η0.

Example 2.3.2. Consider a perturbed version of the ODE (2.33):

y′ = x+ εy. (2.41)

From Example 2.3.1,

X0 = y
∂

∂x
+ xy

∂

∂y
(2.42)

is an exact symmetry generator for the unperturbed ODE (2.33). By taking ξ(x, y; ε) = y + εx, one gets

η(x, y; ε) = xy + ε(x2 + y2) + ε2xy. Therefore

Y = (y + εx)
∂

∂x
+ (xy + ε(x2 + y2) + ε2xy)

∂

∂y
(2.43)

is an exact symmetry generator for the perturbed ODE (2.41). When ε = 0, the symmetry (2.43) of the

perturbed ODE (2.41) reduces to the point symmetry (2.42) of the unperturbed ODE (2.33).

2.3.3 BGI approximate symmetries of a perturbed first-order ODE

The BGI approximate symmetry generator for the perturbed ODE (2.27) has the form

X = X0 + εX1 =
(
ξ0(x, y) + εξ1(x, y)

) ∂

∂x
+
(
η0(x, y) + εη1(x, y)

) ∂
∂y
, (2.44)

and its prolongation is given by

X(1) = X0(1)

+ εX1(1)

= X0(1)

+ ε(X1 + η1(1)

(x, y, y′)
∂

∂y′
), (2.45)

where

η1(1)

= η1
x + (η1

y − ξ1
x)y′ − ξ1

yy
′2.

Applying the determining equation (1.96) for the approximate symmetries of (2.27), one obtains

η1
x + (η1

y − ξ1
x)f0 − ξ1

yf0
2 − ξ1f0x − η1f0y = (ξ0

x − η0
y)f1 + 2ξ0

yf0f1 + ξ0f1x + η0f1y . (2.46)

The above equation (2.46) is a linear nonhomogeneous PDE in two unknowns ξ1 and η1. To solve the PDE

(2.46), one can pick an arbitrary function ξ1, and solve the resulting PDE for η1. In particular, (ξ1, η1) with

η1 = ξ0f1 + ξ1f0 and ξ1 an arbitrary function are approximate symmetry components corresponding to the

exact symmetry generator (2.28) with η0 = ξ0f0. The following theorem holds.

Theorem 2.3.1. All exact symmetries of the unperturbed ODE (2.26) are stable in BGI sense.
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Remark 2.3.1. If the components (ξ, η) of the exact symmetry generator Y (2.38) are analytic in ε, then

the approximate symmetry generator X (2.44) is contained as the first two terms of the Taylor expansion of

Y in ε.

Example 2.3.3. Consider the perturbed ODE (2.41). For the exact symmetry generator (2.42) of the

unperturbed ODE (2.33), one can find the approximate symmetry components by first taking an arbitrary

value for ξ1, say ξ1(x, y) = x. Then η1(x, y) has the form η1 = ξ0f1 + ξ1f0 = x2 + y2. Hence

X = (y + εx)
∂

∂x
+
(
xy + ε(x2 + y2)

) ∂
∂y

(2.47)

is an approximate symmetry for (2.41). Note that by this choice of ξ1, X (2.47) is contained in the exact

symmetry generator (2.43).

The following statement summarizes the above results.

Proposition 2.3.1. In the BGI framework, all point symmetries of the unperturbed ODE (2.26) are stable.

If the components of the exact symmetry generator Y (2.38) of the perturbed first-order ODE (2.27) are

analytic in ε, then the approximate symmetry generator X (2.44) is contained in the Taylor expansion of

Y in terms of ε. Furthermore, when ε = 0, Y reduces to the exact symmetry generator X0 (2.28) of the

unperturbed first-order ODE (2.26).

2.3.4 FS approximate symmetries of a perturbed first-order ODE

Substituting y(x) = v(x) + εw(x) into the perturbed first-order ODE (2.27), then equating to zero the

coefficients of zeroth and first order of ε, one obtains a FS system of ODEs:

v′ = f0(x, v),

w′ = f1(x, v) + wf0v .
(2.48)

Let

Z = λ(x, v, w)
∂

∂x
+ φ1(x, v, w)

∂

∂v
+ φ2(x, v, w)

∂

∂w
.

be the exact symmetry generator admitted by the system (2.48). The first prolongation of Z is given by

Z(1) = Z + φ1(1)
(x, v, w, v′, w′)

∂

∂v′
+ φ2(1)

(x, v, w, v′, w′)
∂

∂w′
,

where the extended infinitesimals are computed using (1.28):

φ1(1)
= φ1

x + v′φ1
v + w′φ1

w − v′ (λx + v′λv + w′λw) ,

φ2(1)
= φ2

x + v′φ2
v + w′φ2

w − w′ (λx + v′λv + w′λw) .

Using the determining equations (1.30), the system of symmetry determining equations for the system of

ODEs (2.48) is given by

φ1
x + φ1

vf0 − φ1f0v + (f1 + wf0v )φ1
w − λf0x − λxf0 − λvf2

0 − f0(f1 + wf0v )λw = 0, (2.49a)

56



φ2
x+φ2

vf0+(f1+wf0v )φ2
w−φ2f0v = (f1+wf0v )λx+f0(f1+wf0v )λv+λf1x+φ1f1v+wλf0xv+wφ1f0vv . (2.49b)

The first determining equation (2.49a) is a linear homogeneous PDE in λ and φ1. By taking, for example, an

arbitrary value for λ, one can solve the resulting PDE for φ1. After substituting these values into the second

determining equation (2.49b), one can find φ2 by solving the obtained PDE.

Remark 2.3.2. Since the first equation of the system (2.48) is equivalent to the unperturbed equation (2.26),

one can take λ = ξ0(x, v), φ1 = η0(x, v), where ξ0, η0 are the unperturbed symmetry components for the

unperturbed first-order ODE (2.26). The second determining equation (2.49b) is a first-order PDE in φ2

with no restrictions on λ and φ1. The following statement is established.

Theorem 2.3.2. All point symmetries of the unperturbed ODE (2.26) are stable in FS sense.

The stability of the exact symmetries of the unperturbed first-order ODE (2.26) in sense of both proposed

methods allows us to find a relation between the BGI and FS approximate symmetries of the perturbed

first-order ODE.

Theorem 2.3.3. If

X =
(
ξ0(x, y) + εξ1(x, y)

) ∂

∂x
+
(
η0(x, y) + εη1(x, y)

) ∂
∂y

is a BGI approximate symmetry for the perturbed first-order ODE (2.27). Then

Z = ξ0(x, v)
∂

∂x
+ η0(x, v)

∂

∂v
+ (η1(x, v) +R(x, v, w))

∂

∂w
.

is an exact symmetry for the system (2.48) and hence a FS approximate symmetry for (2.27), where R is a

solution for the first-order PDE

Rx + f0Rv + (f1 + wf0v )Rw − f0vR = w(f0vξ
0
x + f0f0vξ

0
v + ξ0f0xv + η0f0vv )

+ f1η
0
v − f0f1ξ

0
v − ξ1

xf0 − ξ1
vf0

2 − ξ1f0x . (2.50)

Indeed, as noted in Remark (2.3.2), the infinitesimals ξ0, η0 satisfy the first determining equation (2.49a).

By substituting φ2 = η1(x, v) + R(x, v, w) into the second determining equation (2.49b), one gets the PDE

(2.50).

Example 2.3.4. Consider the first-order ODE

y′ = y + εx. (2.51)

Substituting y(x) = v(x) + εw(x) into the ODE (2.51) leads to the FS system

v′ = v,

w′ = x+ w.
(2.52)
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The ODE (2.51) admits a BGI approximate symmetry given by

X = (y + ε (x+ 1))
∂

∂y
. (2.53)

With f0 = y, f1 = x, ξ0 = ξ1 = 0, η0 = y and η1 = x+ 1, the PDE (2.50) reduces to

Rx + vRv + (x+ w)Rw −R = x,

which has a particular solution R(x, v, w) = w. Hence

Z = v
∂

∂v
+ (w + x+ 1)

∂

∂w
(2.54)

is an exact symmetry for the system (2.52) and hence an approximate FS symmetry for (2.51). An approxi-

mate particular solution for the perturbed ODE (2.51) under (2.53) is given by

y(x; ε) = ex + ε (ex − x− 1) . (2.55)

Now, to find a solution for the system (2.52) under (2.54), one uses the characteristic system

dx

0
=
dv

v
=

dw

w + x+ 1
. (2.56)

Hence, one gets an invariant α = x, and the second characteristic equation can be written as an ODE for

w(v)
dw

dv
=
w + x+ 1

v
,

which has a solution

w = v − x− 1. (2.57)

v(x) = ex solves the first equation of the system (2.52). And hence w = ex − x − 1 is a solution for the

system (2.52) under the exact symmetry (2.54). Using these values for v and w, the approximate solution of

the ODE (2.51) is given by

y(x; ε) = v + εw = ex + ε(ex − x− 1),

which it is the same as the approximate solution (2.55) under the BGI approximate symmetry (2.53).

2.4 Exact and approximate point symmetries of higher-order ODEs

Here we discuss the BGI and FS approximate symmetries of a perturbed higher-order ODE, and the stability

of the exact point symmetries of the unperturbed model. Consider the unperturbed higher-order ODE

y(n) = f0(x, y, y′, ..., y(n−1)), n ≥ 2, (2.58)

and its perturbed version

y(n) = f0(x, y, y′, ..., y(n−1)) + εf1(x, y, y′, ..., y(n−1)) + o(ε). (2.59)
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2.4.1 Exact point symmetries of an unperturbed higher-order ODE

The exact symmetry generator for the unperturbed ODE (2.58) has the form

X0 = ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y
, (2.60)

and the nth prolongation of this operator is given by

X0(n)

= ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y
+ η0(1)

(x, y, y′)
∂

∂y′
+ ...+ η0(n)

(x, y, y′, ..., y(n))
∂

∂y(n)
,

where the extended infinitesimals η0(k)

satisfy the recursion formula

η0(k)

= Dη0(k−1)

− y(k)Dξ0, k ≥ 1, (2.61)

where η0(0)

= η0, and D is the total derivative operator (1.22) given by

D =
∂

∂x
+ y′

∂

∂y
+ ...+ y(n+1) ∂

∂y(n)
. (2.62)

The determining equations for exact symmetries of the unperturbed ODE (2.58)

X0(n)

(y(n) − f0)

∣∣∣∣
y(n)=f0

= 0 (2.63)

yield

η0(n)

∣∣∣∣
y(n)=f0

−
n−1∑
k=1

η0(k) ∂f0

∂y(k)
− ξ0f0x − η0f0y = 0, (2.64)

which is a linear PDE system on (ξ0, η0). A sample point symmetry computation for y′′ = 0 (1.86) is presented

in Example 1.3.1.

2.4.2 BGI approximate point symmetries of a perturbed higher-order ODE

A perturbed ODE (2.59) generally has fewer exact point and local symmetries than the unperturbed ODE

(2.58). Example 1.3.1 for the ODE y′′ = ε(y′)−1 illustrates this trend.

The BGI approximate symmetry generator of the perturbed ODE (2.59) is given by

X = X0 + εX1 =
(
ξ0(x, y) + εξ1(x, y)

) ∂

∂x
+
(
η0(x, y) + εη1(x, y)

) ∂
∂y
, (2.65)

and its prolongation is given by

X(n) =
(
ξ0 + εξ1

) ∂

∂x
+
(
η0 + εη1

) ∂
∂y

+
(
η0(1)

+ εη1(1)
) ∂

∂y′
+ ...+

(
η0(n)

+ εη1(n)
) ∂

∂y(n)
. (2.66)

To find the approximate symmetries of the perturbed ODE (2.59), we apply the approximate invariance

condition (1.96). In the zeroth order in ε, they are the same as (2.64) for exact point symmetries of the

unperturbed ODE (2.58). At the first order in ε, one has

X1(n)

(y(n) − f0)

∣∣∣∣
y(n)=f0

= − ∂

∂ε

∣∣∣
ε=0

[
X0(n)

(y(n) − f0 − εf1)

∣∣∣∣
y(n)=f0+εf1

]
, (2.67)
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equivalent to(
η1(n)

−
n−1∑
k=1

η1(k) ∂f0

∂y(k)

)∣∣∣∣
y(n)=f0

− ξ1f0x − η1f0y =

− ∂

∂ε

∣∣∣
ε=0

[(
η0(n)

∣∣∣∣
y(n)=f0+εf1

−
n−1∑
k=1

η0(k)

(
∂f0

∂y(k)
+ ε

∂f1

∂y(k)
)− ξ0(f0x + εf1x)− η0(f0y + εf1y )

)]
. (2.68)

To find the derivative in the right-hand side of (2.68), we need first to find the terms of η0(n)

that contains

y(n). Note that η0(n)

is linear in y(n), and satisfies the equation

η0(n)

= Dnη0 −
n−1∑
j=0

(
n

j

)
Djy′Dn−jξ0. (2.69)

The first-term of (2.69) reads

Dnη0 = Dn−1
(
η0
x + y′η0

y

)
= Dn−2

(
η0
xx + 2y′η0

xy + y′2η0
yy + y′′η0

y

)
= . . . = y(n)η0

y +R(x, y, y′, ..., y(n−1)).

The only terms of the sum in the equation (2.69) that yield y(n) are the terms corresponding to j = 0 and

j = n− 1. When j = 0, the term is y′y(n)ξ0
y . For j = n− 1, the term is n(ξ0

x + y′ξ0
y)y(n). Hence the following

statement is established.

Theorem 2.4.1. The determining equation for the BGI approximate symmetries of the perturbed ODE (2.59)

is given by the formula(
η1(n)

−
n−1∑
k=1

η1(k) ∂f0

∂y(k)

)∣∣∣∣
y(n)=f0

− ξ1f0x − η1f0y =

(nξ0
x − η0

y)f1 + (n+ 1)y′ξ0
yf1 +

n−1∑
k=1

η0(k) ∂f1

∂y(k)
+ ξ0f1x + η0f1y . (2.70)

After replacing y(n) by f0(x, y, y′, ..., y(n−1)), equation (2.70) constitutes of differential functions in

y′, y′′, . . . , y(n−1), whose coefficients are the unknown functions ξ1, η1, the unperturbed symmetry compo-

nents ξ0, η0, and their partial derivatives up to nth order. Hence equation (2.70) splits into overdetermined

system of PDEs in ξ1, η1, with or without additional conditions on the unperturbed symmetry components

ξ0, η0. When such additional conditions are present, an exact symmetry of the unperturbed ODE (2.58)

may disappear from the approximate symmetry classification of the perturbed ODE (2.59), thus becoming

unstable (see Example 1.3.4). The following example illustrates the case when there are no restrictions on the

unperturbed symmetry components which leads to the stability of all point symmetries of the unperturbed

equation.

Example 2.4.1. Consider a second order ODE

y′′ = εy′ (2.71)
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that is also a perturbed version of (1.86). Equation (2.70) for approximate symmetries of (2.71) reads

η1
xx + (2η1

xy − ξ1
xx)y′ + (η1

yy − 2ξ1
xy)(y′)2 − ξ1

yy(y′)3 = η0
x + ξ0

xy
′ + 2ξ0

yy
′2, (2.72)

where ξ0, η0 are the unperturbed symmetry components (1.87). Obviously, equation (2.72) splits into the

following system of PDEs in ξ1, η1

η1
xx = C1y + C2, 2η1

xy − ξ1
xx = 2C1x+

1

2
C3y + C7, η1

yy − 2ξ1
xy = C3x+ 2C6, ξ1

yy = 0, (2.73)

with no change on ξ0, η0. Solving the above system of PDEs yields the following values of ξ1, and η1

ξ1 = −C3

4
x2y − C6xy −

C7

2
x2 + a1x

2 +
a2

2
xy + a3x+ a4y + a5, (2.74)

η1 =
C1

2
x2y +

C2

2
x2 + a1xy +

a2

2
y2 + a6x+ a7y + a8, (2.75)

where ai are arbitrary constants. Consequently, the perturbed ODE (2.71) admits 16 approximate symmetries

given by

X1 = x2 ∂

∂x
+

(
xy + ε

x2y

2

)
∂

∂y
, X2 = x

∂

∂y
+ ε

x2

2

∂

∂y
, X3 =

(
xy

2
− εx

2y

4

)
∂

∂x
+
y2

2

∂

∂y
,

X4 = (y − εxy)
∂

∂x
, X5 =

(
x− εx

2

2

)
∂

∂x
, X6 = y

∂

∂y
, X7 =

∂

∂y
, X8 =

∂

∂x
,

X9 = ε

(
xy

∂

∂y
+ x2 ∂

∂x

)
, X10 = εx

∂

∂y
, X11 = ε

(
xy

∂

∂x
+ y2 ∂

∂y

)
, X12 = εy

∂

∂y
,

X13 = ε
∂

∂y
, X14 = εy

∂

∂x
, X15 = εx

∂

∂x
, X16 = ε

∂

∂x
. (2.76)

All exact symmetries (1.88) of the unperturbed ODE (1.86) are inherited by the approximate symmetries

(2.76), and thus are stable by definition. Note that the symmetries X9, X10,. . . , X16 are trivial symmetries

arising from the point symmetries (1.88) of the unperturbed ODE (1.86). X6, X7, X8 are exact symmetries

directly carrying over from the unperturbed ODE (1.86), while X1, X2, ..., X5 are genuine approximate

symmetries with O(ε0) parts inherited from the exact point symmetries of the unperturbed ODE (1.86).

2.4.3 FS approximate point symmetries of a perturbed higher-order ODE

For the perturbed ODE with y(x) = v(x) + εw(x), the corresponding FS system (1.104) is given by

v(n) = f0(x, v, v′, ..., v(n−1)),

w(n) = f1(x, v, v′, ..., v(n−1)) + w(k) ∂f0(x, v, v′, ..., v(n−1))

∂v(k)
,

(2.77)

where w(0) = w, and v(0) = v and summation in repeated indices (as well as below) is assumed for k =

0, 1, ..., n−1 . The first equation of the above system is equivalent to the unperturbed ODE (2.58). The first-

order approximate symmetries of (2.59) are the exact symmetries of (2.77). The exact symmetry generator

admitted by the system (2.77) is given by

Z = ξ(x, v, w)
∂

∂x
+ ηv(x, v, w)

∂

∂v
+ ηw(x, v, w)

∂

∂w
. (2.78)
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The system of symmetry determining equations for the system of ODEs (2.77) is given by

ηv(n) = ξf0x + ηv(k) ∂f0(x, v, v′, ..., v(n−1))

∂v(k)
, (2.79a)

ηw(n) = ξf1x + ηv(k) ∂f1

∂v(k)
+ ηw(k) ∂f0

∂v(k)
+ w

(
ξ
∂2f0

∂v∂x
+ ηv(k) ∂2f0

∂v∂v(k)

)
+ w′

(
ξ
∂2f0

∂v′∂x
+ ηv(k) ∂2f0

∂v′∂v(k)

)
+ · · ·+ w(n−1)

(
ξ

∂2f0

∂v(n−1)∂x
+ ηv(k) ∂2f0

∂v(n−1)∂v(k)

)
(2.79b)

when (2.77) holds.

Remark 2.4.1. ξ = ξ0(x, v) and ηv = η0(x, v) satisfy the determining equation (2.79a), where ξ0, η0 are

the infinitesimals of the exact symmetry generator of the unperturbed ODE (2.58). For n > 1, the second

determining equation (2.79b) may have restrictions on the solutions of the first determining equation (2.79a)

leads to some exact symmetries of the unperturbed equation (2.58) become unstable (see Example 1.3.4).

If there is no conditions on ξ0, η0 in the determining equation (2.79b), then all exact symmetries of the

unperturbed ODE (2.58) will survive, i.e., are stable in FS sense.

Example 2.4.2. Consider the perturbed second-order ODE

y′′ = (y′)−1 + ε(y′)−3. (2.80)

Let

X0 = ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y

be the infinitesimal generator for the unperturbed ODE y′′ = (y′)−1. Using the determining equation for

exact symmetries (1.30), the unperturbed symmetry components have the form

ξ0(x, y) =
2C1

3
x+ C3, (2.81a)

η0(x, y) = C1y + C2. (2.81b)

Hence, the unperturbed ODE y′′ = (y′)−1 admits three exact point symmetries

X0
1 = y

∂

∂y
+

2

3
x
∂

∂x
, X0

2 =
∂

∂y
, X0

3 =
∂

∂x
. (2.82)

Now, we find the FS approximate symmetries for the perturbed ODE (2.80). The FS system of differential

equations resulting from the perturbed ODE (2.80) is given by

v′′ = (v′)−1,

w′′ = (v′)−3 − w′(v′)−2.
(2.83)

Let

Z = λ(x, v, w)
∂

∂x
+ φ1(x, v, w)

∂

∂v
+ φ2(x, v, w)

∂

∂w
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be the exact symmetry generator for the system (2.83). Then, the first determining equation for the exact

symmetries of (2.83) reads

φ1
vv = 0, φ1

x = 0, 2φ1
v − 3λx = 0, λv = 0, λw = 0, φ1

w = 0,

which has a general solution:

φ1 = η0(x, v), λ = ξ0(x, v),

where ξ0, η0 are given by (2.81). The second determining equation for (2.83) splits to

φ2
x = 0, φ2

v = 0, φ2
w =

C1

3
, (2.84)

with no conditions on ξ0, η0. From (2.84), φ2 has the form

φ2 =
C1

3
w + C4. (2.85)

Hence, the system (2.83) admits 4 exact symmetries

Z1 = X0
1 (x, v) +

w

3

∂

∂w
, Z2 =

∂

∂x
, Z3 =

∂

∂v
, Z4 =

∂

∂w
. (2.86)

The exact symmetries (2.86) of the system (2.83) are the first-order approximate symmetries of the perturbed

ODE (2.80). In this example, all exact symmetries (2.82) of the unperturbed equation y′′ = (y′)−1 are stable

as FS approximate symmetries.

Remark 2.4.2. An important feature of the Fushchich-Shtelen approximate symmetry framework is the

possibility of existence of approximate FS symmetries where the O(1) components ξ(x, v, w) and ηv(x, v, w)

of the generator (2.78) depend on O(ε) solution component w. For example, the second-order perturbed

ODE y′′ = εy′2 admits a FS approximate point symmetry

Z =
(
4xw − 4xv2

) ∂

∂x
+
(
4vw − 2v3

) ∂
∂v

+
(
4w2 − v4

) ∂

∂w
.

Such FS symmetries do not originate from stable point symmetries of the unperturbed ODE y′′ = 0. Such

symmetries cannot arise in the BGI framework.

2.4.4 Some connection between BGI and FS approximate point symmetries for

a perturbed higher-order ODE

The determining equation (2.70) for BGI approximate symmetries of the perturbed higher-order ODE (2.59)

is noticeably different than the determining equation (2.79) of FS approximate symmetries of (2.59) since

the former has four components depend on x and y while the latter has three components depend on x, v

and w.

By taking ξ = ξ0(x, v) and ηv = η0(x, v) in (2.79), where ξ0(x, y), η0(x, y) are the infinitesimals of the exact

symmetry generator of the unperturbed ODE (2.58), we can see that the restrictions on the infinitesimals
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ξ0, η0 in both frameworks are also different. Hence, we may have stable symmetries in sense of BGI, which

are unstable in FS approach, and vice versa.

As an example, consider the perturbed ODE

y′′ = (y′)−1 + ε(y′)−3. (2.87)

We found in Example 2.4.2 that all exact symmetries of the unperturbed ODE y′′ = (y′)−1 are stable in sense

of FS. To find the BGI approximate symmetries admitted by (2.87), one applies the determining equation

(2.70) to get a split system of PDEs in ξ1, η1

2η1
y − 3ξ1

x = 0, η1
yy = 0, η1

x = 0, ξ1
y = 0,

and additional condition

4η0
y − 5ξ0

x = 0

on the unperturbed symmetry components (2.81). It follows that C1 = 0 in (2.81) and hence the exact

symmetry X1
0 in (2.82) is unstable in BGI framework.

In the following theorem, we show that for a family of perturbed higher-order ODEs, a genuine BGI

approximate point symmetry yields a genuine FS approximate symmetry.

Theorem 2.4.2. If

X =
(
η0(x) + εη1(x, y)

) ∂
∂y

(2.88)

is a genuine BGI approximate point symmetry for the perturbed ODE

y(n) = f0(x) + εf1(x, y, y′, ..., y(n−1)). (2.89)

Then

Z = η0(x)
∂

∂v
+ η1(x, v)

∂

∂w
(2.90)

is a FS approximate symmetry for (2.89) corresponding to the stable exact point symmetry η0(x)∂/∂v.

Proof. The FS system (2.77) for the perturbed ODE (2.89) has the form

v(n) = f0(x),

w(n) = f1(x, v, v′, ..., v(n−1)).
(2.91)

The first equation of the system (2.91) is equivalent to the unperturbed ODE y(n) = f0(x). As noted

in Remark 2.4.1, the first FS determining equation (2.79a) is satisfied with the solution ξ = ξ0 = 0 and

ηv = η0(x), where ξ0, η0 are the infinitesimals of the exact symmetry generator of the unperturbed ODE

y(n) = f0(x). The second determining equation (2.79b) with ξ = 0, ηv = η0(x), ηw = η1(x, v) and f0 = f0(x)

is independent of w and it simplifies to

η1(n)

∣∣∣∣
v(n)=f0

= η0 ∂f1

∂v
+

n−1∑
k=1

η0(k) ∂f1

∂v(k)
. (2.92)
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Now with the choice ξ0 = 0 and η0 = η0(x), the BGI determining equation (2.70) reduces to

η1(n)

∣∣∣∣
y(n)=f0

=

n−1∑
k=1

η0(k) ∂f1

∂y(k)
+ η0f1y . (2.93)

The latter equation is equivalent to (2.92), and this completes the proof.

Example 2.4.3. Consider the perturbed second-order ODE (2.71):

y′′ = εy′, (2.94)

and its equivalent FS system

v′′ = 0,

w′′ = v′.
(2.95)

From Example 2.4.1, the ODE (2.94) admits a genuine BGI approximate point symmetry given by

X = x
∂

∂y
+ ε

x2

2

∂

∂y
.

The choice ηv = η0 = x, ηw = η1 = x2/2 is a solution of the determining equations (2.79) for FS symmetries

of (2.95). It follows that

Z = x
∂

∂v
+
x2

2

∂

∂w

is a FS approximate point symmetry for the perturbed ODE (2.94).

2.5 Stability of local symmetries of unperturbed ODEs in terms

of higher-order BGI approximate symmetries

We have seen that for algebraic equations and first-order ODEs, every point symmetry of the unperturbed

equation is stable. This, however, is not the case for point symmetries of higher-order ODEs, as some of

those may or may not be stable.

It is natural to expect that under a perturbation of an ODE model, an exact local symmetry of the

original system would become an approximate local symmetry of a perturbed ODE system. In the current

section, we show that a point symmetry of an ODE of any order corresponds to point or higher-order BGI

approximate symmetry of the perturbed model.

2.5.1 Exact local symmetries of the unperturbed ODE

The local infinitesimal generator (1.48) for an unperturbed ODE (2.58) has the evolutionary form

X̂0 = ζ0(x, y, y′, y′′, ..., y(s))
∂

∂y
, 1 ≤ s ≤ n− 1. (2.96)

When s = 1, the local symmetry generator (2.96) corresponds to the point symmetry generator (2.60) of

ODE (2.58) provided that ζ0(x, y, y′) = η0(x, y) − y′ξ0(x, y). If ζ0(x, y, y′) is not linear in y′, then (2.96)
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corresponds to a contact symmetry generator of ODE (2.58). When s ≥ 2, the local symmetry generator

(2.96) corresponds to a higher-order symmetry generator of ODE (2.58). The nth prolongation of (2.96) is

given by

X̂0(n)

= ζ0 ∂

∂y
+ ζ0(1) ∂

∂y′
+ ...+ ζ0(n) ∂

∂y(n)
,

with

ζ0(j)

= Djζ0, j = 1, 2, ..., n, (2.97)

where D is given by (2.62). The determining equation for the exact symmetries of the unperturbed equation

is

X̂0(n)

(y(n) − f0)

∣∣∣∣
y(n)=f0

= 0, (2.98)

or in detail,

ζ0(n)

∣∣∣∣
y(n)=f0

−
n−1∑
k=1

(
ζ0(k) ∂f0

∂y(k)

) ∣∣∣∣
y(n)=f0

− ζ0f0y = 0. (2.99)

The latter is equivalent to

Dnζ0

∣∣∣∣
y(n)=f0

=

n−1∑
k=1

(
Dkζ0 ∂f0

∂y(k)

) ∣∣∣∣
y(n)=f0

+ ζ0f0y . (2.100)

If s = n−1, equation (2.100) is a linear homogeneous PDE for ζ0 with independent variables x, y, y′, . . . , y(n−1).

This PDE can be written in a solved form

∂nζ0

∂xn
= R(x, y, y′, ..., y(n−1), ζ0, ∂ζ0, ..., ∂nζ0) (2.101)

for the highest derivative of ζ0 with respect to the independent variable x, where all derivatives with respect

to x appearing in the right-hand side of (2.101) are of lower order than those appearing on the left-hand side.

Hence, it is in Cauchy-Kovalevskaya form with respect to x. It follows that the PDE (2.100) is solvable when

s = n − 1. When s < n − 1, equation (2.100) splits into an overdetermined system of linear homogeneous

PDEs which has at most a finite number of linearly independent solutions (e.g., [3]).

2.5.2 BGI approximate local symmetries of the perturbed ODE

The higher-order approximate symmetry generator for the ODE (2.59) is given by

X̂ = X̂0 + εX̂1 =
(
ζ0(x, y, y′, ..., y(s)) + εζ1(x, y, y′, ..., y(`))

) ∂

∂y
. s, ` ≤ n− 1. (2.102)

The prolongation of this generator has the form

X̂(n) = X̂0(n)

+ εX̂1(n)

= X̂0(n)

+ ε
(
X1 + ζ1(1) ∂

∂y′
+ ...+ ζ1(n) ∂

∂y(n)

)
, (2.103)

with ζ1(j)

= Djζ1, j = 1, 2, ..., n. To find the approximate symmetries of the perturbed ODE (2.59), we apply

the determining equations for approximate symmetries

X̂(n)(y(n) − f0 − εf1)

∣∣∣∣
y(n)=f0+εf1

= o(ε). (2.104)
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First, one computes an exact local symmetry generator (2.96) of the unperturbed ODE (2.58). Then, the

first-order deformation X̂1 can be found from the equation

X̂1(n)

(y(n) − f0)

∣∣∣∣
y(n)=f0

= G(x, y, y′, ..., y(n−1)),

where G is the coefficient of ε in

−
(
X̂0(n)

(y(n) − f0 − εf1)
) ∣∣∣∣

y(n)=f0+εf1

. (2.105)

The determining equation (2.104) becomes

Dnζ1

∣∣∣∣
y(n)=f0

−
n−1∑
k=1

(
Dkζ1 ∂f0

∂y(k)

) ∣∣∣∣
y(n)=f0

− ζ1f0y = G. (2.106)

Remark 2.5.1. When ` = n − 1, equation (2.106) is a linear nonhomogeneous PDE in ζ1, and it is in

Cauchy-Kovalevskaya form with respect to the independent variable x, so it has solutions obtainable (at

least implicitly) by the method of characteristics. If ` = n − 1, any solution of the PDE (2.106) has no

conditions on the unperturbed symmetry components ζ0. The following theorem holds.

Theorem 2.5.1. For each exact point or local symmetry (2.96) of an unperturbed ODE (2.58), there is an

approximate symmetry (2.102) of the perturbed ODE (2.59), with the symmetry component ζ1 being of order

at most n− 1.

We now consider two examples in detail.

