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Abstract

Mooney-Rivlin hyperelasticity equations are nonlinear coupled partial differential equa-

tions (PDEs) that are used to model various elastic materials. These models have been

extended to account for fiber reinforced solids with applications in modeling biological mate-

rials. As such, it is important to obtain solutions to these physical systems. One approach is

to study the admitted Lie symmetries of the PDE system, which allows one to seek invariant

solutions by the invariant form method. Furthermore, knowledge of conservation laws for a

PDE provides insight into conserved physical quantities, and can be used in the development

of stable numerical methods.

The current Thesis is dedicated to presenting the methodology of Lie symmetry and con-

servation law analysis, as well as applying it to fiber reinforced Mooney-Rivlin models. In

particular, an outline of Lie symmetry and conservation law analysis is provided, and the

partial differential equations describing the dynamics of a hyperelastic solid are presented.

A detailed example of Lie symmetry and conservation law analysis is done for the PDE

system describing plane strain in a Mooney-Rivlin solid. Lastly, Lie symmetries and conser-

vation laws are studied in one and two dimensional models of fiber reinforced Mooney-Rivlin

materials.
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Chapter 1

Introduction to Lie Symmetry and Conser-

vation Law Analysis

1.1 Introduction

Differential equations (DEs) are an important class of equations which appear in many

models of physical processes. The primary goal of analyzing differential equations is to seek

solutions to these equations. One possible approach is to utilize properties of the equations

to better understand, and sometimes solve, the problem. Two properties useful in studying

DEs are Lie symmetries [21, 23,68,96,98] and conservation laws [3–5,22,95].

A symmetry of a system of partial differential equations (PDEs) is a group of transfor-

mations which maps solutions of the system into other solutions of the same system. A

symmetry transformation acts on the space of independent and dependent variables, and

does not alter the form of the differential equation (i.e. the equation is invariant under the

transformation). Knowledge of symmetries of a PDE system allow for the construction of

new solutions from known solutions of the system. In general, symmetry transformations of

a PDE system are determined by a nonlinear invariance criteria, which are difficult to solve

in the case of complicated PDEs.

A particular class of symmetries which can be determined in a (relatively) simple manner

are continuous symmetry transformations, named Lie symmetries after their founder Sophus

Lie [79–81].Lie symmetries are desirable to study since they can be sought algorithmically

(by Lie’s algorithm). This is achieved by studying invariance under the equivalent local

infinitesimal transformation, for which the invariance criteria reduces to solving a system of
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linear partial differential equations.

Of additional importance are applications of Lie symmetries. Invariance of an ODE under

a one-parameter Lie symmetry allows one to constructively reduce the order of the ODE by

one while preserving the solution set. Furthermore, for both ODEs and systems of PDEs,

one may construct particular solutions invariant under an admitted Lie symmetry.

Seeking conservation laws of a physical system are important for understanding the gov-

erning physical processes, as well as to prove existence of solutions, stability of shockwave

solutions, and developing stable numerical methods (see [96] for a detailed discussion with

references). The study of conservation laws is tied closely to that of Lie symmetries due to the

work of Emmy Noether [95]. Noether proved that, for a system of Euler-Lagrange equations

(a variational system of PDEs), Lie symmetries of the Lagrangian correspond to conservation

laws of the system. This result has been extended in the work of Bessel-Hagen to include Lie

symmetries for which the Lagrangian is invariant up to a divergence expression [12].

An alternative to Noether’s theorem in constructing conservation laws of PDE systems

is the algorithmic ‘direct method’ developed by Anco and Bluman [3–5]. The direct method

works by seeking particular functions that the PDE system can be multiplied by which

can then be manipulated into a divergence expression. This method supersedes Noether’s

theorem since it can be applied to both variational and non-variational systems alike, and

yields all the conservation laws of Noether’s method [22].

In this Chapter, we present the basic theory and methodology of Lie symmetry analysis

and conservation law analysis based on the work of Bluman, Cheviakov, and Anco [22],

Bluman and Anco [21], Bluman and Kumei [23], and Hydon [65]. We begin in Section 1.2 by

introducing the concept of symmetry of algebraic equations with the geometric picture as an

intuitive motivation. In addition, we define Lie point symmetries of algebraic equations, and

discuss several important concepts fundamental to Lie symmetry analysis. In Section 1.3,

we present the extension of Lie symmetries to differential equations, and several important

applications therein. Then, in Section 1.4 we introduce the notions of conservation laws of

PDEs, and briefly present the mathematical formulation. Finally, the connection between Lie

symmetries and conservation laws for PDE systems is discussed in Section 1.5, with additional

notes on the construction of nonlocally related PDE systems through known conservation

2



laws.

The notation used within the current Thesis is as follows. Vectors are indicated with an

overhead arrow, and superscript notation refers to vector components (e.g. ~x =

(x1, x2, . . . , xn)). Subscripts on scalar functions and vector quantities denote partial differ-

entiation (e.g. ∂vi/∂xj

≡ vixj ≡ vij denotes partial differentiation with respect to xj). In the case of ordinary differ-

ential equations, we will use superscript numerals in brackets to represent differentiation (i.e.

y = y(x), then y(k) is the kth-derivative of y). Operators are denoted by capital, non-italic

letters (e.g. X).

It is assumed all functions discussed in the current Thesis are infinitely differentiable on

their domain (i.e. f : D → R a scalar valued function, then f ∈ C∞(D)). The domain of any

function is assumed an open interval of Euclidean space Rn such that the standard definition

of differentiability within the domain holds.

1.2 Lie Symmetries

We introduce the notions of symmetry and Lie point symmetries. In particular, we focus on

the application to equations of real variables.

1.2.1 Geometric Example of Symmetries

We begin by heuristically presenting the notions of symmetry of an object under a transfor-

mation, as well as invariance of an object under a transformation.

Consider a circle of radius one centered at the origin in Figure 1.1. Clearly, the circle is

symmetric about the y-axis. This reflection transformation can be thought of as a mapping

of points on the left half of the circle to points on the right half, and vice versa. The points

at coordinate (x, y) = (0, 1) and (x, y) = (0,−1) are called invariant points since they are

mapped by the reflection transformation into themselves. We say the circle is invariant

under the reflection transformation since it is mapped from itself into itself. In general,

any transformation of under which a geometric object is invariant is called a symmetry

transformation, and we say the object admits this type of symmetry.

3
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Figure 1.1: Circle with reflection and rotation symmetries shown.

The circle in Figure (1.1) is also invariant under rotations by an angle θ about the origin,

and so admits a rotation symmetry. This rotation transformation forms a continuous sym-

metry of the circle since the rotation angle θ is continuous (i.e. θ ∈ R). On the other hand,

the reflection symmetry of the circle about the y-axis is called a discrete symmetry.

1.2.2 Algebraic Formulation of Symmetries

It is important to quantitatively describe a symmetry transformation of an algebraic equa-

tion as a precursor to symmetries of differential equations. To do so, we formally define

a point transformation, as well as invariance of an algebraic equation under a symmetry

transformation.

Definition 1.2.1. A point transformation ~X : D → D is a set of one-to-one functions

mapping points ~x ∈ D to points ~x∗ ∈ D. In particular, we write

~x∗ = ~X(~x). (1.1)

Definition 1.2.2. A hypersurface f(~x) = 0 is invariant under a point transformation (1.1)

4



if

f(~x∗) = 0 when f(~x) = 0. (1.2)

A point transformation which leaves a hypersurface invariant is called a symmetry transfor-

mation of the hypersurface, and we say the hypersurface admits the particular symmetry.

Consider the following examples.

Example 1.2.3. Consider the equation of the circle in Figure 1.1,

x2 + y2 − 1 = 0. (1.3)

We wish to verify reflections about the y-axis is a symmetry transformation.

Reflection of the xy-lane about the y-axis can be written as

x∗ = X1(x, y) = −x, (1.4a)

y∗ = X2(x, y) = y, (1.4b)

which is a point transformation since each point (x, y) is mapped uniquely into the point

(x∗, y∗) = (−x, y).

Substituting (1.4) into equation (1.3) yields

(x∗)2 + (y∗)2 − 1 = (−x)2 + (y)2 − 1 ≡ 0.

As such, the circle (1.3) is invariant under the reflection transformation (1.4).

Example 1.2.4. We wish to verify that rotations about the center of the circle (1.3) in the

xy-plane is a symmetry transformation of the circle.

First, rotations of the xy-plane about the origin can be parametrized as the point trans-

formation

x∗ = x cos ε − y sin ε (1.5a)

y∗ = x sin ε + y cos ε, (1.5b)

where ε ∈ R. For fixed ε, it can be shown (1.5) is a point transformation.
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Substituting (1.5) into the equation of the circle (1.3) and simplifying yields:

(x∗)2 + (y∗)2 − 1 = (cos ε x− sin ε y)2 + (sin ε x+ cos ε y)2 − 1

= x2 cos2 ε− 2xy cos ε sin ε+ y2 sin2 ε+ x2 sin2 ε+ 2xy cos ε sin ε+ y2 cos2 ε− 1

= (cos2 ε+ sin2 ε)(x2 + y2)− 1 = x2 + y2 − 1 ≡ 0.

Thus, (x∗)2 + (y∗)2 − 1 = 0 when (x)2 + (y)2 − 1 = 0. As such, the transformation (1.5) is a

symmetry of the circle.

1.2.3 Lie Groups of Transformations

With the idea of symmetry for a algebraic equations in tow, we wish to restrict our attention

to Lie point symmetries. To accomplish this, we first recall the definition of a group, group

of point transformations, and a Lie group of point transformations [23].

Definition 1.2.5. A group (G, φ) is a set G with an operation φ : G×G→ G such that for

all a, b, c ∈ G:

• The group is closed: φ(a, b) ∈ G;

• The operation φ is associative: φ(φ(a, b), c) = φ(a, φ(b, c));

• There exists an identity element e ∈ G such that φ(e, a) = φ(a, e) = a; and,

• There exists an inverse element a−1 ∈ G such that φ(a−1, a) = φ(a, a−1) = e.

Definition 1.2.6. Let (S, φ) be a group on S ⊂ R with operation φ. Consider some ~x ∈

D ⊂ Rn acted on by a continuous point transformation ~X : D × S → D such that

~x∗ = ~X(~x, ε), (1.6)

where ε is the transformation parameter. Then, ~X forms a group of transformations on D if

for every ε, δ ∈ S:

• ~X(~x, ε) is bijective (one to one and onto) on D;

• ~X(~x, ε0) = ~x, where ε0 is the identity element; and,

6



• If ~x∗ = ~X(~x, ε) and ~x∗∗ = ~X(~x∗, δ), then ~x∗∗ = ~X(~x, φ(ε, δ)).

Definition 1.2.7. A group of transformations is a one-parameter Lie group of point trans-

formations if:

• ε ∈ S is a continuous parameter (i.e. S is an interval in R);

• the transformation ~X is infinitely differentiable with respect to ~x ∈ D and is an analytic

function of ε in S; and,

• φ(ε, δ) is analytic in ε and δ, ε, δ ∈ S.

Definition 1.2.8. For a Lie group of transformations, a smooth function f(~x) is invariant

under the group of transformations if and only if f(~x∗) = f(~x). Furthermore, this Lie group

of point transformations is a Lie point symmetry of f(~x).

For the remainder of the current thesis, we restrict our attention to Lie point symmetries.

In addition, we assume the transformations act on the space D = Rn unless otherwise

specified.

Example 1.2.9. We wish to verify the rotation symmetry of the circle (1.5) is a Lie group

of point transformations with transformation (1.6), and φ(ε, δ) = (ε + δ) mod 2π the law of

composition for ε, δ ∈ S = [0, 2π).

First, it is clear that (S, φ) is a group.

Second, rotations of the circle (up to mod2π) form a group of point transformations

because: the transformation is bijective on R2; taking ε = 0 yields the identity transformation

(i.e. ~X(~x, 0) = ~x); and, it is clear that rotating the circle an angle θ followed by an angle ω

is equivalent to rotating the circle an angle (θ + ω) mod 2π.

Finally, we must verify the three properties in Definition 1.2.7. By observation, the trans-

formation parameter ε is continuous since S is an interval in R. As well, the transformation

(1.5) is linear in x and y, and so is smooth in ~x. Additionally, the transformation is ana-

lytic in ε because sine and cosine are analytic functions. Lastly, φ is analytic in both of its

arguments.

Thus, we have verified rotations of the circle about its center forms a Lie group of point

transformations.

7



Without a loss of generality, we may assume each Lie group of point transformations to

have the operation φ(a, b) = a+ b for a, b ∈ R, as done in [21–23].

1.2.4 Infinitesimal Generators

A one-parameter Lie group of point transformations can be uniquely characterized by its

infinitesimal generator. Infinitesimal generators are important because they allow one to

algorithmically determine the admitted Lie symmetries of a given equation. This naturally

allows for implementation in computer algebra systems, which makes feasible the computa-

tion of Lie symmetries admitted by large systems of equations. In the following, we present

the infinitesimal generator and its connection to one parameter Lie groups of point transfor-

mations.

We now expand a Lie group of point transformations ~X(~x, ε) about ε = 0 for small ε in

a Taylor series:

~x∗ = ~x+ ε
∂ ~X

∂ε
(~x, ε)

∣∣∣∣∣
ε=0

+O(ε2). (1.7)

Let

~ξ(~x) =
∂ ~X

∂ε

∣∣∣∣∣
ε=0

, (1.8)

which is the infinitesimal of the infinitesimal transformation ~x∗ ≈ ~x + ε~ξ. A Lie group

of point transformations ~X(~x, ε) is characterized locally by its infinitesimal transformation

~x∗ ≈ ~x+ ε~ξ, which is shown in the following theorem.

Theorem 1.2.10. A one parameter Lie group of transformations with the parametrization

φ(a, b) = a+ b is equivalent to the solution of the initial value problem

d~x∗

dε
= ~ξ(~x∗) , ~x∗|ε=0 = ~x. (1.9)

The proof, under more general conditions, can be found in [23].