2.5.3 First detailed example

For the second-order ODE (1.115) with a small parameter,

y′′ = ε(y′)−1 (2.107)

we apply Theorem 2.5.1 to find approximate symmetries of order n− 1 = 1 corresponding to unstable point

symmetries of (1.115) (see Example 1.3.4). This ODE is a perturbed version of y′′ = 0. In total it admits 12

approximate point symmetries; this set does not include the following unstable point symmetries of y′′ = 0:

X0
1 = xy

∂

∂y
+ x2 ∂

∂x
, X0

2 = x
∂

∂y
, X0

3 =
y2

2

∂

∂y
+
xy

2

∂

∂x
, X0

u = X0
4 −

3

2
X0

7 . (2.108)

Let

X̂0 = ζ0(x, y, y′)
∂

∂y
=
(
η0(x, y)− y′ξ0(x, y)

) ∂
∂y

(2.109)

be the symmetry generator of the ODE y′′ = 0 in evolutionary form. Therefore, ζ0 has the form

ζ0(x, y, y′) = α1xy + α2x+ α3
y2

2
+ α4y + α5 − (α1x

2 + α3
xy

2
+ α6y + α7x+ α8)y′. (2.110)

67



In evolutionary form, the eight point symmetries (1.88) of y′′ = 0 are given by

X̂0
1 =

(
xy − x2y′

) ∂
∂y
, X̂0

2 = x
∂

∂y
, X̂0

3 =
(
y2 − xyy′

) ∂
∂y

X̂0
4 = y

∂

∂y
, X̂0

5 =
∂

∂y
, X̂0

6 = yy′
∂

∂y
, X̂0

7 = xy′
∂

∂y
, X̂0

8 = y′
∂

∂y
. (2.111)

Let

X̂ =
(
ζ0(x, y, y′) + εζ1(x, y, y′)

) ∂
∂y

(2.112)

be the local approximate symmetry generator admitted by the perturbed ODE (2.107) where ζ0 is given by

equation (2.110). The determining equation (2.106) requires

ζ1
xx + 2y′ζ1

xy + y′
2
ζ1
yy = (−α1y − α2) (y′)−2 +

(
4α1x−

α3

2
y − 2α4 + 3α7

)
(y′)−1 + 2α3x+ 4α6. (2.113)

By change of variable t = y − xy′, the homogeneous PDE

ζ1
xx + 2y′ζ1

xy + y′
2
ζ1
yy = 0 (2.114)

in ζ1(x, y, y′) = u(x, t) becomes a PDE

uxx = 0,

which has a solution u(x, t) = R1(t)+xR2(t), where R1, R2 are arbitrary functions of their arguments. Hence,

the PDE (2.114) has the solution ζ1
c = R1(y − xy′) + xR2(y − xy′). Now, let

ζ1
p = P (x, y)(y′)−2 +Q(x, y)(y′)−1 +R(x, y)

be a particular solution for the nonhomogeneous PDE (2.113). Substituting this particular solution into the

equation (2.113) yields the following system of PDEs

Pxx = −α1y − α2, Qxx + 2Pxy = 4α1x−
α3

2
y − 2α4 + 3α7,

Rxx + 2Qxy + Pyy = 2α3x+ 4α6, 2Rxy +Qyy = 0, Ryy = 0.

(2.115)

Solving the above system gives the general solution of (2.113)

ζ1(x, y, y′) = R1(y − xy′) + xR2(y − xy′)−
(α1

2
x2y +

α2

2
x2
)

(y′)−2

+

(
α1x

3 − α3

4
x2y − α4x

2 +
3α7

2
x2

)
(y′)−1 +

α3

2
x3 + 2α6x

2. (2.116)

For simplest solution, take R1 = R2 = 0. Then, ζ1 becomes

ζ1(x, y, y′) =
(
−α1

2
x2y − α2

2
x2
)

(y′)−2 +

(
α1x

3 − α3

4
x2y − α4x

2 +
3α7

2
x2

)
(y′)−1 +

α3

2
x3 +2α6x

2. (2.117)

Now, we find, one by one, all approximate symmetry components ζ1 corresponding to each symmetry in

(2.111).
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For X̂0
1 , substituting α1 = 1, and αi = 0, i = 2, ..., 8 into equations (2.110) and (2.117), we obtain

ζ0 = xy − x2y′ and the corresponding ζ1 is ζ1(x, y, y′) = − 1
2x

2y(y′)−2 + x3(y′)−1. Hence the corresponding

first-order approximate symmetry to X̂0
1 is given by

X̂1 =

(
xy − x2y′ + ε

(
1

2
x2y(y′)−2 + x3(y′)−1

))
∂

∂y
. (2.118)

It was unstable as a point symmetry of the ODE (1.86), but corresponds to a first-order approximate sym-

metry (2.118).

For X̂0
2 , we have ζ0 = x and the corresponding ζ1 is ζ1(x, y, y′) = − 1

2x
2(y′)−2. So, X̂0

2 used to be an

unstable point symmetry, but in fact corresponds to a first-order approximate symmetry of the perturbed

ODE (2.107) given by

X̂2 =

(
x− ε

(
1

2
x2(y′)−2

))
∂

∂y
.

Similarly, the unstable point symmetry X̂0
3 of (1.86) becomes a local first-order approximate symmetry of

(2.107) given by

X̂3 =

(
y2 − xyy′ + ε

(
x3 − 1

4
x2y(y′)−1

))
∂

∂y
.

X̂0
4 and X̂0

7 are not approximate point symmetries of the perturbed ODE (2.107), while a combination

X̂0
4− 2

3X̂
0
7 is an evolutionary form of the approximate point symmetry X9 in (1.119a). By substituting α4 = 1,

α7 = 2/3, and other αi = 0, one gets ζ0 = y − 2
3xy

′ and ζ1 = 0. A transverse linear combination X̂0
4 + 3

2X̂
0
7

is the evolutionary form for the unstable point symmetry X0
u (1.120). Substituting α4 = 1, α7 = −3/2,

and other αi = 0 into equations (2.110) and (2.117), one gets ζ0 = y + 3
2xy

′ and ζ1 = − 13
4 x

2(y′)−1. The

first-order approximate symmetry of the perturbed ODE (2.107) corresponding to the transverse direction

of (X̂0
4 , X̂

0
7 )-space in (2.111) is given by

X̂u =

(
y +

3

2
xy′ + ε

(
−13

4
x2(y′)−1

))
∂

∂y
.

X̂0
5 is a stable symmetry as it is, with ζ1 = 0. This easily can be seen by substituting α5 = 1, and other

αi = 0 into equation (2.117). Similarly, one obtains ζ1 = 0 corresponding to the stable symmetries X̂0
7 and

X̂0
8 .

Finally, X̂0
6 is an evolutionary form of X0

6 in (1.88), it should be a genuine approximate symmetry coming

from stable symmetries (1.119b), here ζ1 6= 0. Substituting α6 = 1 and other αi = 0 into equations (2.110)

and (2.117) gives ζ0 = −yy′ and ζ1 = 2x2. The corresponding approximate symmetry of the perturbed ODE

(2.107) is given by

X̂6 =
(
−yy′ + 2εx2

) ∂
∂y
.

This is exactly the evolutionary form of the approximate point symmetry X11 in (1.119b).

Remark 2.5.2. We note that in the current example, one would obtain an infinite set of first-order approx-

imate symmetries corresponding to each unstable point symmetry (2.108) of y′′ = 0, if a more general form
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(2.116) of ζ1(x, y, y′) was used instead of the simplified ansatz (2.117). This, however, does not make such

first-order approximate symmetries trivial; they can be used, for example, for construction of approximate

solutions of the perturbed ODE (2.107) through mappings or approximate reduction of order (see Section

2.6 below).

In the following example, we compute exact point and local symmetries of the fourth-order Boussinesq

differential equation [84,85] and discuss their stability.

2.5.4 Second detailed example

Consider a linear ODE

y(4) + y′′ = 0 (2.119)

and its perturbed version

y(4) + y′′ − ε
(
2yy′′ + 2y′2

)
= 0. (2.120)

The latter ODE can be obtained as a time-independent or a traveling wave reduction of the Bousinesq PDE

utt − uxx + ε(u2)xx − uxxxx = 0, u = u(x, t), (2.121)

that was introduced by Boussinesq in 1871 to describe the propagation of long waves in shallow water [86].

In this example, some point and local symmetries of the unperturbed ODE (2.119) are shown to correspond

to third-order local approximate BGI symmetries of the perturbed ODE (2.120), as guaranteed by Theorem

(2.5.1). The calculated approximate symmetries are used in the next section to illustrate the construction of

an approximate solution of the perturbed Boussinesq equation (2.120).

First, we seek exact point symmetries for (2.119) and approximate point symmetries for (2.120). Let

X0 = ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y
(2.122)

be an exact point symmetry generator of the ODE (2.119). After the prolongation of X0 to the fourth-order

and applying the determining equations (1.30), one finds

ξ0 = C6, η0 = C1y + C2 + C3x+ C4 sinx+ C5 cosx. (2.123)

Consequently, the ODE (2.119) admits the following point symmetries:

X0
1 = y

∂

∂y
, X0

2 =
∂

∂y
, X0

3 = x
∂

∂y
, X0

4 = sinx
∂

∂y
, X0

5 = cosx
∂

∂y
, X0

6 =
∂

∂x
. (2.124)

Now, we proceed to find approximate point symmetries of the perturbed ODE (2.120). Let

X = X0 + εX1 =
(
ξ0(x, y) + εξ1(x, y)

) ∂

∂x
+
(
η0(x, y) + εη1(x, y)

) ∂
∂y

(2.125)

be the approximate BGI symmetry generator admitted by the perturbed ODE (2.120), where X0 is an exact

symmetry generator (2.122) of the unperturbed ODE (2.119). The determining equation for approximate

symmetries (2.70) yields

η1
xxxx + η1

xx = 0, η1
xy = 0, η1

yy = 0, ξ1
x = C2, ξ1

y = 0, C1 = C3 = C4 = C5 = 0. (2.126)
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The above system has the solution

ξ1(x, y) = C2x+ a6, η1(x, y) = a1y + a2 + a3x+ a4 sinx+ a5 cosx, (2.127)

also involving six arbitrary constants. Specifically, the perturbed ODE (2.120) admits six trivial symmetries

Xj = εX0
j , j = 1, 2, ..., 6, corresponding to the free constants a1 . . . , a6, where X0

j are the exact point

symmetries (2.124) of the unperturbed ODE (2.119), and two nontrivial approximate point symmetries

X7 = X0
2 + εx

∂

∂x
, X8 = X0

6 . (2.128)

It follows that the only two stable point symmetries of (2.119) are X0
2 and X0

6 , and the unstable point

symmetries are X0
1 , X

0
3 , X

0
4 , and X0

5 .

We now extend the above analysis, seeking exact local symmetries admitted by (2.119) up to second-order,

in the form

V 0 = ϕ0(x, y, y′, y′′)
∂

∂y
.

Applying the determining equation (2.100), one gets(
D4ϕ0 +D2ϕ0

) ∣∣∣∣
y(4)=−y′′

= 0. (2.129)

The above equation splits into system of PDEs. Solving this system gives

ϕ0 = k1y
′ + k2 + k3x+ k4y + k5 sinx+ k6 cosx+ k7y

′′ + k8 (y′ sinx+ y′′ cosx)

+k9

(
y′2 + y′′

2
)

+ k10

((
y′′

2 − y′2
)

cosx+ 2y′y′′ sinx
)

+ k11

((
y′2 − y′′2

)
sinx+ 2y′y′′ cosx

)
+k12

(
y′
(
2y − x+ 2y′′

)
− xy′′2

)
+ k13

((
2 sinx− x cosx

)
y′′ −

(
x sinx+ cosx

)
y′ + y sinx

)
+k14

((
x sinx+ 3 cosx

)
y′′ +

(
2 sinx− x cosx

)
y′ + y cosx

)
+ k15 (y′′ sinx− y′ cosx) ,

(2.130)

involving 15 arbitrary constants kj . Hence, the ODE (2.119) admits the following local symmetries

V 0
1 = y′

∂

∂y
, V 0

2 =
∂

∂y
, V 0

3 = x
∂

∂y
, V 0

4 = y
∂

∂y
, V 0

5 = sinx
∂

∂y
, V 0

6 = cosx
∂

∂y
,

V 0
7 = y′′

∂

∂y
, V 0

8 = (y′ sinx+ y′′ cosx)
∂

∂y
, V 0

9 =
(
y′2 + y′′

2
) ∂

∂y
,

V 0
10 =

((
y′′

2 − y′2
)

cosx+ 2y′y′′ sinx
) ∂

∂y
, V 0

11 =
((
y′2 − y′′2

)
sinx+ 2y′y′′ cosx

)
,

V 0
12 =

(
2y′
(
y + y′′

)
− x
(
y′ + y′′

2)) ∂

∂y
,

V 0
13 =

((
2 sinx− x cosx

)
y′′ −

(
x sinx+ cosx

)
y′ + y sinx

) ∂
∂y
,

V 0
14 =

((
x sinx+ 3 cosx

)
y′′ +

(
2 sinx− x cosx

)
y′ + y cosx

) ∂
∂y
,

V 0
15 = (y′′ sinx− y′ cosx)

∂

∂y
.

(2.131)

These generators were numbered to match the point symmetry classification (2.124) of the unperturbed ODE

(2.119). In particular, the generators V1, . . . , V6 in (2.131) are evolutionary forms of the point symmetries

(2.124).
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Now, we will find the approximate local symmetries for the perturbed ODE (2.120). Let

V =
(
ϕ0(x, y, y′, y′′) + εϕ1(x, y, y′, y′′)

) ∂
∂y

(2.132)

be the local approximate symmetry generator admitted by the perturbed ODE (2.120) where ϕ0 is given by

equation (2.130). Using the determining equation (2.106), one obtains

ϕ1 = Q1(y) + y′′Q2(y) + a3x+ a4y
′ + a5 sinx+ a6 cosx+ a7

(
y′
(
2y − x+ 2y′′

)
− xy′′2

)
+a8

(
y′2 + y′′

2
)

+ a9

((
y′2 + y′′

2)
sinx+ 2y′y′′ cosx

)
+ a10

((
y′′

2 − y′2
)

cosx+ 2y′y′′ sinx
)

+a11 (y′′ sinx− y′ cosx) + a12

((
2 sinx− x cosx

)
y′′ −

(
x sinx+ cosx

)
y′ + 2y sinx

)
+a13 (y′ sinx+ y′′ cosx) + a14

((
x sinx+ 3 cosx

)
y′′ +

(
2 sinx− x cosx

)
y′ + y cosx

)
−k2xy

′ + k3

(
2xy′′ − 1

2
x2y′ +

5

2
xy

)
+ k7

4

3
y′′

2
,

(2.133)

k1 is free, and ki = 0 for i = 4, 5, 6, 8, . . . , 15. Consequently, the local symmetries V 0
i (2.131) for i =

4, 5, 6, 8, . . . , 15 of the unperturbed ODE (2.119) are unstable, while V 0
1 , V 0

2 , V 0
3 and V 0

7 in (2.131) are parts

of the approximate symmetries of (2.120) given by

V1 = V 0
1 = y′

∂

∂y
, V2 = V 0

2 − εxy′
∂

∂y
= (1− εxy′) ∂

∂y
,

V3 = V 0
3 + ε

(
2xy′′ − 1

2
x2y′ +

5

2
xy

)
∂

∂y
=

(
x+ ε

(
2xy′′ − 1

2
x2y′ +

5

2
xy

))
∂

∂y
,

V7 = V 0
7 +

4

3
εy′′

2 ∂

∂y
=

(
y′′ +

4

3
εy′′

2

)
∂

∂y
.

(2.134)

This set includes the evolutionary forms of the approximate point generators X1 and X2 of (2.128) in their

evolutionary forms V1 and V2. Moreover, V3 is a second-order approximate symmetry of the perturbed ODE

(2.120) corresponding to the unstable point symmetry X3
0 in (2.124), and V7 is an evolutionary form of the

approximate point symmetry X7 in (2.128).

Higher-order approximate symmetries corresponding to unstable point and local symmetries

of (2.119)

Let

X̂0 = ζ0 ∂

∂y
(2.135)

be the evolutionary form of the exact point or local symmetry generator of the unperturbed ODE (2.119).

Here ζ0 = ζ0(x, y, y′) for point symmetries (2.124), and ζ0 = φ0(x, y, y′, y′′) for second-order local symmetries

(2.131) of the unperturbed ODE (2.119).Following Theorem 2.5.1, for each unstable local symmetry V j0 , j =

4, 5, 6, 8, . . . , 15 in (2.131) of the ODE (2.119), there is a corresponding higher-order approximate symmetry

for the perturbed ODE (2.120) of the form

X̂ =
(
ζ0 + εζ1(x, y, y′, y′′, y′′′)

) ∂
∂y
.
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First, consider the unstable point symmetry X4
0 in (2.124) (V 0

4 in (2.131)). Its evolutionary components is

ζ0 = y. The corresponding ζ1 is any solution of the linear nonhomogeneous PDE(
D4ζ1 +D2ζ1

) ∣∣∣∣
y(4)=−y′′

= 2yy′′ + 2(y′)2.

A simple particular solution is given by

ζ1(x, y, y′, y′′, y′′′) =

(
1

2
x2 +

5

6

)
y′

2
+

1

2
(x2y′ + 3xy + 2y′′)y′′′.

One consequently obtains

X̂4 =

(
y + ε

((
1

2
x2 +

5

6

)
y′

2
+

1

2
(x2y′ + 3xy + 2y′′)y′′′

))
∂

∂y

as a third-order approximate symmetry for the perturbed ODE (2.120) corresponds to the unstable point

symmetry X4
0 , V 4

0 .

In the same way, one can find a third-order approximate symmetry corresponding to each unstable point

symmetry of (2.119) in (2.124) or unstable local symmetry in (2.131). Let

V̂ =
(
ϕ0(x, y, y′, y′′) + εϕ̂1(x, y, y′, y′′, y′′′)

) ∂
∂y

(2.136)

be approximate symmetry generator for the perturbed ODE (2.120) where ϕ0 is given by the equation (2.130)

. From the determining equation (2.106), one can find ϕ̂1 corresponds to each local symmetry of (2.131).

For example, consider the unstable local symmetry V 0
9 =

(
y′2 + y′′

2
)
∂/∂y. By substituting ϕ0 = y′2 + y′′

2

into the determining equation (2.106), one obtains(
D4ϕ̂1 +D2ϕ̂1

) ∣∣∣∣
y(4)=−y′′

= 12yy′′′
2

+ 56y′y′′y′′′ + 10y′′
3 − 12yy′′

2 − 6y′
2
y′′. (2.137)

The above equation has a particular solution given by

ϕ̂1 = −2xy′′
2
y′′′ +

7

6
y′′

3
+ (2y − 3xy′) y′′

2
+

1

2
y′

2
y′′ − xy′3. (2.138)

Hence

V̂9 =

(
y′2 + y′′

2
+ ε

(
−2xy′′

2
y′′′ +

7

6
y′′

3
+ (2y − 3xy′) y′′

2
+

1

2
y′

2
y′′ − xy′3

))
∂

∂y

is a third-order local approximate symmetry of the Boussinesq ODE (2.120) corresponding to the exact local

symmetry V 0
9 of the unperturbed equation (2.119), which used to be unstable in the class of second-order

local symmetries.

2.6 Reduction of order and approximately invariant solutions of

perturbed differential equations

In this section we discuss approximate reduction techniques, including approximate integrating factors and

approximate first integrals of perturbed differential equations, and the use of the higher-order approximate

symmetries to find approximate solutions of some perturbed ODEs.
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2.6.1 Approximate integrating factors using approximate point symmetries

A differential function

µ(x, y, y′, ..., y(n−1); ε) = µ0(x, y, y′, ..., y(n−1)) + εµ1(x, y, y′, ..., y(n−1)) (2.139)

is an approximate integrating factor for the perturbed ODE (2.59) if there is a differential function

φ(x, y, y′, ..., y(n−1); ε) = φ0(x, y, y′, ..., y(n−1)) + εφ1(x, y, y′, ..., y(n−1))

such that

µ(y(n) − f0 − εf1) = D(φ) = o(ε).

Finding the integrating factor allows an approximate reduction of the equation (2.59) to an (n − 1)−order

equation

φ(x, y, y′, ..., y(n−1); ε) = const + o(ε). (2.140)

Remark 2.6.1. The integrating factor for the perturbed first-order ODE (2.27) with exact symmetry gen-

erator (2.38) has the form

µ(x, y; ε) =
1

η − ξ(f0 + εf1)
, (2.141)

provided that η 6= ξ(f0 + εf1). If (ξ, η) are analytic in ε, then

µ(x, y; 0) = µ0(x, y)

is an integrating factor for the unperturbed first-order ODE (2.26). Moreover, µapprox(x, y; ε) = µ0(x, y) +

εµ1(x, y) + o(ε) with

µ0(x, y) =
1

η0 − ξ0f0
, (2.142a)

µ1(x, y) = µ2
0

(
ξ0f1 + ξ1f0 − η1

)
(2.142b)

is an approximate integrating factor for the ODE (2.27) with approximate symmetry generator (2.44).

This follows from taking ξ(x, y; ε) = ξ0(x, y) + εξ1(x, y) + o(ε) and η(x, y; ε) = η0(x, y) + εη1(x, y) + o(ε),

substituting these values into (2.141) and taking the Taylor expansion about ε = 0. Conversely, we have the

following theorem.

Theorem 2.6.1. If µ(x, y; ε) = µ0(x, y) + εµ1(x, y) + o(ε) is an approximate multiplier for the perturbed

first-order ODE (2.27). Then any functions ξj, ηj, j = 0, 1 satisfying (2.142) define a BGI approximate

symmetry

X =
(
ξ0(x, y) + εξ1(x, y)

) ∂

∂x
+
(
η0(x, y) + εη1(x, y)

) ∂
∂y

for the ODE (2.27).
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Proof. An integrating factor µ(x, y; ε) for the perturbed first-order ODE satisfies

− ∂

∂y
(µ (f0 + εf1)) =

∂

∂y
(µ) . (2.143)

Substitute µ = µ0(x, y) + εµ1(x, y) + o(ε) into equation (2.143) to get

µ0x + µ0yf0 + µ0f0y = 0,

µ1x + µ1yf0 + µ1f0y + µ0yf1 + µ0f1y = 0.
(2.144)

Substituting the values of µ0, µ1 given by (2.142) into (2.144) yields

µ2
0

(
η0
x + η0

yf0 − η0f0y − ξ0f0x − ξ0
xf0 − ξ0

yf
2
0

)
= 0,

µ3
0

(
η1
x + (η1

y − ξ1
x)f0 − ξ1

yf0
2 − ξ1f0x − η1f0y − (ξ0

x − η0
y)f1 − 2ξ0

yf0f1 − ξ0f1x − η0f1y

)
= 0.

(2.145)

Comparison with the determining equation (2.31) of exact symmetries of the unperturbed equation (2.26)

and determining equation (2.46) for approximate symmetries of the perturbed ODE (2.27) completes the

proof.

Example 2.6.1. The first-order ODE

y′ = y + εxy (2.146)

admits the approximate symmetry generator

X = (1 + ε) y
∂

∂y
.

The approximate integrating factor for (2.146) has the form

µ(x, y; ε) =
1

y
(1− ε) .

Using this integrating factor, one gets

o(ε) =

(
1

y
(1− ε)

)
(y′ − y − εxy)

=
y′

y
− 1 + ε

(
1− x− y′

y

)
= D

(
ln y − x+ ε

(
x− x2

2
− ln y

))
(2.147)

Hence

ln y − x+ ε

(
x− x2

2
− ln y

)
= C + o(ε) (2.148)

is a family of approximate solution curves for the perturbed ODE (2.146). Note that the first two terms of

the Taylor expansion in ε of (2.148) agree with the first two terms of the Taylor expansion in ε of the exact

solution

y = C1e
εx2

2 +x

of the ODE (2.146).
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2.6.2 Determining equations for approximate integrating factors

For one independent variable x and one dependent variable y, the Euler operator (1.143) is given by

δ

δy
=

∂

∂y
−D ∂

∂y′
+D2 ∂

∂y′′
−D3 ∂

∂y′′′
+ · · · . (2.149)

Since the Euler-Lagrange operator(2.149) annihilates the total derivative for any differential function, then

the integrating factors (2.139) for the perturbed ODE (2.59) can be found from the following equation:

δ

δy

(
µ(y(n) − f0 − εf1)

)
= 0. (2.150)

For the perturbed first-order ODE (2.27), equation (2.150) has the form

(µf0)y + ε(µf1)y + µx = 0.

Substituting µ = µ(x, y; ε) = µ0(x, y) + εµ1(x, y) into the above equation and setting to zero the coefficients

of ε0, ε, we arrive at the following determining equations for µ0 and µ1:

µ0x + (µ0f0)y = 0, µ1x + (µ1f0)y + (µ0f1)y = 0. (2.151)

In particular, for the second-order perturbed ODE

y′′ = f0(x, y, y′) + εf1(x, y, y′), (2.152)

the integrating factor µ(x, y, y′; ε) = µ0(x, y, y′) + εµ1(x, y, y′) for the ODE (2.152) satisfies

δ

δy
(µ(y′′ − f0 − εf1) = 0.

The above equation is equivalent to

y′′µy − (µf0)y − ε(µf1)y −D (y′′µy′ − (µf0)y′ − ε(µf1)y′) +D2(µ) = 0. (2.153)

Finding the total derivatives appearing in equation (2.153), one obtains

y′µyy′ + µxy′ + 2µy + (µf0)y′y′ + ε(µf1)y′y′ = 0,

y′2µyy + 2y′µxy + µxx + y′(µf0)yy′ + (µf0)xy′ + εy′(µf1)yy′ + ε(µf1)xy′ − (µf0)y − ε(µf1)y = 0.

Substituting µ(x, y, y′; ε) = µ0(x, y, y′)+εµ1(x, y, y′) into the above equations, we arrive the following theorem.

Theorem 2.6.2. The components µ0, µ1, of the approximate integrating factor µ(x, y, y′; ε) = µ0(x, y, y′) +

εµ1(x, y, y′) for the perturbed second-order ODE (2.152) satisfy the following equations

y′µ0yy′ + µ0xy′ + 2µ0y + (µ0f0)y′y′ = 0, (2.154a)

y′2µ0yy + 2y′µ0xy + µ0xx + y′(µ0f0)yy′ + (µ0f0)xy′ − (µ0f0)y = 0, (2.154b)
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y′µ1yy′ + µ1xy′ + 2µ1y + (µ1f0)y′y′ + (µ0f1)y′y′ = 0, (2.154c)

y′2µ1yy + 2y′µ1xy + µ1xx + y′(µ1f0)yy′ + (µ1f0)xy′ − (µ1f0)y − (µ0f1)y

+y′(µ0f1)yy′ + (µ0f1)xy′ = 0.

(2.154d)

As an application of the above theorem, we consider the perturbed Boussinesq ODE (2.120), and the

Benjamin-Bona-Mahony (BBM) ODE reduction.

Example 2.6.2. Consider the perturbed Boussinesq ODE

y(4) + y′′ − ε
(
2yy′′ + 2y′2

)
= 0. (2.155)

Equation (2.155) can be written in the form

D2(y′′ + y − εy2) = 0.

Hence, the Boussinesq ODE (2.155) reduces to the second-order ODE

y′′ + y − εy2 = C1x+ C2. (2.156)

The general solution of (2.156) is unknown. An approximate solution can be constructed in the assumption

of C1, C2 = O(ε). Let C1 = εc1, C2 = εc2; then the ODE (2.156) becomes

y′′ = −y + ε(c1x+ c2 + y2). (2.157)

Using the determining equations (2.154), one can easily find that µ = y′ + ε(y′ − c1) is an approximate

integrating factor for the ODE (2.157). Multiplying this integrating factor by (2.157) yields

y′y′′ + yy′ + ε(y′y′′ − c1y′′ + yy′ − c1y − (c1x+ c2 + y2)y′) = o(ε),

and consequently, an approximate first integral:

D

(
y′2 + y2 + ε

(
y′2 − 2c1y

′ + y2 − (2c1x+ 2c2)y − 2y3

3

))
= o(ε).

Hence the perturbed Boussinesq ODE (2.155) is reduced to the first-order ODE

y′2 + y2 + ε

(
y′2 − 2y′ + y2 − (2x+ 2)y − 2y3

3

)
= 2c23 + o(ε), (2.158)

where c1, c2, c3 are arbitrary constants. A series ansatz y(x; ε) = y0(x) + εy1(x) + o(ε) into the ODE (2.158)

leads to the system of ODEs

(y′0)2 + y2
0 = 2c23,

2y′0y
′
1 + 2y0y1 + (y′0)2 − 2c1y

′
0 + y2

0 − (2c1x+ 2c2)y0 −
2y3

0

3
= 0,
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with solutions

y0(x) = c3 (sinx+ cosx) ,

y1(x) = c1x+ c2 + c23 −
c23
3

sin 2x− c3
2

(cosx+ sinx) + c4 (cosx− sinx) .

Finally, a general approximate solution for the Boussinesq ODE (2.155) involving four arbitrary constants is

obtained:

y(x; ε) = c3(sinx+ cosx)

+ε

(
c1x+ c2 + c23 −

c23
3

sin 2x− c3
2

(cosx+ sinx) + c4 (cosx− sinx)

)
.

(2.159)

Example 2.6.3. The Benjamin-Bona-Mahony (BBM) equation is the partial differential equation

ut + ux − uxxt +
3

2
εuux = 0, u = u(x, t) (2.160)

modeling long surface gravity waves of small amplitude (ε) propagating unidirectionally in 1 + 1 dimensions

[49]. Using a travelling wave solution u(x, t) = y(z) = y(x− ct), equation (2.160) reduces to an ODE:

y′′′ +
1− c
c

y′ +
3

2c
εyy′ = 0. (2.161)

The BBM ODE (2.161) can be simplified to

y′′ +
1− c
c

y +
3

4c
εy2 = k, (2.162)

where k is a constant of integration. By taking k = 3ε/4c, the ODE (2.162) becomes

y′′ =
c− 1

c
y − 3

4c
ε(y2 − 1). (2.163)

A possible approximate integrating factor for the perturbed ODE (2.163) is µ = (1 + ε)y′. Multiplying

this integrating factor by (2.163) and then integrating the resulting equation, one finds an approximate first

integral:

D

(
y′2 +

1− c
c

y2 + ε

(
y′2 +

1− c
c

y2 − 3y

2c
+
y3

2c

))
= O(ε2). (2.164)

Consequently, the perturbed BBM ODE (2.163) is reduced to the first-order ODE

y′2 +
1− c
c

y2 + ε

(
y′2 +

1− c
c

y2 − 3y

2c
+
y3

2c

)
= C1 +O(ε2). (2.165)

Substituting y(z; ε) = y0(z) + εy1(z) +O(ε2) into the ODE (2.165) leads to the system of ODEs

(y′0)2 +
1− c
c

y2
0 = C1,

2y′0y
′
1 +

2(1− c)
c

y0y1 + (y′0)2 +
1− c
c

y2
0 −

3y0

2c
+
y3

0

2c
= 0.

(2.166)
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The solution of the above system is bounded if 0 < c < 1. Hence when 0 < c < 1, the solution of the system

(2.166) is given by

y0(z) =
(
C1c

2 + 1
)

sin

(√
1− c
c

(z − C2)

)
,

y1(z) =
1

16c(1− c)2

[
4
√
c(1− c)

(
C1c

5/2 − C1c
3/2 + c1/2 − 1

)
sin

(√
1− c
c

(z − C2)

)

−(C1c
2 + 1) cos2

(√
1− c
c

(z − C2)

)
+ 16C3c(1− c)2 cos

(√
1− c
c

(z − C2)

)
−C2

1c
4 − 2C1c

2 − 12c2 + 12c− 1

]
.

(2.167)

Consequently, a general approximate solution for the BBM ODE (2.161) is given by

y(z; ε) =
(
C1c

2 + 1
)

sin

(√
1− c
c

(z − C2)

)

+
ε

16c(1− c)2

[
4
√
c(1− c)

(
C1c

5/2 − C1c
3/2 + c1/2 − 1

)
sin

(√
1− c
c

(z − C2)

)

−(C1c
2 + 1) cos2

(√
1− c
c

(z − C2)

)
+ 16C3c(1− c)2 cos

(√
1− c
c

(z − C2)

)
−C2

1c
4 − 2C1c

2 − 12c2 + 12c− 1

]
, 0 < c < 1.