Of importance, Theorem 1.2.10 provides a method with which to obtain the global Lie

group of point transformations exactly from a known infinitesimal transformation. With this

in mind, we present the infinitesimal generator and theorems showing how it characterizes a

Lie group of point transformations.
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Definition 1.2.11. For a one-parameter Lie group of transformations, the associated in-

finitesimal generator is given by the linear differential operator

X = X(~x) = ~ξ(~x) · ∇ =
n∑
i=1

ξi(~x)
∂

∂(xi)
, (1.10)

where

∇ =

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

Note X acts on differentiable functions f(~x). In particular, ~ξ(~x) = X(~x)~x.

Theorem 1.2.12. A one-parameter Lie group of transformations (1.6) with infinitesimal

generator

X = X(~x) =
n∑
i=1

ξi(~x)
∂

∂(xi)

is equivalent to

~x∗ = eεX~x, (1.11)

where

eεX ≡
∞∑
i=0

εi

i!
Xi~x,

and Xi is X applied i times.

Proof. Let

X(~x∗) =
n∑
i=1

ξi(~x∗)
∂

∂(xi)∗
.

The Taylor expansion of (1.6) about ε = 0 is

~x∗ =
∞∑
i=1

εi

i!

(
∂i ~X(~x, ε)

∂εi

∣∣∣∣∣
ε=0

)
=
∞∑
i=1

εi

i!

(
di~x∗

dεi

∣∣∣∣
ε=0

)
. (1.12)

Consider that, for any differentiable function F (~x),

d

dε
F (~x∗) =

n∑
i=1

∂F (~x∗)

∂(xi)∗
d(xi)∗

dε

∣∣∣∣∣ substitute (1.9)

=
n∑
i=1

ξi(~x∗)
∂F (~x∗)

∂(xi)∗

≡ X(~x∗)F (~x∗).

9



Hence,

d~x∗

dε
= X(~x∗) ~x∗,

d2~x∗

dε2
=

d

dε

(
d~x∗

dε

)
= X(~x∗)(X(~x∗) ~x∗) = X2(~x∗) ~x∗.

Proceeding by induction, one has

di~x∗

dεi
= Xi(~x∗) ~x∗, i = 1, 2, . . . .

As such, one has

di~x∗

dεi

∣∣∣∣
ε=0

= Xi(~x) ~x = Xi ~x, i = 1, 2, . . . . (1.13)

Substituting (1.13) into (1.12) yields

~x∗ =

(
∞∑
i=1

εi

i!
Xi

)
~x, (1.14)

which is the identity (1.11).

Corollary 1.2.13. Given F (~x) an infinitely differentiable function, then for a Lie group of

transformations (1.6) with infinitesimal generator X,

F (~x∗) = F (eεX~x) = eεXF (~x). (1.15)

The proof appears in [21].

In light of the previous theorem and corollary, invariance under a Lie group of point trans-

formations can be determined with the associated infinitesimal generator, given explicitly in

the following theorem.

Theorem 1.2.14. For a Lie group of point transformations with infinitesimal generator X,

then:

1. A hypersurface F (~x) = 0 is invariant under the group of transformations (as in Defi-

nition (1.2.2) if and only if

XF (~x) = 0 when F (~x) = 0. (1.16)
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2. A function f(~x) is invariant under the group of transformations (as in Definition

(1.2.8)) if and only if

Xf(~x) ≡ 0. (1.17)

Proof. From Theorem (1.2.12) and Corollary (1.2.13), it follows that

F (~x∗) ≡ F (x) + εXF (~x) + ε2X2F (~x) + . . . . (1.18)

To prove part 1, first let F (~x∗) = 0 when F (~x) = 0. Then, from equation (1.18), we have

that

0 = εXF (~x) + ε2X2F (~x) + . . . ,

where ε is arbitrary. Thus, XF (~x) = 0.

Conversely, if XF (~x) = 0 when F (~x) = 0, it follows from (1.18) that F (~x∗) = 0.

Similarly, to prove part 2, suppose that f(~x∗) = f(~x). Then, from (1.18) with f = F , it

follows that

0 = εXf(~x) + ε2X2f(~x) + . . . ,

where ε is arbitrary. As such, Xf(~x) = 0.

Conversely, assume Xf(~x) = 0. Then, from (1.18) with f = F , it follows that f(~x∗) =

f(~x).

As such, the action of a one parameter Lie group of point transformations on a hypersur-

face or function is characterized by the associated infinitesimal generator.

Consider the following examples.

Example 1.2.15. We wish to determine the infinitesimal generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

associated with the rotation Lie group of point transformations

x∗ = x cos ε − y sin ε (1.19a)

y∗ = x sin ε + y cos ε. (1.19b)

11



By Theorem 1.2.10, the infinitesimals ξ and η are

dx∗

dε

∣∣∣∣
ε=0

= −y, (1.20a)

dy∗

dε

∣∣∣∣
ε=0

= x. (1.20b)

As such, the infinitesimal generator X associated with (1.19) is

X = −y ∂
∂x

+ x
∂

∂y
. (1.21)

Example 1.2.16. We wish to recover the global Lie group of point transformations, as well

as the invariant functions, of the infinitesimal generator

X = x
∂

∂x
+ x

∂

∂u
. (1.22)

The global transformation on (x, u)-space is obtained by solving the initial value problem

(IVP) from Theorem 1.2.10,

dx∗

dε
= x∗, x∗|ε=0 = x, (1.23a)

du∗

dε
= x∗, u∗|ε=0 = u. (1.23b)

The IVP (1.23a) admits the solution

x∗ = eεx.

Substituting this solution into (1.23b) and noting x is constant with respect to ε, we obtain

u∗ as

u∗ = eεx+ u− x.

As such, the global group of transformations associated with (1.22) is

x∗ = eεx,

u∗ = u+ (eε − 1)x.

For a function f(x, u) to be an invariant of (1.22), it is required that Xf ≡ 0. Hence, f

is defined by the linear advection PDE

x
∂f

∂x
+ x

∂f

∂u
= 0,

which is solved by the method of characteristics as

f(x, u) = f(u− x). (1.24)
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1.2.5 Canonical Coordinates

In the reduction of ODEs, it is convenient to express the equations in terms of canonical

coordinates of a Lie group of point transformations. In the current section, the notions of

canonical coordinates of a Lie group of point transformations are developed.

Theorem 1.2.17. Given a Lie group of point transformations (1.6) with infinitesimal gen-

erator X, then a function f(~x) undergoes the transformation

f(~x∗) ≡ f(~x) + ε,

if and only if

Xf(~x) ≡ 1. (1.25)

Suppose we make one-to-one, continuously differentiable change of coordinates from

~x = (x1, . . . , xn) to ~y = (y1(~x), . . . , yn(~x)). A Lie group of point transformations with the

infinitesimal generator X in coordinates ~x then becomes the infinitesimal generator Y in the

coordinates ~y, where

Y = ~η ·
(

∂

∂y1
, . . . ,

∂

∂yn

)
. (1.26)

Note that ~η(~y) = Y~y(~x).

Canonical coordinates of a Lie group of point transformations are defined in the following

Theorem.

Theorem 1.2.18. For any Lie group of point transformations on coordinates ~x with infinites-

imal generator X, there exists canonical coordinates ~y = ~y(~x) with infinitesimal generator

Y = ~η(~y) ·
(

∂

∂y1
, . . . ,

∂

∂yn

)
such that

Yyi = 0 i = 1, 2, . . . , n− 1,

Yyn = 1.

Proof of the above theorem appears in [23].
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Example 1.2.19. Consider the group of rotations with infinitesimal generator

X = −y ∂
∂x

+ x
∂

∂y
. (1.27)

We seek the canonical coordinates (r(x, y), s(x, y)) such that Xr = 0 and Xs = 1.

The equation Xr = 0 yields the characteristic system

dx

−y
=
dy

x
=
dr

0
,

which admits the particular solution

r =
√
x2 + y2. (1.28)

The equation Xs = 1

dx

−y
=
dy

x
=
ds

1
.

As such, a candidate for s is a particular solution to

ds

dy
=

1

x
=

1√
r2 − y2

.

As such,

s = sin−1
(y
r

)
. (1.29)

Thus, the canonical coordinates of (1.27) are polar coordinates

(r, s) =
(√

x2 + y2, sin−1
(y
r

))
. (1.30)

1.2.6 Multi-Parameter Lie Groups of Point Transformations

When a given function or equation admits multiple one-parameter Lie groups of point trans-

formations, they may be combined into a multi-parameter Lie group of point transformations.

The collection of infinitesimal generators for the multi-parameter Lie group of point transfor-

mations forms a Lie algebra with the additional operation of the commutator. Lie algebras

play an important role in multiple reductions of order of ordinary differential equations (dis-

cussed in Section 1.3.4). Of importance is if the Lie algebra, or a subalgebra thereof, is

solvable.

For our purposes, we do not discuss multi-parameter Lie groups, but rather focus on finite

dimensional Lie algebras.
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Definition 1.2.20. Consider two infinitesimal generators X and Y which act on a function

f(~x), ~x ∈ Rn. Then, the commutator of the two infinitesimal generators is

[X, Y] = XY − YX.

Definition 1.2.21. An r-dimensional Lie Algebra L(r) is a vector space over the field R

spanned by the infinitesimal generators of an r-parameter Lie group of transformations with

the additional law of composition of its elements given by the commutator. In particular,

for infinitesimal generators X, Y, Z ∈ L(r) and constants α, β ∈ R, the following properties

hold [23]:

• Closure: [X, Y] ∈ L(r);

• Anticommutivity: [X, Y] = −[Y, X];

• Linearity: [αX + βY, Z] = α[X, Z] + β[Y, Z]; and,

• Jacobi Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Definition 1.2.22. A subalgebra is a subspace K of the Lie algebra such that for any X, Y ∈

K, then [X, Y] ∈ K.

Definition 1.2.23. An ideal subalgebra K of L(r) is a subset of infinitesimal generators in

L(r) such that for any X ∈ K and Y ∈ L(r), then [X, Y] ∈ K.

Definition 1.2.24. An r-dimensional Lie algebra L(r) is solvable if there exists a chain of

subalgebras

L(1) ⊂ L(2) ⊂ · · · ⊂ L(r)

where L(k−1) is a (k − 1)-dimensional ideal subalgebra of L(k), k = 1, . . . , r.

Definition 1.2.25. A commutator table of an r-parameter Lie algebra Lr with basis {Xi}ri=1

is a table of the form
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X1 X2 . . . Xr

X1 0 [X1,X2] . . . [X1,Xr]

X2 [X2,X1] 0 . . . [X2,Xr]
...

... 0
. . .

...

Xr [Xr,X1] [Xr,X2] . . . 0

where the (i, j)th-entry corresponds to the commutator [Xi,Xj].

Note the diagonal of zeros is due to [Xi,Xi] ≡ 0 for i = 1, 2, . . . , r. Also, it is important

to note the commutator table is antisymmetric about the diagonal of zeros.

The structure of a Lie algebra can be viewed more easily through its commutator table.

Consider this in the following example.

Example 1.2.26. Consider the three-parameter Lie Algebra L = {X1,X2,X3} on (x, y)-

space, where

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂x
− x ∂

∂y
.

The commutator table of L is:

X1 X2 X3

X1 0 0 −X2

X2 0 0 X1

X3 X2 −X1 0

Clearly, X1 and X2 commute. For infinitesimal Y ∈ L2 = {X1,X2} a subalgebra, we have

that [X3,Y] ∈ L2. From these observations, we have the chain of subalgebras

{X1} ⊂ {X1, X2} ⊂ {X1, X2, X3} = L.

As such, the Lie algebra L is solvable.
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1.3 Lie Point Symmetries of Differential Equations

We now focus on the application of Lie symmetries to differential equations. We first present

the extension of a Lie groups of point transformations to derivatives, and how to algorith-

mically derive the admitted Lie point symmetries of a PDE system. Afterwards, we discuss

how algorithmically construct solutions to a scalar ODE from an admitted Lie symmetry. In

particular, it is shown that the order of an ODE can be reduced by one through canonical

coordinates of an admitted Lie symmetry, or through the differential invariants the symme-

try. We also comment upon considerations to be taken in multiple reductions of order of

an ODE admitting multiple one-parameter Lie symmetries. Lastly, construction of invariant

solutions for a PDE system through invariant forms is discussed.

After, we present how to reduce the number of independent variables of partial differential

equations that are invariant under Lie point symmetries.

From now on, we consider Lie groups of point transformations on the space of n inde-

pendent variables ~x and m dependent variables ~u. Here, each ui = ui(~x) are smooth (C∞)

functions on Rn. Additionally, we assume equality of mixed partials (i.e. uijk = uikj, where

uij = ∂ui/∂xj). As such, in any sum where mixed partials occur, it is understood that only

one permutation is counted; that is,

n∑
i=1

n∑
j=1

uij = u11 + · · ·+ u1n + u22 + · · ·+ u2n + u33 + · · ·+ u3n + · · ·+ unn

We first establish some additional notation.

Definition 1.3.1. Define the ordered set of all partial derivatives of ui as

∂ui =
{
ui1, . . . , u

i
n

}
.

Similarly, we denote the ordered set of all kth partial derivatives of ui as

∂kui =
{
uii1,...,ik | i

1, . . . , ik = 1, . . . , n
}
.

Additionally, the ordered set of all kth partial derivatives of ~u are denoted as

∂k~u =
{
uµ
i1,...,ik

| µ = 1, . . . ,m; i1, . . . , ik = 1, . . . , n
}
.
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By ~R = ~R(~x, ∂~u, . . . , ∂k~u) = 0, we mean a system of σ PDEs with n-independent variables,

m-dependent variables, and with derivatives of at most kth-order. As well, we assume each

PDE in the system is written in solved form with respect to some highest partial derivative

of (lj)th-order; that is,

Rj = up
j

i1, ..., il
j − f j(~x, ~u, ∂~u, . . . , ∂k~u) = 0, j = 1, . . . , σ, (1.31)

where each f j(~x, ~u, ∂~u, . . . , ∂k~u) does not depend on up
j

i1, ..., il
j , p

j ∈ {1, . . . , m}, and each

iν ∈ {1, . . . , k} for ν = 1, . . . , j.