(2.168)

Hence the general approximate solution of the BBM PDE (2.160) is u(x, t) = y(x− ct; ε).

We could not find harmonic-type solutions of BBM PDE in literature. The exact solutions of different

forms of BBM equation is given in terms of Jacobi elliptic functions cn(v, k), sn(v, k), 0 ≤ k ≤ 1. When k → 1,

one obtains the solitary wave solutions of BBM equation (see, e.g. [87–89]). For the BBM model (2.160), the

explicit cnoidal wave solutions are given by

u(x, t) = a2cn2(B1(x− ct), k) +H1, (2.169)

u(x, t) = a2sn2(B2(x− ct), k) +H2, (2.170)

where B1, B2, H1 and H2 are given in terms of a, ε, c and k:

B1 =
a
√

2εc

4ck
, H1 =

2ck2 + εa2 − 2εa2k2 − 2k2

3εk2
,

B2 =
a
√
−2εc

4ck
, H2 =

2ck2 − εa2 − εa2k2 − 2k2

3εk2
.

When k → 1, (2.169) reduces to a solitary wave solution:

u(x, t) = a2sech2

(
a
√

2εc (x− ct)
4c

)
+

2c− εa2 − 2

3ε
. (2.171)

When c < 0 and k → 1, the solution (2.170) simplifies to a left-travelling kink wave solution:

u(x, t) = a2tanh2

(
a
√
−2εc (x− ct)

4c

)
+

2c− 2εa2 − 2

3ε
. (2.172)

Note that harmonic-type solutions like (2.168) do not follow from (2.169) and (2.170) as k → 0+.
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2.6.3 Reduction of order under contact and higher-order symmetries

The higher-order approximate symmetry generator for an nth−order ODE (2.59)

y(n) = f0(x, y, y′, ..., y(n−1)) + εf1(x, y, y′, ..., y(n−1)) (2.173)

is given by

X̂ = X̂0 + εX̂1 =
(
ζ0(x, y, y′, ..., y(s)) + εζ1(x, y, y′, ..., y(`))

) ∂

∂y
. s, ` ≥ 1. (2.174)

The differential functions

ωk(x, y, y′, ..., y(k); ε) = ω0
k(x, y, y′, ..., y(k)) + εω1

k(x, y, y′, ..., y(k)) + o(ε), k = 1, ..., n,

are approximate differential invariants for the ODE (2.173) if

X̂(k)ωk(x, y, y′, ..., y(k); ε) = o(ε).

Note that ω0
k are exact differential invariants for the unperturbed ODE (2.58). They arise as constant of

integrations of the characteristic equations

dy

ζ0
=

dy′

ζ0(1)
= · · · = dy(k)

ζ0(k)
. (2.175)

Then the differential invariants ω1
k are determined from the following equation

H(ω1
ky , ω

1
ky′
, · · · ) = X̂1(k)

(ω0
k)

∣∣∣∣
y(n)=f0

,

where H is a differential exoression in ω1
k resulting from the coefficients of ε in

−
(
X̂0(k)

ωk

) ∣∣∣∣
y(n)=f0+εf1

.

Example 2.6.4. The first example of using approximate differential invariants to reduce ODEs is rather

elementary and is used here for illustration purposes. Consider the second-order ODE

y′′ = εx(y′)2. (2.176)

This ODE admits an approximate contact symmetry given by

X̂ = X̂0 + εX̂1 =

(
x+ ε

(
x3y′

3
+ y′2

))
∂

∂y
.

We determine the invariants ω(x, y, y′; ε) = ω0(x, y, y′) + εω1(x, y, y′) + o(ε) satisfying X̂(1)ω = o(ε). Clearly,

one invariant is x. Other invariants are determined by first finding ω0 satisfying

X̂0
(1)
ω0 = xω0

y + ω0
y′ = 0,

which has a general solution ω0(x, y, y′) = F (xy′ − y) based on the fundamental invariant xy′ − y. Let

ω0(x, y, y′) = xy′ − y. Then one finds that the first-order correction satisfies the inhomogeneous linear PDE

xω1
y + ω1

y′ = −2

3
x3y′ − y′2.
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The simplest particular solution is given by ω1(x, y, y′) = −(x3y′
2

+ y′3)/3. Consequently,

ω = ω0(x, y, y′) + εω1 = xy′ − y − ε

3
(x3y′

2
+ y′3) = C1 + o(ε) (2.177)

is an approximate invariant for the ODE (2.176); here C1 = const is a constant of integration. Thus the ODE

(2.176) approximately reduces to a first-order ODE. By substituting y(x; ε) = y0(x) + εy1(x) + o(ε) into the

ODE (2.177) and setting to zero coefficients at ε0 and ε1, one gets a system of ODEs

xy′0 − y0 = C1, xy′1 − y1 −
y′30
3
− x3y′20

3
= 0.

Its solution yields an approximate solution of the perturbed ODE (2.176)

y = C2x− C1 +
ε

6
C2

2 x
3 +O(ε2). (2.178)

We note that the ODE (2.176) is solvable by separation of variables, which makes it easy to compare its

general solution with the approximate solution (2.178). The general solution is

y =

√
2C2

ε
tanh−1

(√
C2 ε

2
x

)
− C1. (2.179)

The first two terms of its Taylor series with respect to ε indeed coincide with the approximate solution (2.178).

Example 2.6.5. We find an approximate solution for the perturbed Boussinesq ODE (2.155) using third-

order approximate symmetries admitted by (2.155). The fundamental solution of the unperturbed equation

(2.119) is

y(x) = C1x+ C2 sinx+ C3 cosx+ C4. (2.180)

The solution (2.180) is invariant under the group generated by

X0
1 − C1X

0
3 − C2X

0
4 − C3X

0
5 − C4X

0
2 = (y − C1x− C2 sinx− C3 cosx− C4)

∂

∂y
, (2.181)

where X0
j , j = 1, ..., 5 are the point symmetries (2.124) for the unperturbed ODE (2.119). X0

2 is stable as a

point symmetry, the corresponding approximate symmetry is X2 = (1 − εxy′)∂/∂y. At the same time, X0
1 ,

X0
3 , X0

4 and X0
5 are unstable as point symmetries. But using Theorem 2.5.1, they correspond to third-order

approximate symmetries of (2.155) given by

X1 =

(
y + ε

((
x2

2
+

5

6

)
y′

2
+

(
x2y′ + 3xy + 2y′′

2

)
y′′′
))

∂

∂y
, (2.182)

X3 =

(
x+ ε

(
xy + 3x2y′

2
+ 2x2y′′′

))
∂

∂y
, (2.183)

X4 =

(
sinx+ ε

(
(3x2 − 17)y′ − 6xy + (3x2 − 36)y′′′

)
cosx+ (15y − 12xy′ − 18xy′′′) sinx

6

)
∂

∂y
, (2.184)

X5 =

(
cosx+ ε

(
(17− 3x2)y′ + 6xy + (36− 3x2)y′′′

)
sinx+ (15y − 12xy′ − 18xy′′′) cosx

6

)
∂

∂y
. (2.185)
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The approximately invariant solution under X1 − C1X
3 − C2X

4 − C3X
5 − C4X

2 is given by

y − C1x− C2 sinx− C3 cosx− C4 + εh(x, y, y′, y′′, y′′′) = o(ε), (2.186)

where h is given by

h =

(
x2

2
+

5

6

)
y′

2
+

(
x2y′ + 3xy + 2y′′

2

)
y′′′ − C1

(
xy + 3x2y′

2
+ 2x2y′′′

)
− C2

((
(3x2 − 17)y′ − 6xy + (3x2 − 36)y′′′

)
cosx+ (15y − 12xy′ − 18xy′′′) sinx

6

)

− C3

((
(17− 3x2)y′ + 6xy + (36− 3x2)y′′′

)
sinx+ (15y − 12xy′ − 18xy′′′) cosx

6

)
. (2.187)

Substitute y(x; ε) = y0(x) + εy1(x) into the equation (2.186), and equate the coefficients of ε0, ε1, we find

y0 = C1x+C2 sinx+C3 cosx+C4 and y1 = −h(x, y0, y0
′, y0

′′, y0
′′′). Hence, the approximate solution of the

Boussinesq ODE (2.155) is given by

y(x; ε) = C1x+ C2 sinx+ C3 cosx+ C4 + ε

[(
7C1C3 + 5C2C4

2

)
sinx+

(
C1C2 + 2C3C4

2

)
x sinx

+
C1C3

2
x2 sinx+

(
15C2

2 + 17C2
3

6

)
sin2 x− C2C3

3
sin 2x+

(
5C3C4 − 7C1C2

2

)
cosx

+

(
C1C3 − 2C2C4

2

)
x cosx− C1C2

2
x2 cosx+

(
17C2

2 + 15C2
3

6

)
cos2 x+ C2

1x
2 − C1C4x−

C2
1

3

]
. (2.188)

With the initial conditions y(0) = 1, y′(0) = 1, y′′(0) = −1, y′′′(0) = −1, the unperturbed ODE (2.119) has a

particular solution

y(x) = sinx+ cosx. (2.189)

Using this particular solution, and the following initial conditions

y(0) = 1 +
16ε

3
, y′(0) = 1− 2ε

3
, y′′(0) = −1, y′′′(0) = −1 +

8ε

3
, (2.190)

one finds C1 = 0, C2 = 1, C3 = 1, and C4 = 0. Thus the approximate solution (2.188) of the perturbed ODE

(2.155) reduces to the following particular approximate solution

y(x; ε) = sinx+ cosx+ ε

(
16− sin 2x

3

)
. (2.191)

In order to test the accuracy of the approximate solution (2.191), we convert the perturbed fourth-order ODE

(2.155) into a system of four first-order ODEs, and compute numerical solutions of the resulting system with

the initial conditions (2.190) using the Matlab native ODE solver ode45. The solver employs an adaptive

Dormand-Prince algorithm [90] based on the use of a fourth- and a fifth-order Runge-Kutta (RK) method

pair [91]. At every discrete independent variable step i → i + 1, the algorithm chooses the optimal Runge-

Kutta coefficients to minimize the error of the fifth-order RK solution, and also find the optimal variable

step hi for efficient computation.
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In particular, on each step, the difference between the fourth- and the fifth-order RK solution values is

given by

ei+1 =
∥∥∥u[5]

i+1 − u
[4]
i+1

∥∥∥ , (2.192)

where each u
[j]
k is a four-component vector providing a numerical approximation of the exact solution u =

[y(xk), y′(xk), y′′(xk), y′′′(xk)]. The one-step difference (2.192) is controlled by user-defined relative and

absolute tolerances RelTol, AbsTol according to

ei+1 ≤ max{RelTol · |ui|, AbsTol}. (2.193)

If the ODE (2.155) is solved numerically for x ∈ [0, L] using N numerical steps, the conservative estimate of

the global numerical error at x = L, for the small parameter value ε, is given by

Enum(ε) =

N∑
i=0

ei. (2.194)

The difference between the numerical and the approximate solution at a numerical grid node xi is given by

d(xi; ε) = |ynum(xi; ε)− yapprox(xi; ε)|. (2.195)

For a sample numerical-approximate solution computation, we use tolerance values

RelTol = 10−8, AbsTol = 10−9. (2.196)

For example, for ε = 0.1, this choice yields N = 381 steps in x, with variable step sizes h ranging from

0.00616 to 0.031948.
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Figure 2.4: The approximate solution (2.191) of the perturbed Boussinesq equation (2.155) with

initial conditions (2.190) vs. the numerical solution for the small parameter values ε = 0.02 and

ε = 0.1.

Figure 2.4 shows numerical and approximate solution curves of y(x) as functions of x ∈ [0, L], L = 5, for

ε = 0.02 and ε = 0.1. It is observed that for ε = 0.02, the difference stays small for all x in the interval, while
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for a larger ε = 0.1, the numerical and approximate solutions begin to differ significantly after x & 1. (We

note that for ε = 0, the approximate solution (2.191) becomes exact, and the difference (2.195) is negligible).

To provide further details about the error and difference behaviour for the numerical and approximate

solutions, Figure 2.5 shows the conservative estimate (2.194) of the total numerical error at x = L, the

difference between the numerical and approximate solutions d(l; ε) (2.195) at x = L as a function of ε, and

also the typical behaviour of the difference (2.195) as a function of x for the specific small parameter value

ε = 0.05.
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Figure 2.5: Numerical and approximate solution details for the Boussinesq ODE (2.155) with a

small parameter ε. (a) The conservative estimate (2.194) of the total numerical error at x = L = 5

as a function of ε, for the tolerance values (2.196). (b) The difference between the numerical and

approximate solutions d(L; ε) (2.195) at x = L = 5 as a function of ε. (c) The numerical-approximate

solution difference d(x; ε) (2.195) as a function of x for the small parameter ε = 0.05.

The above analysis indicates that for sufficiently small values of the parameter ε, the approximate solution

(2.191) of the perturbed Boussinesq equation (2.155) indeed provides a precise approximation of the exact

solution, with the error growing as the interval x ∈ [0, L] lengthens and/or the parameter ε is increased.
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2.7 Discussion

In the last three decades, BGI and FS approximate Lie symmetry frameworks [10–13] have been a subject

of much discussion, including approximate symmetries and approximate solutions of perturbed models (e.g.,

[20,23,25,26,30]). However, the stability of exact local symmetries of unperturbed equations in terms of BGI

and FS approximate symmetries of the perturbed models has not been addressed. In this chapter, we provided

a complete answer to the question about stability of point and local symmetries of unperturbed algebraic

equations and ODEs vs. their perturbed versions with a small parameter. In particular, we showed that all

exact point symmetries of algebraic equations and first-order ODEs are stable (Theorem 2.2.2, Theorem 2.3.1

and Theorem 2.3.2). For higher-order ODEs, we showed that each point or local symmetry of an unperturbed

ODE corresponds to a BGI approximate local symmetry of the perturbed model (Theorem 2.5.1).

The BGI and FS approaches are not equivalent. In the former, the approximate symmetry generator is

expanded in a perturbation series in the small parameter with no change in the number of the independent

and dependent variables. While in the latter, the dependent variables are expanded in a perturbation series.

Therefore, the number of dependent variables of the original equations are doubled in the new equations with

no small parameter. In Ref. [15], the FS approximate point symmetries of the Navier-Stokes equations were

found and used to derive the approximate point symmetries in sense of BGI. For general perturbed diffusion

equations, the BGI approximate point symmetries were obtained from the FS approximate point symmetries

of the corresponding FS system [92]. For a perturbed first-order ODE and for a family of perturbed higher-

order ODEs, we found a connection between BGI and FS approximate point symmetries (Theorem 2.3.3 and

Theorem 2.4.2, respectively).

Contact and higher-order exact symmetries can be used to construct solutions for ordinary differential

equations (e.g., [3]). In Ref. [41], it was shown how exact integrating factors for linear and nonlinear ordinary

differential equations can be determined. A perturbation method based on integrating factors was developed

for a system of regularly perturbed first-order ODEs [93]. In this chapter, we introduced approximate

integrating factors using approximate point symmetries (Section 2.6.1) and we showed that the components

of an approximate integrating factor for a perturbed first-order ODE yield a BGI approximate point symmetry

for the same ODE (Theorem 2.6.1). We derived the determining equations for approximate integrating factors

of perturbed second-order ODEs (Theorem 2.6.2). As an application, we found an approximate solution

(2.159) of the perturbed Boussinesq ODE (2.155) and an approximate solution (2.168) of the perturbed BBM

ODE (2.161). We presented a method consists of approximate reduction of order under contact and higher-

order symmetries (Section 2.6.3). We applied this method to find an approximate solution of a perturbed

second-order ODE (2.176) using admitted approximate contact symmetries (Example 2.6.4), and we used

the approximate higher-order symmetries obtained using Theorem 2.5.1 to find another approximate solution

for the fourth-order Boussinesq ODE (2.155) (Example 2.6.5). In the latter, the approximate solution was

validated via a comparison to numerical solutions of the Boussinesq equation (2.155).
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3 Exact and Approximate Symmetries of PDEs with a

Small Parameter

3.1 Introduction

In this Chapter, we study exact and approximate (BGI and FS) symmetry properties for scalar PDEs with

a small parameter.

In Chapter 2, we showed that all exact symmetries of a first-order ODE yield an infinite set of BGI and FS

approximate point symmetries of the perturbed ODE. We proved that all exact symmetries of an unperturbed

higher-order ODE are stable and they correspond to point or higher-order BGI approximate symmetries

for the perturbed model. For PDEs, the situation is different: in general, unstable point symmetries of

unperturbed PDEs do not yield higher-order approximate symmetries for perturbed PDEs. The reason for

this instability and an illustration are given. As a detailed example, we investigate the stability in terms of

BGI and FS frameworks of exact point symmetries for a family of one-dimensional wave equation involving an

arbitrary function. This type of classification and comparison is important in sense that it helps to illustrate

the difference between the both approaches and to check the stability of exact point symmetries and their

corresponding approximate symmetry structures in both frameworks. For a general perturbed PDE, we prove

that there is a relation between BGI and FS approximate local symmetries.

The exact symmetry classification problem for one-dimensional wave equations in different forms has been

considered in many articles. In Ref. [94], the group properties of the nonlinear wave equation

utt = (f(u)ux)x (3.1)

were discussed, (here and below subscripts denote partial derivatives). Bluman and Cheviakov [95] extended

the group classification of the nonlinear wave equation (3.1) through a systematic construction of nonlocal

symmetries. Point symmetry classifications for the generalized classes

utt = (f(x, u)ux)x, utt = (f(u)ux + g(x, u))x (3.2)

of (1.13) were considered in [96,97]. The point symmetry classification for the PDE family

utt = f(x, ux)uxx + g(x, ux) (3.3)

was investigated in [98]. Further classifications of different classes of one-dimensional wave equation can be

found, for example, in [99–102]. In this chapter, we classify exact point symmetries of the two-dimensional
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wave equation family (1.2) and exact and approximate point symmetries of the perturbed wave equations

(1.3) and (1.4). We use new approximate symmetries to construct approximate solutions for a perturbed

one-dimensional wave equation (1.3) with T (ux) = usx:

utt = (c2 + εusx)uxx, u = u(x, t). (3.4)

As hyperbolic systems, wave equations have characteristic curves (or surfaces) along which the solution

to the equation are simplified. If the characteristic curves intersect, the solution may become multi-valued.

This is referred to as a shock or break in the wave and can have the physical meaning of a discontinuous

solution [103]. A class of singularities that occurs in dynamical systems and reached in a finite time are called

finite-time singularities [104]. Finite-time singularities have been found in many models, such as in the Euler

equations of inviscid fluids [105], in the equations of general relativity coupled to a mass field leading to the

formation of black holes [106]. In this Chapter, we use the numerically computed characteristic curves to

approximate the finite-time singularity formation of (3.4) with s = 2. We also use an approximate solution

of (3.4) to provide an alternative estimate of the finite-time singularities.

3.2 Exact local symmetries of unperturbed and perturbed PDEs

Let x = (x1, x2, ..., xn), n > 1, and u = u(x) denote respectively the independent variables and the dependent

variable of a given problem. We also denote partial derivatives by subscripts: ∂u/∂xj ≡ uj , etc., and the set

of all partial derivatives of u of order q by ∂ku. A general kth-order scalar PDE on u has the form

F0[u] ≡ F0(x, u, ∂u, . . . , ∂ku) = 0, k ≥ 1. (3.5)

We assume that the PDE (3.5) as it stands, or after a point transformation, is of generalized Kovalevskaya

type [4], that is, can be written in a solved form with respect to the highest pure derivative of u by one of

the independent variables.

The solution set S of the PDE (3.5) in the jet space Js(x|u), s ≥ k, is a hypersurface defined by the

relations F0[u] = 0 and its differential consequences ∂F0[u] = 0, . . ., solved for the corresponding differential

consequences of the leading derivative, up to the highest order s. Any differential function f [u] can be eval-

uated on the solution set of (3.5) by substituting the expressions of the leading derivative and its differential

consequences into f [u], and the result is denoted by f [u]|S or f [u]|F0[u]=0.

The exact symmetry generator for the unperturbed PDE (3.5) has the form

X0 = ξi0(x, u)
∂

∂xi
+ η0(x, u)

∂

∂u
. (3.6)

The determining equation (1.30) to find exact point symmetries of (3.5) reads

X0(k)F0[u]
∣∣
F0[u]=0

= 0 (3.7)
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in terms of the prolonged generator X0(k)(1.29). The determining equation splits into an overdetermined

PDE system on the unknown symmetry components ξi0, η0 (see, e.g., [4,37]). The evolutionary form of (3.6)

is given by

X̂0 = ζ0[u]
∂

∂u
, (3.8)

with the evolutionary component ζ0[u] = η0(x, u) − uiξ
i
0(x, u). Local (point, contact and higher-order)

transformations and the related point, contact and higher-order local symmetries of the PDE (3.5) generalize

(3.8) by allowing the evolutionary infinitesimal components ζ0 = ζ0[u] to be general differential functions of

u, depending on first and/or higher-order derivatives of u (see, e.g., Refs. [4,37] and references therein). The

invariance condition (3.7) takes the form

X̂0(k)F0[u]
∣∣
F0[u]=0

= 0, (3.9)

where the prolongation of X̂0 is defined by

X̂0(k) = ζ0
∂

∂u
+ (Djζ0)

∂

∂uj
+ . . . . (3.10)

The following elementary example will serve as a basis of further examples involving PDEs with a small

parameter, and their exact and approximate symmetries.

Example 3.2.1. Consider a nonlinear wave-type equation [107]

utt = uxuxx, u = u(x, t). (3.11)

The exact symmetry generator for the PDE (3.11) is given by

X0 = ξ1
0(x, t, u)

∂

∂x
+ ξ2

0(x, t, u)
∂

∂t
+ η0(x, t, u)

∂

∂u
. (3.12)

The determining equations (3.7) yield the solution

ξ1
0 = C4 + C6x, ξ2

0 = C3 +

(
C6 −

C5

2

)
t, η0 = C1 + C2t+ (C5 + C6)u. (3.13)

Consequently, the PDE (3.11) admits six point symmetries given by

X0
1 =

∂

∂u
, X0

2 = t
∂

∂u
, X0

3 =
∂

∂t
, X0

4 =
∂

∂x
,

X0
5 = u

∂

∂u
− t

2

∂

∂t
, X0

6 = t
∂

∂t
+ x

∂

∂x
+ u

∂

∂u
,

(3.14)

corresponding to three translations (X0
1 , X0

3 and X0
4 ), the Galilei group (X0

2 ), and two scalings (X0
5 and X0

6 ).

A general first-order perturbation of a PDE (3.5) is a partial differential equation

F [u; ε] = F0[u] + εF1[u] = o(ε) (3.15)
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involving a small parameter ε. We assume that the perturbation F1[u] is regular, in the sense that the Ko-

valevskaya forms of the unperturbed PDE (3.5) and its perturbation (3.15) have the same leading derivatives.

Exact point and local symmetry generators of the perturbed PDE (3.15) have the forms

Y = αi(x, u; ε)
∂

∂xi
+ β(x, u; ε)

∂

∂u
, Ŷ = ζ[u; ε]

∂

∂u
. (3.16)

To find the exact symmetries of (3.15) holding for an arbitrary ε, one solves the determining equations (3.7)

or (3.9).

It is commonly the case that due to the perturbation term, some or even all point and/or local symmetries

of the unperturbed equations (3.5) disappear from the local symmetry classification of the perturbed model

(3.15).

Example 3.2.2. We compute exact point symmetries of a perturbed version of the PDE (3.11),

utt + εuut = uxuxx (3.17)

holding for an arbitrary ε. The leading derivative utt can be chosen for both (3.11) and (3.17). We obtain a

Lie algebra of point symmetries spanned by

Y1 = X0
3 =

∂

∂t
, Y2 = X0

4 =
∂

∂x
, Y3 =

4

3
X0

5 −
1

3
X0

6 = −t ∂
∂t
− x

3

∂

∂x
+ u

∂

∂u
, (3.18)

a three-dimensional subalgebra of the six-dimensional Lie algebra of point symmetries (3.14) of the unper-

turbed wave equation (3.11).

3.3 BGI approximate point and local symmetries of a perturbed

PDE

Approximate symmetries can be useful for finding additional symmetry-like structures for the perturbed

equation (3.15) [23]. The BGI approximate point symmetry generator for the perturbed PDE (3.15) is given

by

X = X0 + εX1 =
(
ξi0(x, u) + εξi1(x, u)

) ∂

∂xi
+ (η0(x, u) + εη1(x, u))

∂

∂u
. (3.19)

The O(ε) term of the determining equation (1.96) leads to the PDEs

X1 (k)F0[u]

∣∣∣∣
F0[u]=0

= H[u], (3.20)

where H is obtained from the coefficients of ε in the expression

−X0 (k)(F0[u] + εF1[u])

∣∣∣∣
F0[u]+εF1[u]=o(ε)

. (3.21)

An alternative procedure for the calculation of BGI symmetries involves writing down exact symmetry

determining equations for F [u; ε] = 0 (cf. (3.15)), substituting ζ[u] = ζ0[u] + εζ1[u], and collecting O(1) and

O(ε) coefficients of each split determining equation.
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Similarly to exact local transformations with generators of the form (3.10), one can define more general

BGI approximate local transformations with generators in evolutionary form given by

X̂ = X̂0 + εX̂1 = (ζ0[u] + εζ1[u])
∂

∂u
. (3.22)

BGI approximate local (including point, contact, and higher-order) symmetries of the perturbed PDE (3.15)

can be found using the same procedure as described above for BGI approximate point symmetries. In

particular, the analog of the first-order condition (3.20) takes the form(
ζ1
∂

∂u
+ (ζ1)i

∂

∂ui
+ . . .+ (ζ1)i1...ik

∂

∂ui1...ik

)
F0[u]

∣∣∣∣
F0[u]=0

= H[u], (3.23)

where the prolongations of the evolutionary components are

(ζ1)i1...ik = Di1 . . . Dik ζ1. (3.24)

3.4 Fushchich-Shtelen approximate point and local symmetries of

a perturbed PDE

Substituting the solution

u(x) = v(x) + εw(x) + o(ε) (3.25)

into the perturbed PDE (3.15) and equating to zero the coefficients O(1) and O(ε), one obtains the Fushchich-

Shtelen system given by

G1[v, w] ≡ F0[v] = 0, (3.26a)

G2[v, w] ≡ F0vw + F0viwi + F0vijwij + ...+ F0vi1i2...ik
wi1i2...ik + F1[v] = 0. (3.26b)

Note that the FS system (3.26) is a Kovalevskaya system with respect to the same leading derivatives (for v

and w) as the original PDE (3.15) (for u). The exact symmetry generator for the FS system (3.26) can be

sought in the form

Z = λi(x, v, w)
∂

∂xi
+ φ1(x, v, w)

∂

∂v
+ φ2(x, v, w)

∂

∂w
(3.27)

The local (point or higher-order) symmetry generator for the FS system (3.26) in evolutionary form is given

by

Ẑ = ψ1[v, w]
∂

∂v
+ ψ2[v, w]

∂

∂w
(3.28)

Remark 3.4.1. Similar to FS approximate symmetry properties for a perturbed ODE (Remark 2.4.2), there

is also a possibility of existence of FS approximate symmetries for the perturbed PDE (3.15) where the

component ψ1[v, w] of the generator (3.28) depends on w. Such FS symmetries do not correspond to stable

local symmetries of the unperturbed PDE (3.5), and cannot arise in the BGI framework. An example is

provided by the linear PDE utt + εut = uxx which admits a FS point symmetry (3.28) with

ψ1[v, w] = tv + 2w + 2xtvx + (x2 + t2)vt, ψ2[v, w] =
1

2
x2v − tw + 2xtwx + (x2 + t2)wt.
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3.5 BGI and FS approximate symmetries: properties, connec-

tions, and examples

3.5.1 A computational example: exact and approximate point symmetry clas-

sification for a second-order nonlinear PDE with a small parameter

In this section, we compare exact point symmetries (3.14) of the (1+1)-dimensional wave equation utt = uxuxx

(3.11) with BGI and FS approximate local symmetry classifications for the family of perturbed wave equations

utt + εF1(u, ut) = uxuxx, (3.29)

where F1(u, ut) is an arbitrary function.

The PDE (3.11) admits six exact point symmetries given by (3.14). The BGI approximate point symme-

tries are computed and classified following the procedure described in Section 3.3, and the FS approximate

local symmetries are obtained following Section 3.4. In particular, the Fushchich-Shtelen system (3.26) for

(3.29) is given by

vtt − vxvxx = 0,

wtt + F1(v, vt)− vxwxx − wxvxx = 0,

(3.30)

where u(x, t) = v(x, t) + εw(x, t). The resulting classification is presented in Table 3.1. In the table, Qi

denote arbitrary functions of their arguments, and aj arbitrary constants. The table is organized as follows.

The first column lists evolutionary forms of the six point symmetry generators X0
k (3.14), k = 1, . . . , 6, of the

unperturbed PDE (3.11). The second column lists the forms of the arbitrary function F1(u, ut) for which the

corresponding X0
k is stable in the BGI sense, and the corresponding BGI approximate point symmetry of the

perturbed wave equation (3.29). The third column contains the same information for the FS approximate

local symmetries of the perturbed equation (3.29).

Table 3.1 illustrates differences between BGI and FS frameworks as there are stable symmetries in one

framework and unstable in the other framework. Some specific examples are listed below.

• When F1 = ut or F1 = const, all point symmetries (3.14) of the unperturbed PDE (3.11) are stable as

BGI and FS symmetries.

• When F1 = uut, the u-translation symmetry X̂0
1 is stable as a BGI approximate point symmetry

(generator X̂1) and stable as a FS approximate local symmetry (Ẑ1). Similar argument holds for the

point symmetry X̂0
2 when F1 = u2

t .
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X̂0
i BGI cases, approximate symmetry X̂i FS cases, approximate symmetry Ẑi

X̂
0
1

=
∂

∂u

F1 = a1uut + a2u+Q1(ut),

X̂1 =

(
1− ε

(
2a1

5
tu+

a1

10
t
2
ut +

a2

2
t
2

))
∂

∂u

F1 = e
a1vQ4(vt) + a2vt + a3vvt + a4v + a5,

Ẑ1 =
∂

∂v
+

(
a1a2

10
t
2
vt +

2a1a2

5
tv + a1w

−
a3

10
t
2
vt −

a3

5
tv −

a4

2
t
2

)
∂

∂w

X̂
0
2

= t
∂

∂u

F1 = a1ut + a2u+ a3u
2
t + a4,

X̂2 =

(
t− ε

(
a1

2
t
2

+
a2

6
t
3

+
4a3

5
tu+

a3

5
t
2
ut

))
∂

∂u

• F1 = a1vt + a2v + a3v
2
t + a4,

Ẑ2 = t
∂

∂v
−
(
a1

2
t
2

+
a2

6
t
3

+
4a3

5
tv +

a3

5
t
2
vt

)
∂

∂w

• F1 = e
a1vt , Ẑ2 = t

∂

∂v
+ a1w

∂

∂w

X̂
0
3

= ut
∂

∂u

F1 = F1(u, ut), X̂3 = ut
∂
∂u F1 = F1(v, vt), Ẑ3 = vt

∂
∂v + wt

∂
∂w

X̂
0
4

= ux
∂

∂u

F1 = F1(u, ut), X̂4 = ux
∂
∂u F1 = F1(v, vt), Ẑ4 = vx

∂
∂v + wx

∂
∂w

X̂
0
5 =

(
u

+
tut

2

)
∂

∂u

F1 = a1 + a2ut + u
2
Q2

(
ut/u

3/2
)

X̂5 =

(
u+

tut

2
+ ε

(
a1t

2
+ a2

(
tu

5
+
t2ut

20

)))
∂

∂u

F1 = a3v
a1v

a2
t + a4,

Ẑ5 =

(
v +

tvt

2

)
∂

∂v
+

((
a1

2
+

3a2

4

)
a4t

2
+
twt

2

+

(
a1 +

3a2

2
− 1

)
w

)
∂

∂w

X̂
0
6 =(
u− xux

− tut
) ∂
∂u

F1 = u
−1
Q3(ut) + a1ut + a2,

X̂6 =

(
u− xux − tut − ε

(
a1

10
t
2
ut +

2a1

5
tu+

a2

2
t
2

))
∂

∂u

• F1 = v
a1Q5(vt) + a2,

Ẑ6 = (v − xvx − tvt)
∂

∂v
+
(
(a1 + 2)w

+
a1a2

2
t
2) ∂
∂w

• F1 = a1vtv
a2 + a3vt + a4v

a2 + a5,

Ẑ6 = (v − xvx − tvt)
∂

∂v
+

(
(a2 + 2)w +

a2a3

10
t
2
vt

+
2a2a3

5
tv +

a2a5

2
t
2 − xwx − twt

)
∂

∂w

Table 3.1: Stability of point symmetries of the wave equation (3.11) in terms of BGI and FS approx-

imate local symmetries of the perturbed PDE (3.29), depending on the form of the arbitrary function

F1.

• For all forms F1(u, ut), the PDE (3.29) and the FS system (3.30) are invariant under t- and x-

translations. Consequently, the exact symmetries X̂0
3 and X̂0

4 reappear as BGI and FS approximate

symmetries without change.

• When F1 = u−1Q3(ut), the scaling symmetry X̂0
6 is stable in both the BGI and FS sense, with the

corresponding generators X̂6 and Ẑ6.

• When F1 = ua1Q3(ut), a1 6= −1, the symmetry X̂0
6 is stable in FS sense (generator Ẑ6) but unstable

as a BGI approximate point symmetry.

We also note that genuine BGI approximate symmetries are given by X̂1, X̂2, X̂5, and X̂6; genuine FS

approximate symmetries are given by Ẑ1, Ẑ2, Ẑ5, and Ẑ6.
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3.5.2 Instability of local symmetries of unperturbed PDEs in terms of higher-

order approximate symmetries: an example

For an ordinary differential equation (ODE), all local symmetries are stable in the BGI sense: each local

symmetry of a given ODE corresponds to a BGI approximate local, often higher-order, symmetry of its

perturbed version [57]. For a PDE, in general, this is not the case. For the BGI framework, differential

functions (ζ1)i1...ip (3.24) in the determining equation (3.23) contain derivatives of u of orders higher than

those in the differential function ζ1. It follows that the left-hand size of equation (3.23) splits into a system

of linear PDEs in ζ1. On the other side, the function H may contain derivatives of u with respect to other

variables different than those in the left-hand side of equation (3.23). This can lead to some constraints on

the unperturbed symmetry component ζ0; in that case, an exact local symmetry of the unperturbed PDE

(3.5) may not correspond to a local approximate BGI symmetry of the perturbed PDE (3.15). A similar

argument holds for FS approximate symmetries. The main reason, as it can be seen in the example below,

is the existence of multiple kinds of derivatives in PDEs, and thus more restrictive conditions that arise for

ζ0 when the determining equations are being split with respect to higher-order derivatives.

As an illustration, consider the PDE (3.29) with F1(u, ut) = uut:

utt + εuut = uxuxx (3.31)

and the related Fushchich-Shtelen system (3.30)

vtt − vxvxx = 0, wtt + vvt − vxwxx − wxvxx = 0. (3.32)

From Table 3.1 one can see that X̂0
2 = t ∂/∂u is unstable as a point symmetry in both BGI and FS frameworks,

that is, the point symmetry X̂0
2 admitted by the PDE (3.31) with ε = 0 corresponds to no approximate point

symmetry arising from BGI or FS approaches. First we examine whether or not it is possible to construct

a local, possibly higher-order, BGI approximate symmetry of (3.31) that would correspond to X̂0
2 . The

generator of such a symmetry would have the form

X̂2 = C2X̂
0
2 + εX̂1

2 = (C2t+ εζ1[u])
∂

∂u
, (3.33)

where C2 = const 6= 0. The determining equation (3.23) for BGI local symmetries reads

(
D2
t ζ1 − uxD2

xζ1 − uxxDxζ1
) ∣∣∣∣
utt=uxuxx

= H, (3.34)

where one readily finds

H = C2(tut + u). (3.35)

One can show by a direct computation that whatever the dependence of ζ1 on partial derivatives of u is

chosen to be, higher-order derivatives of u that arise in (3.34) lead to constraints on C2 that result in C2 = 0,

which means that no nontrivial BGI point symmetry (3.33) corresponding to X̂0
2 exists.
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Second, we seek a local, possibly higher-order, approximate FS symmetry of the PDE (3.31) corresponding

to X̂0
2 . Such a symmetry would arise as an exact local symmetry of Fushchich-Shtelen system (3.32). The

corresponding evolutionary generator (3.28) has the form

Z = ψ1[v, w]
∂

∂v
+ ψ2[v, w]

∂

∂w
. (3.36)

As noted in Section 1.3.3, the determining equation for the first equation of the system (3.32) is satisfied

when ψ1 = C2t as in X̂0
2 . Now the determining equation for the second PDE of (3.32) leads to(

D2
tψ2 − vxD2

xψ2 − vxxDxψ2

) ∣∣∣∣
vtt=vxvxx,wtt=−vvt+vxwxx+wxvxx

= C2(tvt + v). (3.37)

It can be shown that for any dependence ψ2[v, w], constraints on C2 exist, leading to C2 = 0. Consequently,

there is no higher-order FS symmetry corresponding to the unstable point symmetry X̂0
2 admitted by the

wave equation (3.31) with ε = 0.

3.5.3 A relation between BGI and FS approximate symmetries

The computational example of Section 3.5.1 above illustrated the fact that BGI and FS frameworks can

yield rather different approximate point symmetry classifications for the same PDE with a small parameter.

However, in certain situations, the two approaches can lead to related results. We now show that for a specific

class of (1+1)-dimensional PDEs, a stable BGI approximate point symmetry always correspond to a stable

FS approximate local symmetry.

Consider the following class of PDEs on u(x, t), written in the Kovalevskaya form with respect to an

independent variable t:

∂nu

∂tn
= F0[u], F0[u] ≡ F0(x, t, u, ∂u, ∂2u, ..., ∂ku) , (3.38)

and its perturbed version with a small parameter ε:

∂nu

∂tn
= F0[u] + εF1[u], F1[u] ≡ F1(x, t, u, ∂u, ∂2u, ..., ∂`u). (3.39)

A local BGI approximate symmetry of a PDE (3.39) has the form (3.22)

X̂ = X̂0 + εX̂1 = (ζ0[u] + εζ1[u])
∂

∂u
. (3.40)

As per Theorem 1.3.2, the O(1) term in (3.40) corresponds to a local symmetry

X̂0 = ζ0[u]
∂

∂u
(3.41)

of the unperturbed equation (3.38).

In order to compute FS approximate symmetries of a PDE (3.39), we substitute u(x, t) = v(x, t) +

εw(x, t) + o(ε) into (3.39) and split the orders of ε to get the Fushchich-Shtelen system

∂nv

∂tn
= F0[v],

∂nw

∂tn
= F0vw + F0viwi + F0vijwij + ...+ F0vi1i2...ik

wi1i2...ik + F1[v].

(3.42)
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The evolutionary generator of a FS approximate local symmetry has the form (3.28). The determining

equations (3.7) for exact local symmetries of (3.42) are

Ẑ(n)

(
∂nv

∂tn
− F0

)
= 0 , (3.43a)

Ẑ(n)

(
∂nw

∂tn
− F0vw − F0viwi − F0vijwij − ...− F0vi1i2...ik

wi1i2...ik − F1

)
= 0 , (3.43b)

holding on solutions of (3.42).

Theorem 3.5.1. If (3.40) is a BGI approximate local symmetry generator of a PDE (3.39) having the

specific form

X̂ = (ζ0(x, t) + εζ1(x, t, u, ux, ut))
∂

∂u
(3.44)

and additionally, F0[u] in (3.39) satisfies the following system of equations

ζ0F0uu + ζ0(1)

i F0uui + ζ0(2)

i1i2
F0uui1i2

+ ...+ ζ0(k)

i1i2...ik
F0uui1i2...ik

= 0,

ζ0F0uui + ζ0(1)

i F0uiui + ζ0(2)

i1i2
F0uiui1i2

+ ...+ ζ0(k)

i1i2...ik
F0uiui1i2...ik

= 0,
...

ζ0F0uui1i2...ik
+ ζ0(1)

i F0uiui1i2...ik
+ ζ0(2)

i1i2
F0ui1i2ui1i2...ik

+...+ ζ0(k)

i1i2...ik
F0ui1i2...ikui1i2...ik

= 0 .

(3.45)

Then

Ẑ = ζ0(x, t)
∂

∂v
+ ζ1(x, t, v, vx, vt)

∂

∂w
(3.46)

is a FS approximate local symmetry of the perturbed PDE (3.39) corresponding to the point symmetry gen-

erator X̂0 = ζ0 ∂/∂v of the unperturbed PDE (3.38).

Proof. We need to show that under the stated conditions, the determining equations (3.20) for BGI approxi-

mate symmetries of (3.39) are equivalent to the determining equations for FS approximate symmetries. Since

the first PDE of the Fushchich-Shtelen system (3.42) is the same as the unperturbed equation (3.38), first

FS determining equation (3.43a) is satisfied for any ζ0 and ζ1 as long as ζ0 is an exact point symmetry

component of (3.38).

The second FS determining equation (3.43b) with ψ1 = ζ0, ψ2 = ζ1 can be rewritten as(
ζ1(n)

t − ζ1F0v − ζ1(1)

i F0vi − ζ
1(2)

i1i2F0vi1i2
− ...− ζ1(k)

i1i2...ik
F0vi1i2...ik

) ∣∣∣∣
∂nv/∂tn=F0

= G, (3.47)

where

G = w(ζ0F0vv + ζ0(1)

i F0vvi + ζ0(2)

i1i2
F0vvi1i2

+ ...+ ζ0(k)

i1i2...ik
F0vvi1i2...ik

)

+wi(ζ
0F0vvi + ζ0(1)

i F0vivi + ζ0(2)

i1i2
F0vivi1i2

+ ...+ ζ0(k)

i1i2...ik
F0vivi1i2...ik

) + ...

+wi1i2...ik(ζ0F0vvi1i2...ik
+ ζ0(1)

i F0vivi1i2...ik
+ ζ0(2)

i1i2
F0vi1i2vi1i2...ik

+ ...

+ζ0(k)

i1i2...ik
F0vi1i2...ikvi1i2...ik

) + ζ0F1v + ζ0(1)

i F1vi + ...+ ζ0(`)

i1i2...i`
F1vi1i2...i`

.

As ζ0 and F0[v] satisfy (3.45), G reduces to

G = ζ0F1v + ζ0(1)

i F1vi + ...+ ζ0(`)

i1i2...i`
F1vi1i2...i`

. (3.48)
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Now, we proceed to check the determining equation (3.20) of BGI approximate symmetries for (3.39). The

left-hand side of (3.20) simplifies to(
ζ1(n)

t − ζ1F0u − ζ1(1)

i F0ui − ζ
1(2)

i1i2F0ui1i2
− ...− ζ1(k)

i1i2...ik
F0ui1i2...ik

) ∣∣∣∣
∂nu/∂tn=F0

which is equivalent to the left-hand side of (3.47). Now, the right-hand side of (3.20), the function H, is the

coefficient of ε in

−X̂0(n)

(
∂nu

∂tn
− F0 − εF1

) ∣∣∣∣
∂nu/∂tn=F0+εF1

. (3.49)

Since ζ0 = ζ0(x, t), none of the terms in (3.49) contains ∂nu/∂tn. Hence the coefficient of ε in (3.49) is

H = X̂0(n)

F1 = ζ0F1u + ζ0(1)

i F1ui + ...+ ζ0(`)

i1i2...i`
F0ui1i2...i`

. (3.50)

The latter is equivalent to G (3.48). It follows that the determining equation (3.43) of FS symmetries for the

system (3.42) and the determining equation (3.20) of BGI approximate symmetries for the PDE (3.39) are

equivalent. Hence Ẑ (3.46) is a FS approximate local symmetry of the system (3.42).

The above theorem states that when a point symmetry of an unperturbed PDE yields a BGI approximate

point symmetry but not an FS approximate point symmetry of the perturbed PDE, under the conditions

of the theorem, there exists a corresponding higher-order FS approximate symmetry of the perturbed PDE

instead.

Example 3.5.1. Consider again the PDE (3.31) utt + εuut = uxuxx. Using Table 3.1, we observe that

X0
1 = ∂/∂u is unstable as a FS approximate point symmetry but it is a stable point symmetry in the sense

of BGI; the corresponding BGI generator is given by

X̂1 =

(
1− ε

(
2

5
tu+

1

10
t2ut

))
∂

∂u
.

Consider now the Fushchich-Shtelen system (3.32) for the PDE (3.31). Using determining equation (3.43)

for exact local symmetries of (3.32), one can find that

Ẑ1 =
∂

∂v
−
(

2

5
tv +

1

10
t2vt

)
∂

∂w

is a higher-order FS approximate symmetry generator of the PDE (3.31).

Remark 3.5.1. The conditions of Theorem 3.5.1 are not satisfied when ζ0
u 6= 0, ζ0

ux 6= 0 or ζ0
ut 6= 0.

Example 3.5.2. The perturbed wave equation

utt + εuut = euuxx (3.51)

admits an approximate point symmetry with the evolutionary form

X̂ =
(
2− xux − ε

(
t2ut + 4t

)) ∂

∂u
(3.52)
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corresponding to the stable point symmetry X̂0 = ζ0 ∂/∂u = (2 − xux) ∂/∂u. Here ζ0 = 2 − xux does

not satisfy the conditions of Theorem 3.5.1 since it involves ux. It turns out that X̂0 is unstable as a FS

approximate point symmetry of (3.51). Indeed, it is easy to check that

Ẑ = (2− xvx)
∂

∂v
−
(
t2vt + 4t

) ∂

∂w

is not a local symmetry of the Fushchich-Shtelen system of the PDE (3.51) given by

vtt − vxvxx = 0, wtt + vvt − evwxx − evwvxx = 0.

3.6 Exact and approximate point symmetry classification of a one-

dimensional perturbed wave model in a fiber-reinforced solid

One-dimensional nonlinear wave equations

utt = K(ux)uxx (3.53)

on the unknown u(x, t) and various forms of K(ux) arise in multiple physical contexts, in particular, in

nonlinear mechanics [108]. The point symmetry classification of the PDE family (3.53) has been performed

by Oron and Rosenau [107]. If K(ux) = c2 = const, the PDE (3.53) becomes linear:

utt = c2uxx, (3.54)

and consequently admits an infinite set of point symmetries described by the infinitesimal generator

X0
∞ = (α1 + α2)

∂

∂t
+ c(α1 − α2)

∂

∂x
+ (C1u+ β1 + β2)

∂

∂u
, (3.55)

parameterized by an arbitrary constant C1 and four arbitrary functions α1(x + ct), β1(x + ct), α2(x − ct),

and β2(x− ct).

In the current section, we consider a special form of the arbitrary function K(ux) = c2 + εQ(ux) in (3.53),

which yields a PDE family

utt = (c2 + εQ(ux))uxx (3.56)

with a small parameter ε. It is assumed that Q(ux) 6= const. Such models arise, for example, in the

analysis of wave propagation in fiber-reinforced elastic solids [109, 110] with small fiber strengths. The

PDEs (3.56) are nonlinear perturbed versions of the linear PDE (3.54), and therefore have a reduced set of

symmetries compared to that of the linear wave equation. It is of interest to follow the algorithms presented

in Sections 3.2-3.4 to compare the exact point symmetry classification of the PDE family (3.56) as it stands

with approximate (BGI and FS) point symmetries of the PDEs (3.56) viewed as perturbations of the linear

wave equation (3.54).

We classify exact and approximate (BGI and FS) point symmetries for (3.56). The classification is

performed with respect to the forms of the arbitrary function Q(ux), with each classification case holding
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for an arbitrary ε. In the classifications, cases are simplified using the equivalence transformations of the

perturbed equation (3.56), given by

t = C1t̃+ C2, x = C3x̃+ C4, u = C5ũ+ C6x̃+ C7t̃+ C8,

c2 =
C2

3

C2
1

c̃2, Q(ux) = Q

(
C5ũx̃ + C6

C3

)
=
C2

3

C2
1

Q̃(ũx̃) ,
(3.57)

involving arbitrary constants Ci. It follows that by taking C1 = 1/c, C3 = C5 = 1, and other constants zero,

upon dropping tildes, one obtains the PDE (3.56) with c2 = 1:

utt = (1 + εQ(ux))uxx, (3.58)

which will be considered below.

The results below are presented modulo the equivalence transformations (3.57), usually without obvious

trivial approximate symmetries (see Section 1.3.4); some trivial approximate symmetries will be pointed out.

3.6.1 Exact point symmetries of a one-dimensional perturbed wave equation

The exact symmetry generator for the PDE (3.56) has the form

Y = ξ1(x, t, u; ε)
∂

∂t
+ ξ2(x, t, u; ε)

∂

∂x
+ η(x, t, u; ε)

∂

∂u
. (3.59)

The following cases arise, holding for an arbitrary ε and non-constant Q.

1. In the general case of arbitrary Q(ux) and c, one has the five-dimensional Lie group of point symmetries

generated by

Y1 =
∂

∂t
, Y2 =

∂

∂x
, Y3 =

∂

∂u
, Y4 = t

∂

∂u
, Y5 = t

∂

∂t
+ x

∂

∂x
+ u

∂

∂u
, (3.60)

describing respectively translations in t, x, u, the Galilei transformation in the direction of the dis-

placement u, and a homogeneous space-time scaling.

2. In the case when Q(ux) = ux, c arbitrary, the Lie algebra (3.60) is extended by a point symmetry

generator

Y6 = x
∂

∂u
− ε
(

3t

2c2
∂

∂t
+
x

c2
∂

∂x

)
. (3.61)

3.6.2 BGI approximate point symmetries of a one-dimensional perturbed wave

equation

The BGI approximate point symmetry generator for the PDE (3.56) has the form

X = X0 + εX1 = X0 + ε

(
ξ1
1(x, t, u)

∂

∂t
+ ξ2

1(x, t, u)
∂

∂x
+ η(x, t, u)

∂

∂u

)
, (3.62)

where, according to Theorem 1.3.2, the freedom in X0 does not exceed that in X0
∞ (3.55). From the

determining equations (3.20) for BGI approximate point symmetries, the following cases arise.
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1. Q(ux) arbitrary: the O(1) and O(ε) components of the generator (3.62) are given by

X0 =(C1t+ C2)
∂

∂t
+ (C1x+ C3)

∂

∂x
+ (C1u+ C4t+ C5)

∂

∂u
, (3.63a)

X1 =(λ1 + λ2)
∂

∂t
+ c (λ1 − λ2)

∂

∂x
+ (C6u+ λ3 + λ4)

∂

∂u
, (3.63b)

where Ci = const, λ1 and λ3 are arbitrary functions of x+ ct, and λ2 and λ4 are arbitrary functions of

x−ct. Consequently, the nonlinear wave equation (3.56) for an arbitrary Q(ux) admits the approximate

symmetries

X1 = t
∂

∂t
+ x

∂

∂x
+ u

∂

∂u
, X2 =

∂

∂t
, X3 =

∂

∂x
, X4 = t

∂

∂u
, X5 =

∂

∂u
,

X∞ = ε

[
(λ1 + λ2)

∂

∂t
+ c (λ1 − λ2)

∂

∂x
+ (C6u+ λ3 + λ4)

∂

∂u

]
, (3.64)

which are, respectively, the re-numbered exact point symmetries (3.60), and a trivial approximate

symmetry X∞ corresponding to the infinite symmetry set (3.55) of the linear wave equation (3.54).

The difference between the freedom in (3.55) and (3.63a) corresponds to unstable point symmetries of

the linear wave equation.

2. Q(ux) = ux: the exact symmetry generator (3.55) of the linear wave equation (3.54) reduces to

X0 = (C1t+ C2)
∂

∂t
+ (C1x+ C3)

∂

∂x
+ (C1u+ β1 + β2)

∂

∂u
, (3.65)

and the O(ε) approximate symmetry components have the form

ξ1
1 = λ1(x+ ct) + λ2(x− ct)− 1

4c2

∫ t

(β′2 + 2czβ′′1 (c (t− 2z) + x)) dz,

ξ2
1 = H(x, t), η =

(
C4 +

β′2 − β′1
4c2

)
u+ λ3(x+ ct) + λ4(x− ct),

(3.66)

where H(x, t) is an arbitrary solution of the PDEs: Ht = c2ξ1
1x , Hx = ξ1

1t +
1

2c2
(β1x + β2x).

In this second case, the point symmetries of the unperturbed linear wave equation (3.54) with arbitrary

β1(x+ct) and β2(x−ct) remain stable, and yield genuine approximate symmetries with O(ε) components

given by the terms in (3.66) that contain β1 and β2.

3. Q(ux) = A ln(ux+B)+C, where A,B and C are arbitrary constants: here the nonlinear wave equation

(3.56) admits the approximate symmetries (3.64), and a genuine approximate symmetry given by

Xg = (u+Bx)
∂

∂u
− ε At

2c2
∂

∂t
. (3.67)

3.6.3 FS approximate point symmetries of a one-dimensional perturbed wave

equation

For the perturbed PDE (3.56) with u(x, t) = v(x, t) + εw(x, t) + o(ε), the Fuschich-Shtelen system (3.26)

reads

vtt = c2vxx, wtt = c2wxx +Q(vx)vxx. (3.68)
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We find exact point symmetries of the system (3.68) that correspond to FS approximate point symmetries

of the PDE (3.56). The infinitesimal generator of such symmetries has the form

Z = λ1(x, t, v, w)
∂

∂x
+ λ2(x, t, v, w)

∂

∂t
+ φ1(x, t, v, w)

∂

∂v
+ φ2(x, t, v, w)

∂

∂w
. (3.69)

The solution of the determining equations (3.7) leads to the following classification.

1. Q(vx) arbitrary:

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
, Z4 = t

∂

∂v
,

Z5 = t
∂

∂t
+ x

∂

∂x
+ v

∂

∂v
+ w

∂

∂w
, Z6 = v

∂

∂w
,

Z∞ = (β1(x+ ct) + β2(x− ct)) ∂

∂w

(3.70)

In this general case, no genuine FS approximate symmetries arise. Indeed, the generators Z1 . . . , Z5

mimic the exact point symmetry generators (3.60), and Z6, Z∞ are trivial FS symmetries. Including

the above symmetries, the system (3.68) admits additional point symmetries in the following case:

2. Q(vx) = vsx, s 6= 0:

Z7 = v
∂

∂v
+ (s+ 1)w

∂

∂w
. (3.71)

3. Q(vx) = evx :

Z ′7 = x
∂

∂v
+ w

∂

∂w
. (3.72)

The symmetries given by Z7 and Z ′7 are genuine FS approximate point symmetries of the perturbed PDE

(3.58).

3.6.4 Summary

For an arbitrary Q, the perturbed one-dimensional wave equation (3.58) admits five exact symmetries given by

(3.60) and it has these five symmetries and a trivial approximate symmetry as BGI approximate symmetries

(3.64). For Q = ux, the equation (3.58) admits (3.60) and an additional exact symmetry given by (3.61). For

BGI classification with Q(ux) = ux , the PDE (3.58) has an infinite set of BGI approximate symmetries with

approximate symmetry components given by (3.66). Note that the exact symmetry generator Y6 in (3.61)

Y6 = x
∂

∂u
− ε
(

3t

2

∂

∂t
+ x

∂

∂x

)
can be obtained from the BGI approximate components (3.66) by taking

β1 =
x+ t

2
, β2 =

x− t
2

, λ1 = −11

16
(x+ t), λ2 =

11

16
(x− t).

It follows that the BGI approximate symmetry classification of the wave equation (3.58) includes the ex-

act symmetry classification of (3.58) but corresponds to a subset of exact point symmetries (3.55) of the

unperturbed (linear) wave equation (3.54). An additional case appears in the BGI approximate symmetry
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classification when Q = A ln(ux +B) + C, with a corresponding additional approximate symmetry given by

(3.67). This case does not arise in the FS symmetry classification.

For an arbitraryQ, the PDE (3.58) admits exact point symmetry generators (3.60) and trivial approximate

symmetries given by (3.70). In comparison with the exact and BGI symmetry classifications of (3.58), two

different cases appear in FS approximate symmetry classification: Q = vsx, s 6= 0 and Q = evx . For Q = vsx,

the PDE (3.58) admits an additional FS approximate symmetry given by (3.71). (By contrast, in the exact

and BGI symmetry classifications of (3.58), this case appears only when s = 1.) For Q = evx , a stable exact

symmetry x ∂/∂u of the linear wave equation (3.54) yields a genuine FS approximate symmetry of (3.58)

given by (3.72).

3.7 Approximate and numerical solutions modeling finite-time sin-

gularity formation in fiber-reinforced materials

The displacements in shear waves propagating in an incompressible hyperelastic material with a single family

of fibers directed along the wave propagation are governed by a nonlinear one dimensional wave equation

utt = (α+ 3βu2
x)uxx, u = u(x, t), (3.73)

where the constants α, β > 0 are the material parameters [110]. In this section, we consider wave equations

(3.56) with Q(ux) = Busx, B > 0, s 6= 0, which include the model (3.73). By a re-scaling of x, t and u, these

PDEs can be brought into a simpler form

utt = (1 + εusx)uxx. (3.74)

3.7.1 A general FS approximate solution of a perturbed wave model

Here we use Fuschich-Shtelen approximate symmetries to construct an approximate solution for the PDE

(3.74) in the usual FS form

u(x, t) = v(x, t) + εw(x, t) + o(ε). (3.75)

In the first-order of precision in ε, the equation (3.74) is equivalent to the Fuschich-Shtelen system (3.68)

with Q(vx) = vsx:

vtt = vxx, wtt = wxx + vsxvxx, (3.76)

which admits the symmetry generator (3.71). The corresponding characteristic equations are given by

dt

0
=
dx

0
=
dv

v
=

dw

(s+ 1)w
. (3.77)

Consequently, if v(x, t) is any solution for the first equation of the system (3.76), then the invariant solution

following from the characteristic equations (3.77) is given by w(x, t) = vs+1φ(x, t). Consider traveling wave

solutions of the first equation in (3.76):

v = g (x± t) . (3.78)
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Substituting (3.78) and w = gs+1φ into the second PDE of (3.76) one gets to the PDE in φ

gs+1 (φtt − φxx) + 2(s+ 1)gsg′ (±φt − φx)− (g′)sg′′ = 0. (3.79)

When s 6= −1, the PDE (3.79) has a general solution

φ = g−s−1

[
h±

t(g′)s+1 −
∫ t

(g′)s+1 (±(2r − t) + x) dr

2(s+ 1)

]
,

where h = h(x, t) satisfies htt = hxx. Similarly, when s = −1, the solution form changes to

φ = h± 1

2
t ln (g′) .

In light of the above results, the higher-order solution part w has the form

w =


h±

t(g′)s+1 −
∫ t

(g′)s+1 (±(2r − t) + x) dr

2(s+ 1)
, s 6= −1,

h± t ln (g′)

2
, s = −1.

(3.80)

Finally, when s 6= −1, the perturbed equation (3.74) has the approximate solution (3.75) given by

u(x, t) = g(x± t) + ε

[
h(x, t)±

t(g′)s+1 −
∫ t

(g′)s+1 (±(2r − t) + x) dr

2(s+ 1)

]
+ o(ε) . (3.81a)

When s = −1, the approximate solution takes the form

u(x, t) = g(x± t) + ε

(
h(x, t)± t ln (g′ (x± t))

2

)
+ o(ε). (3.81b)

Example 3.7.1. As a specific example that will be used below, we consider the PDE (3.73) describing shear

waves in a fiber-reinforced solid, re-scaled to the form (3.74) with s = 2:

utt =
(

1 + ε (ux)
2
)
uxx, (3.82)

and assume in (3.73) that β/α ∼ ε � 1, which corresponds to weak fiber effects. We also choose v(x, t) =

exp(−(x− t)2). Then the solution (3.81a) of the PDE (3.74) with h = 0 reduces to

u(x, t) = e−(x−t)2 +
ε

6

[
8t (x− t)3

e−3(x−t)2 +
1

9

((
12tx− 6t2 − 6x2 − 2

)
e−3(x−t)2

+
(
12tx+ 6t2 + 6x2 + 2

)
e−3(x+t)2

)]
+o(ε).

(3.83)

Note that for any fixed t, the approximate solution (3.83) approaches zero as x → ∞. Also, for any x ∈

(−∞,∞), the solution (3.83) is bounded as t→∞. The solution (3.83) is not a purely right-traveling wave

solution but describes an evolving wave form (see Section 3.7.2 below). In particular, the PDE (3.82) is

known to have breaking wave-type solutions [110].
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3.7.2 Numerical simulations of a perturbed wave model and finite-time singu-

larity formation

We now compute numerical solutions of the wave equation (3.82) in Example 3.7.1 in order to model its

finite-time singularity formation behaviour (see Section 3.7.3 below for details) and provide a reference for

comparison with the approximate solutions developed in Section 3.7.1. Gaussian-type initial conditions

corresponding to a right-traveling wave and periodic boundary conditions

u(x, 0) = e−x
2

, ut(x, 0) = 2xe−x
2

, u(−L, t) = u(L, t), L > 0. (3.84)

are posed in the space-time domain x ∈ [−L,L], t ≥ 0, and the equation (3.82) is solved using an explicit

finite difference cross-stencil scheme with constant spatial and temporal steps h̃, τ̃ . Following [78], we use a

conservative finite-difference scheme developed for the PDE (3.82):

Utť − Uxx̄ − ε
U3
x − U3

x̄

3h̃
, h̃, τ̃ = const,

xm = −L+mh̃, m = 0, . . . ,M,

tn = 0 + nτ̃ , n = 0, . . . , N

(3.85)

with U = Unm approximating the value of u(x, t) at the mesh node (xm, tn). Here Utť and Uxx̄ represent

the second-order central differences, Ux the first-order forward difference, and Ux̄ the first-order backward

difference:

Utť =
Un+1
m − 2Unm + Un−1

m

τ̃2
, Uxx̄ =

Unm+1 − 2Unm + Unm−1

h̃2
,

Ux =
Unm+1 − Unm

h̃
, Ux̄ =

Unm − Unm−1

h̃
.

(3.86)

The numerical solutions provide a good agreement with approximate solutions (3.83), for a broad range

of ε values, from the initial dimensionless time to the time close to the finite-time singularity. The time when

singularity forms increases approximately as ε−1 as ε decreases (see Section 3.7.3 below). Here we present

sample computation results for a relatively large value of the small parameter, ε = 0.5. The computation is

performed from t = 0 to t = 4 close to the finite-time singularity. A comparison of the numerical solution and

the approximate solution (3.83) of PDE (3.82) with initial and boundary conditions (3.84) at several time

snapshots is presented in Figure 3.1a. The relative difference at the time step tn between the approximate

and numerical solutions is calculated using 2-norms according to the formula

En = E(tn) =
||uapprox − unum||2
||uapprox||2

(3.87)

and is shown in Figure 3.1b.
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Figure 3.1: (a) Numerical and approximate profiles of u according to the PDE (3.82) (ε = 0.5) with

initial conditions (3.84) for L = 10, h = 0.01, τ = h/8, and t = 0, 2, 4, 6, 8. (b) Relative difference

(3.87) between numerical and approximate solutions.

3.7.3 Estimates of finite-time singularity formation using approximate and nu-

merical solutions

As discussed in Ref. [110], the variable nonlinearity (1 + ε (ux)
2
) leads to greater characteristic speed values

at points where |ux| is larger. This can lead to the intersection of characteristic curves, which corresponds to

the formation of a finite-time singularity. This behaviour can be studied using the method of characteristics.