Definition 1.3.2. Define the differential consequences of a PDE system ~R = 0 as all deriva-

tives (including higher order derivatives) of the system with respect to independent variables;

that is, the differential consequences of a PDE system refers to the set

∂ ~R =

{
∂k

xi1 . . . xik
Rj

∣∣∣∣ j = 1, . . . , σ, i1, . . . , ik = 1, . . . , n, k = 1, 2, 3, . . .

}
. (1.32)

Note each element of ∂ ~R is identically zero since ~R = 0. In an abuse of notation, we write

∂ ~R = 0 as a shorthand to indicate each element of ∂ ~R is zero.

1.3.1 Prolongation of Lie Groups of Point Transformations

For a given Lie group of point transformations on (~x, ~u)-space with ~u = ~u(~x), one can extend

(i.e. prolong) the transformation to act on derivatives ∂j~u for j = 1, 2, 3, . . . such that

contact conditions are preserved. In the current section, the prolongation of the infinitesimal

transformation and its associated infinitesimal generator are presented.

First, we introduce the following operator.

Definition 1.3.3. Consider a function F (~x, ~u, ∂~u, . . . , ∂k~u) with n independent variables

~x = (x1, . . . , xn) and m dependent variables ~u(~x) = (u1(~x), . . . , un(~x)). Then, the total

derivative Dxi (alternatively Di) of F with respect to xi is

DiF =
∂F

∂xi
+ uji

∂F

∂uj
+ · · ·+ uj

i l1 l2...lk

∂F

∂uj
l1 l2...lk

, (1.33)

where we have assumed summation across repeated indices, j = 1, . . . , m, and lp = 1, . . . , n

for p = 1, . . . , k. It is assumed that no mixed partial derivative occurs more than once due

to equivalence of mixed partial derivatives.
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The extended (or prolonged) infinitesimal transformation associated with a one-parameter

Lie group of point transformations is defined as follows.

Definition 1.3.4. Consider a one-parameter Lie group of point transformations on n inde-

pendent variables ~x and m dependent variables ~u(~x)

(xi)∗ = X i(~x, ~u, ε) = xi + εξi(~x, ~u) +O(ε2), (1.34a)

(uj)∗ = U j(~x, ~u, ε) = uj + εηj(~x, ~u) +O(ε2) (1.34b)

for i = 1, . . . , n and j = 1, . . . ,m. The corresponding infinitesimal generator is

X =
n∑
i=1

ξi(~x, ~u)
∂

∂xi
+

m∑
j=1

ηj(~x, ~u)
∂

∂uj
. (1.35)

Then, the pth prolonged infinitesimal transformation on (~x, ~u, ∂~u, . . . , ∂p~u)-space is

(xi)∗ = X i(~x, ~u, ε) = xi + εξi(~x, ~u) +O(ε2), (1.36a)

(uj)∗ = U j(~x, ~u, ε) = uj + εηj(~x, ~u) +O(ε2) (1.36b)

(uji1)
∗ = U j

i1(~x, ~u, ∂~u, ε) = uji1 + εη
(1) j

i1 (~x, ~u, ∂~u) +O(ε2), (1.36c)

... (1.36d)

(uj
l1 l2...lk

)∗ = U j
l1 l2...lk

(~x, ~u, ∂~u, . . . , ∂k~u, ε)

= uji + εη
(k) j

l1 l2...lk
(~x, ~u, ∂~u, . . . , ∂k~u) +O(ε2) (1.36e)

where iq = 1, . . . , n for q = 1, . . . , k, j = 1, . . . , m, k = 1, . . . , p. Here, subscripts on

U j
l1 l2...lk

and the prolonged infinitesimals ηj (k) indicate different quantities, not partial deriva-

tives. Each infinitesimal η
(k) j
i1 i2 ... ik

can be found as

η
(1) j
i =

(
Diη

j
)
−
(
Diξ

l
)
ul, (1.37a)

... (1.37b)

η
(k) j

i1 ... ik
=
(

Dikη
(k−1) j

i1 ... ik−1

)
−
(
Dikξ

l
)
ui1 ... ik−1 l, (1.37c)

where summation across l = 1, . . . , n is assumed. Note η(0) j ≡ ηj.

The pth prolonged infinitesimal generator is then

X(p) = X + η
(1) j

i1
∂

∂uji
+ · · ·+ η

(k) j

i1 i2...ik

∂

∂uj
i1 i2...ik

+ · · ·+ η
(p) j

i1 i2...ip
∂

∂uji1 i2...ip
, (1.38)
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where summation is assumed across j = 1, . . . , m, and iq = 1, . . . , n for q = 1, . . . , k and

k = 1, . . . , p. Note order matters, and that no mixed partial appears more than once in the

sum (i.e. only η
(1) 1
12 appears in Xp, but not η

(1) 1
21 ).

We now derive equation (1.37a) as done in [22,23].

To “naturally” extend the transformation (1.34) on (~x, ~u, ∂~u)-space, we require the contact

conditions to be preserved. That is,

duj =
n∑
i=1

uji dx
i, j = 1, . . . ,m, (1.39)

if and only if

d(uj)∗ =
n∑
i=1

(uji )
∗ d(xi)∗, j = 1, . . . ,m. (1.40)

From (1.36), we obtain

d(uj)∗ = dU j(~x, ~u, ε) =
n∑
i=1

(
∂U j

∂xi
dxi
)

+
n∑
l=1

∂U j

∂ul
dul

∣∣∣∣∣ substitute (1.39)

=
n∑
i=1

(
∂U j

∂xi
dxi +

n∑
l=1

∂U j

∂ul
ulidx

i

)
,

which can be written as

d(uj)∗ =
n∑
i=1

DiU
j dxi, (1.41)

where Di is the total derivative (1.33).

Similarly, from (1.36) we obtain

d(xj)∗ =
n∑
i=1

DiX
j dxi. (1.42)

Let A be the n× n matrix with entries

Aij = DiX
j. (1.43)

Assuming A is invertible, one may substitute (1.41) and (1.42) into (1.40) and solve for (uji )
∗

as 
(uj1)∗

...

(ujn)∗

 = A−1


D1U

k

...

DnU
k

 . (1.44)
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For the infinitesimal transformation (1.36), the matrix A becomes A = I + εB + O(ε2)

where

Bij = Diξ
j.

As such, for small ε, the matrix A−1 is

A−1 = I− εB +O(ε2). (1.45)

Now, substituting the infinitesimal transformation (1.36) and (1.45) into (1.44) yields
uj1 + εη

(1)j
1 +O(ε2)

...

uj1 + εη
(1)j
1 +O(ε2)

 = (I− εB +O(ε2))


uj1 + εD1η

j +O(ε2)

...

ujn + εDnη
j +O(ε2)

 . (1.46)

Hence, the order ε terms equate as


η

(1)j
1

...

η
(1)j
1

 =


D1η

j

...

Dnη
j

−


n∑
i=1

ujiD1ξ
i

...

n∑
i=1

ujiDnξ
i

 . (1.47)

The components of (1.47) are exactly the prolonged infinitesimals given in (1.37a).

An example of calculating the prolongation of an infinitesimal generator is given in Section

1.3.2 for the heat equation.

1.3.2 Symmetries of Differential Equations

We present the essential theorems for invariance of a differential equation under a Lie group

of point transformation, as well as the algorithm to find Lie point symmetries.

Definition 1.3.5. A kth-order PDE system ~R = 0 is invariant under a one-parameter Lie

group of transformations if and only if the PDE system is invariant under the kth-extension

of the Lie group.
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Theorem 1.3.6. A kth-order PDE system ~R = 0 (1.31) is invariant under a one-parameter

Lie group of point transformations with infinitesimal generator X and kth-extension X(k)

(given by Definition 1.3.4) if and only if

X(k)Rj = 0 when ~R = 0 and ∂ ~R = 0, ∀ j = 1, . . . , σ. (1.48)

The proof appears in [96].

Algorithm to Find Lie Symmetries

Theorem 1.3.6 leads to an algorithm to determine Lie symmetries of a PDE system ~R = 0

in solved form (1.31). This algorithm is as follows:

1. Construct the general kth extended infinitesimal generator X(k) in terms of arbitrary

infinitesimals ξ(~x, ~u) and η(~x, ~u) using Definition 1.3.4.

2. Apply the prolonged infinitesimal generator to the PDE system ~R = 0 and simplify.

Then, substitute the PDE system ~R = 0 and its differential consequences ∂ ~R = 0. By

Theorem 1.3.6, the infinitesimals ξi and ηj for which this equation holds are infinitesi-

mals of a Lie group of point transformations.

3. Simplify the resulting equation while collecting with respect to derivatives of ~u. Since

ξ and η are functions of ~x and ~u, the coefficients of each independent function of

derivatives ~u is identically zero. This yields a system of differential equations in ξi

and ηj called the system of determining equations for the Lie symmetries of the PDE

system ~R = 0.

4. Solve the system of determining equations for ξi and ηj.

It is important to note that for ODEs of order n ≥ 2, as well as for PDEs, the system

of determining equations for Lie point symmetries is an over-determined system of linear

homogeneous PDEs [23]. In addition, the general solution of the determining equations will

be one of three cases: if ξi = 0 and ηj = 0 for all i = 1, . . . , n and j = 1, . . . ,m, then

the general solution is the trivial solution; if there are a finite number of parameters in

the general solution, say r, then the PDE system admits r one-parameter Lie symmetries;
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or, if the general solution contains an infinite number of parameters, or contains arbitrary

functions, then we say it contains an infinite number of one-parameter Lie symmetries.

Consider a scalar linear homogeneous PDE F (~x, u, ∂u, . . . , ∂ku) = 0 with solution u =

g(~x). Then, a linear non-homogeneous scalar PDE of the form F (~x, u, ∂u, . . . , ∂ku) = f(~x)

always admits the Lie group of point transformations [23]

~x∗ = ~x, u∗ = u+ εg(~x)

with infinitesimal generator X = g(~x)∂/∂u.

Consider now the following example of the above algorithm.

Example 1.3.7. We now derive the symmetries of the heat equation,

ut − uxx = 0, (1.49)

where u = u(x, t).

An arbitrary infinitesimal generator has the form

X = ξx(x, t, u)
∂

∂x
+ ξt(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
,

with corresponding second prolongation

X(2) = X + η(1)
x

∂

∂ux
+ η

(1)
t

∂

∂ut
+ η(2)

xx

∂

∂uxx
+ η

(2)
xt

∂

∂uxt
+ η

(2)
tt

∂

∂utt
, (1.50)

where the prolonged infinitesimals are given in terms of ξx, ξt, and η by (1.37c).

The particular ξx, ξt, and η for which X is an infinitesimal generator corresponding to a

Lie symmetry of (1.49) must satisfy the invariance criteria (1.48). After simplifying, (1.49)

with (1.49), one obtains the equations

0 = ηt − ηxx + (ξxxx − ξxt − 2ηxu)ux + (2ξxx + ξtxx − ξtt)uxx + 2ξtxuxxx

+(2ξxxu − ηuu)(ux)2 + (ξtuu)(ux)
2uxx + (ξxuu)(ux)

3 + 2(ξxu + ξtxu)uxuxx + 2ξtuuxuxxx.
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As such, the system of determining equations is

ξtu = 0, (1.51a)

ξtx = 0, (1.51b)

ξxu = 0, (1.51c)

ηuu = 0, (1.51d)

2ξxx + ξtxx − ξtt = 0, (1.51e)

ξxxx − ξxt − 2ηxu = 0, (1.51f)

ηt − ηxx = 0. (1.51g)

Solving the system of determining equations yields

ξx = ε1 + ε4x+ 2ε5t+ 4ε6xt

ξt = ε2 + 2ε4t+ 4ε6t2

η = ε3u− ε5xu− ε6
(
x2 + 2t

)
u+ g(x, t).

where εi are constants, and g(x, t) is such that gt − gxx = 0.

Thus, the heat equation admits the trivial symmetry with infinitesimal generator X0 =

g∂/∂u, and six non-trivial one-parameter symmetries with infinitesimal generators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = u

∂

∂u
, X4 = x

∂

∂x
+ 2t

∂

∂t
, X5 = 2t

∂

∂x
− xu ∂

∂u
,

X6 = 4xt
∂

∂x
+ 4t2

∂

∂t
− (x2 + 2t)u

∂

∂u
.

We now determine the prolonged infinitesimals of the Lie group of point transformations

with infinitesimal generator X5 = 2t ∂
∂x
−xu ∂

∂u
. The first prolonged infinitesimals are obtained

from (1.37a) as

η
(1)
t = Dtη − ux(Dtξ

x)− ut(Dtξ
t)

= −xut − 2ux,

η(1)
x = −u− xux.
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Similarly, from (1.37c), the second prolonged infinitesimals are found as

η
(2)
tt = Dtη

(1)
t − utx(Dtξ

x)− utt(Dtξ
t)

= −xutt − 2uxt − 2utx,

η
(2)
xt = −ut − xuxt − 2uxx,

η(2)
xx = −2ux − xuxx.

Note one can verify η
(2)
xt = η

(2)
tx .

The corresponding global group of transformations is found from solving the IVP (1.9) in

Theorem 1.2.10. We explicitly obtain the global group for X5, and present the global group

for the remaining infinitesimal generators.

Consider X5 = 2t ∂
∂x
− xu ∂

∂u
, where ξx = 2t, ξt = 0, η = −xu. The IVP for the global

transformation from (1.9) is

dx∗

dε
= 2t∗, (1.52a)

dt∗

dε
= 0, (1.52b)

du∗

dε
= −x∗u∗, (1.52c)

with x∗|ε=0 = x, t∗|ε=0 = t, and u∗|ε=0 = u.