While for linear hyperbolic PDEs, such as the constant-coefficient wave equation utt = c2uxx in the simplest

case, characteristic curves can be found in terms of explicit formulas such as x = x0± ct, and lead to explicit

exact solutions, the situation is significantly more complex for nonlinear hyperbolic PDEs. Using the method

described in Refs. [103,111], one can show that (3.82) can be reduced to the first-order characteristic form

ut = ± 1

2
√
ε

(√
ε ux

√
1 + ε (ux)

2
+ ln

(√
ε ux +

√
1 + ε (ux)

2

))
(3.88)

on the characteristic curves
dx

dt
= ±

√
1 + ε (ux)

2
. (3.89)

In the physical terms, the part of the wave that has a time derivative given by (3.88) moves at a finite

velocity given by (3.89). The integration of (3.89) yields a constant of integration x0 that corresponds to

the point on the characteristic curve where t = t0 is some initial time. Thus x = x(x0, t), from which

ut(x(x0, t), t) = a(x0, t) and ux(x(x0, t), t) = b(x0, t) in (3.88) and (3.89).

The formation of a shock where the solution becomes multi-valued takes place when characteristic curves

intersect. Without explicit knowledge of ux(x, t), no explicit solution x(x0, t) of (3.89) is available. To

estimate the time Tb when singularity forms, we use time-progressing linear approximations to characteristic
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curves, in conjunction with the finite-difference numerical solution of the PDE (3.82) described in Section

3.7.2. At each time layer tn in (3.85), linearized characteristics are launched forward in time from each

grid point (xm, tn). The smallest time of the intersection of such characteristics estimates the finite-time

singularity.

For example, when the numerical computation has reached the time layer t = tn, the linearized charac-

teristics are launched from each spatial grid point xm, m = 1, . . . ,M − 1. In particular, the right-traveling

characteristics are approximated by the lines

x = xm + t

√
1 + ε (ux(xm, tn))

2
, (3.90)

where ux = Ux is the first-order forward finite difference (3.86). To approximate the finite-time singularity

formation numerically, we solve (3.90) for the time t = τ when two different characteristics intersect. Given

two starting points, xm1
, xm2

, we get the system

x = xm1 + τ

√
1 + ε (ux(xm1 , tn))

2
, x = xm2 + τ

√
1 + ε (ux(xm2 , tn))

2
. (3.91)

Solving for τ yields

τ =
ξ2 − ξ1
m2 −m1

, (3.92)

where

mi =

√
1 + ε (ux(xmi , tn))

2
, i = 1, 2 (3.93)

are the slopes of the characteristic lines. We choose xm1 and xm2 to be adjacent grid points, xm1 + h̃ = xm2 .

The numerator of (3.92) is constant, so the approximate finite-time singularity corresponds to the largest

denominator of (3.92). We determine xm1
corresponding to the largest difference between the slopes m1 and

m2, then solve for τ .

The meaning of τ is thus the estimated time from tn to the finite-time singularity Tb; one consequently

has an estimate

Tb ∼ tn + τ. (3.94)

As the wave evolves, the slopes of the linearized characteristics will change and therefore so will τ . To account

for this, at each time step, we repeat the calculation for τ . We use the first-order forward finite difference

approximation to compute ux in (3.93) at each time step. Figure 3.2a shows a plot of the value of the time

to the singularity formation τ versus the time at which it was calculated, for several values of ε.

Alternatively, one can numerically estimate the finite-time singularity formation by defining it as the

time when min(uxx) ≤ δ for some negative number δ. Choosing for example δ = −5, and using the second-

order central difference approximation to the derivative for uxx in the numerical solution, we calculate the

numerical finite-time singularity for each ε. Using Richardson extrapolation of the finite-time singularities

found with spatial step sizes h̃ = 0.01 and h̃ = 0.005 and temporal step size τ̃ = 0.00125, we found the

finite-time singularities for each ε in the limit as h̃→ 0 as shown in Figure 3.2a. This approach uses the fact
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that as the wave approaches the finite-time singularity, the second spatial derivative uxx tends to negative

infinity (see Figure 3.2b).
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Figure 3.2: (a) Estimates (solid colour) and numerical (black dashed) values for the time-to singu-

larity formation τ (3.92) for ε = 0.1, 0.2, . . . , 1 (right to left). (b) Numerical wave profiles of uxx

(ε = 0.5) for t = 0, 1, 2.

We determined the actual, non-linearized characteristic curves by numerically integrating (3.89). The

curves are shown in Figure 3.3.

(a) (b)

Figure 3.3: (a) Characteristic curves found by numerical integration of (3.89) with ε = 0.5. The blue

horizontal line is the finite-time singularity as determined by Richardson extrapolation. (b) The same

plot as (a) with fewer characteristic lines shown. The thick red characteristic lines correspond to the

earliest intersection.
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It is interesting that one can also approximately determine the finite-time singularity from the approximate

solution (3.83) by finding the time when the second spatial derivative uxx of the approximate solution develops

an additional root, as shown in Figure 3.4. This corresponds to an additional inflection point in the wave

itself, which can be observed in Figure 3.1a closer to the finite-time singularity formation.

0 1 2 3 4 5 6 7
-6

-5

-4

-3

-2

-1

0

1

2

3

4

Figure 3.4: Wave profiles of the approximate solution uxx (ε = 0.5) for t = 0, 1, 3, 3.5. Note the

development of extra roots as time increases.

The numerically determined finite-time singularities (τnum) and the approximate-determined finite-time

singularities (τapprox) are given in Table 3.2.

ε τnum τapprox

1 1.3888 1.6050

0.9 1.1510 1.7875

0.8 1.6713 2.0175

0.7 1.8712 2.3263

0.6 2.1425 2.7363

0.5 2.5138 3.3238

0.4 2.3300 4.1150

0.3 3.0575 5.4988

0.2 5.7625 8.3162

0.1 10.9125 16.6737

Table 3.2: Numerical and approximate finite-time singularity formation estimates for the PDE (3.82)

vs. the small parameter values (ε).

Both sets of data are also plotted in Figure 3.5. We observe a qualitative agreement in behaviour which
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suggests that the finite-time singularity of (3.82) with the initial value problem (3.84) goes as τ ∼ ε−1.
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Figure 3.5: Numerical and approximate-derived finite-time singularities τ as a function of ε.

3.8 Exact and approximate point symmetry classification of a two-

dimensional wave equation

Here, we classify exact point symmetries of a two-dimensional wave equation

utt =
(
uxK(u2

x + u2
y)
)
x

+
(
uyK(u2

x + u2
y)
)
y
, u = u(t, x, y). (3.95)

To find additional symmetries for (3.95), we consider K(ux) = c2 + εQ(ux) where ε is a small positive

parameter. And then we classify exact and approximate point symmetries of a two-dimensional perturbed

wave equation

utt =
(
ux[c2 + εQ(u2

x + u2
y)]
)
x

+
(
uy[c2 + εQ(u2

x + u2
y)]
)
y
, u = u(t, x, y). (3.96)

3.8.1 Exact point symmetries of an unperturbed wave model

The set of equivalence transformations for the family (3.95) is given by the symmetry generators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂u
, X5 = t

∂

∂u
, X6 = u

∂

∂u
,

X7 = x
∂

∂y
− y ∂

∂x
, X8 = 2K

∂

∂K
− t ∂

∂t
, X9 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
. (3.97)

The point transformations

t̃ = C1t+ C2, x̃ = C3x+ C4, ỹ = C3y + C5, ũ = C6u+ C7t+ C8,

K̃
(
C2

3

C2
6

(
ũ2
x̃ + ũ2

ỹ

))
=
C2

1

C2
3

K
(3.98)
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maps the nonlinear wave equation (3.95) to another PDE from the same family. Using the determining equa-

tions (3.7), the point symmetry classification of the nonlinear wave equation (3.95) modulo the equivalence

transformations (3.97) is given by

1. K arbitrary: equation (3.95) admits seven point symmetries given by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂u
, X5 = t

∂

∂u
,

X6 = x
∂

∂y
− y ∂

∂x
, X7 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ u

∂

∂u
. (3.99)

Including the above symmetries, equation (3.95) admits additional point symmetries in the following

cases:

2. K(u2
x + u2

y) = (u2
x + u2

y)q, q 6= 0,−2:

X8 = u
∂

∂u
− qt ∂

∂t
. (3.100)

3. K(u2
x + u2

y) = (u2
x + u2

y)−2:

X8 = u
∂

∂u
+ 2t

∂

∂t
, X9 = tu

∂

∂u
+ t2

∂

∂t
. (3.101)

Note that the one-dimensional wave equation (3.53) with K(ux) = usx admits the point symmetry

(3.100) with q = s/2. When s = −4, it admits also the symmetry generator X9 (3.101) (see, [107]).

When K(u2
x + u2

y) = c2, equation (3.95) reduces to a linear PDE

utt = c2 (uxx + uyy) . (3.102)

It admits the following exact symmetries [4]

X0
1 = (

c2t2 + x2 + y2

c2
)
∂

∂t
+ 2xt

∂

∂x
+ 2yt

∂

∂y
− tu ∂

∂u
, X0

2 =
y

c2
∂

∂t
+ t

∂

∂y
,

X0
3 = 2yt

∂

∂t
+ 2xy

∂

∂x
+ (c2t2 − x2 + y2)

∂

∂y
− yu ∂

∂u
, X0

4 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y

X0
5 = 2xt

∂

∂t
+ (c2t2 + x2 − y2)

∂

∂x
+ 2xy

∂

∂y
− xu ∂

∂u
, X0

6 =
x

c2
∂

∂t
+ t

∂

∂x
, X0

7 =
∂

∂t

X0
8 = u

∂

∂u
, X0

9 = y
∂

∂x
− x ∂

∂y
, X0

10 =
∂

∂x
, X0

11 =
∂

∂y
, X0

∞ = α(t, x, y)
∂

∂u
, (3.103)

where α satisfy the linear wave equation αtt = c2 (αxx + αyy).

3.8.2 Exact point symmetries of a two-dimensional perturbed wave equation

The set of equivalence transformations for the family (3.96) is given by the symmetry generators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂u
, X5 = t

∂

∂u
, X6 = u

∂

∂u
,

X7 = x
∂

∂y
− y ∂

∂x
, X8 = ε

∂

∂ε
−K ∂

∂K
, X9 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
,

X10 = −t ∂
∂t

+ 2K
∂

∂K
+ c

∂

∂c
. (3.104)
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The corresponding group of equivalence transformations are given by:

t̃ = C1t+ C2, x̃ = C3x+ C4, ỹ = C3y + C5, ũ = C6u+ C7t+ C8,

c̃ =
C2

3

C2
1

c, ε̃ =
C2

3

C2
1

ε, Q̃
(
C2

3

C2
6

(
ũ2
x̃ + ũ2

ỹ

))
=
C2

3

C2
1

Q.

(3.105)

Applying the determining equation (3.7), we find that when Q(u2
x + u2

y) 6= 0 is an arbitrary function, the

PDE (3.96) admits the following symmetry generators

Y1 =
∂

∂t
, Y2 =

∂

∂x
, Y3 =

∂

∂y
, Y4 =

∂

∂u
, Y5 = t

∂

∂u
,

Y6 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ u

∂

∂u
, Y7 = x

∂

∂y
− y ∂

∂x
. (3.106)

Note that the symmetries (3.106) are equivalent to the exact symmetries (3.99) of the PDE (3.95). Hence,

the classification of exact symmetries of the PDE (3.96) does not yield any new cases or new symmetries for

(3.95). Therefore, we proceed now to classify the approximate symmetries of (3.96).

3.8.3 BGI approximate symmetries of a two-dimensional perturbed wave equa-

tion

The BGI approximate symmetry generator for the perturbed wave equation (3.96) has the form

X = X0 + εX1

=
(
ξ1
0(t, x, y, u) + εξ1

1(t, x, y, u)
) ∂
∂t

+
(
ξ2
0(t, x, y, u) + εξ2

1(t, x, y, u)
) ∂

∂x

+
(
ξ3
0(t, x, y, u) + εξ3

1(t, x, y, u)
) ∂
∂y

+ (η0(t, x, y, u) + εη1(t, x, y, u))
∂

∂u
,

(3.107)

where X0 is an exact symmetry generator for the unperturbed equation (3.102) with components:

ξ1
0 = C1

(
c2t2+x2+y2

c2

)
+ C2

y

c2
+ 2C3yt+ C4t+ 2C5xt+ C6

x

c2
+ C7,

ξ2
0 = 2C1xt+ 2C3xy + C4x+ C5

(
c2t2 + x2 − y2

)
+ C6t+ C9y + C10,

ξ3
0 = 2C1yt+ C2t+ C3

(
(c2t2 − x2 + y2)

)
+ C4y + 2C5xy − C9x+ C11,

η0 = −C1tu− C3yu− C5xu+ C8u+ α(t, x, y).

(3.108)

The solution of the determining equation (3.20) yields the following classification of BGI approximate sym-

metries for the PDE (3.96):

1. Q(u2
x + u2

y) arbitrary: the determining equation (3.20) provide some restrictions on the unperturbed

symmetry components (3.108): C1 = C2 = C3 = C5 = C6 = 0, C4 = C8 and α = k1t+ k2. Therefore,

the components (3.108) reduce to

ξ1
0 = C4t+ C7, ξ2

0 = C9y + C4x+ C10,

ξ3
0 = C4y − C9x+ C11, η0 = C4u+ k1t+ k2.

(3.109)
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It follows that the exact symmetries: X0
j , j = 1, 2, 3, 5, 6 and the linear combinationX0

4−X0
8 of the linear

wave equation (3.102) are unstable. Consequently, the PDE (3.96) admits the following approximate

symmetries divided to: approximate symmetries inherited from the exact symmetries (3.103):

X12 = X0
7 , X13 = X0

9 , X14 = X0
10, X15 = X0

11, X16 = t
∂

∂u
, X17 =

∂

∂u
(3.110)

and the linear combination of X0
4 and X0

8 (C4 = C8):

Xs = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ u

∂

∂u
, (3.111)

where X0
j are the exact symmetries of the unperturbed PDE (3.102) given by (3.103). Trivial approx-

imate symmetries including Xj = εX0
j , j = 1− 11 and the infinite approximate symmetry

X∞ = εβ(t, x, y)
∂

∂u
, (3.112)

where β satisfies the linear wave equation (3.102).

2. Q(u2
x + u2

y) = b ln(u2
x + u2

y) + d, b, d are constants: the conditions C1 = C2 = C3 = C5 = C6 = 0 on the

exact symmetry components (3.108) reduce them to

ξ1
0 = C4t+ C7, ξ2

0 = C9y + C4x+ C10,

ξ3
0 = C4y − C9x+ C11, η0 = C8u+ k1t+ k2.

(3.113)

In addition to the approximate symmetries Xj , j = 1, 2, ..., 17, and X∞, the PDE (3.96) admits a new

approximate symmetry given by

Xg = u
∂

∂u
− ε bt

c2
∂

∂t
. (3.114)

Note that the one dimensional wave equation (3.56) with Q(ux) = A ln(ux)+C admits the approximate

symmetry (3.114) with b = A/2.

3.8.4 FS approximate symmetries of a two-dimensional perturbed wave equa-

tion

Substituting u(t, x, y) = v(t, x, y) + εw(t, x, y) + o(ε) transforms the perturbed wave equation (3.96) into the

following system:

vtt = c2vxx + c2vyy,

wtt =
(
2v2
xvxx + 2v2

yvyy + 4vxvyvxy
)
Q′(v2

x + v2
y) + (vxx + vyy)Q(v2

x + v2
y) + c2 (wxx + wyy) .

(3.115)

The exact symmetry generator for the system (3.115) has the form

Y = ξt(t, x, y, v, w)
∂

∂t
+ ξx(t, x, y, v, w)

∂

∂x
+ ξy(t, x, y, v, w)

∂

∂y
+ ηv(t, x, y, v, w)

∂

∂v

+ηw(t, x, y, v, w)
∂

∂w
.

(3.116)
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Using the determining equation (3.7), one finds 0 = ξtw = ξxw = ξyw = ηvw, and hence

ξt = ξ1
0(t, x, y, v), ξx = ξ2

0(t, x, y, v), ξy = ξ3
0(t, x, y, v), ηv = η0(t, x, y, v) (3.117)

satisfy the determining equation of the first equation of the system (3.115), where ξ1
0 , ξ

2
0 , ξ

3
0 and η0 are the

infinitesimals of the exact symmetry generator of the linear wave equation (3.102) given by (3.108). Applying

the determining equation to the second equation of (3.115) leads to the following classification.

1. Q(v2
x + v2

y) arbitrary: the determining equation provides some conditions on the infinitesimals (3.117)

which reduce them to:

ξt = C4t+ C7, ξx = C4x+ C9y + C10,

ξy = C4y − C9x+ C11, ηv = C4v + k3t+ k4.

(3.118)

Consequently, the system of equations (3.115) admits the following symmetries

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂y
, Z4 =

∂

∂v
, Z5 = t

∂

∂v
,

Z6 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ v

∂

∂v
+ w

∂

∂w
, Z7 = x

∂

∂y
− y ∂

∂x
,

Z8 = v
∂

∂w
, Z∞ = γ(t, x, y)

∂

∂w
, (3.119)

where γ satisfies the linear wave equation (3.102).

2. Q = (v2
x + v2

y)n, n 6= 0: the infinitesimals (3.117) reduce to:

ξt = C4t+ C7, ξx = C4x+ C9y + C10,

ξy = C4y − C9x+ C11, ηv = C8v + k3t+ k4.

(3.120)

The system of equations (3.115) admits the symmetries (3.119) and the following genuine point sym-

metry

Z9 = v
∂

∂v
+ (2n+ 1)w

∂

∂w
. (3.121)

This case also appears in the classification of Fushchich-Shtelen symmetries of the one dimensional

wave equation (3.56) where the system of one-dimensional PDEs (3.68) with Q(vx) = vsx admits the

symmetry generator (3.121) with n = s/2.

In this classification, the unstable point symmetries of the linear wave equation (3.102) are given by the

difference between the freedom in (3.108) and (3.118), (3.120).

3.8.5 Summary

The classification of exact point symmetries of a one-dimensional wave equation (3.53) [107] has one more

case, K(ux) = eux , than the classification of exact point symmetries of the two-dimensional wave equation

(3.95) (Section 3.8.1).
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Similarly, the classification of exact and BGI approximate point symmetries of the one-dimensional per-

turbed wave equation (3.56) (Section 3.6.1) has one more case, Q(ux) = ux, than the classification of exact and

BGI approximate point symmetries of the two-dimensional perturbed wave equation (3.96). By comparing

the exact symmetries (3.106) with the BGI approximate symmetries (3.110) and (3.111) of (3.96), one can see

that the exact point symmetry classification of the wave equation (3.96) is included in the classification of BGI

approximate symmetries of the same PDE with the latter has a new case when Q(u2
x+u2

y) = b ln(u2
x+u2

y)+d

which yields a new approximate symmetry for (3.96) given by (3.114).

The classification of FS symmetries of the one-dimensional wave equation (3.56) (Section 3.6.3) has

one more case than the FS symmetry classification of the two-dimensional perturbed wave equation (3.96).

Finally, we note that the BGI and FS approximate symmetry classifications for the two-dimensional perturbed

wave equation (3.96) are not equivalent.

3.9 Discussion

In chapter 2, we have seen that the determining equations (2.106) for higher-order BGI approximate symme-

tries of the perturbed ODE (2.59) is a linear PDE in the approximate symmetry component ζ1(x, y, y′, ..., y(n−1))

with no additional conditions on the unperturbed symmetry components. This led to stability of exact point

or local symmetries of the unperturbed ODE (2.58) as higher-order BGI approximate symmetries. For a

PDE, in general, the situation is different. Some exact/local symmetries of the unperturbed PDE (3.5) do

not yield higher-order approximate symmetries of the perturbed PDE (3.15). This was clarified by noticing

that the left-hand side of the determining equation (3.23) always splits into a system of linear PDEs in ζ1.

On the other side, the right-hand side of equation (3.23) may contain derivatives of u with respect to other

variables different than those in the left-hand side of equation (3.23), this yields additional conditions on

the unperturbed symmetry component ζ0. A similar argument holds for FS approximate symmetries. As an

example, we showed that there was no higher-order (BGI and FS) approximate symmetry for the perturbed

PDE (3.31) corresponding to the unstable point symmetry t∂/∂u of the unperturbed wave equation (3.11).

The knowledge of stability of exact point symmetries in BGI and FS senses helps in studying the symmetry

properties of the perturbed models. The inheritance of all exact symmetries of an unperturbed PDE by its

perturbed version can occur in some cases. As shown in [10], the perturbed evolution equations

ut = h(u)ux + εH[u],

where h(u) is an arbitrary function of its argument and H is a differential function inherits the exact point

symmetries of the unperturbed equation ut = h(u)ux. In this chapter, we found a classification of stable

point symmetries for a nonlinear wave equation in BGI and FS frameworks (Table 3.1).

The classification of exact and BGI approximate local symmetries of perturbed ODEs and PDEs have

been considered in many articles (see, e.g., [23] and references therein). FS point symmetry classification was

performed for some PDEs with a small parameter [36,112]. The classification of exact and approximate (BGI
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and FS) symmetries for a perturbed PDE helps in illustrating the difference between these symmetries and

providing different types of approximate symmetries than can be used to construct approximate solutions

for the given PDE. In Section 3.6, we classified the exact and approximate (BGI and FS) point symmetries

for the perturbed one-dimensional wave equation (3.56). We found general approximate solutions for a class

of a perturbed one-dimensional wave equation (3.74) (Section 3.7.1). We found numerical solutions for the

perturbed wave equation (3.82) and compared with its approximate solution (3.83) (Section 3.7.2). Using

the approximate solution (3.83) of the wave model (3.82), we estimated the finite-time singularity formation

of (3.82). We also estimated the finite-time singularity formation of (3.82) by a linear approximation of the

characteristic curves using a finite difference scheme and compared the two sets of finite-time singularities

(Section 3.7.3). We found a complete classification of exact point symmetries of the two dimensional wave

equation (3.95), along with exact and (BGI and FS) approximate point symmetries of the perturbed two

dimensional wave model (3.96) (Section 3.8).

The determining equation (2.79) for FS symmetries of the perturbed PDE (3.15) is different than the

determining equation (3.20) for BGI approximate symmetries of (3.15) that yield different approximate

symmetry structures. The relation between BGI and FS approximate point symmetries for Navier-Stokes

equation and diffusion equations was discussed in [15, 92]. In this chapter, we showed some connection

between the BGI and FS approximate symmetries for a family of perturbed PDEs, that each stable BGI

point symmetry yields a higher-order FS approximate symmetry (Theorem 3.5.1).
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4 Approximate Conservation Laws of PDEs with a

Small Parameter

4.1 Introduction

In the previous chapters, we investigated the BGI and FS frameworks for approximate local symmetries of

algebraic equations, ODEs and PDEs with a small parameter. We observed that new approximate symmetries

can be obtained and we showed that how these approximate symmetries are useful in construction of new

approximate solutions for perturbed models (ODEs and PDEs). Several examples were given.

The notion of approximate conservation laws was initiated in [23] with specific regard to approximate

symmetries associated with approximate Lagrangian of the system of perturbed PDEs (approximate Noether

symmetries [42]). For perturbed PDEs that do not admit variational principle, approximate conservation

laws were constructed using known approximate symmetries of the given model [44,113] and using the direct

method [46].

In this chapter, we apply the direct method [5,6] to obtain approximate conservation laws of a system of

perturbed PDEs. We show, using examples of perturbed PDEs, that one can obtain additional approximate

conservation laws for the given system that do not originate from the exact conservation laws of the same sys-

tem. For a variational system of perturbed PDEs, we show that a set of approximate multipliers corresponds

to a Noether approximate local symmetry of the PDE system. We show that if two systems of perturbed

PDEs are approximately connected by an invertible approximate point transformation, then an approximate

conservation law for one system is mapped using this transformation to a conservation law for the other

system and a formula for the transformed conservation law is derived. Another formula is derived using the

action of an approximate point symmetry of a system of perturbed PDEs on a given set of approximate

multipliers of a known approximate conservation law for this system to obtain new set of approximate multi-

pliers which could yield new approximate conservation law for the given system if the new set of approximate

multipliers are independent of the given set of approximate multipliers. Using these formulas, we obtain

new approximate conservation laws for perturbed wave equation and nonlinear telegraph system [37]. As an

application for approximate conservation laws, we find the potential systems corresponding to approximate

conservation laws of a nonlinear wave equation. We show that new approximate potential symmetries can

be obtained and we provide a simple example to show that the approximate potential symmetries are useful

in construction of new approximate solutions for perturbed PDEs.
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4.2 Approximate local conservation laws

Consider a PDE system with a small parameter ε

Fσ[v; ε] = Fσ0 (x, v, ∂v, . . . , ∂kv) + εFσ1 (x, v, ∂v, . . . , ∂kv) = o(ε), (4.1)

σ = 1, ..., N.

Definition 4.2.1. An approximate local conservation law of (4.1) is a divergence expression

DiΦ
i[v; ε] = o(ε) (4.2)

holds for all solutions of Fσ[v; ε] = o(ε), where

Φi[v; ε] = Φi0[v] + εΦi1[v]

and Di is the total derivative with respect to xi.

Note that DiΦ
i
0[v] = 0 is a local conservation law of the unperturbed equations Fσ0 [v] = 0. For example,

the nonlinear wave equation

utt + εut = (uux)x (4.3)

has an approximate conservation law

Dt

[
tut − u+

ε

2
t2ut

]
−Dx

[
tuux +

ε

2
t2uux

]
= o(ε).

When ε = 0, one obtains an exact local conservation law Dt(tut − u) − Dx(tuux) = 0 for the unperturbed

wave equation utt = (uux)x .

4.2.1 Equivalent and trivial approximate conservation laws

An approximate conservation law (4.2) of the perturbed equations (4.1) is trivial when

1. its fluxes Φi[v; ε] vanish identically or become o(ε) on the solutions of a PDE system (4.1),

2. the approximate conservation law itself vanishes to o(ε) as a differential identity.

For example, consider the PDE system

vx = ut, vt = (c2 + εu)ux. (4.4)

The approximate conservation laws

Dt((vx − ut)) +Dx(vt − (c2 + εu)ux) = o(ε),

Dt((vxx))−Dx(vtx) = o(ε)

are trivial approximate conservation laws of the first and second type, respectively. The above cases

are equivalent to the cases of trivial exact conservation laws [37]. Another kind of triviality appears in

case of approximate conservation law when
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3. an approximate conservation law (4.2) is of the form εDiΦ
i
0[v] = o(ε) where Φi0[v] are fluxes of a local

conservation law of the unperturbed equations Fσ0 [v] = 0. As an example, the divergence expression

ε (Dt (ut)−Dx (uux)) = o(ε) (4.5)

is a trivial approximate conservation law for the PDE (4.3) since on solutions of (4.3), the left-hand

side of (4.5) reads −ε2ut.

Definition 4.2.2. Two approximate conservation laws are equivalent if their difference is a trivial approxi-

mate conservation law.

4.3 Approximate multipliers. The direct method

Definition 4.3.1. The approximate multipliers

Λσ[V ; ε] = Λσ0 [V ] + εΛσ1 [V ], σ = 1, ..., N

yield a divergence expression for (4.1) if

ΛσFσ ≡ (Λσ0 [V ] + εΛσ1 [V ])Fσ ≡ DiΦ
i[V ; ε] + o(ε) (4.6)

holds for arbitrary functions V . If Λσ[V ; ε] is nonsingular, then on solutions V (x) = v(x) of the PDE system

(4.1) one has an approximate local conservation law

DiΦ
i[v; ε] = o(ε). (4.7)

Remark 4.3.1. For perturbed ODEs, approximate conservation laws and approximate multipliers corre-

spond respectively to approximate first integrals and approximate integrating factors for the perturbed ODEs.

They have been discussed in detail in Chapter 2.

An approximate multiplier Λσ[V ; ε] = Λσ0 [V ]+εΛσ1 [V ] is singular if it is a singular function as ε approaches

to 0 when evaluated on Fσ = o(ε). In applications, one is only interested in nonsingular approximate

multipliers since singular approximate multipliers can lead to divergence expressions that are not approximate

conservation laws of a PDE system (4.1). For instance, for each nonsingular multiplier Λσ0 of the unperturbed

PDE system Fσ0 [V ] = 0, σ = 1, . . . , N ,

Λσ = Λσ0 [V ]− εΛσ0 [V ]Fσ1 [V ]

Fσ0 [V ]

satisfies (4.6). However, on solutions of (4.1), one has

Λσ0 [V ]Fσ1 [V ]

Fσ0 [V ]
=

Λσ0 [v]Fσ1 [v]

−εFσ1 [v] + o(ε)
→∞ as ε→ 0.

It follows that Λσ is a singular multiplier of the PDE system (4.1). In particular, one can show that Λσ

yields a divergence expression that is not an approximate conservation laws of the PDE system (4.1). Take

the nonlinear heat equation

ut − uxx − εu3 = 0 (4.8)
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as an example. For a function Λ = Λ0 + εΛ1 = 1 + ε U3

Ut−Uxx , one has

Λ
(
Ut − Uxx − εU3

)
=

(
1 + ε

U3

Ut − Uxx

)(
Ut − Uxx − εU3

)
= Ut − Uxx − ε2 U6

Ut − Uxx
= Ut − Uxx + o(ε)

(4.9)

for arbitrary function U . However, on solutions of ut − uxx − εu3 = 0,

Λ1 =
u3

ut − uxx
=

u3

εu3
→∞, as ε→ 0.

It follows that Λ = 1 + ε U3

Ut−Uxx is a singular multiplier. In fact, on solutions of (4.8), the expression in (4.9)

becomes εu3. Hence, Λ = 1 + εU3/(Ut − Uxx) yields no approximate conservation law of the nonlinear heat

equation (4.8).

Theorem 4.3.1. The nonsingular approximate multipliers

Λσ[V ; ε] = Λσ0 [V ] + εΛσ1 [V ], σ = 1, ..., N

yield approximate conservation laws for the PDE system (4.1) if and only if

EV µ((Λσ0 [V ] + εΛσ1 [V ])Fσ[V ; ε]) ≡ o(ε), µ = 1, . . . ,m, (4.10)

holds for arbitrary functions V , where EV µ is the Euler operator given by (1.143).

Proof. For the necessity, it is straightforward to obtain (4.10) by applying Euler operator EµV to the identity

(4.6). Conversely, if

EV µ((Λσ0 [V ] + εΛσ1 [V ])Fσ[V ; ε]) ≡ o(ε),

then, for each µ = 1, . . . ,m, one has

o(ε) ≡ EV µ((Λσ0 [V ] + εΛσ1 [V ])Fσ[V ; ε])

≡ EV µ(Λσ0 [V ]Fσ[V ; ε]) + εEV µ(Λσ1 [V ]Fσ[V ; ε])

≡ EV µ(Λσ0 [V ](Fσ0 [V ] + εFσ1 [V ])) + εEV µ(Λσ1 [V ](Fσ0 [V ] + εFσ1 [V ]))

≡ EV µ(Λσ0 [V ]Fσ0 [V ]) + εEV µ(Λσ0 [V ]Fσ1 [V ] + Λσ1 [V ]Fσ0 [V ]) + o(ε)

(4.11)

for arbitrary functions V . Setting to zero the coefficients of different powers of ε, one consequently has

EV µ(Λσ0 [V ]Fσ0 [V ]) ≡ 0,

EV µ(Λσ0 [V ]Fσ1 [V ] + Λσ1 [V ]Fσ0 [V ]) ≡ 0

(4.12)

for arbitrary functions V and each µ = 1, . . . ,m. According to Theorem 1.4.1, there exist differential functions

Φi0[V ], Φi1[V ] such that

Λσ0 [V ]Fσ0 [V ] = DiΦ
i
0[V ],

Λσ0 [V ]Fσ1 [V ] + Λσ1 [V ]Fσ0 [V ] = DiΦ
i
1[V ]
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for any arbitrary functions V . Let Φi[V ; ε] = Φi0[V ] + εΦi1[V ] + o(ε), then it follows that

(Λσ0 [V ] + εΛσ1 [V ])Fσ[V ; ε] ≡ DiΦ
i + o(ε).

Therefore, on solutions of (4.1), one obtains an approximate conservation law (4.7) for the PDE system

(4.1)

Remark 4.3.2. Equations (4.12) are the determining equations for approximate multipliers of the PDE

system (4.1). From the first determining equation of (4.12), it follows that Λσ0 , σ = 1, ..., N is a multiplier of

the unperturbed PDE system Fσ0 [V ] = 0.