Solving (1.52b) yields t∗ = t. Hence, (1.52a) becomes

dx∗

dε
= 2t, x∗|ε=0 = x,

which admits solution x∗ = x+ 2εt. As such, (1.52c) is

du∗

dε
= −(x+ 2εt)u∗, u∗|ε=0 = u.

As such, the global group equivalent to (1.52) is

x∗ = x+ 2εt, t∗ = t, u∗ = ue−ε(x+εt). (1.53)

The remaining global groups are as follows.
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X1 : x∗ = x+ ε, t∗ = t, u∗ = u; (1.54a)

X2 : x∗ = x, t∗ = t+ ε, u∗ = u; (1.54b)

X3 : x∗ = x, t∗ = t, u∗ = eεu; (1.54c)

X4 : x∗ = eεx, t∗ = e2εt, u∗ = u; (1.54d)

X6 : x∗ =
x

1− 4εt
, t∗ =

t

1− 4εt
, u∗ = u

√
1− 4εt exp

(
−εx2

(1− 4εt)

)
. (1.54e)

In the above example, applying the prolonged infinitesimal generator (1.38) to (1.49)

results in the equation η
(1)
t − η

(2)
xx = 0, the coefficients of ∂/∂t and ∂2/∂x2. As such, the

invariance criteria (1.48) for the heat equation could have been constructed more efficiently

by making this observation prior to calculations. Various theorems regarding the form of the

invariance criteria (1.48) based on the form of the PDE under study can be found in [21,23].

1.3.3 Reduction of Order of Ordinary Differential Equations

An important application of Lie groups of point transformations is their utility in solving

a scalar ODE. In particular, the order of an ODE can be reduced using an admitted Lie

symmetry while preserving the solution set [21]. A kth-order ODE that admits r-symmetries

can be reduced, at best, to a (k− r)th-order ODE plus r quadratures. For the case of r = k,

then one can obtain the general solution of the ODE through r quadratures. We outline below

two reduction methodologies for an ODE: reduction by canonical coordinates (for ODEs of

any order), and reduction by differential invariants (applied to ODEs n ≥ 2).

In the following, we consider a kth-order ODE

G(x, y, y(1), . . . , y(k)) = y(k) − F (x, y, y(1), . . . , y(k−1)) = 0, (1.55)

where y = y(x), and superscript y(j) is the jth-derivative of y with respect to x. In addition,

we assume the ODE admits a Lie symmetry

x∗ = x+ εξ(x, y) (1.56a)

y∗ = y + εη(x, y) (1.56b)
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with infinitesimal generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (1.57)

Reduction of Order by Canonical Coordinates

Theorem 1.3.8. Assume that a nontrivial one-parameter Lie group of transformations with

infinitesimal generator (1.57) is admitted by the kth-order ODE (1.55), k ≥ 2. Let r(x, y)

and s(x, y) be corresponding canonical coordinates such that Xr = 0 and Xs = 1. Then

solving the kth-order ODE (1.55) reduces to solving a (k − 1)th-order ODE

∂k−1z

∂rk−1
= H(r, z, z(1), . . . , z(k−2)) (1.58)

where

ds

dr
= z. (1.59)

The proof appears in [21,23], which leads to the following reduction algorithm.

1. From equations (1.17) and (1.25), one determines the canonical coordinates r and s

such that

Xr = 0, Xs = 1.

Note the infinitesimal generator in canonical coordinates is

X =
∂

∂s
.

2. Set s = s(r), and calculate all derivatives of s with respect to r up to (k)th-order

through

d(i+1) s

dr(i+1)
=

Dxs
(i)

Dxr
(1.60)

where Dx is the total derivative (1.33) with respect to x. For (1.60) to be nonsingular,

we assume Dxr = rx + ryy
(1) 6= 0.
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3. Substitute the canonical coordinates r and s(r), and all derivatives up to xth-order, into

the ODE (1.55) and simplify until all variables {x, y(x), y(1), . . . , y(k)} are eliminated.

It can be shown the resulting ODE is of the form

s(k) = F (r, s, s(1), . . . , s(k−1)). (1.61)

Furthermore, this function is independent of s due to invariance under the translation

symmetry transformation r∗ = r, s∗ = s+ ε.

4. Setting z = s(1), the reduced ODE is thus of the form

z(n−1) = F (r, z, z(1), . . . , z(n−2)). (1.62)

After z is found, one needs to integrate z = ds/dr, yielding an algorithmic equation in

x and y.

The above algorithm is now illustrated in the following example [65].

Example 1.3.9. We wish to reduce the order of the Riccati equation

y′ = xy2 − 2
y

x
− 1

x3
, (x 6= 0). (1.63)

using canonical coordinates. It can be verified that equation (1.63) admits the Lie group of

point transformations with infinitesimal generator

X = x
∂

∂x
− 2y

∂

∂y
.

Canonical coordinates of X are found as follows. Xr = 0 yields the linear advection PDE

x
∂r

∂x
− 2y

∂r

∂y
= 0

with solution

r = yx2. (1.64)

Xs = 1 yields the PDE

x
∂s

∂x
− 2y

∂s

∂y
= 1
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with solution

s = ln |x| . (1.65)

The first derivative of s with respect to r is found as

ds

dr
=

Dxs

Dxr

=
1/|x|

2xy + y′x2
| substitute (1.63)

=
1

sgn(x) ((x4y2 − 2x2y − 1) + 2x2y)
| substitute r = yx2

=
sgn(x)

r2 − 1
,

where sgn is the signum function, and r 6= ±1 (we consider r = ±1 after). Solving this ODE

for s yields

s = ln

√∣∣∣∣r − 1

r + 1

∣∣∣∣+ c, (1.66)

where c is a constant. Substituting (1.64) and (1.65) into (1.66) then solving for y, the general

solution is found as

y =
ĉ+ x2

x2(ĉ− x2)
, (1.67)

where

ĉ =

e
2c yx2 < −1 or yx2 > 1

−e2c −1 < yx2 < 1.

Consider now if r = ±1. Hence,

y = ± 1

x2
,

which can be verified as a solution to (1.63). Note that y = 1
x2

corresponds to the limit of

(1.67) as ĉ→ ±∞, and y = − 1
x2

to (1.67) for ĉ = 0 [65].
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Reduction of Order by Differential Invariants

The kth-order ODE (1.55) admits the Lie symmetry with infinitesimal generator X (1.57) if

and only if the invariance criteria (1.48) holds; that is,

X(k)
(
G(x, y, y(1), . . . , y(k))

)
= 0 when G(x, y, y(1), . . . , y(k)) = 0. (1.68)

Consider functions (I, V1, V2, . . . , Vk) (note: not partial derivatives) invariant under the

kth-prolongation of (1.56) such that

XI = 0, X(k)Vi with
∂Vi
∂y(i)

6= 0, where i = 1, . . . , k.

Note that (I, V1, V2, . . . , Vk) are found as constants of integration from solving the character-

istic system

dx

ξ(x, y)
=

dy

η(x, y)
=

dy(1)

η(1)(x, y, y(1))
= · · · = dy(k)

η(k)(x, y, y(1), . . . , y(k))
.

It follows from (1.68) that the ODE (1.55) is a function of the invariants,

G(x, y, y(1), . . . , y(k)) = H(I, V1, . . . , Vk) = 0. (1.69)

It can be shown that (1.69) is equivalent to a (k − 1)th-order ODE, which is summarized as

follows.

1. Consider I(x, y) and V (x, y, y(1)).

2. Calculate all derivatives of V with respect to I up to (k − 1)th-order. This is achieved

by taking

d(i+1) V

dI(i+1)
=

DxV
(i)

DxI
, (1.70)

where Dx is the total derivative (1.33) with respect to x. From invariance of I and V

under the (k)th prolongation of (1.56), it follows that dV
dI

is invariant under the (k)th

prolongation of (1.57) since (
dV

dI

)∗
=
dV ∗

dI∗
=
dV

dI
. (1.71)

By induction, {d(i)V
dI(i)
}k−1
i=1 are invariant under the kth-prolongation of (1.56), called dif-

ferential invariants of (1.56).
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3. It can be shown that

dV

dI
=

Dxv

DxI
= V2(x, y, y(1), y(2)),

and inductively that

diV

dI i
= Vi+1(x, y, y(1), . . . , y(i+1)), for i = 1, 2, . . . , k − 1.

4. Substituting the invariants (I, V, V (1), . . . , V (k−1)) for (x, y, y(1), . . . , y(k)) into the ODE

(1.55) yields a (k − 1)th-order ODE

H(I, V, V (1), . . . , V (k−1)). (1.72)

Consider an example of reduction of order by differential invariants.

Example 1.3.10. Consider the second order ODE

0 =
y′′

1 + (y′)2
+ xy′ − y. (1.73)

It can be shown that (1.73) admits Lie symmetry with infinitesimal generator

X = ξ
∂

∂x
+ η

∂

∂y
= −y ∂

∂x
+ x

∂

∂y
. (1.74)

The second prolongation of (1.74) is

X(2) = X + η(1)(x, y, y(1))
∂

∂y(1)
+ η(2)(x, y, y(1))

∂

∂y(2)

= X + (1 + (y(1))2)
∂

∂y(1)
+ ((y(1))2 + 2y(1)y(2))

∂

∂y(2)
. (1.75)

Invariants (I, V ) of (1.75) such that XI = 0, XV = 0, and Vy(1) 6= 0, are

I =
√
x2 + y2, V =

xy′ − y
x+ yy′

,

The derivative V (1) invariant under the second prolongation of (1.75) is

dV

dI
=

DxV

DxI
=

(y − xy(1))(1 + (y(1))2)(1 + x2 + y2)

(x+ yy(1))3
.

Substituting (I, V, V (1)) into (1.73) results in the reduced ODE

0 = V

(
1 +

1

I2

)
+

(
1

1 + V 2

)
dV

dI
. (1.76)

As such, we have reduced (1.73) to a first order ODE.
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1.3.4 Reduction of Order of ODE by Multi-parameter Lie Algebra

One may reduce an ODE multiple times using admitted Lie symmetries. Naively, one may

proceed iteratively by first using an admitted Lie symmetry to reduce the equation, then

calculate the symmetries of the reduced equation and perform another reduction, repeating

the second step until no more reductions can be done. However, it is not guaranteed that

a kth-order ODE with r admitted Lie symmetries can be reduced to a (k − r)th-order ODE.

On the contrary, this can be achieved if the Lie algebra of the infinitesimal generators is

solvable [23]. We provide a rough outline of the method for multiple reductions in the

following with an example.

Consider an r-dimensional Lie algebra Lr composed of infinitesimal generators for Lie

symmetries admitted by a kth-order ODE in solved form y(k) = F (x, y, y(1), . . . , y(k−1)). Sup-

pose the Lie algebra is solvable with ordering L(1) ⊂ L(2) ⊂ · · · ⊂ L(r) such that Xj ∈ L(i)

for j = 1, 2 . . . , i. Then, one may perform subsequent reductions starting with generators

in L(r) not in L(r−1), followed by generators in L(r−1) not in L(r−2), and so on until L(1). The

result will be a (k − r)th-order ODE plus r quadratures.

Consider the following example of a multiple reduction of order of an ODE (exercise 1 in

Section 6 of [65]).

Example 1.3.11. We wish to perform multiple reduction to the ODE

y′′ =
y′(1− y′)

y
,

which admits Lie groups of point transformations

X1 =
∂

∂x
, X2 = x

∂

∂x
+ y

∂

∂y
.

Since [X1, X2] = X1, we may do a reduction first by X1 and then by X2. We find the invariants

of X1 as

I1 = y, V 1 = y′,
dV 1

d(I1)
=
y′′

y′
,

where superscript indicates these are invariants of X1, and prime notation indicates differen-

tiation.
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Using the commutation relation [X1, X2] = X1, we can express the first prolongation of

X2 in terms of the invariants of X1 as [23]

X2(1) =
(
X2I1(x, y)

) ∂

∂(I1)
+
(
X2(1)V 1(x, y, y′)

) ∂

∂(V 1)
= I1 ∂

∂(I1)
, (1.77)

where X2I1(x, y) indicates X2 in terms of x and y applied to I1(x, y), and X2(1) is the first

prolongation of X2 given by (1.3.4).

The canonical coordinates of (1.77) are

r2 = V 1, s2 = ln I1.

Taking the derivative of s2 with respect to r2 yields the ODE

ds2

d(r2)
=

1

1− r2
,

which admits the solution

s2 = − ln(1− r2) + c. (1.78)

where c is a constant. Reintroducing x, y, and y′ into (1.78) yields the ODE

y(1− y′) = c̄, (1.79)

where c̄ = ec. Now, the canonical coordinates for X1 are

r1 = y, s1 = x,

which, when substituted into the current reduced ODE (1.79), yields

ds1

d(r1)
=

1

V 1
= 1 +

c̄

r1 − c̄
.

Solving this ODE and switching to x and y coordinates, we have the general solution

x = y + c̄ ln(y − c̄) + k,

where k is a constant. As such, we have solved the original ODE via two reductions using a

combination of differential invariants and canonical coordinates.

We note that if the Lie symmetries of an ODE do not admit a solvable Lie algebra,

then one may consider a solvable subalgebra to perform as many reductions as possible.

In particular, if a kth-order ODE admits r ≥ k Lie symmetries for which k infinitesimal

generators form a solvable subalgebra, then one may reduce the ODE to an algebraic equation

with k quadratures.
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1.3.5 Invariant Solutions of PDEs

Special classes of solutions to PDEs can be constructed which from admitted Lie point sym-

metries, called invariant (or similarity) solutions. Invariant solutions are obtained by use of

invariant forms derived from the invariants of an admitted Lie group of point transforma-

tions. In particular, the original variables of the PDE system are replaced by the invariant

forms of the admitted Lie symmetry, which results in the number of dependent variables

being reduced by one.