Remark 4.3.3. It is clear from the determining equations (4.12), if Λσ0 [V ] is a multiplier of the unperturbed

PDE system Fσ0 [V ] = 0, then Λσ1 [V ] = εΛσ0 is an approximate multiplier of the PDE system (4.1). Such

multipliers are called trivial approximate multipliers. In practice, one is only interested in approximate

multipliers with Λσ0 6≡ 0.

Remark 4.3.4. Suppose Λσ[V ; ε] is an exact multiplier of the PDE system (4.1). It is straightforward to

show that the first order expansion of Λσ[V ; ε] about ε = 0 is an approximate multiplier of (4.1).

4.3.1 Examples

Example 4.3.1. As a first example, consider the nonlinear wave equation

utt − (c2(u)ux)x = 0, (4.13)

and its perturbed version

utt − (c2(u)ux)x + εut = 0, (4.14)

with nonconstant wave speed c(u). The second order Euler operator is given by

EU =
∂

∂U
−Dx

∂

∂Ux
−Dt

∂

∂Ut
+Dxx

∂

∂Uxx
+Dtt

∂

∂Uxx
+Dxt

∂

∂Uxt
. (4.15)

We seek all approximate multipliers of the perturbed nonlinear wave equation (4.14) of the form Λ =

Λ0(x, t, U) + εΛ1(x, t, U), where Λ0 is an exact multiplier of the unperturbed equation (4.13). In terms of the

second order Euler operator (4.15), the determining equations (4.12) become

EU (Λ0(x, t, U)(Utt − (c2(U)Ux)x)) ≡ 0,

EU (Λ0(x, t, U)Ut + Λ1(x, t, U)(Utt − (c2(U)Ux)x)) ≡ 0.
(4.16)

First, one find the exact multiplier Λ0 using the first determining equation of (4.16). The split system of

linear PDEs in Λ0 is given by
∂Λ0

∂U
= 0,

∂2Λ0

∂x2
= 0,

∂2Λ0

∂t2
= 0 (4.17)

for arbitrary nonconstant wave speed c(u). One obtains the following general solution for Λ0:

Λ0(x, t, U) = c1 + c2x+ c3xt+ c4t. (4.18)
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Substituting Λ0 into the second determining equation of (4.16) leads to the following splitting system of

linear PDEs in Λ1

∂Λ1

∂U
= 0,

∂2Λ1

∂x2
= 0,

∂2Λ1

∂t2
= c3x+ c4. (4.19)

The general solution for the PDE system (4.19) has the form

Λ1(x, t, U) =
c3
2
xt2 +

c4
2
t2 + c5xt+ c6t+ c7x+ c8, (4.20)

where ci, i = 1, . . . , 8, are arbitrary constants. Hence there are eight nonsingular approximate multipliers for

the perturbed nonlinear wave equation (4.14) given by

Λ(1) = 1, Λ(2) = x,

Λ(3) = xt+
ε

2
xt2, Λ(4) = t+

ε

2
t2,

Λ(5) = εxt, Λ(6) = εt, Λ(7) = εx, Λ(8) = ε.

(4.21)

Note that Λ(j), j = 5, ..., 8 are trivial approximate multipliers that yield trivial approximate conservation law

of the third type. For the multiplier Λ(1) = 1, since the PDE (4.14) is in divergence form, one has

Λ(1)(Utt − (c2(U)Ux)x + εUt) = Dt[Ut + εU ]−Dx[c2(U)Ux].

Consequently,

Dt[ut + εu]−Dx[c2(u)ux] = o(ε) (4.22)

is an approximate conservation law for the PDE (4.14) corresponding to the approximate multiplier Λ(1) = 1.

For Λ(3) = xt+
ε

2
xt2, one can use integration by parts to determine the flux and the density as follows

Λ(3)(Utt − (c2(U)Ux)x + εUt) = xtUtt − xt(c2(U)Ux)x +
ε

2
xt2Utt −

ε

2
xt2(c2(U)Ux)x

+εxtUt + o(ε)

= Dt(xtUt − xU)−Dx

(
xtc2(U)Ux − t

∫
c2(U)dU

)
+Dt(

ε

2
xt2ut)− εxtUt

−Dx

(
ε

2
(xt2c2(u)ux − t2

∫
c2(u)du)

)
+ εxtUt + o(ε)

= Dt(xtUt − xU +
ε

2
xt2ut)

−Dx

(
xtc2(U)Ux − t

∫
c2(U)dU − ε

2
(xt2c2(u)ux + t2

∫
c2(u)du)

)
.

Thus, the corresponding approximate conservation law is given by

Dt

[
xtut − xu+ ε

2xt
2ut
]
−Dx

[
xtc2(u)ux − t

∫
c2(u)du+

ε

2

(
xt2c2(u)ux − t2

∫
c2(u)du

)]
= o(ε). (4.23)
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Similarly, one can find the approximate conservation laws of the perturbed nonlinear wave equation (4.14)

corresponding to the approximate multipliers Λ(2) and Λ(4). They are given respectively by

Dt [xut + εxu]−Dx

[
xc2(u)ux −

∫
c2(u)du

]
= o(ε), (4.24a)

Dt

[
tut − u+

ε

2
t2ut

]
−Dx

[
tc2(u)ux +

ε

2
t2c2(u)ux

]
= o(ε). (4.24b)

The trivial approximate multipliers Λ(j), j = 5, ..., 8 yield trivial approximate conservation laws εDiΦ
i
0 =

o(ε), where Φi0 are fluxes of the exact conservation laws for the unperturbed equation (4.13). The trivial

approximate conservation laws are given respectively by

Dt [ε(xtut − xu)]−Dx

[
ε

(
xtc2(u)ux − t

∫
c2(u)du

)]
= o(ε), (4.25c)

Dt [ε(tut − u)]−Dx

[
εtc2(u)ux

]
= o(ε), (4.25d)

Dt [εxut]−Dx

[
ε

(
xc2(u)ux −

∫
c2(u)du

)]
= o(ε), (4.25e)

Dt [εut]−Dx

[
εc2(u)ux

]
= o(ε). (4.25f)

If one considers the exact multipliers of the perturbed nonlinear wave equation (4.14), one can show that

the perturbed nonlinear wave equation (4.14) has four exact multipliers given by

A(1) = 1, A(2) = x,

A(3) = eεt = 1 + εt+ o(ε),

A(4) = xeεt = x+ εxt+ o(ε).

(4.26)

It follows that A(1) = Λ(1), A(2) = Λ(2), and the approximate multipliers Λ(1) + Λ(6) and Λ(2) + Λ(5) in

(4.21) are the first two terms in the Taylor expansion in ε of the exact multipliers A(3) and A(4), respectively.

Most importantly, the genuine approximate multipliers Λ(3) and Λ(4) in (4.21) of the perturbed equation

(4.14) do not arise from the exact multipliers (4.26) of the same PDE.

Example 4.3.2. As a second example, consider the perturbed nonlinear diffusion equation

ut − (u−2ux)x − ε(u− u−1)x = 0. (4.27)

We seek all approximate multipliers of the perturbed nonlinear diffusion equation (4.27) of the form

Λ = Λ0(x, t, U) + εΛ1(x, t, U). In terms of the second order Euler operator (4.15), the determining equations

become

EU (Λ0(x, t, U)(Ut − (U−2Ux)x) ≡ 0,

EU (Λ0(x, t, U)(U − U−1)x + Λ1(x, t, U)(Ut − (U−2Ux)x) ≡ 0.
(4.28)

Splitting the determining equations (4.28), one obtains the following explicit determining equations for

121



the unknown functions Λ0(x, t, U) and Λ1(x, t, U):

− 2U−2 ∂Λ0

∂U
= 0, − 2U−2 ∂

2Λ0

∂x∂U
= 0,

− ∂Λ0

∂t
− U−2 ∂

2Λ0

∂x2
= 0, 2U−3 ∂Λ0

∂U
− U−2 ∂

2Λ0

∂U2
= 0,

− 2U−2 ∂Λ1

∂U
= 0, − 2U−2 ∂

2Λ1

∂x∂U
= 0,

− U−2 ∂
2Λ1

∂U2
+ 2U−3 ∂Λ1

∂U
= 0, − ∂Λ1

∂t
+
∂Λ0

∂x
+ U−2 ∂Λ0

∂x
− U−2 ∂

2Λ1

∂x2
= 0.

(4.29)

The general solutions of the determining equations (4.29) are given by

Λ0(x, t, U) = c2x+ c1,

Λ1(x, t, U) = c2

(
t+

x2

2

)
+ c3x+ c4,

(4.30)

where ci, i = 1, . . . , 4, are arbitrary constants. Hence there are four approximate multipliers for the perturbed

nonlinear diffusion equation (4.27) given by

Λ(1) = 1, Λ(2) = x+ ε

(
t+

x2

2

)
, Λ(3) = εx, Λ(4) = ε. (4.31)

Thus, on solutions of (4.27), one gets four corresponding approximate conservation laws of the perturbed

nonlinear diffusion equation (4.27) given by

Dt[u]−Dx

[
u−2ux + ε(u− u−1)

]
= o(ε), (4.32a)

Dt

[
xu+ ε

(
tu+

x2

2
u

)]
−Dx

[
xu−2ux + u−1 + ε

((
t+

x2

2

)
u−2ux + xu

)]
= o(ε), (4.32b)

Dt[εxu]−Dx

[
ε
(
xu−2ux + u−1

)]
= o(ε), (4.32c)

Dt[εu]−Dx

[
εu−2ux

]
= o(ε). (4.32d)

One can show that the exact multipliers of the perturbed nonlinear diffusion equation (4.27) are given by

A(1) = 1, A(2) = eεxeε
2t = 1 + εx+ o(ε). (4.33)

So, there are two exact multipliers vs. four approximate multipliers for the PDE (4.27). Note that the

linear combination Λ(1) + Λ(3) of the approximate multipliers Λ(1) and Λ(3) in (4.31) of the PDE (4.27) is

contained in a Taylor expansion in ε of the exact multiplier A(2) (4.33) of (4.27). While, the multiplier Λ(2)

is a new approximate multiplier for the PDE (4.27) that does not arise from the exact multipliers (4.33) of

(4.27).

Remark 4.3.5. In Example 4.3.1 and Example 4.3.2, the exact multipliers of the unperturbed PDE carry

over the approximate multipliers of the perturbed equation with some of them as genuine approximate

multipliers. However this is not always the case for all PDEs since the determining equations (4.12) for

approximate multipliers may contain additional constraints on the exact multipliers of the unperturbed

equation.
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As an illustration, consider the KdV equation

ut + uux + uxxx = 0, (4.34)

and its perturbed version

ut + uux + uxxx + εu2
x = 0. (4.35)

These are Cauchy-Kovalevskaya PDEs with leading derivative ut. As noted in [37], all nonsingular multipliers

of the above equations have the form Λ(x, t, U, Ux, Uxx, ...). The general second-order exact multiplier of the

unperturbed equation (4.34) is found in [37] and has the form

Λ0(x, t, U, Ux, Uxx) = c1 + c2U + c3(tU − x) + c4

(
Uxx +

U2

2

)
(4.36)

Let

Λ = Λ0(x, t, U, Ux, Uxx) + εΛ1(x, t, U, Ux, Uxx, ..., UNx)

for some finite number N be an approximate multiplier for the perturbed PDE (4.35). Take N = 2, then the

determining equations (4.12) splits into linear PDEs in Λ1 and additional conditions on the exact multiplier

(4.36) leading to some constraints on the free constants in (4.36): C2 = C3 = C4 = 0. Now increasing the

dependance of Λ1 on higher derivative of U yields additional terms with higher derivatives of U which does

not help in removing the constraints on Ci in (4.36). Hence, the exact multipliers of the KdV equation (4.34)

that correspond to the constants C2, C3 and C4 do not yield approximate multipliers for the perturbed PDE

(4.35).

4.4 Noether’s theorem for approximate conservation laws

Consider an approximate Lagrangian

L[v; ε] = L0(x, v, ∂v, . . . , ∂kv) + εL1(x, v, ∂v, . . . , ∂kv) = o(ε), (4.37)

and the action integral

L =

∫
Ω

L[v; ε]dx (4.38)

defined on some domain Ω. The approximate Euler-Lagrange equations are given by

Evµ(L) = o(ε), µ = 1, ...,m. (4.39)

Definition 4.4.1. A one-parameter family of local approximate BGI transformations with infinitesimal

generator (1.100) is an approximate variational symmetry of the action integral (4.38) if and only if

X̂(k)L = DiA
i + o(ε),

where Ai[v; ε] are differential functions of their arguments.
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An approximate variational symmetry of the functional (4.38) yields an approximate local symmetry of

the corresponding approximate Euler-Lagrange equations (4.39). Let the equations (4.39) be invariant under

the one-parameter BGI approximate point transformations (1.90) with infinitesimal generator

X = ξi(x, v; ε) + ηµ(x, v; ε)

=
(
ξi0(x, v) + εξi1(x, v)

) ∂

∂xi
+ (ηµ0 (x, v) + εηµ1 (x, v))

∂

∂vµ
.

(4.40)

The one-parameter family of BGI approximate point transformations (1.90) with symmetry generator (4.40)

is an approximate variational symmetry for (4.39) if

X(k)L+ LDiξ
i = DiA

i + o(ε). (4.41)

For perturbed PDEs, Noether’s theorem also provides a relation between approximate variational sym-

metries and corresponding approximate conservation laws [23].

Theorem 4.4.1. Let X (4.40) be an approximate variational symmetry for the approximate Euler-Lagrange

equations (4.39), then the differential functions

Φi = Lξi +
(
ηµ − ξjvµj

) ∂L
∂vµi
−Ai + o(ε) (4.42)

satisfy the approximate conservation law (4.2) for (4.39).

Though approximate Noether’s theorem gives an explicit formula for the fluxes of approximate conser-

vation laws, it is restricted to perturbed differential equations arising from a variational principle, i.e., the

approximate Euler-Lagrange equations (4.39) that are approximate extremals of the action integral (4.38).

On the other hand, there are no restrictions on the direct method. It can be applied to any system of

differential equations whether or not it arises from a variational principle. In the following theorem, we show

that all approximate local conservation laws obtained by approximate Noether theorem are obtained by the

direct method.

Theorem 4.4.2. Let X (4.40) be an approximate variational symmetry for the approximate Euler-Lagrange

equations (4.39), and let

ζµ[v; ε] = ζµ0 + εζµ1 = ηµ0 − viξi0 + ε
(
ηµ1 − viξi1

)
be the characteristic of X (4.40). Then ζ = (ζ1, . . . , ζm) is an approximate multiplier of an approximate

conservation law for the approximate Euler-Lagrangian equations (4.39).

Proof. As an adaption of the relation between an exact point symmetry and its evolutionary form [4], it can

be easily verified that the approximate point symmetry (4.40) and its evolutionary form satisfy

X(k) − X̃(k) = ξiDi + o(ε). (4.43)
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Substitute (4.43) into the Noether formula (4.41), one gets

o(ε) = X̃(k)L+ ξiDiL+ LDiξ
i −DiA

i

= X̃(k)L+Di(ξ
iL)−DiA

i

= X̃(k)L+Di

(
ξiL−Ai

)
.

The integration by parts for the first term of this equation leads to

X̃(k)L = ζµ
∂L

∂vµ
+
∑
j,µ

Djζ
µ ∂L

∂vµj

= ζµ
∂L

∂vµ
+
∑
j,µ

ζµ (−D)j
∂L

∂vµj
+DiB

i

=

m∑
µ=1

ζµEvµ(L) +DiB
i,

where j = (j1, ..., jr), 1 ≤ jr ≤ n and Bi[v; ε] are some functions depending on ζµ, L and their derivatives.

Hence we proved that
m∑
µ=1

ζµEvµ(L) = Di(A
i −Bi − ξiL) + o(ε).

Therefore, ζ = (ζ1, . . . , ζm) is an approximate multiplier for the perturbed equations (4.39).

Example 4.4.1. Consider the perturbed linear wave equation with damping

utt − uxx + εut = 0. (4.44)

This PDE has an approximate Lagrangian [113]

Lapprox =
1

2

(
u2
x − u2

t

)
+
ε

2
t
(
u2
x − u2

t

)
.

Applying the Euler operator (1.143) on Lapprox, one gets (4.44) approximately:

Eu (Lapprox) = utt − uxx + εut − ε2tut.

In fact, Lapprox is contained in the Taylor expansion in ε of the exact Lagrangian

L =
1

2
eεt
(
u2
x − u2

t

)
of the PDE (4.44). Note that L0 =

1

2

(
u2
x − u2

t

)
is a Lagrangian for the unperturbed equation (ε = 0). The

PDE (4.44) admits an approximate symmetry given by

X =
∂

∂t
− ε
(
x
∂

∂x
+

1

2
u
∂

∂u

)
. (4.45)

The first-order prolongation of (4.45) reads

X(1) = X + ε

(
1

2
ux

∂

∂ux
− 1

2
ut

∂

∂ut

)
.
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By direct computation, one can find that X satisfies the Noether formula (4.41) with Ai[u; ε] = 0, which

implies that X is an approximate Noether symmetry of (4.44). The evolutionary form of X has the form

X̃ =

(
ut + ε

(
−xux +

1

2
u

))
∂

∂u
.

Let

ζ = Ut + ε

(
−xUx +

1

2
U

)
.

Then

ζ (Utt − Uxx + εUt) = Ut (Utt − Uxx) + ε

(
UUtt

2
− UUxx

2
+ xUx (Uxx − Utt) + U2

t

)
= Dt

(
1

2
U2
t +

1

2
U2
x

)
−Dx (UtUx) + ε

[
Dt

(
1

2
UUt

)
−Dx

(
1

2
UUx

)

+
U2
t

2
− U2

x

2
+Dx

(
1

2

(
xU2

x + xU2
t

))
+
U2
x

2
+
U2
t

2
+ xUtUtx

−Dt (xUtUx)− xUtUxt
]
+o(ε)

= Dt

(
1

2
U2
t +

1

2
U2
x + ε

(
1

2
UUt − xUtUx

))
−Dx

(
UtUx + ε

(
1

2
UUx −

1

2

(
xU2

x + xU2
t

)))
+ o(ε).

Hence, ζ is a nontrivial approximate multiplier that yields the following approximate conservation law for

(4.44)

Dt

(
1

2
u2
t +

1

2
u2
x + ε

(
1

2
uut − xutux

))
−Dx

(
utux + ε

(
1

2
uux −

1

2

(
xu2

x + xu2
t

)))
= o(ε). (4.46)

4.5 Other connections between approximate symmetries and ap-

proximate conservation laws

For any unperturbed PDE system Fσ[u], it was shown that an invertible transformation (point or contact

transformation) that maps Fσ[u] to another PDE system Rσ[v], it maps each conservation law of Fσ[u] to a

corresponding conservation law of Rσ[v]. When the invertible transformation is a symmetry of Fσ[u], then

a known conservation law of Fσ[u] is mapped to another conservation law of Fσ[u]. A formula related to

construction of new set of exact multipliers from a known set of exact multipliers was derived which leads to

obtaining new conservation law provided that the two sets of multipliers are independent [40].

We extend these results in case of system of perturbed PDEs and their approximate point transformations

and approximate conservation laws. Consider an invertible approximate point transformation

xi = f i(x̃, Ṽ ; ε) = f i0(x̃, Ṽ ) + εf i1(x̃, Ṽ ), i = 1, ..., n,

V µ = gµ(x̃, Ṽ ; ε) = gµ0 (x̃, Ṽ ) + εgµ1 (x̃, Ṽ ), µ = 1, ...,m.
(4.47)
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Under the transformation (4.47), a function Fσ[V ; ε] with V (x; ε) = v(x; ε) solves the system of PDEs Fσ[v; ε]

(4.1) is mapped to some function Rσ[Ṽ ; ε] where the coordinates of Fσ[V ; ε] are expressed in terms of the

coordinates of Rσ[Ṽ ; ε] using (4.47). If V (x; ε) = v(x; ε) is an approximate solution of the system of PDEs

(4.1), then Ṽ (x̃) = ṽ(x̃) is an approximate solution of PDE system Rσ[ṽ; ε] given by

Rσ[ṽ; ε] = Rσ0 (x, ṽ, ∂ṽ, . . . , ∂kṽ) + εRσ1 (x, ṽ, ∂ṽ, . . . , ∂kṽ) = o(ε), (4.48)

σ = 1, ..., N, with n independent variables x̃ = (x̃1, ..., x̃n) and m dependent variables ṽ = (ṽ1, ..., ṽm).

In the following theorem, we show how the invertible transformation (4.47) can be used to construct an

approximate conservation law of Rσ[ṽ; ε] from a known approximate conservation law of Fσ[v; ε].

Theorem 4.5.1. The invertible approximate point transformation (4.47) transforms an approximate con-

servation law DiΦ
i[v; ε] = o(ε) of PDE system Fσ[v; ε] to the approximate conservation law

DiΨ
i[ṽ; ε] = o(ε) (4.49)

of PDE system Rσ[ṽ; ε](4.48) with Ψi[ṽ; ε] is given in terms of the determinant obtained through replacing

the ith column of the Jacobian determinant

J [ṽ; ε] =
D
(
f1, ..., fn

)
D (x̃1, ..., x̃n)

(4.50)

by
[
Φ1[v; ε] . . . Φn[v; ε]

]t
.

Proof. Let DiΦ
i[v; ε] = o(ε) be an approximate conservation law for the PDE system Fσ[v; ε] (4.1). We prove

that under the invertible transformation (4.47), the following statement holds

D̃iΨ
i[Ṽ ; ε] = J [Ṽ ; ε]DiΦ

i[V ; ε] + o(ε), (4.51)

where D̃i is the total derivative operator with respect to x̃i given by

D̃i =
∂

∂x̃i
+ Ṽ µi

∂

∂Ṽ µ
+ Ṽ µij

∂

∂Ṽ µj
+ . . .+ Ṽ µii1i2...in

∂

∂Ṽ µi1i2...in
+ . . . .

Indeed, consider the determinants

Ψ1[Ṽ ; ε] =

∣∣∣∣∣∣∣∣∣∣∣∣

Φ1[V ; ε] D̃2f
1 · · · D̃nf

1

Φ2[V ; ε] D̃2f
2 · · · D̃nf

2

...
...

...

Φn[V ; ε] D̃2f
n · · · D̃nf

n

∣∣∣∣∣∣∣∣∣∣∣∣
, Ψ2[Ṽ ; ε] =

∣∣∣∣∣∣∣∣∣∣∣∣

D̃1f
1 Φ1[V ; ε] · · · D̃nf

1

D̃1f
2 Φ2[V ; ε] · · · D̃nf

2

...
...

...

D̃1f
n Φn[V ; ε] · · · D̃nf

n

∣∣∣∣∣∣∣∣∣∣∣∣
,

· · · , Ψn[Ṽ ; ε] =

∣∣∣∣∣∣∣∣∣∣∣∣

D̃1f
1 · · · D̃n−1f

1 Φ1[V ; ε]

D̃1f
2 · · · D̃n−1f

2 Φ2[V ; ε]
...

...
...

D̃1f
n · · · D̃n−1f

n Φn[V ; ε]

∣∣∣∣∣∣∣∣∣∣∣∣
.

(4.52)
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Let Qik, k = 1, ..., n and (i 6= k) be the determinant obtained by applying D̃i to the kth column of the

determinant Ψi[Ṽ ; ε](4.52) and let Si denote the determinant obtained by applying D̃i to the ith column of

the determinant Ψi[Ṽ ; ε]. In particular,

Q1k =

∣∣∣∣∣∣∣∣∣∣∣∣

Φ1[V ; ε] D̃2f
1 · · · D̃1D̃kf

1 · · · D̃nf
1

Φ2[V ; ε] D̃2f
2 · · · D̃1D̃kf

2 · · · D̃nf
2

...
...

...

Φn[V ; ε] D̃2f
n · · · D̃1D̃kf

n · · · D̃nf
n

∣∣∣∣∣∣∣∣∣∣∣∣
,

S1 =

∣∣∣∣∣∣∣∣∣∣∣∣

D̃1Φ1[V ; ε] D̃2f
1 · · · D̃nf

1

D̃1Φ2[V ; ε] D̃2f
2 · · · D̃nf

2

...
...

...

D̃1Φn[V ; ε] D̃2f
n · · · D̃nf

n

∣∣∣∣∣∣∣∣∣∣∣∣
.

One consequently has

D̃iΨ
i[Ṽ ; ε] =

n∑
j=1

Sj +

n−1∑
i=1

n∑
k=i+1

(Qik +Qki) . (4.53)

The second summation in (4.53) equals zero since the respective columns of the determinants Qik and Qki

are odd permutations of each other. Thus, equation (4.53) simplifies to

D̃iΨ
i[Ṽ ; ε] =

n∑
i=1

Si. (4.54)

Let γji be the cofactor of D̃jf
i for the Jacobian matrix given by

D̃1f
1 · · · D̃nf

1

...
...

D̃1f
n · · · D̃nf

n

 .
Then (4.54) becomes

D̃iΨ
i[Ṽ ; ε] =

(
D̃jΦ

i[V ; ε]
)
γji . (4.55)

Using the chain rule, the right-hand side of (4.55) reads(
D̃jΦ

i[V ; ε]
)
γji =

(
D`Φ

i[V ; ε]
) (
D̃jf

`
)
γji .

Now
(
D̃jf

`
)
γji = δ`iJ [Ṽ ; ε], where δ`i is the Kronecker symbol. Therefore, equation (4.55) leads to the

equation (4.51). Hence for any solution Ṽ (x̃; ε) = ṽ(x̃; ε) of the PDE system R[ṽ; ε] (4.48), the approximate

conservation law DiΦ
i[v; ε] = o(ε) of PDE system Fσ[v; ε](4.1) is transformed to the approximate conservation

law DiΨ
i[ṽ; ε] = o(ε) of the PDE system (4.48).

Example 4.5.1. The approximate point transformation [11]

s = x− ε

6
x2, y = t− ε

2
t2, v(s, y) = eu(x,t)

(
1 + 2ε

(
t− x

3

))
(4.56)
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maps the perturbed PDE

vss + εvs =
(vy
v

)
y

(4.57)

to the nonlinear wave equation

utt + εut + o(ε) = (euux)x . (4.58)

Using Theorem 4.5.1, we show that an approximate conservation law of the PDE (4.57) is transformed to

an approximate conservation law of the PDE (4.58). A simple computation shows that the PDE (4.57) has

approximate conservation law

DsΦ
1[v; ε] +DyΦ2[v; ε] = o(ε),

with fluxes given by

Φ1 = s
vy
v

+ yvs + εyv,

Φ2 = −vs
v
− y vy

v
.

(4.59)

Applying the approximate point transformation (4.56) to the fluxes (4.59) leads to

Φ1[u; ε] = xut + teuux + ε

(
6xt− x2

6
ut +

9t2 − 2xt

6
euux +

teu

3
+ 2x

)
,

Φ2[u; ε] = −xux − tut + ε

(
2x

3
− 2t− x2

6
ux −

t2

2
ut

)
.

(4.60)

The approximate conservation law of the PDE (4.57) with fluxes (4.59) is mapped to an approximate con-

servation law DtΨ
1[u; ε] +DxΨ2[u; ε] = o(ε) for the PDE (4.58) with fluxes are found using the determinants

(4.52):

Ψ1 =

∣∣∣∣∣∣∣
Φ1[u; ε] Dxs

Φ2[u; ε] Dxy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
xut + teuux + ε

(
6xt− x2

6
ut +

9t2 − 2xt

6
euux +

teu

3
+ 2x

)
1− ε

3
x

−xux − tut + ε

(
2x

3
− 2t− x2

6
ux −

t2

2
ut

)
0

∣∣∣∣∣∣∣∣
= tut + xux + ε

(
3t2 − 2xt

6
ut −

x2

6
ux

)
,

Ψ2 =

∣∣∣∣∣∣∣
Dts Φ1[u; ε]

Dty Φ2[u; ε]

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
0 xut + teuux + ε

(
6xt− x2

6
ut +

9t2 − 2xt

6
euux +

teu

3
+ 2x

)
1− εt −xux − tut + ε

(
2x

3
− 2t− x2

6
ux −

t2

2
ut

)
∣∣∣∣∣∣∣∣

= −xut − teuux + ε

(
x2

6
ut −

teu

3
+

2xt− 3t2

6
euux

)
.
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Consequently, one obtains an approximate conservation law

Dt

(
tut + xux + ε

(
3t2 − 2xt

6
ut −

x2

6
ux

))
+Dx

(
−xut − teuux + ε

(
x2

6
ut −

teu

3
+

2xt− 3t2

6
euux

))
= o(ε) (4.61)

for the wave equation (4.58) which is equivalent to the approximate conservation law (4.24b) given in Example

4.3.1 with c2(u) = eu.

We now consider the most important case where the invertible approximate transformation (4.47) is

an approximate symmetry of the PDE system Fσ[v; ε] (4.1). We show that the action of an approximate

symmetry on a known conservation law of Fσ[v; ε] can lead to a new approximate conservation law of (4.1).

If the transformation (4.47) is an approximate symmetry of the PDE system Fσ[v; ε](4.1), then it leaves

invariant the solution manifold of Fσ[v; ε]. Hence there exist some functions Pσν [Ṽ ; ε] such that

Fσ[V ; ε] = Rσ[Ṽ ; ε] + o(ε) = Pσν [Ṽ ; ε]F ν [Ṽ ; ε] + o(ε). (4.62)

Using the formulas (4.51) and (4.52), we arrive at the following important result.

Corollary 4.5.1. Suppose the invertible approximate point transformation (4.47) is an approximate sym-

metry of the PDE system Fσ[v; ε] (4.1). Then an approximate conservation law DiΦ
i[v; ε] = o(ε) of system

(4.1) is mapped to the approximate conservation law

DiΨ
i[v; ε] = o(ε) (4.63)

of the system of PDEs (4.1) with conserved densities given by

Ψ1[v; ε] =

∣∣∣∣∣∣∣∣∣∣∣∣

Φ1[ṽ; ε] D2f̃
1 · · · Dnf̃

1

Φ2[ṽ; ε] D2f̃
2 · · · Dnf̃

2

...
...

...

Φn[ṽ; ε] D2f̃
n · · · Dnf̃

n

∣∣∣∣∣∣∣∣∣∣∣∣
, · · · ,Ψn[v; ε] =

∣∣∣∣∣∣∣∣∣∣∣∣

D1f̃
1 · · · Dn−1f̃

1 Φ1[ṽ; ε]

D1f̃
2 · · · Dn−1f̃

2 Φ2[ṽ; ε]
...

...
...

D1f̃
n · · · Dn−1f̃

n Φn[ṽ; ε]

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.64)

Proof. Since (4.47) is admitted by the PDE system (4.1), then (4.62) holds. Thus, Rσ[V ; ε] = Pσν [V ; ε]F ν [V ; ε]+

o(ε) for arbitrary functions V (x; ε). It follows that Rσ[v; ε] = o(ε) for any approximate solution V (x; ε) =

v(x; ε) of the PDE system Fσ[v; ε]. Using Theorem 4.5.1, the approximate conservation law (4.63) is obtained

where its fluxes Ψi[v; ε] given by formula (4.52) after replacing x̃i by xi, Ṽ µ by vµ, etc.

Corollary 4.5.1 shows that one can use the action of an approximate symmetry of the PDE system

Fσ[v; ε](4.1) on a known approximate conservation law of (4.1) to construct an approximate conservation

law (4.63) of (4.1) through the formula (4.51). Another interesting situation is using the action of an approx-

imate symmetry of Fσ[v; ε] (4.1) on the approximate multipliers Λσ[v; ε] of known approximate conservation

laws to construct approximate multipliers Λ̂σ[v; ε] for approximate conservation laws of (4.1). A new approx-

imate conservation law for Fσ[v; ε] is obtained if the approximate multipliers Λ̂σ[v; ε] are independent of the

approximate multipliers Λσ[v; ε].
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Theorem 4.5.2. If Λσ[v; ε] are approximate multipliers for an approximate conservation law DiΦ
i[v; ε] = o(ε)

of the PDE system Fσ[v; ε](4.1) and the approximate point transformation (4.47) is an approximate symmetry

of the PDE system (4.1), then

Λ̂ν [Ṽ ; ε]F ν [Ṽ ; ε] = D̃iΨ
i[Ṽ ; ε] + o(ε), (4.65)

where

Λ̂ν [Ṽ ; ε] = J [Ṽ ; ε]Pσν [Ṽ ; ε]Λσ[V ; ε] + o(ε), ν = 1, ..., N (4.66)

with the coordinates of Λσ[V ; ε] are expressed in terms of the transformation (4.47) and its natural extensions.

The fluxes Ψ̃i[Ṽ ; ε] are given by (4.52). In (4.66), J [Ṽ ; ε] and Pσν [Ṽ ; ε] are given by (4.50) and (4.62),

respectively.

Proof. Since the approximate point transformation (4.47) is an approximate symmetry of the PDE system

(4.1), then equation (4.62) holds for arbitrary functions Ṽ (x̃; ε). Since Λσ[v; ε] are approximate multipliers

for an approximate conservation law DiΦ
i[v; ε] = o(ε) of the PDE system Fσ[v; ε](4.1), it follows that the

identity

Λσ[V ; ε]Fσ[V ; ε] = DiΦ
i[V ; ε] + o(ε) (4.67)

is satisfied for any arbitrary function V (x; ε). Substituting (4.62) into (4.67) leads to

DiΦ
i[V ; ε] = Λσ[V ; ε]Fσ[V ; ε] + o(ε) = Λσ[V ; ε]Pσν [Ṽ ; ε]F ν [Ṽ ; ε] + o(ε). (4.68)

Multiplying (4.68) by J [Ṽ ; ε] and then using formula (4.51) yields

J [Ṽ ; ε]DiΦ
i[V ; ε] = J [Ṽ ; ε]Λσ[V ; ε]Pσν [Ṽ ; ε]F ν [Ṽ ; ε] = D̃iΨ[Ṽ ; ε] + o(ε).

Consequently, one has

Λ̂ν [Ṽ ; ε]F ν [Ṽ ; ε] = D̃iΨ[Ṽ ; ε] + o(ε),

where Λ̂ν are given by (4.66).

The following important corollary follows immediately from Theorem 4.5.2.

Corollary 4.5.2. Suppose the approximate point transformation (4.47) is an approximate symmetry of the

PDE system Fσ[v; ε] (4.1). If Λσ[V ; ε] are approximate multipliers for an approximate conservation law of

(4.1), then Λ̂ν [V ; ε] are approximate multipliers of the PDE system Fσ[v; ε] where Λ̂ν [V ; ε] are given by (4.66)

after replacing x̃i by xi, Ṽ µ(x̃; ε) by V µ(x; ε), Ṽ µi by V µi ,etc..

To illustrate the above formulas, we consider a nonlinear telegraph system of the form [114]

F 1[u, v] = vt − f(u)ux − h(u) = 0,

F 2[u, v] = ut − vx = 0.
(4.69)
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Example 4.5.2. Consider the nonlinear telegraph system (4.69) with f(u) = −e2u + ε + 1 and h(u) = eu,

where ε is a small parameter:

F 1[u, v; ε] = vt −
(
ε+ 1− e2u

)
ux − eu = 0,

F 2[u, v; ε] = ut − vx = 0.
(4.70)

Using the determining equation (4.12), we find the following pair of approximate multipliers for the system

(4.70)

Λ1[U, V ; ε] = e
V−U

2 sin

(
t− x+ eU

2

)
+ ε e

V−U
2

[
x− eU

4
cos

(
t− x+ eU

2

)

−
V sin

(
t− x+ eU

2

)
4

]
,

Λ2[U, V ; ε] = e
V−U

2

(
eU cos

(
t− x+ eU

2

)
− sin

(
t− x+ eU

2

))
− ε

4
e
V−U

2

[(
x+ (V − 1) eU

)
cos

(
t− x+ eU

2

)
+
(
xeU − V − e2U + 2

)
sin

(
t− x+ eU

2

)]
.

(4.71)

The fluxes of the approximate conservation law

DtΦ
1[u, v; ε] +DxΦ2[u, v; ε] = o(ε)

for the system (4.70) resulting from the approximate multipliers (4.71) have the form

Φ1 = 2 e
v−u

2 sin

(
t− x+ eu

2

)
+ ε e

v−u
2

[(
x− eu

2

)
cos

(
t− x+ eu

2

)
+

(2− v)

2
sin

(
t− x+ eu

2

)]
,

Φ2 = 2 e
v−u

2

(
sin

(
t− x+ eu

2

)
− eu cos

(
t− x+ eu

2

))
+
ε

2
e
v−u

2

[
(x+ (v − 3) eu) cos

(
t− x+ eu

2

)
+
(
xeu − v − e2u + 4

)
sin

(
t− x+ eu

2

)]
.

(4.72)

The system (4.70) has the approximate translation point symmetry

t = t̃+ εa+ a, x = x̃, u = ũ, v = ṽ. (4.73)

We show that the action of the approximate symmetry (4.73) on the approximate conservation law with fluxes

(4.72) and their corresponding approximate multipliers (4.71) yields a new set of approximate multipliers

which leads to a new approximate conservation law for the nonlinear telegraph system (4.70). Indeed, one

has

J [Ũ , Ṽ ; ε] =

∣∣∣∣∣∣∣
∂t
∂t̃

∂x
∂t̃

∂t
∂x̃

∂x
∂x̃

∣∣∣∣∣∣∣ = 1, R1[Ũ , Ṽ ; ε] = F 1[U, V ; ε] + o(ε) = F 1[Ũ , Ṽ ; ε] + o(ε),

R2[Ũ , Ṽ ; ε] = F 2[U, V ; ε] + o(ε) = F 2[Ũ , Ṽ ; ε] + o(ε).
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Hence, in equation (4.62), one gets

P 1
1 = P 2

2 = 1, P 2
1 = P 1

2 = 0.

By applying the approximate translation symmetry (4.73) to the approximate multipliers (4.71) and then

using the formula (4.66) and Corollary 4.5.2, one obtains new approximate multipliers given by

Λ̂1[U, V ; ε] =
1

2
e
V−U

2 cos

(
t− x+ eU

2

)
+
ε

8
e
V−U

2

[(
eU − x

)
sin

(
t− x+ eU

2

)
+ (4− V ) cos

(
t− x+ eU

2

)]
,

Λ̂2[U, V ; ε] = −1

2
e
V−U

2

(
eU sin

(
t− x+ eU

2

)
+ cos

(
t− x+ eU

2

))
+
ε

8
e
V−U

2

[(
x+ (V − 5) eU

)
sin

(
t− x+ eU

2

)
−
(
xeU − V − e2U + 6

)
cos

(
t− x+ eU

2

)]
.

(4.74)

Using the formula (4.64), we obtain an approximate conservation law

DtΨ
1[u, v; ε] +DxΨ2[u, v; ε] = o(ε)

for the system (4.70) with fluxes given by

Ψ1 = e
v−u

2 cos

(
t− x+ eu

2

)
+
ε

4
e
v−u

2

[
(eu − x) sin

(
t− x+ eu

2

)
+(6− v) cos

(
t− x+ eu

2

)]
,

Ψ2 = e
v−u

2

(
eu sin

(
t− x+ eu

2

)
+ cos

(
t− x+ eu

2

))
+
ε

4
e
v−u

2

[
((7− v) eu − x) sin

(
t− x+ eu

2

)
+
(
xeu − v − e2u + 8

)
cos

(
t− x+ eu

2

)]
.

(4.75)

It remains to check that an approximate conservation law with fluxes (4.75) is not equivalent to an ap-

proximate conservation law with fluxes (4.72). Indeed, we find the difference between both approximate

conservation laws:

Φ1 −Ψ1 = e
v−u

2

(
2 sin

(
t− x+ eu

2

)
− cos

(
t− x+ eu

2

))
+
ε

4
e
v−u

2

[
(2x− eu − 6 + v) cos

(
t− x+ eu

2

)
+(x− eu + 4− 2v) sin

(
t− x+ eu

2

)]
,

Φ2 −Ψ2 = e
v−u

2

(
(2− eu) sin

(
t− x+ eu

2

)
− (1 + 2eu) cos

(
t− x+ eu

2

))
+
ε

4
e
v−u

2

[(
e2u − (x+ 6)eu + (2eu + 1)v + 2x− 8

)
cos

(
t− x+ eu

2

)
+
(
−2e2u + (2x− 7)eu + (eu − 2)v + x+ 8

)
sin

(
t− x+ eu

2

)]
.

(4.76)
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It is clear that an approximate conservation law with fluxes (4.76) is nontrivial approximate conservation

law. It follows that DtΨ
1[u, v; ε] + DxΨ2[u, v; ε] = o(ε) with fluxes given by (4.75) is a new approximate

conservation law for the perturbed telegraph system (4.70).

4.6 An application of approximate conservation laws

If at least one PDE of the system of PDEs Fσ[u] can be written in a conserved form with respect to some

choice of its variables. Then a conserved form leads to auxiliary dependent variables v which are potentials

to an auxiliary system of PDEs Rτ [u, v]. This leads to nonloclally related systems with the property that

any solution (u(x), v(x)) of Rτ [u, v] will define a solution u(x) of Fσ[u] and to any solution u(x) of Fσ[u],

there corresponds a function v(x) such that (u(x), v(x)) is a solution of Rτ [u, v]. Since a symmetry maps

any solution of a PDE system to another solution of the same system, local symmetries of Rτ [u, v] induces

symmetries admitted by Fσ[u]. A local symmetry of Rτ [u, v] that depends explicitly on the potential variables

v induces a nonlocal symmetry of Fσ[u]. Such nonlocal symmetries are called potential symmetries. The

natural way to find nonlocal related PDE systems is through using the local conservation laws of Fσ[u].

Consequently, each local conservation law of Fσ[u] yields a potential variable that could yield a nonlocally

related PDE system called a potential system [37, 60].

In [115], potential approximate symmetries are found for some perturbed PDEs written in a conserved

form. In this section, we find potential systems and approximate potential symmetries for perturbed PDEs

through the use of approximate local conservation laws.

Consider a scalar PDE with two independent variables (x, t) and one dependent variable u given by

F [u; ε] = F0[u] + εF1[u] = o(ε). (4.77)

Suppose the perturbed PDE (4.77) has a nontrivial approximate conservation law

DtΨ[u; ε] +DxΦ[u; ε] = o(ε). (4.78)

arising from a nontrivial approximate multiplier Λ = Λ0 + εΛ1. The approximate conservation law (4.78)

yields a PDE system consists of two potential equations given by

vx = Ψ[u; ε] + o(ε),

vt = −Φ[u; ε] + o(ε).
(4.79)

Definition 4.6.1. A system of perturbed PDEs (4.79) is a potential system with a potential variable v for

the perturbed PDE (4.77) related to the approximate conservation law (4.78).

The potential variable v in (4.79) is a nonlocal variable in sense that it cannot be expressed as a local

function of the variables x, t, u and partial derivatives of u. The PDE (4.77) and the potential system (4.79)

are equivalent:
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[1] For any approximate solution u = f(x, t) of (4.77), there exists a function v = g(x, t), unique to within

a constant, such that (u, v) = (f(x, t), g(x, t)) is an approximate solution of (4.79).

[2] For any approximate solution (u, v) = (f(x, t), g(x, t)) of (4.79), by projection, u = f(x, t) is an

approximate solution of (4.77).

Definition 4.6.2. Suppose a potential system (4.79) of a given PDE (4.77) admits an approximate point

symmetry

X = X0 + εX1 = ξ0
∂

∂x
+ τ0

∂

∂t
+ η0

∂

∂u
+ ζ0

∂

∂v
+ ε

(
ξ1
∂

∂x
+ τ1

∂

∂t
+ η1

∂

∂u
+ ζ1

∂

∂v

)
, (4.80)

where ξi, τi, ηi and ζi, i = 1, 2 are functions of x, t, u and v. Then X is called an approximate potential

symmetry of (4.77) if and only if

[(ξ0 + εξ1)v]
2 + [(τ0 + ετ1)v]

2 + [(η0 + εη1)v]
2 6≡ 0. (4.81)

Example 4.6.1. Consider the perturbed nonlinear wave equation (4.14) with c2(u) = u2

utt − (u2ux)x + εut = 0. (4.82)

Based on the nontrivial approximate conservation laws of (4.82) found in Example 4.3.1:

Dt [ut + εu]−Dx

[
u2ux

]
= o(ε), (4.83a)

Dt [xut + εxu]−Dx

[
xu2ux −

1

3
u3

]
= o(ε), (4.83a)

Dt

[
tut − u+

ε

2
t2ut

]
−Dx

[
tu2ux +

ε

2
t2u2ux

]
= o(ε), (4.83b)

Dt

[
xtut − xu+

ε

2
xt2ut

]
−Dx

[
xtu2ux −

1

3
tu3 +

ε

2

(
xt2u2ux −

1

3
t2u3

)]
= o(ε), (4.83c)

one can construct four systems of potential equations given respectively by

vx = ut + εu,

vt = u2ux;
(4.84)

wx = xut + εxu,

wt = xu2ux −
1

3
u3;

(4.85)

px = tut − u+
ε

2
t2ut,

pt = tu2ux +
ε

2
t2u2ux;

(4.86)

qx = xtut − xu+
ε

2
xt2ut,

qt = xtu2ux −
1

3
tu3 +

ε

2

(
xt2u2ux −

1

3
t2u3

) (4.87)

with potential variables v(x, t), w(x, t), p(x, t) and q(x, t).
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Note that the conservation law (4.83a) is an exact conservation law for the PDE (4.82) which yields the

potential system (4.84). We show that considering (4.84) as a system with a small parameter leads to new

approximate potential symmetries for the perturbed PDE (4.82) that do not arise from the exact potential

symmetries of (4.82). Indeed, let (4.80) be an approximate point symmetry for the potential system (4.84).

The unperturbed system

vx = ut, vt = u2ux (4.88)

is mapped by a Hodograph transformation [60]

r = u, s = v, z = t, w = x

to the linear system

ws = zr, wr = r2zs. (4.89)

It follows that the system (4.88) admits an infinite dimensional Lie algebra of point symmetries given by

X0
1 =

∂

∂t
, X0

2 =
∂

∂x
, X0

3 =
∂

∂v
, X0

4 = t
∂

∂t
+ x

∂

∂x
,

X0
5 = t

∂

∂t
− u ∂

∂u
− 2v

∂

∂v
,

X0
6 = (6vt+ 2xu)

∂

∂t
+ (2tu3 + 2xv)

∂

∂x
− 4uv

∂

∂u
−
(
u4 + 4v2

) ∂
∂v
,

X0
∞ = f(u, v)

∂

∂t
+ g(u, v)

∂

∂x
,

where f(u, v) and g(u, v) are arbitrary functions satisfy the following linear PDE system

gv = fu,

gu = u2fv.
(4.90)

The potential symmetries of the perturbed wave equation (4.82) are given by X0
6 and X0

∞. Applying the

determining equation (1.96), one can show that the PDE system (4.84) has an infinite number of approximate

point symmetries given by

X1
1 =

∂

∂t
, X1

2 =
∂

∂x
, X1

3 =
∂

∂v
,

X1
4 = x

∂

∂x
+ u

∂

∂u
+ 2v

∂

∂v
,

X1
5 = v

∂

∂t
+

1

3
u3 ∂

∂x
− ε
(
xu

∂

∂t
+ xv

∂

∂x
+ uv

∂

∂u
+ v2 ∂

∂v

)
,

X1
6 =

(
6v2 + u4

) ∂
∂t

+ 4vu3 ∂

∂x
− ε
((

5tu4 + 30tv2 + 32xuv
) ∂
∂t

+
(
16xv2 + 8xu4 + 20tvu3

) ∂

∂x
−
(
u5 + 14uv2

) ∂

∂u
−
(
10vu4 + 28

3 v
3
) ∂
∂v

)
,

X1
7 = εX1

1 , X
1
8 = εX1

2 , X
1
9 = εX1

3 , X
1
10 = εX1

4 , X
1
11 = εX0

4 , X
1
12 = εX0

6 , X
1
∞ = εX0

∞.

(4.91)

X1
5 , X1

6 and X1
∞ yield approximate potential symmetries of the perturbed nonlinear wave equation (4.82).

Moreover, X1
5 and X1

6 contain stable parts, it could be useful in application.
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Similarly, one can find genuine approximate potential symmetries for the perturbed wave equation (4.82)

using the potential systems (4.85-4.87). In particular, the PDE (4.82) has the approximate potential sym-

metries

X1 = u
∂

∂t
+
w

x

∂

∂x
− εu2 ∂

∂u
,

X2 = −5tp
∂

∂t
+ t2u3 ∂

∂x
+ ε

(
5

2
tup

∂

∂u
+ t3u4 ∂

∂p

)
,

X3 = t
∂

∂t
+ q

∂

∂u
− ε
(

1

2
tu+ tq

)
∂

∂u

(4.92)

arise respectively from the approximate potential systems (4.85-4.87). These approximate potential symme-

tries are useful in construction of approximate solutions for the perturbed PDEs.

Example 4.6.2. We find an approximate solution of (4.82) using X1 in (4.92). Approximate invariants

obtained from the characteristic system

dt

u
=

dx

w/x
=

du

−εu2
=
dw

0

for X1 are given by

u(x, t) = f(x)(1− εt), w(x, t) = g(x, t; ε) = g0(x, t) + εg1(x, t). (4.93)

The substitution of (4.93) into the potential system (4.85) yields the system

gx = 0, g0t = k0, g1t = k1t, f2(3xfx − f) = k2,

with solutions

g(x, t; ε) = k0t+ k3 + ε

(
1

2
k1t

2 + k4

)
, f(x) = (k2x+ k5)

1/3
,

where ki, i = 0, 1, ..., 5 are arbitrary constants. Consequently, the potential system (4.85) has the approximate

solution

u(x, t) = (1− εt) (k2x+ k5)
1/3

, v(x, t) = k0t+ k3 + ε

(
1

2
k1t

2 + k4

)
.

Therefore

u(x, t) = (1− εt) (k2x+ k5)
1/3

(4.94)

is an approximate solution for the wave equation resulting from the potential symmetry X1 in (4.92).

4.7 Discussion

In this chapter, we have seen that the direct method [5] is useful in construction of new approximate con-

servation laws for perturbed PDEs. We proved a theorem that provides a connection between approximate

multipliers and approximate local conservation laws (Theorem 4.10). We applied the direct method on per-

turbed wave and heat equations and found new genuine approximate conservation laws for these models

(Example 4.3.1 and Example 4.3.2).
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For perturbed PDEs that admit an approximate Lagrangian, Noeher’s theorem was generalized to provide

a relation between approximate variational symmetries and approximate conservation laws [23]. For non-

variational perturbed PDEs, a formula to construct approximate conservation laws using approximate local

symmetries was derived [44, 113]. The direct method does not require the knowledge of the approximate

symmetries and can be applied to approximately variational and non-variational systems. We proved that

the direct method yields all the approximate conservation laws given by Noether’s theorem (Theorem 4.4.2).

The action of a local symmetry to yield additional conservation laws has been considered in [4] and [116].

An extension to the action of any symmetry (continuous or discrete) appears in [40]. We generalized the results

[40] to construction of approximate conservation laws under the action of approximate point transformations.

In Section 4.5, two formulas were introduced related to obtaining new approximate conservation laws from

known approximate conservation laws using the action of invertible approximate point transformations. We

showed that if a system of perturbed PDEs is mapped to another system of perturbed PDEs under the

action of an invertible approximate point transformation, then each approximate conservation law of the first

system is mapped to an approximate conservation law of the transformed system (Theorem 4.5.1). The first

formula (4.52) yields the transformed approximate conservation law. If the approximate transformation is an

approximate point symmetry, then a given approximate conservation law for a PDE system is transformed to

an approximate conservation law for the same PDE system (Corollary 4.5.1). We introduced another formula

(4.65) which uses the action of an approximate point symmetry on a set of approximate multipliers to yield

new set of approximate multipliers which leads to new approximate conservation laws if the transformed

and the given approximate multipliers are independent (Theorem 4.5.2 and Corollary 4.5.2). Two examples

including a nonlinear perturbed wave equation (Example 4.5.1) and a nonlinear perturbed telegraph system

(Example 4.5.2) were discussed.

We used the approximate conservation laws of the nonlinear wave equation (4.82) to construct potential

systems for (4.82). We found new approximate potential symmetries (4.91),(4.92) for (4.82). We found an

approximate solution (4.94) for (4.82) using one of its approximate potential symmetries (Example 4.6.2).

138



5 Conclusion

Lie symmetry method has been widely used to study symmetry properties and find exact solutions of

differential equations. Many nonlinear differential equations that arise in Science and Engineering depend

on a small parameter. It is commonly the case that a perturbed model has fewer point and local symmetries

than the unperturbed system. This limits the applicability of exact Lie group methods to perturbed models.

Approximate Lie symmetries are useful to deal with perturbed models as some additional approximate

symmetries may arise for some models with a small parameter. Approximate symmetries allow to build

approximate solutions for perturbed differential equations, and to construct approximate conservation laws.

In this thesis, local symmetries of algebraic equations, ordinary differential equations and partial differ-

ential equations involving a small parameter ε were considered in comparison to the symmetry structure of

their unperturbed versions (small parameter equal to zero). Exact symmetries of the unperturbed equations,

and exact and approximate symmetries (in the Baikov-Gazizov-Ibragimov [10–12] and Fushchich-Shtelen [13]

frameworks) of the perturbed models were investigated. We also investigated approximate local conservation

laws of a system of perturbed PDEs.

It was observed by the original authors of the BGI method that while new approximate symmetries that

are useful in constructing new approximate solutions for perturbed models can be sometimes found, some

point symmetries of the unperturbed model may not appear in any form in the approximate point symmetry

classification of a perturbed model, being thereby unstable. We also observed that similar situation appears

in FS framework. The first goal of the thesis was to address the question of stability of symmetries, and

to find out the conditions under which a local symmetry becomes unstable, the form it can assume in the

approximate point symmetry classification of a perturbed equation.

The second goal in this thesis was to compare and discuss BGI and FS frameworks for perturbed ODEs

and PDEs, and applications of approximate symmetries to compute approximate solutions of the perturbed

models.

The study of approximate symmetries for perturbed models extends naturally to study the approximate

conservation laws for these models. Our goal here was to investigate the possibility of finding new approximate

conservation laws using the direct method and using invertible approximate point transformations, and to

discuss the relation between the direct method and Noether’s theorem for approximate conservation laws.

In Chapter 2, we showed that for algebraic equations and first-order ODEs, every point symmetry of

the unperturbed equation is stable: a corresponding approximate point symmetry of the perturbed equation

always exists; moreover, approximate point symmetry generators of perturbed algebraic equations are more
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general than the exact symmetry generators of perturbed algebraic equations, and the approximate symmetry

components arise as first-order Taylor terms in the expansion of exact symmetry components of the perturbed

equation in the small parameter.

For second and higher-order ODEs and PDEs, the situation is more complex (Section 2.4.2): some original

symmetries of the unperturbed model (2.58) can be unstable, in the sense of not being inherited as nontrivial

approximate point symmetries of a perturbed ODE (2.59) (Example 1.3.4). At the same time, for some ODEs,

all point symmetries of the unperturbed model might be stable (Example 2.4.1). This occurs because in the

approximate point symmetry computation of an ODE with a small parameter ε, additional conditions on the

O(ε0) approximate symmetry components may or may not arise. The situation is clarified in Section 2.5,

where symmetries (point or local, exact and approximate) were written in the evolutionary form. Theorem

2.5.1 was proven, showing that to every point or local symmetry of an exact ODE (2.58) of any order, there

corresponds an approximate symmetry of the perturbed ODE (2.59), being possibly a higher-order symmetry

of order at most n− 1. Two examples were considered in detail: a nonlinearly perturbed second-order ODE

(2.107) (Section 2.5.3), and a fourth-order Boussinesq reduction ODE (2.120) (Section 2.5.4). A relation

between genuine BGI approximate point symmetries and FS approximate point symmetries for perturbed

ODEs was constructed. In FS framework, we found that there are FS approximate point symmetries of

perturbed ODEs that do not correspond to the stable point symmetries and also do not appear in the

BGI framework (Remark 2.4.2). This type of FS approximate point symmetries also appear in the case of

Perturbed PDEs (Remark 3.4.1).

One of the most important applications of the approximate symmetry framework is the construction of

closed-form approximate solutions to nonlinear ODE models with a small parameter. In Section 2.6, two

approaches to obtain such solutions were developed. The first approach is based on approximate integrating

factors using approximate point symmetries (Section 2.6.1). Equations satisfied by approximate integrating

factor components were derived (Theorem 2.6.2) and applied to obtain a four-parameter approximate solution

family (2.159) of the fourth-order Boussinesq ODE (2.120) and a BBM ODE (2.161). Another technique,

approximate reduction of order under contact and higher-order symmetries, is presented in Section 2.6.3 and

illustrated on two examples: an ODE (2.176) with a small parameter for which the exact general solution is

known (Example 2.6.4), and again the fourth-order Boussinesq ODE (2.120) (Example 2.6.5). In the latter,

the approximate solution was validated via a comparison to numerical solutions of the Boussinesq equation

(2.120).

In Chapter 3, we investigated exact and approximate symmetries of scalar PDEs involving a small pa-

rameter. We discussed the stability of exact point symmetries of an unperturbed PDE. We found that the

point symmetry of the unperturbed PDE does not correspond, in general, to a higher-order approximate

symmetry of the perturbed model. The main reason of the instability is that the determining equation (3.23)

for BGI local symmetries of the perturbed PDE (3.15), whatever the dependence of the approximate sym-

metry components ζ1 (3.22), always contains derivatives of u (3.24) higher than those in ζ1 which leads to a
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split system of PDEs in ζ1 with some restrictions on the unperturbed symmetry components ζ0. A similar

argument holds in FS framework. As an illustration, we showed that there was no higher-order (BGI and

FS) approximate symmetry for the perturbed PDE (3.31) corresponding to the unstable point symmetry of

the unperturbed wave equation (3.11).

We found a classification of stable point symmetries for a nonlinear wave equation (3.11) in the sense of

BGI and FS frameworks. This helped us to illustrate that both methods are different as there were stable

symmetries in one framework and unstable in the other framework and showed some connection between

the BGI and FS approximate symmetries that each stable BGI point symmetry of the form (ζ0(x, t) +

εζ1(x, t, u, ux, ut))∂/∂u yields a higher-order approximate FS symmetry in the form ζ0(x, t) ∂/∂v +

ζ1(x, t, v, vx, vt) ∂/∂w (Theorem 3.5.1).

Exact and approximate point symmetries (BGI and Fushchich-Shtelen) for the perturbed one-dimensional

wave equation (3.56) were classified. Genuine BGI and FS approximate point symmetries for (3.56) were

obtained and used to construct an approximate solution for a class of a perturbed one-dimensional wave

equation (3.74). Using this approximate solution, we estimated the wave breaking time of a perturbed

one-dimensional model (3.82). We also estimated the finite-time singularity formation of (3.82) by a linear

approximation of the characteristic curves using a finite difference scheme and compared the two sets of

singularities. The two different methods of approximating the finite-time singularity yielded qualitatively

similar results that suggest the finite-time singularity of (3.82) with the initial value problem (3.84) goes as

τ ∼ ε−1.

The classification of exact and approximate symmetries of the one-dimensional wave equation (3.56)

yielded new approximate symmetries that were useful in constructing new approximate solutions that in turn

helped to study the wave breaking time of (3.56), in comparison with the numerical methods. This motivated

us to consider the two-dimensional wave models in order to have a basis of new exact and approximate

symmetry structures that may be useful for further study of these models in future. In particular, we

classified the exact point symmetries of the two dimensional wave equation (3.95), and found a complete

classification of exact and (BGI and FS) approximate point symmetries of the perturbed two dimensional

wave model (3.96). New BGI and FS approximate point symmetries for (3.96) were obtained.

In Chapter 4, we considered approximate conservation laws for systems of perturbed PDEs. We showed

that a perturbed PDE system admits an approximate local conservation law if and only if there exist ap-

proximate multipliers such that their linear combinations with the differential equations of the given PDE

system are approximately annihilated by the Euler operator (1.143) (Theorem 4.10). This relation was illus-

trated using perturbed wave and heat equations where new genuine approximate conservation laws for these

models were found. We proved that all approximate conservation laws obtained through Noether approach

are obtainable through the direct method (Theorem 4.4.2). We used the action of an invertible approximate

point transformation to develop two formulas that yield additional approximate conservation law for a system

of perturbed PDEs. These formulas were applied to obtain approximate conservation laws for a nonlinear
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perturbed wave equation (Example 4.5.1) and a nonlinear perturbed telegraph system (Example 4.5.2). We

constructed potential systems for the nonlinear wave equation (4.82) using the approximate conservation

laws of (4.82) and new approximate potential symmetries were found. An approximate solution (4.94) for

(4.82) was found using approximate potential symmetries.

The main value of this contribution lies in new detailed examples of computation and comparison of exact

and approximate symmetry structures and approximate conservation laws of multiple ODEs and PDEs, and

the use of point and higher-order approximate symmetries to calculate closed-form approximate solutions

of such perturbed models. This thesis is aimed at mathematicians, scientists and engineers interested in

applications of exact and approximate Lie symmetries on differential equations, including finding exact and

approximate solutions of differential equation involving a small parameter. There are different examples

involving physical models. The reader whose interest is in conservation laws of differential equations can

move to Chapter 4, which contains the extension of the study of exact conservation laws to the study of

approximate conservation laws of systems of perturbed PDEs.

5.1 Future research work

• For higher-order ODEs, we showed that each point or local symmetry for an unperturbed ODE is stable

in BGI framework and corresponds to higher-order BGI approximate symmetry for the perturbed model

and we found that these symmetries are useful in construction new approximate solutions of perturbed

ODEs. So, it is meaningful to investigate if these results about stability hold in FS framework. One

can usually start by considering higher-order FS generator of the form

Ẑ = ηv(x, v, v′)
∂

∂v
+ ηw(x, v, w, v′, ..., v(n−1), w′, ..., w(n−1))

∂

∂w

where ηv(x, v, v′) = ξ0(x, v)− v′η0(x, v) corresponds to the point symmetries of an unperturbed ODE.

• In chapters 2 and 3, we investigated the exact and approximate symmetries for regularly perturbed

scalar ODEs and PDEs. In the singularly perturbed problems [117,118], perturbations are functioning

over a very narrow region across which the dependent variable experiences very rapid change. A

singular perturbation generally occurs when a small parameter multiplies the highest derivative of the

given problem. Thus, taking the parameter to be zero changes the nature of the problem. In the case

of differential equations, boundary conditions cannot be satisfied; in algebraic equations, the possible

number of solutions is decreased. So, it is important to extend the understanding of relationships

between symmetry structures of unperturbed and perturbed models in the cases of systems of ODEs

and PDEs, including regularly and singularly perturbed equations such as Navier-Stokes equations [79]

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) +∇p = µ∆u,
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and the one-dimensional shallow water equations [119]

ut + hx + εuux = 0,

ht + (hu)x = 0.

• Through classical computations, we were able to classify the stable point symmetries of the nonlinear

PDE (3.11) in terms of BGI and FS approximate symmetries of the perturbed equation (3.29). This type

of classification is important since for any family of perturbed PDEs, it provides a complete information

about the types of approximate symmetries that can be obtained for each class of this family. It is of

interest to be able to understand the stability of local symmetries of the general differential equation

F0[u]+εF1[u] = o(ε) based only on the knowledge of F0, F1 and the exact symmetries of the unperturbed

equation a priori without computations.

We were able to find an example where an unstable point symmetry, in BGI and FS senses, of an

unperturbed PDE corresponds to higher-order FS approximate symmetry of the perturbed PDE: in

Table 3.1, when F1 = evQ(vt) + vt, the unstable point symmetry ∂/∂v (in BGI and FS frameworks)

yields a local FS symmetry given by

Ẑ =
∂

∂v
+

(
1

10
t2vt +

2

5
tv + w

)
∂

∂w
.