Consider a kth-order system of PDEs ~R(~x, ~u, ∂~u, . . . , ∂k~u) = 0 in solved form (1.31) with

an admitted Lie symmetry with infinitesimal generator

X =
n∑
i=1

ξi(~x, ~u) +
m∑
j=1

ηj(~x, ~u), (1.80)

where we assume ~ξ(~x, ~u) 6≡ 0.

Definition 1.3.12. A solution ~u = ~Θ(~x) to the PDE system ~R = 0 is an invariant solution

corresponding to the Lie group of point transformations (1.80) if and only if:

1. ~u = ~Θ(~x) is a solution of ~R = 0; and,

2. X(uj −Θj(~x)) = 0 when uj −Θj(~x) = 0, j = 1, . . . ,m; that is,

n∑
i=1

ξi(~x, ~Θ(~x))
∂Θj(~x)

∂xi
= ηj(~x, ~Θ(~x)), j = 1, . . . ,m. (1.81)

The equations in (1.81) are called the invariant surface conditions.

Invariant solutions of a PDE system are constructed by the following algorithm:

1. Solve equation (1.81) by solving the characteristic system

d x1

ξ1
= · · · = d xn

ξn
=
d u1

η1
= · · · = d um

ηm
. (1.82)

2. For n− 1 invariants ~I = (I1, . . . , In−1), and m-invariants ~V = (V 1, . . . , V m) such that

the Jacobian determinant |∂~v/∂~u| 6= 0, the general solution ~u = ~Θ(~x) of (1.81) is given

implicitly by the invariant forms

~V (~x, ~u) = ~θ(~I(~x, ~u)), (1.83)

where each θj, j = 1, . . . ,m, is a function of its arguments.
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3. Solve ~V = ~V (~x, ~u) for ~u as ~u = ~u(~x, ~V ), and set ~V = ~V (~I(~x, ~u)).

4. Substitute ~I and ~V (~I(~x)) into the PDE system ~R = 0 to eliminate ~x and ~u. Simplify the

resulting PDE system, applying the chain rule where necessary; that is, differentiation

of V j with respect to xi is carried out as

∂

∂xi

(
V j(~I(~x))

)
=

n−1∑
p=1

∂V j

∂(Ip)

∂(Ip)

∂xi
.

The resulting PDE system will be of the form

~S(~I, ~V , ∂~V , . . . , ∂k~V ) = 0, (1.84)

which has n− 1 independent variables ~I and m dependent variables ~V .

Example 1.3.13. Consider the heat equation

ut = uxx, (1.85)

which admits Lie symmetries (see Example 1.3.7)

X1 =
∂

∂x
, X2 =

∂

∂t
, X1 =

∂

∂x
.

As such, X̄ = cX1 + X2 = c ∂
∂x

+ ∂
∂t

for c ∈ R is an admitted Lie symmetry. We now construct

the solution invariant to X̄ for c 6= 0. From (1.17), one constructs the characteristic system

dx

c
=
dt

1
=
du

0
. (1.86)

Solving (1.86) yields invariants

I = x− ct, V = u. (1.87)

As such, the invariant form for X̄ is u = V (I) = V (x−ct), which is the traveling wave ansatz.

Substituting u = V (I) = V (x − ct) into (1.85), applying the chain rule, and simplifying

yields the linear ODE

−cV ′ = V
′′
, (1.88)
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which admits the general solution

V =
1

c̄
ec̄I+k

1

+ k2,

where k1 and k2 are constants, and c̄ = −c. As such, the solution to the heat equation

invariant under X̄ is

u =
1

c̄
ec̄(x+c̄t)+k1 + k2. (1.89)

Note that invariant solutions of ODEs are a special case in the above discussion.

1.3.6 Equivalence Transformations

Of importance in studying differential equations is to reduce redundancy in the work done.

It is common practice when studying differential equations with arbitrary constants to first

non-dimensionalize the equation, as demonstrated in the following example.

Example 1.3.14. The Kortweg-de Vries (KdV) equation with a and b constant

ut + auux + buxxx = 0 (1.90)

can be mapped into the equivalent form (assuming a 6= 0)

ũt̃ + ũũx̃ + ũx̃x̃x̃ = 0, (1.91)

where x̃ = x, t̃ = (b/a)t, and ũ = (b/a)u. As such, one may study (1.91) instead of (1.90)

without a loss of generality.

Consider now if a and b are arbitrary functions of x, t, and u in (1.90); we now have a

classification problem (as in, e.g., [25]). We would like to eliminate redundancy in our work

by finding equivalence classes of the arbitrary functions. As well, we want to make our work

simpler by (possibly) mapping our equation into one with fewer/simpler arbitrary functions.

One way to do this is by using Lie groups of point transformations to find a set of equivalence

transformations, as outlined in the following definition [22].
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Definition 1.3.15. Consider a family of PDE systems F ~K with L-arbitrary functions and/or

parameters ~K = (K1, . . . , KL). Then, a one-parameter Lie group of equivalence transfor-

mations of F ~K is a one-parameter Lie group of transformations given by

~x∗ = ~f(~x, ~u; ε),

~u∗ = ~g(~x, ~u; ε),

~K∗ = ~h(~x, ~u, ~K; ε),

such that a PDE system (~R(~x, ~u, ~K) = 0) ∈ F ~K is mapped into another PDE system

(~R(~x∗, ~u∗, ~K∗) = 0) ∈ F ~K .

Consider the following example of finding equivalence classes, which is originally done

in [16].

Example 1.3.16. Consider the nonlinear wave equation

utt =
(
c2(u)ux

)
x
, (1.92)

where c(u) is the wave speed. In [16], the group of equivalence transformations is found as a

six parameter group.

x∗ = ε1x+ ε4, (1.93a)

t∗ = ε2t+ ε5, (1.93b)

u∗ = ε3u+ ε6, (1.93c)

c∗(u∗) = ε1(ε2)−1c(u), (1.93d)

where ε1ε2ε3 6= 0.

For example, if c(u) = Aun, one may equivalently study Lie symmetries of (1.92) for

c(u) = un due to the scaling by ε3 in (1.93c).

Of note, symmetry classifications for equations with arbitrary functions are typically

presented up to equivalence transformations as is done in [16], thus reducing the number of

cases to consider [22].
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1.4 Conservation Laws

A conservation law is the statement that a quantity of a physical system does not dissipate

with time; that is, the quantity is conserved. Equations of motion governing physical systems

are typically derived from particular conservation laws, such as conservation of momentum.

However, it may be that other physical quantities are conserved by the system, which are

important to know in order to better understand underlying physical processes governing

the motion. Additionally, knowledge of conservation laws play a crucial role to solution

methods, such as in the class of conservative numerical methods which rely on equations

being in conservation law form (see, e.g., [77]).

The current section is dedicated to presenting the fundamental notions of conservation

law analysis of PDE systems based on [22]. We first define the conservation law form of a

PDE system, then discuss how it is obtained from conservation law multipliers (i.e. the direct

method). Afterwards, we provide several notes pertaining to trivial conservation laws, equiv-

alent conservation laws, and the correspondence between conservation laws and conservation

law multipliers.

1.4.1 Conservation Law Form

Definition 1.4.1. A local divergence conservation law of the PDE ~R(~x, ~u, ∂~u, . . . , ∂k~u) = 0

is a divergence expression
n∑
i=1

DiΦ
i(~x, ~u, . . . , ∂k~u) = 0, (1.94)

hold for all solutions of the PDE system ~R = 0. In (1.94), Di is the total derivative with

respect to xi (as in (1.33)), Φi are called the fluxes of the conservation law, and the highest-

order derivative (r) present in the fluxes Φi is called the (differential) order of a conservation

law.

Note that if one of the independent variables is time (say x1 = t), then the flux Φ1 = Ψ

is called the conserved density.

The meaning of a conservation law is derived from the conserved density for time de-

pendent systems. For example, consider the linear advection equation for a mass density
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u(t, x),

ut + cux = 0,

where c is a constant. The equivalent divergence conservation law form is

Dt(ρ0u) + Dx(ρ0u) = 0. (1.95)

Here, mass density u is the conserved density, and we say mass is conserved.

1.4.2 The Direct Method

It may be possible to bring an equation into conservation law form by multiplying the equation

by a specific function. As an example, consider again (1.95), which can be multiplied by u

and manipulated to yield:

u
∂u

∂t
+ u

∂u

∂x
= 0,

which is the expansion of the chain rule applied to the equation

∂

∂t

(
1

2
u2

)
+

∂

∂x

(
1

2
u2

)
= 0.

Here, we have the original equation in a different conservation law form.

In general, it may be possible to bring a system of partial differential equations ~R = 0

into a divergence form through multiplication by a particular set of functions {Λi}σi=1 such

that Λi(~x, ~u, . . . , ∂k~u).

Definition 1.4.2. For a kth-order PDE system ~R = 0 consisting of σ PDEs, a set of func-

tions {Λi(~x, ~u, . . . , ∂r~u)}σi=1 are called rth-order conservation law multipliers if and only if∑σ
i=1 ΛiRi = 0 can be expressed in a divergence conservation law form; that is:

σ∑
i=1

ΛiRi =
σ∑
i=1

DiΦ
i = 0, i = 1, . . . , σ.

Additionally, a multiplier Λi that is a singular function on solutions to the PDE system is

called a singular conservation law multiplier.
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Of importance, singular multipliers of a PDE system are not of interest since they can lead

to arbitrary divergence expressions unrelated to the conservation laws of the PDE system [22].

A particular example of a singular conservation law multiplier is Λi = DiΦ
i/Ri for some

i ∈ {1, . . . , k}, which is singular on solutions to ~R = 0.

Conservation laws, like Lie symmetries, can be obtained by inspection (e.g. Λ = u for

(1.95)). More complicated systems require a systematic way in which to find conservation

laws. This is accomplished through use of the Euler operator of mechanics [22], which will

be seen in the following.

Definition 1.4.3. The Euler operator with respect to the dependent variable uj is given as

Euj =
∂

∂uj
+
∞∑
l=1

(−1)lDi1 . . .Dil
∂

∂uj
i1 ... il

, (1.96)

where ip = 1, . . . , n, and p = 1, . . . , l.

In mechanics, the equations of motion of a physical system may be derived by application

of the Euler operator to the Lagrangian (see, e.g., [22, 54, 96]). However, the Euler operator

is fundamental to conservation law analysis due to the following theorem.

Theorem 1.4.4. The equations EujF (~x, ~u, ∂~u, . . . ∂k~u) ≡ 0, j = 1, . . . ,m, hold for all

(~x, ~u(~x)) if and only if F ≡
∑σ

i=1 DiΦ
i for some Φi = Φi

(
~x, ~u, ∂~u, . . . , ∂k−1~u

)
.

The proof can be found in [96].

As such, any divergence expression will be annihilated by an Euler operator. This leads

naturally to the following theorem regarding conservation law multipliers:

Theorem 1.4.5. A set of kth-order non-singular local multipliers {Λi}σi=1 yields a local con-

servation law for the system ~R = 0 if and only if ∀ ~u(~x),

Euj(Λ
iRi) ≡ 0, j = 1, . . . , m.

Algorithm to Find Conservation Law Multipliers

Theorem 1.4.5 leads naturally to an algorithm to find conservation law multipliers:

1. Define a set of arbitrary conservation law multipliers {Λi}σi=1 up to a desired order (say

rth-order).
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2. Multiply the PDE system ~R = 0 by the arbitrary conservation law multipliers to obtain

the equation
∑σ

i=1 ΛiRi = 0.

3. For each dependent variable, apply the associated Euler operator to obtain a system of

m equations.

4. Simplify each of the resulting equations, collecting terms with respect to

(∂r+1~u, ∂r+2~u, . . . , ∂k~u). Setting the resulting coefficients of (∂r+1~u, . . . , ∂k~u) to zero

yields a linear system of determining equations for {Λi}σi=1 (called the multiplier deter-

mining equations).

5. Solve the system of determining equations for {Λi}σi=1 to obtain the conservation law

multipliers.

An example of the above algorithm appears in Section 1.4.4.

Once the conservation laws are known for a PDE system ~R = 0,
∑σ

i=1 ΛiRi = 0 can be

manipulated into a divergence conservation law form using the chain rule. General methods

of this process have been developed and are presented in [22], and have been algorithmically

applied in Maple [34]. These methods are not discussed so as to not detract from the main

content of the current Thesis.

1.4.3 Notes About The Direct Method

The following notes are important to conservation law analysis, and should be kept in mind

when performing calculations through the direct method.

Trivial Conservation Laws

Definition 1.4.6. For a PDE system, a trivial conservation law is one such that the flux is

of the form Φi = M i +H i, where each M i vanish on solutions of the system and H i is such

that
n∑
i=1

DxiH
i ≡ 0 (i.e. the conservation law is identically divergence free).

Trivial conservation laws do not provide information about the system [22]. They come

in two forms:
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1. The fluxes vanish identically on solutions to the system.

2. The conservation law vanishes identically as a differential identity (e.g. a differential

consequence).

Example 1.4.7. Consider the PDE system

vx − uy = 0, (1.97a)

vy + ut + uux + uxxx = 0, (1.97b)

where u = u(t, x, y) and v = v(t, x, y). Upon eliminating v, this system becomes the

Kadomtsev-Petviashvili (KP) equation.

The conservation law

Dt(v
2(vx − uy)) + Dx(vy + ut + uux + uxxx − 4y)

+Dy(vy + ut + uux + uxxx − 4vx + 4uy) = 0

is identically zero on solutions, making it a trivial conservation law of first type.

The conservation law

Dt(ux)−Dx(ut) = 0

is a trivial conservation law of the second type since it is a differential consequence.

Recall that a PDE system ~R = 0 in solved form (1.31) is written as

Rj = up
j

i1, ..., il
j − f j(~x, ~u, ∂~u, . . . , ∂k~u) = 0, j = 1, . . . , σ, (1.98)

where each f j(~x, ~u, ∂~u, . . . , ∂k~u) does not depend on up
j

i1, ..., il
j , p

j ∈ {1, . . . , m}, and each

iν ∈ {1, . . . , k} for ν = 1, . . . , j. For such a PDE system, one may avoid trivial conservation

laws by excluding each up
j

i1, ..., il
j and its differential consequences in the multiplier dependence

[22].

Equivalent Conservation Laws

Another important fact is that conservation laws admitted by a PDE system ~R = 0 come in

equivalence classes, which is defined as follows.
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Definition 1.4.8. Given two conservation laws DiΦ
i = 0 and DiΘ

i = 0, they are equivalent

if Di (Φ
i −Θi) = 0 is a trivial conservation law. In addition, the two conservation laws are

said to be in an equivalence class of conservation laws.

Example 1.4.9. Consider the linear wave equation

utt = uxx,

which admits the conservation law (from the multiplier Λ = u)

Dt

(
1

2
(ut)

2 +
1

2
(ux)

2

)
−Dx(utux) = 0.

An equivalent conservation law is

Dt

(
1

2
(ut)

2 +
1

2
(ux)

2 + ux

)
−Dx(utux + ut) = 0

since

Dt

(
1

2
(ut)

2 +
1

2
(ux)

2 + ux

)
−Dx(utux + ut)

−
(

Dt

(
1

2
(ut)

2 +
1

2
(ux)

2

)
−Dx(utux)

)
= Dt(ux)−Dx(ut) = 0,

which is a trivial conservation law of the second type.

Correspondence Between Multipliers and Conservation Laws

A question of fundamental importance is if two conservation law multipliers of a PDE sys-

tem yield unique conservation laws. The answer is that a PDE system must be admit a

Cauchy-Kovalevskaya form in order for there to exist a one-to-one correspondence between

conservation law multipliers and admitted conservation laws. This is presented in the follow-

ing.

Definition 1.4.10. A PDE system ~R = 0 is in Cauchy-Kovalevskaya form (CK-form) with

respect to a variable xi if the system, possibly after a point transformation, can be written
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in solved form for the highest derivative of each dependent variable with respect to xi after

a point transformation; that is,

∂s
σ

∂(xi)sσ
= Gσ(~x, ~u, ∂~u, . . . , ∂k~u), (1.99)

where 1 ≤ sσ ≤ k for σ = 1, . . . ,m.

Consider the following examples of differential equations which admit a Cauchy-

Kovalevskaya form.

Example 1.4.11. The linear wave equation

utx = 0

admits the CK-form utt = uxx upon the point transformation t→ t− x, x→ x+ t.

Example 1.4.12. The Kadomstev-Petviashvili (KP) equation (as in [1]) is an extension of

the KdV equation, and is given as

Dx(ut + 6uux + uxxx) + uyy = 0,

where u = u(x, y, t). The KP equation is in CK form with respect to y, and can be brought

into CK form with respect to x by expanding the total derivative with respect to x and

solving for uxxxx.

Uniqueness of the correspondence between conservation laws of a PDE system and con-

servation law multipliers is given due to the following theorem by Anco and Bluman [5].

Theorem 1.4.13. Suppose a PDE system admits a Cauchy-Kovalevskaya form (1.99) with

respect to xj. Then all of its nontrivial (up to equivalence) local conservation laws arise from

multipliers. Moreover, there is a one-to-one correspondence between equivalence classes of

conservation laws and sets of conservation law multipliers with no dependence on derivatives

of ~u with respect to xj

The proof appears in [5].
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1.4.4 Example

We now wish to show a sample calculation of finding the conservation laws, as done in [22].

Example 1.4.14. We wish to find the local zeroth order conservation laws of the KdV

equation,

ut + uux + uxxx = 0. (1.100)

Note the equation is in Cauchy-Kovalevskaya form with respect to x, and so each conservation

law multiplier yields a unique conservation law.

We apply the algorithm in Section 1.4.2 based on Theorem 1.4.5 to seek zeroth order

multipliers,

Λ = Λ(x, t, u). (1.101)

The Euler operator with respect to u up to third order is constructed from (1.96). In the

current calculation, we only require the terms in the Euler operator containing derivatives

up to first order in t and up to third order in x since the KdV equation (1.100) is of this

form. As such, we have the restricted Euler operator as

Eu =
∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+ (Dx)

2 ∂

∂uxx
− (Dx)

3 ∂

∂uxxx
. (1.102)

Applying (1.102) to (1.100) multiplied by Λ yields

0 ≡ Eu(Λ(x, t, u)(ut + uux + uxxx))

= Λu(ut + uux + uxxx) + Λux −Dt(Λ)−Dx(Λu)− (Dx)
3(Λ)

= −(Λt + uΛx + Λxxx)− 3Λxxuux − 3Λxuuxx − 3Λuuuxuxx − 3Λxuu(ux)
2 − Λuuu(ux)

3.

As such, the determining equations for Λ are

Λt + uΛx + Λxxx = 0, Λxu = 0, Λuu = 0, (1.103)

which admits the solution

Λ = C1 + C2u+ C3(x− ut), (1.104)
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where C1, C2, and C3 are constants. Furthermore, equation (1.104) is a linear combination

of three nontrivial conservation law multipliers,

Λ1 = 1, Λ2 = u, Λ1 = x− ut. (1.105)

The conservation law forms of (1.100) corresponding to (1.105) are found, respective to

the order in (1.105), as

Dt (u) + Dx

(
1

2
u2 + uxx

)
= 0,

Dt

(
1

2
u2

)
+ Dx

(
1

3
u3 − 1

2
ux2

)
= 0,

Dt

(
1

6
u3 − 1

2
u2

)
+ Dx

(
1

8
u4 − uux +

1

2
u2uxx +

1

2
u2
xx − uxuxxx

)
= 0.

In later Chapters, we report conservation law multipliers as in (1.105) with the under-

standing independent nontrivial multipliers can be separated when necessary.

1.4.5 Conservation Laws and Potential Systems

We now briefly remark on potential systems, which are important in further extensions to Lie

symmetry and conservation law analysis. Potential systems are constructed from conservation

laws of a PDE system as follows.

Definition 1.4.15. Consider a PDE R(x, t, u, ∂u, . . . , ∂ku) = 0 with independent variables

(x, t) and dependent variable u(x, t). Suppose ~R = 0 admits the conservation law DtΨ +

DxΦ = 0. Then, one can construct the potential system

~R = 0,
∂v

∂x
= Ψ,

∂v

∂t
= −Φ,

where v = v(t, x) is called the potential variable.

The potential variable v in the above potential system cannot be expressed as a function

of (x, t, u), and so is a nonlocal variable. As such, the potential system is nonlocally related

to the original PDE. Methods to obtain further nonlocally related systems and subsystems

are presented in [15], and outlined in further detail in [22].
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1.5 Connections Between Lie Point Symmetries and

Conservation Laws

We now discuss the connection between Lie symmetries and conservation laws, known as

Noether’s theorem. Before, we provide an overview of the evolutionary form of a Lie sym-

metry, which describes an ‘equivalent’ transformation of the hypersurface in the dependent

variables alone.

1.5.1 Evolutionary Form of Infinitesimal Generators

Consider a Lie group of point transformations

(xi)∗ = xi + εξi(~x, ~u) +O(ε2), i = 1, . . . , n, (1.106a)

(uj)∗ = uj + εηj(~x, ~u) +O(ε2), j = 1, . . . ,m. (1.106b)

which acts on (~x, ~u)-space.

Consider a hypersurface ~u = ~Θ(~x) which is not invariant under (1.106). To present

Noether’s theorem, it is important to understand how the transformation (1.106) acts on

~u = ~Θ(~x) explicitly. In particular, we are interested in deriving an ‘equivalent’ transformation

which in which ~x is invariant.

For an arbitrary fixed ε, the transformation (1.106) maps a point (~x, ~u) on the hypersurface

to a point (~x∗, ~u∗) as

(xi)∗ = xi + εξi(~x, ~Θ(~x)) +O(ε2), i = 1, . . . , n, (1.107a)

(uj)∗(~x∗) = Θj(~x) + εηj(~x, ~Θ(~x)) +O(ε2), j = 1, . . . ,m. (1.107b)

To obtain a transformation in ~u alone, we must apply the inverse transformation of (1.107a)

to (1.107); that is, we substitute

~x = ~x∗ − ε~ξ(~x, ~Θ(~x)) +O(ε2) (1.108)
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into (1.107) to yield (upon expanding about ε = 0)

(xi)∗ = xi, i = 1, . . . , n, (1.109a)

(uj)∗ = Θi(~x∗) + ε

(
ηj(~x, ~Θ(~x))−

n∑
i=1

ξi(~x, ~Θ(~x))
∂Θi(~x∗)

∂(xi)∗

)
+O(ε2), j = 1, . . . ,m.

(1.109b)

Replacing (~x∗, ~u∗, ε) with (~x, ~u,−ε) in (1.109b) yields

(uj) = Θi(~x) + ε

(
ηj(~x, ~Θ(~x))−

n∑
i=1

ξi(~x, ~Θ(~x))
∂Θi(~x)

∂(xi)

)
+O(ε2), j = 1, . . . ,m. (1.110)

Theorem 1.5.1. Suppose that ~u = ~Θ(~x) is not an invariant hypersurface of (1.107). Then

(1.110) implicitly defines a mapping of ~u = ~Θ(~x) into a family of surfaces ~u = ~φ(~x, ε).

Furthermore, observe that the image of u = Θ(~x) can also be obtained from the transfor-

mation

(xi)∗ = xi, i = 1, . . . , n, (1.111a)

(uj)∗ = uj + εη̂j(~x, ~u, ∂~u) +O(ε2), j = 1, . . . ,m, (1.111b)

where

η̂j = ηj(~x, ~u)−
n∑
i=1

ξi(~x, ~u)
∂uj

∂xi
, j = 1, . . . ,m. (1.112)

Theorem 1.5.2. Let ~u = ~θ(~x) be a hypersurface not invariant under the Lie group of point

transformations (1.107) with infinitesimal generator

X =
n∑
i=1

ξi(~x, ~u(~x))
∂

∂xi
+

m∑
j=1

ηj(~x, ~u(~x))
∂

∂uj
.

Then, the local transformation (1.111) with infinitesimal generator

X̂ =
m∑
j=1

η̂j(~x, ~u, ∂~u)
∂

∂uj
=

n∑
i=1

m∑
j=1

[
ηj(~x, ~u)− ujiξi(~x, ~u)

] ∂

∂uj
(1.113)

is equivalent to (1.107) in the sense that both transformations map ~u = ~Θ(~x) into the same

hypersurface ~u∗ = ~φ(~x, ε). The infinitesimal generator X̂ is referred to as the characteristic

(or evolutionary) form of X.
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Example 1.5.3. Consider the heat equation

ut = uxx, (1.114)

which admits symmetries (see Example 1.3.7)

X1 =
∂

∂x
, X2 =

∂

∂t
, X4 = x

∂

∂x
+ 2t

∂

∂t
. (1.115)

One can verify

Θ(x, t) = Ae−cx+c2t. (1.116)

is a solution of the heat equation which is invariant under X̄ = cX1 + X2 for c a nonzero

constant. Furthermore, (1.116) is not invariant under X4.

We wish to construct a one-parameter family of solutions from the infinitesimal transfor-

mation defined by X4, and to verify the characteristic form of the transformation defined by

(1.111) yields the same family of solutions.

The transformation corresponding to X4 is

x∗ = x+ εx+O(ε2), t∗ = t+ 2εt+O(ε2), u∗ = u. (1.117)

Therefore, (1.116) is transformed by (1.117) as

u∗ = Θ(x∗, t∗) = Ae−cx
∗+c2t∗

= Ae−c(x+εx)+c2(t+2εt)+O(ε2)

= Ae−cx+c2t + ε(−cx+ 2c2t)Ae−cx+c2t +O(ε2). (1.118)

Now for the characteristic transformations. From (1.113), one obtains X̂4 as

X̂4 = (η − ξxux − ξtut)
∂

∂u

= (−xux − 2tut)
∂

∂u
. (1.119)

The associated infinitesimal transformation of (1.119) is

x∗ = x, t∗ = t, u∗ = u− ε(xux + 2tut) +O(ε2). (1.120)
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The first derivatives of (1.116) are

Θx = −cΘ, Θt = c2Θ.

Therefore, (1.116) is transformed by (1.120) as (suppressing (x, t) on Θ)

u∗ = φ(x, t, ε) = Θ + ε
(
η(x, t,Θ)− ξx(x, t,Θ)Θx − ξt(x, t,Θ)Θt

)
+O(ε2),

= Ae−cx+c2t − ε(−cx+ 2c2t)Ae−cx+c2t +O(ε2), (1.121)

which is identical to (1.118) upon setting ε to negative ε.

1.5.2 Noether’s Theorem

Recall that in mechanics, a Lagrangian L is a function arising from a variational principle

such that a system of equations (the Euler-Lagrange equations) are derived by applying the

Euler operator to the Lagrangian (see, for example, [22, 54,84]).

Definition 1.5.4. A system of equations is called variational if there exists a Lagrangian

from which the equations may be derived in the Lagrangian mechanical framework.

Noether’s theorem only applies to variational systems of PDEs. As such, it is important

to be able to determine if a given PDE system is variational. This can be achieved by

determining if the linearizing operator of a system of PDEs is self-adjoint, which is presented

in the following.

Definition 1.5.5. For ~U = ~U(~x) = (U1(~x), . . . , Um(~x)) an arbitrary vector function, the

linearizing operator L[~U ] of a system of PDEs ~R[~u] = ~R(~x, ~u, ∂~u, . . . , ∂k~u) = 0 is given by

Lpq [~U ]V q =

[
∂Rp[~U ]

∂U q
+
∂Rp[~U ]

∂U q
i1

Di1 + · · ·+ ∂Rp[~U ]

∂U q
i1...ik

Di1 . . .Dik

]
V q, p = 1, . . . , σ, (1.122)

where V q are entries of the arbitrary vector function ~V (~x) = (V 1(~x), . . . , V m(~x)), summation

it is assumed for q = 1, . . . ,m and for ir = 1, . . . , n where r = 1, . . . , k.