On the other hand, we could not find a BGI approximate local symmetry of a perturbed PDE corre-

sponds to unstable point symmetry of the unperturbed PDE. It is of interest to prove, for a certain

class of perturbed PDEs, that all unstable point/local symmetries of the unperturbed PDE yield BGI

and FS approximate local symmetries for the perturbed model.

• Throughout this thesis, we considered first-order perturbations of differential equations as first terms

of the Taylor series in the small parameter ε. If the perturbed differential equation (1.82) contains a

higher-order expansion in ε, such as

F [u; ε] = F0[u] + εF1[u] + . . .+ +ε`F`[u] = o(ε`),

both BGI and FS frameworks can be naturally extended to those situations, by using, respectively,

a higher-order expansion of the approximate generator (1.100) [11] or the solution (1.103). Higher

approximation orders u(x) = u0(x) + εu1(x) + ε2u2(x) + . . . can be considered in the same manner,

leading to the corresponding Fushchich-Shtelen system containing more PDEs [92]. It is interesting

to study the exact and approximate symmetry properties of PDEs with multiple independent small

parameters such as the viscoelastic one-dimensional wave equation [110]

utt =
(
α+ 3βu2

x

)
uxx + ηux

[(
8u2

x + 2
)
uxxutx +

(
2u2

x + 1
)
uxutxx

]
+ζu3

x

[(
24u2

x + 4
)
uxxutx +

(
4u2

x + 1
)
uxutxx

]
,
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where β, η, ζ << α, and the classical Boussinesq equations [48]

vt + ((1 + εv)u)x = 0,

vx + ut + εuux +
1

3
δ2uxxt = 0.

• Classifications of exact and approximate symmetries of one- and two-dimensional wave models yielded

new approximate symmetries. One can use these symmetries to construct further physical solutions for

these models.

• For perturbed PDEs, we have considered the computation of their local approximate symmetries and

the application of these symmetries to construct approximate solutions. Also, we observed that one

can seek new approximate multipliers and new approximate local conservation laws that do not arise

from the exact multipliers and conservation laws of the perturbed models. It is important to extend

these applications to include:

– the problem of construction of approximate invertible mappings that maps a given PDE approxi-

mately to some target PDE:

theorems on invertible mappings of an exact PDE to some PDE were discussed in details in the

literature (see, e.g., [37] and references therein). In [11], examples on approximate transformations

that approximately connect two perturbed PDEs were presented. So, it is essential to generalize

these results to determine the conditions for the existence of an approximate invertible mapping

and to develop an algorithm to find such a mapping when it exists.

– potential systems and approximate nonlocal symmetries (approximate potential symmetries):

in Section 4.6, we constructed potential systems using approximate conservation laws. In the case

of exact conservation laws, a local conservation law of the potential system is a nonlocal conserva-

tion law for the original PDE if it is not equivalent to a linear combination of the local conservation

laws of the original PDE. These nonlocal symmetries have applications in PDE problem analysis

and they are useful in obtaining PDE systems nonlocally related to the given PDE [37]. It is

worthy to discuss these results in case of approximate conservation laws and to define the no-

tion of approximate nonlocal conservation laws and their applications for obtaining additional

approximate conservation laws for the original PDE and in construction of new nonlocally related

systems.
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Appendix A

Maple Code for Approximate Symmetries and Approx-

imate Conservation Laws

A.1 Maple code for BGI approximate point symmetries of the
perturbed Boussinesq ODE

Consider the linear ODE (2.119) and its perturbed version, the Boussinesq ODE (2.120). We use the GeM

package [9] to write a code for BGI approximate point symmetries of (2.120).

1. Initialize the GeM package using the command.

read(t:/gem32_12.mpl);

2. Define independent and dependent variables, parameters and arbitrary functions of the problem. We
use U instead of y, and e instead of ε in the perturbed ODE (2.120).

gem_decl_vars(indeps=[x], deps=[U(x)], freeconst =[e]);

3. Define the Boussinesq equation.

gem_decl_eqs([diff(U(x), x, x)+diff(U(x), x, x, x, x)+

e*(-2*U(x)*(diff(U(x), x, x))-2*(diff(U(x), x))^2)],
solve_for=[diff(U(x),x,x,x,x)]);

A given ODE is written in a solved form. The leading derivative is specified in the solve_for parameter.

4. Find the exact symmetry determining equation for (2.120) using the command.

det_eq:=gem_symm_det_eqs([x,U(x)], return_unsplit=true);

The arguments of the command define the dependence of symmetry components. In this example,
we seek point symmetries. We keep the determining equation without splitting using the parameter
return_unsplit=true since we will use it to find the approximate symmetry components. The exact
symmetry component will be used in approximate symmetry computations. It is initialized using the
function

sym_components:=gem_symm_components();

The output is
sym_components := [xi_x(x, U), eta_U(x, U)].

These are the infinitesimals of the exact symmetry generator Y = ξ∂/∂x+ η∂/∂y.

5. Write the exact symmetry component in terms of BGI approximate symmetry components.

approx_BGI_comp:={sym_components[1]=xi0_x(x, U) + e*xi1_x(x, U),

sym_components[2]=eta0_U(x, U) + e*eta1_U(x, U)};

One obtains

approx_BGI_comp:={eta_U(x, U) = eta0_U(x, U)+e*eta1_U(x, U),

xi_x(x, U) = xi0_x(x, U)+e*xi1_x(x, U)};

Note that xi0_x(x, U) and eta0_U(x, U) are the unperturbed symmetry components of the unper-
turbed ODE (2.119).
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6. Substitute the BGI approximate components in the exact determining equation to obtain the BGI
approximate symmetry determining equations.

BGI_det_eq:=expand(subs(approx_BGI_comp,det_eq[1]));

7. Collect O(1) and O(e) coefficients of the BGI determining equation BGI_det_eq.

det_eq_e0:=subs(e=0,BGI_det_eq);

det_eq_e1:=subs(e=0,diff(BGI_det_eq,e));

The first determining equation det_eq_e0 is the determining equation for the exact symmetry com-
ponents xi0_x(x, U), eta0_U(x, U) of the unperturbed equation (2.119). The second determining
equation det_eq_e1 is the determining equation (3.20) for the BGI approximate symmetries of the
perturbed equation (2.120).

8. Find the exact point symmetries of the unperturbed ODE (2.119).
Define again the unperturbed symmetry components

sym_components_e0:=[xi0_x(x, U), eta0_U(x, U)];

Generate the split system of linear determining equations using the function

split_sys_e0:={coeffs(lhs(det_eq_e0),[Ux,Uxx,Uxxx])};

The resulting determining equations can be simplified by eliminating the redundant determining equa-
tions using the Maple rifsimp routine.

simplified_sys_e0:=DEtools[rifsimp](split_sys_e0, sym_components_e0,mindim=1);

The mindim=1 option forces rifsimp to output linearly independent solutions. The resulting determin-
ing equations is stored in simplified_sys_e0[solved]. The solution of the determining equations is
performed using the command.

symm_e0_soln:= pdsolve(simplified_sys_e0[solved],sym_components_e0);

The final solution is

symm_e0_soln:={eta0_U(x, U) = _C1*U+_C2+_C3*x+_C4*sin(x)+_C5*cos(x),

xi0_x(x, U) = _C6};

These infinitesimals yield six exact point symmetries of (2.119) given by (2.124).

9. Find the approximate symmetry components.
This step involves the substitution of the unperturbed symmetry component symm_e0_soln (The func-
tion H (1.99)) into the determining equation det_eq_e1. Therefore, some additional conditions on the
free constants Ci in symm_e0_soln may appear. Now define the approximate symmetry components

sym_components_e1:=[xi1_x(x,U),eta1_U(x, U)];

Find the split system of linear determining equations

split_sys_e1:=simplify(eval(subs(symm_e0

,[coeffs(lhs(det_eq_e1),[Ux,Uxx,Uxxx])])));

Simplify the resulting determining equations

simplified_sys_e1:=DEtools[rifsimp](split_sys_e1, sym_components_e1 ,mindim=1);
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The output is

table([dimension = 6, Solved = [eta1_Uxxxx = −eta1_Uxx,
eta1_UxU= 0, eta1_UUU = 0, xi1_xx= _C2,
xi1_xU= 0, _C1 = 0, _C3 = 0, _C4 = 0, _C5 = 0]]);

Note that the exact symmetries of the unperturbed ODE (2.119) corresponding to the constants
C1, C3, C4, C5 are unstable. While C2 corresponds to a genuine approximate symmetry of the per-
turbed equation (2.120). Now we need some constant redefinition to make orders e0 and e1 work
together.

subs_Cs:={_C1=0,_C2=A2,_C3=0,_C4=0,_C5=0,_C6=A6};

The updated determining equation for the approximate symmetry components is found using the com-
mand

simplified_sys_e1_new:=subs(subs_Cs,simplified_sys_e1[Solved][1..-5]);

The solution of these determining equation is found using the command

symm_e1_soln:=pdsolve(simplified_sys_e1_new,sym_components_e1);

The output is given by

symm_e1_soln := {eta1_U(x, U) = _C1*U+_C2+_C3*x+_C4*sin(x)+_C5*cos(x),

xi1_x(x, U) = A2*x+_C6};

10. Write the general solution of the approximate symmetry infinitesimals.
Combine the unperturbed components with the approximate components

symm_e0_e1_BGI:=subs(symm_e1_soln union subs(subs_Cs,symm_e0_soln),approx_BGI_comp);

The result is

symm_e0_e1_BGI:={eta_U(x, U) = A2+e*(_C1*U+_C2+_C3*x+_C4*sin(x)+_C5*cos(x)),

xi_x(x, U) = A6+e*(A2*x+_C6)}

Redefine the constants A2, A6

symm_e0_e1_BGI_C:=subs({A2=_C12,A6=_C16},symm_e0_e1_BGI);

One gets

symm_e0_e1_BGI_C:={eta_U(x, U) =_C12+e*(_C1*U+_C2+_C3*x+_C4*sin(x)+_C5*cos(x)),

xi_x(x, U) = _C16+e*(_C12*x+_C6)}

Note that the constants C1, ..., C6 corresponds to trivial approximate symmetries of (2.120). The con-
stants C12, C16 correspond to stable point symmetries of (2.119) where C12 yields the new approximate
symmetry X7 in (2.128) of (2.120).

A.2 Maple code for approximate symmetry classification in Table
3.1

Here are the maple codes for the BGI and FS symmetry classifications for a nonlinear wave equation (3.29)
(Table 3.1 ).
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A.2.1 Maple code for BGI approximate symmetry classification in Table 3.1

1. The package is initialized using the command.

read(t:/gem32_12.mpl);

2. Define independent and dependent variables, parameters and arbitrary functions of the problem. We
use U instead of u, K instead of F1 and e instead of ε in the wave equation (3.29).

gem_decl_vars(indeps=[x,t], deps=[U(x,t)], freeconst =[e],
freefunc=[K(U(x,t), diff(U(x,t),t))]);

3. The wave equation (3.29) is defined using the command.

gem_decl_eqs([diff(U(x,t),t,t)+e*K(U(x,t),diff(U(x,t),t))=

diff(U(x,t),x)*diff(U(x,t),x,x)], solve_for=[diff(U(x,t),t,t)]);

4. Generate the exact symmetry determining equation for (3.29) using the command.

det_eq:=gem_symm_det_eqs([x,t,U(x,t),diff(U(x,t),x),diff(U(x,t),t)],

in_evolutionary_form=true, return_unsplit=true );

In this example, we seek point symmetries in evolutionary form by adding the parameter in_evolutionary_form=true.
The exact symmetry component is initialized using the function

sym_components:=gem_symm_components();

The output is
sym_components := [eta_U(x, t, U, Ux, Ut)].

5. Write the exact symmetry component in terms of BGI approximate symmetry components.
zeta_approx_BGI:={sym_components[1]=zeta0_U(x,t, U,Ux,Ut) + e*zeta1_U(x,t,U,Ux,Ut)};

zeta_approx_BGI:={eta_U(x, t, U, Ux, Ut) = zeta0_U(x, t, U, Ux, Ut)+
e*zeta1_U(x, t, U, Ux, Ut)}.

6. Substitute the BGI approximate components in the exact determining equation to obtain the BGI
approximate symmetry determining equations.

BGI_det_eq:=expand(subs(zeta_approx_BGI,det_eq[1]));

7. Collect O(1) and O(e) coefficients of the BGI determining equation BGI_det_eq.

det_eq_e0:=subs(e=0,BGI_det_eq);

det_eq_e1:=subs(e=0,diff(BGI_det_eq,e));

The first determining equation det_eq_e0 is the determining equation for the exact symmetry com-
ponent zeta0_U(x,t, U,Ux,Ut) of the unperturbed wave equation (3.11). The second determining
equation det_eq_e1 is the determining equation (3.20) for the BGI approximate symmetries of the
perturbed equation (3.29).

8. Find the exact point symmetries of the unperturbed wave equation (3.11).
sym_components_e0:=[zeta0_U(x,t, U,Ux, Ut)];

sym_components_e0 := [zeta0_U(x, t, U, Ux, Ut)].
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We require zeta0_U(x,t, U,Ux,Ut) to be linear in the first derivatives of U .

linear_cond:={diff(sym_components_e0[1], Ux, Ux)=0,

diff(sym_components_e0[1], Ut, Ux)=0, diff(sym_components_e0[1], Ut, Ut)=0}

The split system of the linear PDEs is generated using the function

split_sys_e0:={coeffs(lhs(det_eq_e0) ,[Utxx,Utt,Utx,Uxx,Uxxx])} union linear_cond;

The resulting determining equations can be simplified by eliminating the redundant determining equa-
tions using the Maple rifsimp routine.

simplified_sys_e0:=DEtools[rifsimp](split_sys_e0, sym_components_e0,mindim=1);

The resulting determining equations is stored in simplified_sys_e0[solved]. The solution of the
determining equations is performed using the command.

symm_e0_soln:= pdsolve(simplified_sys_e0[solved],sym_components_e0);

The final solution is

symm_e0_soln:={zeta0_U(x, t, U, Ux, Ut) = _C1+_C2*t+_C3*Ut+_C4*Ux

+_C5*(U+(1/2)*t*Ut)+_C6*(U-x*Ux-t*Ut)};

The latter is the evolutionary form of the exact point symmetries (3.14) of the unperturbed wave

equation (3.11). The resulting six point symmetries of (3.11) given in Table 3.1 are printed using the
command.

gem_output_symm({sym_components[1]=subs(symm_e0_soln, zeta0_U(x,t, U,Ux, Ut))});

Now, we find the form of the arbitrary function K (F1 in Table 3.1) where an exact point symmetry of
(3.11) is stable in BGI framework. Then we find the corresponding BGI approximate point symmetry
of the perturbed equation (3.29).

9. Find the split system of the determining equation det_eq_e1 of the BGI approximate symmetry com-
ponents.

sym_components_e1_ev:=[zeta1_U(x,t, U,Ux, Ut)];

split_sys_e1:=simplify({(coeffs(lhs(subs(symm_e0_soln,det_eq_e1)),

[Utx,Utt,Uxx]))}) union {diff(sym_components_e1_ev[1], Ux, Ux)=0} union

{diff(sym_components_e1_ev[1], Ut, Ux)=0} union

{diff(sym_components_e1_ev[1], Ut, Ut)=0};

Here we also require zeta1_U(x,t, U,Ux, Ut) to be linear in the first derivatives of U . This step
involves the substitution of the unperturbed symmetry component symm_e0_soln (The function H
(3.21)) into the determining equation det_eq_e1. Therefore, some additional conditions on the free
constants Ci in symm_e0_soln may appear depending on the form of the arbitrary function K. Hence
to classify the stability of exact point symmetries of the unperturbed wave equation (3.11), we find the
general solution of K that removes the constraints on each Ci. Then we substitute the obtained value
of K to find the approximate point symmetry corresponding to each exact point symmetry of (3.11).
We find the form K and the BGI approximate point symmetry corresponding to X̂0

2 = t∂/∂u. The
other cases can be found in the same way.
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10. Substitute C2 = 1 and Ci = 0, i = 1, 3, ..., 6 into the split system split_sys_e1.

split_sys_e1_X2 := subs([_C1 = 0, _C2 = 1, _C3 = 0, _C4 = 0, _C5 = 0,

_C6 = 0], split_sys_e1);

Then simplify using the command.

cases2 := simplify(DEtools[rifsimp](split_sys_e1_X2, sym_components_e1,

casesplit, mindim = 1));

For the classification, we use the variable casesplit. The result of cases2 contains only one case with
a set of linear PDEs in zeta1_U(x, t, U, Ux, Ut) and K. The obtained system of PDEs in K is
given by

KUtUtUt = 0, KUU = 0, KUUt = 0

with solution
K(U,Ut) = a1Ut + a2U + a3U

2
t + a4.

11. Substitute the value of K into the system cases2.

eval(cases2[Solved],{K(U, Ut) =a1Ut+a2U+a3Ut^2+a4}).

The result of this step is a set of linear PDEs in zeta1_U(x, t, U, Ux, Ut). The solution can be
found using the command pdsolve(%). Consequently, the solution of zeta1_U(x, t, U, Ux, Ut) has
the form

{zeta1_U(x, t, U, Ux, Ut) = _C4*Ux*x-(1/6)*a2*t^3-(1/2)*

(2*a3*Ut*(1/5)+a1)*t^2+(1/30)*(-24*a3*U

+(45*_C4+15*_C5)*Ut+30*_C8)*t+_C5*U+Ut*_C6+_C7*Ux+_C3}

Note that each constant of a1,a2,a3 corresponds to a special form of K and a genuine BGI approximate
symmetry of the stable point symmetry X̂0

2 = t∂/∂u. The other constants _C3,...,_C8 correspond to
BGI trivial approximate symmetries of the perturbed equation (3.29).

A.2.2 Maple code for FS approximate symmetry classification in Table 3.1

1. We initialize the GeM package using the command.

read(t:/gem32_12.mpl);

2. Declare the variables and arbitrary functions in the FS system (3.30). Define the system of equations
(3.30).

gem_decl_vars(indeps=[x,t], deps=[V(x,t),W(x,t)],
freefunc=[K(V(x,t), diff(V(x,t),t))])

gem_decl_eqs([diff(diff(V(x, t), t), t) = (diff(V(x, t), x))*

(diff(diff(V(x, t), x), x)), diff(diff(W(x, t), t), t)+

K(V(x, t), diff(V(x, t), t))= (diff(W(x, t), x))*

diff(V(x, t), x, x)+(diff(V(x, t), x))*diff(W(x, t), x, x)],

solve_for=[diff(V(x,t),t,t),diff(W(x,t),t,t)]);

3. Generate the FS determining equations and the FS local symmetry generator for (3.30).

det_eq_Fush:=gem_symm_det_eqs([x,t,V(x,t),W(x,t),

diff(V(x,t),x), diff(V(x,t),t), diff(W(x,t),x), diff(W(x,t),t)],

in_evolutionary_form=true, return_unsplit=true );

This determining equations det_eq_Fush contain two non-split determining equations. The first one
det_eq_Fush[1] is the determining equation for exact local symmetries of the unperturbed PDE (3.11)
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in terms of V . Now define the FS symmetry components
sym_components:=gem_symm_components();

sym_components := [eta_V(x, t, V, W, Vx, Vt, Wx, Wt),

eta_W(x, t, V, W, Vx, Vt, Wx, Wt)];

4. Find the exact point symmetries of the unperturbed equation (3.11) in terms of FS. The symmetry
component eta_V(x, t, V, W, Vx, Vt, Wx, Wt) is redefined so that it is linear in the first derivatives
of V and does not depend on W .
etaV_exact:=[sym_components[1]=eta_v(x, t, V,Vx, Vt)];

etaV_exact:=[eta_V(x, t, V, W, Vx, Vt, Wx, Wt) = eta_v(x, t, V, Vx, Vt)];

The constraints on eta_v(x, t, V, Vx, Vt) are performed using the command.

linear_cond:=[diff(eta_v(x, t, V, Vx, Vt),Vt,Vt)=0,

diff(eta_v(x, t, V, Vx, Vt),Vt,Vx)=0, diff(eta_v(x, t, V, Vx, Vt),Vx,Vx)=0];

Now we find the determining equations for exact point symmetries of (3.11) in terms of V .

det_eqs_exact_V:=eval(subs(etaV_exact, det_eq_Fush[1]));

Then we split the determining equation det_eqs_exact_V with respect to higher derivative of V .

split_exact_V:=[coeffs(lhs(det_eqs_exact_V), [Vxx,Vtx,Vtt])];

The solution of the split system can be found using the function

symm_e0_Fush:=pdsolve([split_exact_V[],linear_cond[]],eta_v(x, t, V, Vx, Vt));

The result is the evolutionary form of the point symmetries of (3.11) in terms of FS

symm_e0_Fush:={eta_v(x, t, V, Vx, Vt)= _C1+_C2*t+_C3*Vt+_C4*Vx

+_C5*(V+(1/2)*t*Vt)+_C6*(V-x*Vx-t*Vt);

5. Find the split system of determining equations in eta_W(x, t, V, W, Vx, Vt, Wx, Wt).

sym_components_e1_Fush:=[eta_w(x, t, V, W,Vx,Vt, Wx, Wt)];

split_sys_e1_Fush:={coeffs(lhs(subs(symm_e0_Fush,det_eq_Fush[2])),

[Vtx,Vtt,Vxx,Wtx,Wxx,Wtt,Vtxx,Wtxx,Vxxx,Wxxx])}

We note here that we find FS local symmetries, so no additional constraints on
eta_W(x, t, V, W, Vx, Vt, Wx, Wt) are required. The substitution of the unperturbed symmetry
component symm_e0_Fush into the determining equation det_eq_Fush[2] leads to some additional
conditions on the free constants Ci in symm_e0_Fush depending on the form of the arbitrary function
K. The classification of the stability of exact point symmetries of the unperturbed wave equation
(3.11) is performed one by one. For a point symmetry X̂0

k , one substitutes Ck = 1 and Ci = 0, i 6= k
into the determining equation split_sys_e1_Fush. Then one finds the general solution of K that
corresponds to Ck (a stable point symmetry X̂0

k). To find the corresponding approximate symmetry

Ẑk, one substitutes the value of K into split_sys_e1_Fush and solve for the approximate symmetry
component eta_w(x, t, V, W,Vx,Vt, Wx, Wt). Here, we find the form K and the FS approximate
local symmetry corresponding to X̂0

1 = ∂/∂v. The other cases can be found in the same way.
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6. Substitute C1 = 1 and Ci = 0, i = 2, ..., 6 into the split system of equations
split_sys_e1_Fush.

split_sys_e1_Fush_Z1 := subs([_C1 = 0, _C2 = 0, _C3 = 0, _C4 = 0, _C5 = 0,

_C6 = 1], split_sys_e1_Fush);

Simplify the result using the command.

cases_F1:=simplify(DEtools[rifsimp](split_sys_e1_Fush_Z1 ,

sym_components_e1_Fush,casesplit, mindim=1));

One gets a system of PDEs in the symmetry component eta_w(x, t, V, W,Vx,Vt, Wx, Wt) and the
function K. The system of PDEs in K has the form

KV V V =
(KV V )

2

KV
, KV V V =

KV VKV Vt

KV
, KV VtVt =

KV VKVtVt

KV
,

which has a solution
K(V, Vt) = ea1VQ(Vt) + a2Vt + a3V Vt + a4V + a5.

7. Find the approximate symmetry component corresponding to the stable point symmetry X̂0
1 = ∂/∂v.

First, we substitute K into cases_F1[Solved].

Z1_case := simplify(eval(cases_F1[Solved], K(V, Vt)

= e^{a1V}Q(V_t)+a2V_t+a3VV_t+a4V+a_5))

Then we solve the resulting determining equation using the command

pdsolve(Z1_case);

After simplifications, one obtains the solution

eta_W(x, t, V, W, Vx, Vt, Wx, Wt) = (1/10)*a1*(Vt*a2+5*a3)*t^2

+2*t*V*a1*a2*(1/5)+a1*W-(1/10)*a3*t^2*Vt-2*t*V*a3*(1/5)-(1/2)*a4*t^2;

Each constant of a1,...,a4 corresponds to a special form ofK and a genuine FS approximate symmetry
of the stable point symmetry X̂0

1 = ∂/∂v.

A.3 Maple code for approximate multipliers and approximate con-
servation laws

In this section, we provide a maple code to compute approximate multipliers and approximate conservation
laws for the system of perturbed PDEs (4.1) in n independent variables x = (x1, ..., xn) and m dependent
variables (u1, ..., um). In the code, we replace u by U and ε by e.

1. Initialize the Maple packages:

read(t:/gem32_12.mpl);

with(PDEtools):

2. Define the independent and dependent variables, and parameters of the given problem.

gem_decl_vars(indeps=[x^1,x^2,...,x^n], deps=[U^1(x),...,U^m(x)],
freeconst=[e])

3. Define the N equations of the system of perturbed PDEs (4.1).
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pde_1:=F_0^1+e*F_1^1=0;..., pde_N:=F_0^N+e*F_1^N=0;

4. Define the set of exact multipliers of the system (4.1).

exact_multip_pert:=[Lambda1[U],...,LambdaN [U]];

5. Use the exact multipliers to define the approximate multipliers of the system (4.1).

approx_multip :={exact_multip_pert[1]=Lambda01[U]+e*Lambda11[U],...,

exact_multip_pert[N]=Lambda0N[U]+e*Lambda1N[U]};

Note that the unperturbed equation can be obtained from the perturbed equations using the function
eval(pde_k,e=0), and the perturbation term can be found using the command diff(pde_k,e), k =
1, ..., N.

6. Find the 2N determining equations for exact multipliers of the unperturbed equations (e=0) and the
determining equations for the O(e) part of the approximate multiplier approx_multip.
First, define the O(1) and O(e) parts of the approximate multiplier approx_multip

multip_unpert:=[Lambda01[U],...,Lambda0N [U]];

multip_approx_part:=[Lambda11[U],...,Lambda1N [U]];

Then, generate the determining equations for multip_unpert and multip_approx_part using the Euler
operators with respect to the dependent variables U = (U1, ..., UN ).

det_eq_multip_unpert:=Euler(Lambda01*eval(pde_1,e=0)+...+

Lambda0N*eval(pde_N,e=0),U)=0;

det_eq_multip_approx_part:= Euler(Lambda01*diff(pde_1,e)+Lambda11

*eval(pde_1,e=0)+...+Lambda0N*diff(pde_N,e)+Lambda1N*eval(pde_N,e=0),U)=0;

The above determining equations are equivalent to the determining equations (4.12).

7. Solve the above determining equations using the command.

lambda0_lambda1_sol:=pdsolve({det_eq_multip_unpert[]} union

{det_eq_multip_approx_part[]});

8. Write the general form of the approximate multipliers.

approx_mult_general_k:=lambda0_lambda1_sol[k]+e*lambda0_lambda1_sol[N+k];

Now we use the approximate multipliers to obtain the approximate conservation laws (4.7). In the
Maple notations, Φi is replaced by _J [i].

9. Find the approximate conservation laws corresponding to the approximate multipliers.
Set the divergence expressions (4.6)

div_term_e0:=Lambda01*eval(pde_1,e=0)+...+

Lambda0N*eval(pde_N,e=0);

div_term_e1:= Lambda01*diff(pde_1,e)+Lambda11

*eval(pde_1,e=0)+...+Lambda0N*diff(pde_N,e)+Lambda1N*eval(pde_N,e=0);

Find the exact conservation law of the unperturbed equation corresponding to the exact multipliers
using ConservedCurrents Maple routine.

Phi0:=ConservedCurrents(div_term_e0,split=false);

Then find the O(e) part of the approximate conservation law (4.7) using the command.

Phi1:=ConservedCurrents(div_term_e1,split=false);

We do not split here to get the general solution and to avoid the cases of trivial approximate conservation
laws.
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Example A.3.1. We write the code to find approximate multipliers and approximate conservation laws for
the nonlinear perturbed heat equation (4.27) (Example 4.3.2).

1. Initialize the Maple packages:
with(PDEtools):

read(t:/gem32_12.mpl);

2. Define the independent and dependent variables, and parameters of (4.27) .

gem_decl_vars(indeps=[x,t], deps=[U],freeconst=[e]);

3. Define the heat equation (4.27).

pde_1:=diff(U(x,t),t)-diff((U(x,t))^(-2)*diff(U(x,t),x),x)

+e*diff((U(x,t)-U(x,t)^(-1)),x)=0;

4. Define the set of exact multipliers of (4.27) and specify their dependence .

exact_multip_pert:=[Lambda1(x,t,U);

5. Use the exact multipliers to define the approximate multipliers of the system (4.1).

approx_multip :=exact_multip_pert[]=Lambda01(x,t,U)+e*Lambda11(x,t,U);

6. Find the determining equations for exact multipliers of the unperturbed equations (e=0) and the de-
termining equations for the O(e) part of the approximate multiplier approx_multip.

multip_unpert:=[Lambda01(x,t,U);

multip_approx_part:=[Lambda11(x,t,U)];

det_eq_multip_unpert:=Euler(Lambda01*eval(pde_1,e=0))=0;

det_eq_multip_approx_part:= Euler(Lambda01*diff(pde_1,e)+

Lambda11*eval(pde_1,e=0))=0;

One gets
det_eq_multip_unpert := [Λ01xx = 0,Λ01t = 0,Λ01U = 0];

det_eq_multip_approx_part := [Λ11xx = −Λ01x,Λ11t = −Λ01x,Λ11U = 0]

7. Find the general solution of Λ01 and Λ11.

lambda0_lambda1_sol:=pdsolve({det_eq_multip_unpert[]} union

{det_eq_multip_approx_part[]});

The solution is given by

lambda0_lambda1_sol:=[Λ01(x, t, U) = _C1*x+_C2,
Λ11(x, t, U) = (1/2)*(-x^2-2*t)*_C1+_C3*x+_C4];

The general form of the approximate multiplier of (4.27) can be found using the command

approx_mult_general:=lambda0_lambda1_sol[1]+e*lambda0_lambda1_sol[2];

The output is
approx_mult_general := Λ01(x, t, U) + e ∗ Λ11(x, t, U)
= _C1*x+_C2+e*((1/2)*(-x^2-2*t)*_C1+_C3*x+_C4)

Now we find the approximate conservation law corresponding to the new approximate multiplier Λ =
x+ e((1/2)(−x2 − 2t)).
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8. Set the divergence expressions
div_term_e0:=Lambda01*eval(pde_1,e=0);

div_term_e0:=x*(Ut+2*Ux^2/U^3-Uxx/U^2);

div_term_e1:= Lambda01*diff(pde_1,e)+Lambda11*eval(pde_1,e=0);

div_term_e1:=x*(Ux+Ux/U^2)+(1/2)*(-x^2-2*t)*(Ut+2*Ux^2/U^3-Uxx/U^2);

9. Find the exact conservation law of the unperturbed equation corresponding to the exact multipliers
Λ01 = x.
Phi0:=ConservedCurrents(div_term_e0,split=false);

Φ0 := [_J[x](x, t, U, Ux, Ut) = -_F1(x, t, U)*Ut-x*Ux/U^2-1/U,

J[t](x, t, U, Ux, Ut) = _F1(x, t, U)*Ux+x*U]

Setting _F1=0 using the command eval(Phi0,_F1(x,t,U)=0), one gets the exact conservation law
Dt [xu]−Dx

[
xu−2ux + u−1

]
= 0 for the unperturbed heat equation ut − (u−2ux)x.

10. Find the O(e) part of the approximate conservation law
Phi1:=ConservedCurrents(div_term_e1,split=false);

Φ1 := [_J[x](x, t, U, Ux, Ut) = -_F1(x, t, U)*Ut-(x^2/2+t)*Ux/U^2-xU,

J[t](x, t, U, Ux, Ut) = _F1(x, t, U)*Ux+(x^2/2+t)*U]

Setting _F1=0 using the command eval(Phi1,_F1(x,t,U)=0), one obtains the O(e) part of the ap-
proximate conservation law of (4.27) given by (4.32b).
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