Definition 1.5.6. For ~U = ~U(~x) = (U1(~x), . . . , Um(~x)) an arbitrary vector function, the

adjoint operator L∗[U ] of a PDE system ~R[~u] = ~R(~x, ~u, ∂~u, . . . , ∂k~u) = 0 takes the form of
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an m× σ matrix with elements given by

L∗pq [~U ]W p =
∂Rp[~U ]

∂U q
W p −Di1

(
∂Rp[~U ]

∂U q
i1

W p

)
+ . . .

+(−1)kDi1 . . .Dik

(
∂Rp[~U ]

∂U q
i1...ik

W p

)
, q = 1, . . . ,m (1.123)

where W p are entries of an arbitrary vector function ~W (~x) = (W 1(~x), . . . ,W σ(~x)), and

summation is assumed for p = 1, . . . , σ and for ir = 1, . . . , n where r = 1, . . . , k.

Definition 1.5.7. A system of PDEs ~R = 0 is self-adjoint if its linearizing operator is

self-adjoint (i.e. L = L∗).

Note it is implicit in the above definition that a PDE system can be self-adjoint only if

the number of dependent variables m is equal to the number of differential equations σ.

Theorem 1.5.8. A PDE system is variational if and only if its linearizing operator is self-

adjoint.

The proof is given in [96].

Theorem 1.5.8 provides a criteria to check if Noether’s theorem applies to a PDE system

without explicitly knowing the Lagrangian. We now describe how the symmetry framework

of Noether’s theorem applies to variational systems of PDEs where the Lagrangian is known,

and comment afterwards on how to proceed for systems where the Lagrangian is not known.

Definition 1.5.9. A Lie group of transformations with infinitesimal generator in evolution-

ary form

X̂ =
n∑
i=1

m∑
j=1

[
ηj(~x, ~u)− ujiξi(~x, ~u)

] ∂

∂uj

is a variational symmetry of the Lagrangian L = L(~x, ~u, ∂~u, . . . , ∂k~u) if for any u(x) there

exists some set of functions Φi = Φi(~x, ~u, ∂~u, . . . , ∂r~u), i = 1, 2, . . . , n, such that

X̂(k)L ≡
n∑
i

DiΦ
i. (1.124)
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Theorem 1.5.10. Consider a variational PDE system ~R = 0 with a variational symmetry X̂

of the associated Lagrangian L. Then, the set of infinitesimals {η̂j}σj=1 form a conservation

law multiplier of the PDE system.

The proof can be found in [22].

Conservation laws of a system of Euler-Lagrange PDEs can be sough from admitted

variational symmetries of the Lagrangian. However, for a variational system for which the

Lagrangian is not known, the following theorem is useful.

Theorem 1.5.11. A variational symmetry of the Lagrangian L yields a local symmetry of

the corresponding Euler-Lagrange system.

The proof is shown in [22].

As such, for a self-adjoint PDE system where the Lagrangian is not known, one may seek

conservation law multipliers as the infinitesimals of local symmetries (in evolutionary form)

to the equations of motion. However, the converse to Theorem 1.5.11 is not true; a local

symmetry of the Euler-Lagrange system may not necessarily be a variational symmetry of

the associated Lagrangian. As such, it may be that not all local symmetries of a variational

PDE system lead to conservations of the system.

Consider now the following examples of Noether’s theorem.

Example 1.5.12. Consider a simple harmonic oscillator (HO) with a single spring attaching

a mass m to a wall. The Lagrangian for the HO system is given as the difference between

kinetic and potential energy,

L = K − U = m
(x′)2

2
− kx

2

2
, (1.125)

where x = x(t) the displacement of the mass from equilibrium, k is the spring constant, and

prime denotes differentiation.

The Lagrangian (1.125) has a time translation symmetry, given in characteristic form as

X̂ = x′
∂

∂t
.

Applying the Euler operator (1.96) yields the equation of motion

mx′′ = kx. (1.126)
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Multiplying by the coefficient of the symmetry, η̂ = x′, yields the local conservation law

Dt

(
m

(x′)2

2
− kx

2

2

)
= 0.

Example 1.5.13. Consider the linear wave equation governing the transverse motion of a

string [56].

utt = c2uxx, (1.127)

where u = u(x, t) is the displacement from equilibrium, and c a constant is the wavespeed.

A Lagrangian for (1.127) is

L =
1

2
(ut)

2 − 1

2
c2(ux)

2. (1.128)

By observation, L admits the u-translation symmetry X1 = ∂
∂u

and time translation symmetry

X2 = − ∂
∂t

with corresponding evolutionary form

X̂1 =
∂

∂u
,

X̂2 = ut
∂

∂u
.

As such, from Noether’s theorem, the linear wave equation (1.127) admits conservation law

multipliers Λ1 = 1 and Λ2 = ut. The resulting divergence forms of (1.127) are, respectively,

Dt(u)−Dx(c
2ux) = 0, (1.129)

Dt

(
1

2
u2
t +

1

2
c2u2

x

)
−Dx(c

2uxut) = 0. (1.130)

Here, (1.129) corresponds to the conservation of linear momentum, and (1.130) to the con-

servation of energy.

Example 1.5.14. We wish to determine if the KdV equation

ut + uux + uxxx = 0 (1.131)

is self-adjoint, where u = u(x, t).

The linearizing operator of (1.131) is found from (1.122) as

L[U ] =
∂

∂t
+ U

∂

∂x
+ Ux +

∂3

∂x3 . (1.132)
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The adjoint operator of (1.131) is found from (1.123) as

L∗[U ] = − ∂

∂t
− U ∂

∂x
− ∂3

∂x3 . (1.133)

Clearly, L 6= L∗, and so the KdV equation is not self-adjoint as written.

1.6 Discussion

In this Chapter, we presented the basic theory and methodology of Lie symmetry and con-

servation law analysis as it applies to studying differential equations. We began in Section

1.2 by introducing the concept of symmetry, precisely defining Lie point symmetries, and

discussing several important concepts fundamental to Lie symmetry analysis. In Section 1.3,

we presented the extension of Lie symmetries to differential equations, and several important

applications therein. Then, in Section 1.4, we introduced the notions of conservation laws

and briefly presented the mathematical formulation for them. Finally, Section 1.5 discussed

the connection between Lie symmetries and conservation laws.

We now remark on the body of results for Lie symmetry and conservation law analysis,

as well as further extensions of the theory not discussed in the current thesis.

Lie symmetries have been calculated for many systems of equations, of which a large

number of results have been compiled into handbooks [66, 67]. While these books are not

exhaustive, they provide a good starting place to seek Lie symmetries for many equations

(e.g. various wave equations, equations of gas dynamics, equations of incompressible fluid

motion, etc.). Examples of equivalence transformations applied to classification problems

can be found in [13,16,25,50,70].

In addition, there are numerous works in which solutions of differential equations are

constructed from admitted Lie point symmetries (see, for example, [21, 23, 43, 65–67, 96], as

well as references therein). More recent examples include calculation of invariant solutions

of a system of Kadomstev-Petviashvili equations [1], the Benjamin-Bona-Mahony-Burger

equation [74], and the SIR model of epidemiology [97].

Solutions of DEs can be constructed from admitted Lie point symmetries by other meth-

ods than those discussed in the current thesis. Both Bluman and Kumei [23] and Hydon [65]
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present how to construct an integrating factor (i.e. conservation law multiplier) for first order

ODEs from admitted Lie point symmetries. Bluman and Anco [21] outline a general method

of constructing integrating factors for higher order ODEs from the linearizing and adjoint

operators of the ODE.

Abraham-Shrauner discusses ‘hidden symmetries’, which arise as a result of increasing

the order of an ODE by a nonlocal transformation, or by reducing the order of an ODE by

a symmetry reduction.

Of further interest is the application of Lie symmetries in numerical simulations. Sym-

metry preserving numerical schemes for ODEs are discussed by Levi and Winternitz in [78],

and for PDEs by Rebelo and Valiquette in [99].

There are many extensions to Lie symmetries that we do not present in the current work.

Bluman and Kumei [23], Bluman and Anco [21], and Bluman, Cheviakov, and Anco all

discuss contact symmetries and higher order symmetries. Contact symmetries are symmetry

transformations which depend upon the independent variables, dependent variables, and all

first order derivatives of the dependent variables. Higher order symmetries (also known as

Lie-Bäcklund symmetries) are symmetry transformations in which the infinitesimals depend

upon a finite number of higher order derivatives.

Bluman [19] outlines a methodology to seek non-classical solutions of a PDE system. In

particular, non-classical solutions are constructed by seeking Lie symmetries of an augmented

PDE system consisting of the original PDE system with the invariant surface condition and

its differential consequences [22, 65]. This methodology is applied in [37] to the Boussinesq

equation. Murata obtains non-classical solutions for a hyperbolic PDE in [91], and for a

nonlinear diffusion equation in [92].

Another extension is to seek approximate Lie symmetries of Baikov type [6] and Fuschich

type [48]. Baikov type approximate symmetries are obtained by seeking ‘approximate sym-

metry generators’ for a PDE system expanded in a small parameter. Fuschich type ap-

proximate symmetries are sought as symmetries to a PDE system in which the dependent

variables are perturbed from equilibrium. Examples of approximate symmetries can be found

in [29,103,115].

Under more recent study are nonlocal symmetries of a PDE system, which are obtained
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as local symmetries of a nonlocally related PDE system. A general discussion on seeking

nonlocal symmetries appears in [2]. Bluman [15] uses potential systems (as discussed in

Section 1.4.5) to seek nonlocal symmetries, of which the methodology is outlined in detail

in Bluman, Cheviakov, and Anco [22]. Applications of nonlocal symmetries appear in, for

example, [16,17,29,49].

In addition to Lie symmetries, discrete symmetries of a PDE system may also be sought.

Discrete symmetries are symmetry transformations that are not continuous [96]. Applications

of discrete symmetries to differential equations, as well as an algorithm to seek discrete

symmetries from the Lie algebra of a PDE system, are outlined in [65].

We now outline the body of results for conservation laws, as well as extensions to conser-

vation law analysis.

The handbooks of symmetry results [66,67] contain conservation laws for variational PDE

systems, in which the Lagrangian of particular systems stated explicitly. The KdV equation

has been well studied (see [51,52,73,89,90,104]), and was shown to have an infinite sequence

of conservation laws [90].

Methods to construct conservation law fluxes of a PDE system from known conservation

law multiplers appears in [22]. Additionally, many results and references for conservation

laws of PDE systems are given in [22].

Noether’s theorem has been extended by Boyer [27], in which higher order conservation

law multipliers are given by the infinitesimals of higher order symmetry transformations.

See [22] for a concise statement and proof.

An extension to conservation law analysis is the study of nonlocal conservation laws of a

PDE system, which arise from local conservation laws of a nonlocally related PDE system [22].

Bluman, Cheviakov, and Ivanova [18] present a method to seek nonlocal conservation laws

of a PDE system from local conservation laws of potential systems. Further discussion can

be found in [22].

For readers interested in a more general group theoretic approach to studying differential

equations of physics, I direct you to the texts by Dresselhaus, Dresselhaus, and Jorio [44],

and Marsden and Ratiu [84].

With the preliminary mathematical theory in tow, we proceed to introduce some basic
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notions in the theory elastodynamics in Chapter 2. The remaining Chapters, 3 and 4, are

each dedicated to applying Lie symmetry and conservation law analysis to study particular

nonlinear systems of elastodynamics.
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Chapter 2

Equations of Nonlinear Elastodynamics

2.1 Introduction

Elasticity theory is the study of properties and characteristics of elastic solids, and has a rich

history in mathematics studying both static and dynamic systems (see, e.g., [105, 107, 110],

and the preface by Antman to the third edition of [108]). The applications of elasticity

in the physical sciences are numerous, and have a prominent role in both engineering and

material science (see [26] for examples). Of particular interest are hyperelastic solids, a class

of materials that act as ‘ideal’ elastic solids (i.e., stress depends only on deformation, and not

on other factors such as the history or rate of deformation). In particular, the stress within a

hyperelastic solid is related to the deformation through a strain energy density. Hyperelastic

materials are modelled by a system of nonlinear coupled partial differential equations. The

study of these equations has been extensive, with much study through use of analytical

methods (see, e.g., [7, 36, 83, 108] and references therein). In application, solutions to this

PDE system are typically sought by finite element methods (see, e.g., [9, 72,113]).

In the last twenty five years, fiber reinforced hyperelastic materials have come under study

with a prime application in modeling fibrous biological tissues, such as arteries [10,59,60] and

skin [11, 100]. The fundamental notion in these models is to add an anisotropic component

to the strain energy density which accounts for the fiber behaviour. Currently, solutions to

these models are primarily sought through numerical methods due to the inherent complexity

of the models (see, e.g., [10, 40,100,102,112]).

Our interest in Chapter 3 is to study the Lie symmetries and conservation laws of an

isotropic hyperelastic model, and a simple model of a fiber reinforced hyperelastic solid in

Chapter 4. As such, in the current Chapter, we discuss the basic elements of the theory of
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elastodynamics. We begin by introducing essential notions and quantities from continuum

mechanics in Section 2.2. Afterwards, we derive the equations of motion for an elastic material

in Section 2.3. Then, in Section 2.4, we discuss the constitutive relationships between stress

and strain for models of elastic and hyperelastic materials. After, we discuss important

models of isotropic hyperelasticity. Finally, we present the extension of the theory to fiber

reinforced hyperelastic materials, and discuss several constitutive models prominent in the

literature.

It should be noted that our primary interest in later Chapters is to study the Lie sym-

metries and conservation laws of equations of motion of hyperelasticity expressed in fixed

coordinates, as is done in [35]. As such, in our brief presentation of mathematical elas-

ticity, we make use of the term ‘tensor’ to be consistent with the terminology of Marsden

and Hughes [83] and Ciarlet [36]. In actuality, we treat second order tensors as matrices

with function-valued entries. As well, we informally use the term ‘coordinates’ to refer to a

particular frame of reference fixed with Cartesian coordinates.

In addition to the notation established in Chapter 1, tensors and matrices are denoted in

boldface.

2.2 Notions of Continuum Mechanics

Consider a solid body which, at time t = 0, occupies an open connected subset Ω0 ⊂ R3 with

a continuous boundary. Ω0 is called the Lagrangian configuration (or reference configuration).

The Eulerian configuration (or actual configuration) is the region Ω ⊂ R3 the body occupies

at a time t. A deformation ~φ : Ω0 → Ω is a smooth, invertible, orientation preserving

transformation which maps Lagrangian points (or material points) ~X = (X1, X2, X3) ∈ Ω0

to Eulerian points (or spatial points) ~x = (x1, x2, x3) ∈ Ω at a fixed time t (see Figure 2.1);

that is,

~x = ~φ( ~X).

A motion of the body is a time dependent family of deformations, written as ~x = ~φ( ~X, t)

(alternatively ~x = ~x( ~X, t)).
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x⃗Xρ
0

Reference Configuration Actual Configuration

0Ω Ω

x⃗ x⃗ϕ(X, t)

x⃗ x⃗x(X, t)

Figure 2.1: Lagrangian (Reference) and Eulerian (Actual) Configuration.

The velocity V ( ~X, t) of a material point is the time rate of change of motion

~V ( ~X, t) =
∂~φ

∂t
( ~X, t),

which is tangent to the motion at the Eulerian point ~x. The spatial velocity ~v(~x, t) is the

time rate of change of the motion measured with respect to points in the Eulerian frame,

and is equivalent to the material velocity (i.e. ~V ( ~X, t) = ~v(~x, t) for ~x = ~φ( ~X, t)).

For a material quantity Q( ~X, t) with the equivalent spatial quantity q(~x, t) = Q( ~X, t),

the material derivative is the time derivative with respect to t for ~X fixed; that is,

∂Q

∂t
( ~X, t) = Dt q(~x( ~X, t), t) =

∂q

∂t
( ~X, t) + (~v · ∇)q,

where ∇ is the gradient with respect to ~X.

The material acceleration ~A( ~X, t) of a motion is

~A( ~X, t) ≡ ∂~V

∂t
( ~X, t) =

∂2~x

∂t2
( ~X, t). (2.1)

Using the material derivative, the material acceleration is given in terms of the spatial velocity

~v = ~v(~x( ~X, t), t) as

~A = Dt~v =
∂~v

∂t
+ (~v · ∇)~v,

where ∇ is the gradient with respect to ~X.
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An important quantity in the subsequent theory is the deformation gradient F( ~X, t),

which is defined (in coordinates) as the Jacobian matrix of the motion ~φ( ~X, t); that is,

F( ~X, t) = ∇~φ( ~X, t). (2.2)

The determinant of the deformation gradient satisfies J = det F > 0 for all ~X ∈ Ω0 since

~φ( ~X, t) preserves orientation.

2.3 Equations of Motion in Continuum Mechanics

We now derive the system of partial differential equations governing the motion of a solid.

Traditionally, these PDEs are written in terms of the Eulerian configuration, or equivalently

in terms of the Lagrangian configuration. We present both systems of PDEs, noting that we

will study the system in terms of the Lagrangian configuration in later sections.

There are four quantities which describe the motion of a solid in three dimensional space:

mass density, and the three components of position. As such, we require (at least) four equa-

tions to completely determine the motion of the system. The equations governing elasticity

theory are derived from conservation of mass, balance of linear momentum, and balance of

angular momentum.

2.3.1 Equations of Motion in Eulerian Coordinates

The partial differential equations describing the motion of a solid (or fluid) in terms of the

Eulerian configuration are derived from: conservation of mass, balance of linear momentum,

balance of angular momentum, and the Euler-Cauchy stress principle.

Transport Theorem

Of importance in the subsequent theory is the transport theorem, which describes how the

time derivative and spatial integral interchange. For q = q(~x, t) a spatial quantity with

~x ∈ A ⊂ Ω with smooth boundary, the transport theorem states that [83]

Dt

∫
A

qd~x =

∫
A

(Dtq + q div~x ~v) d~x =

∫
A

(
∂q

∂t
+ div~x (q~v)

)
d~x, (2.3)
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where Dt is the material derivative, ~v(~x, t) is the spatial velocity, div~x is the divergence with

respect to ~x, and d~x denotes an infinitesimal volume element.

Conservation of Mass

Consider the body with mass density ρ(~x, t) in the Eulerian configuration Ω. For every open

set A ⊂ Ω with smooth boundary, conservation of mass is

Dt

∫
A

ρ(~x, t)d~x = 0. (2.4)

By the transport theorem (2.3), conservation of mass has the equivalent form∫
A

(Dtρ+ ρ div~x (~v)) dx = 0. (2.5)

By definition, equation (2.5) holds for every open set A ⊂ Ω, and so the integrand must be

identically zero. As such, the conservation of mass in the Eulerian frame has the equivalent

PDE form

Dtρ+ ρ div~x (~v) = 0, (2.6)

where ~x ∈ Ω.

Cauchy Stress

The Stress Principle of Euler and Cauchy posits the existence of a vector ~t = ~t(~x, t, ~n) for

any smooth, closed surface S ⊂ Ω of a deformed solid Ω at time t [32,83]. In particular, the

Cauchy stress vector ~t = ~t(~x, t, ~n) originates from the point ~x ∈ S, and measures the force d~f

per unit area da applied across a surface element with unit normal ~n; that is, d~f = ~t(~x, t, ~n)da.

Balance of Linear Momentum

Consider now that forces within the solid must balance by Newton’s Second Law. For applied

body forces with density ~b : Ω→ R3 acting on the solid, Newton’s second law is

Dt

∫
A

ρ~v d~x =

∫
∂A

~t(~x, t, ~n) d~x+

∫
A

ρ~b d~x, (2.7)

62



x⃗x⃗

Actual Configuration

Ω

   df = tda 

da
x⃗ x⃗x(X, t)

x⃗n

Figure 2.2: Cauchy stress vector ~t(~x, t, ~n) acting across an infinitesimal surface, where
~x is the point which ~t originates from, t is time, and ~n is normal to the infinitesimal
surface.

where Dt is the material derivative, and A ⊂ Ω is an open subset with smooth boundary ∂A.

Here, the Cauchy stress vector ~t(~x, t, ~n) is evaluated on the unit normal ~n to ∂A at ~x ∈ ∂A.

If (2.7) holds for every open subset A ⊂ Ω with a smooth boundary, then linear momentum

is balanced [83].

In order to obtain the PDE system describing linear momentum, the Cauchy stress vector

in equation (2.7) needs to be expressed in a form with explicit dependence on ~n. As such,

consider the following theorem.

Theorem 2.3.1. If the Cauchy stress vector ~t(~x, ~n) is continuously differentiable with respect

to ~x ∈ Ω for each ~n ∈ S and continuous with respect to ~n for each ~x, then balance of linear

momentum (2.7) implies the existence of a unique tensor σ(~x, t) (the Cauchy Stress tensor)

such that

~t(~x, ~n) = σ(~x)~n ∀ ~x ∈ Ω, ~n ∈ S (2.8)

The proof can be found under more general conditions in [83].Of importance, equation

(2.8) is one result of Cauchy’s Theorem.

The PDE system equivalent to balance of linear momentum is derived as follows. Substi-
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tuting (2.8) into (2.7) and applying the divergence theorem yields

Dt

∫
A

ρ~v d~x =

∫
A

(div~x σ + ρ~b) d~x. (2.9)

Applying the transport theorem to (2.9), and substituting the conservation of mass (2.6), we

obtain ∫
A

(
ρDt~v − div~x σ − ρ~b

)
d~x = 0. (2.10)

The integral (2.10) must hold for any subset A ∈ Ω. As such, since Dt~v and σ are continuously

differentiable and ~b is continuous, the integrand must be identically zero. Thus, balance of

linear momentum is equivalent to

ρDt~v = div~x σ + ρ~b. (2.11)

Balance of Angular Momentum

The integral form of balance of angular momentum is

Dt

∫
A

~x× ρ~v d~x =

∫
∂A

~x× ~t(~x, t, ~n) d~a+

∫
A

~x× ρ~b d~x. (2.12)

Assuming conservation of mass (2.6) and balance of linear momentum (2.14) hold, then

balance of angular momentum (2.12) can be shown to be equivalent to symmetry of the

Cauchy stress tensor (see Theorem 2.10 in [83]),

σ = σT . (2.13)

In the current Thesis, we consider balance of angular momentum in the Eulerian configuration

in the form of equation (2.13).

Equations of Motion

To summarize, the equations of motion for a solid in terms of the Eulerian configuration arise

from conservation of mass (2.6), balance of linear momentum (2.11), and balance of angular

momentum (2.13) as:

Dtρ+ ρ div~x (~v) = 0, (2.14a)

ρDt~v = div~x σ + ρ~b, (2.14b)

σ = σT . (2.14c)
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Here, mass density ρ(~x, t) and velocity ~v(~x, t) are unknown quantities. The stress σ is

determined by its relationship to the strain within the solid (i.e. the deformation). We do

not explicitly discuss the relationship between Cauchy stress and strain in the current thesis

since we work with the equations of motion in terms of the Lagrangian configuration (derived

in Section 2.3.2).

2.3.2 Equations of Motion in Lagrangian Coordinates

While the Eulerian picture is fruitful, it is convenient to express the equations of motion with

respect to the Lagrangian frame of reference (see, e.g., [10,59,76,83]). In the current section,

we re-express the equations of motion (2.14) with respect to points ~X in the Lagrangian

configuration.

Conservation of Mass

Define the mass density of the Lagrangian configuration as ρ0( ~X). Conservation of mass

(2.4) can equivalently be stated as∫
A

ρ(~x, t) d~x =

∫
A0

ρ0( ~X) d ~X, (2.15)

where A0 ∈ Ω0 is the domain such that ~φ : A0 → A.

By a change of variables, we have that∫
A

ρ(~x) d~x =

∫
A0

ρ(~x( ~X, t), t)J( ~X, t) d ~X, (2.16)

where J = det F is the Jacobian determinant of the change of variables. Equating the right

hand sides of (2.15) and (2.16), and noting this holds for all open subsets A0 ⊂ Ω0, yields

ρ0 = Jρ. (2.17)

As such, mass conservation can be viewed as equivalent to (2.17).

Remark 2.3.2. The mass density in the Lagrangian configuration ρ0( ~X) is specified at the

outset of the problem, and does not change with deformation. As such, mass conservation
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does not yield an equation of motion with respect to the Lagrangian configuration. However,

it will play a role when deriving the equations of motion in terms of Lagrangian coordinates,

as will be seen in subsequent sections.

Stresses

In the Lagrangian frame, there is a similar notion to the Cauchy stress vector. The first

Piola-Kirchhoff stress vector ~T ( ~X, t, ~N) is the force d~f per unit undeformed area dA with

unit normal vector ~N (see Figure 2.3) [36,83]; that is, d~f = ~T ( ~X, t, ~N)dA.

x⃗x⃗ x⃗
x⃗

x⃗

x⃗

Reference Configuration Actual Configuration

ΩΩ 0

   df = tda = TdA   

da
N

dA

X

x⃗ x⃗x(X, t)

x⃗n
x⃗(X, t)ϕ

Figure 2.3: First Piola-Kirchhoff stress vector ~T ( ~X, t, ~N) acting across a surface.

The Piola-Kirchhoff stress vector, like the Cauchy stress vector, can be represented in

terms of a stress tensor multiplied by the unit normal vector:

~T = P ~N, (2.18)

where P = P( ~X, t) is the first Piola-Kirchhoff stress tensor.

Due to preservation of the force when changing between Lagrangian and Eulerian reference

frames (i.e ~T dA = ~t da, where dA is an infinitesimal area in the Lagrangian configuration, and

da is an infinitesimal area in the Eulerian configuration), the first Piola-Kirchhoff stress tensor

can be shown to be related to the Cauchy stress tensor through the Piola transform [36,83],

P = JσF−T . (2.19)
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An important property is how the divergence of the stress tensors behaves under the Piola

transform, given in the following theorem.

Theorem 2.3.3. Consider the first Piola-Kirchhoff stress tensor P and and Cauchy stress

tensor σ related by the Piola transform (2.19). Then,

div~xσ = Jdiv ~XP, (2.20)

where div ~X is the divergence with respect to ~X, div~x is the divergence with respect to ~x.

The proof can be found in [36].

Balance of Linear Momentum

Balance of linear momentum with respect to the Eulerian configuration (2.14b) can be ex-

pressed in terms of the Lagrangian configuration as follows. Substituting (2.17), (2.19),

(2.20), and Dt~v = ~Vt ≡ ~xtt into (2.14b) and simplifying yields

ρ0
∂2~x

∂t2
= div ~X P + ρ0

~B (2.21)

where ~x = ~x( ~X, t), div ~X is the material divergence, and ~B( ~X, t) = ~b(~x, t) is the body force

with respect to the Lagrangian configuration.

Balance of Angular Momentum

Balance of angular momentum in the Eulerian configuration (2.14c) can be expressed with

respect to the Lagrangian configuration by applying the Piola transform (2.19), which yields

FPT = PFT . (2.22)

Equations of Motion

To summarize, the equations describing motion of a continuous object expressed in terms of

the Lagrangian configuration are

ρ0
∂2~x

∂t2
= div ~X P + ρ0

~B, (2.23a)

FPT = PFT . (2.23b)
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Here, the independent variables are the Lagrangian coordinates ~X and time t, and the

dependent variables are the Eulerian coordinates ~x( ~X, t). There are six equations governing

the motion from balance of linear momentum and balance of angular momentum. The stress

P depends on the motion of the solid, for which the specific relationship is determined from

properties of the material under study. We discuss the particular form of the stress in terms

of strain for elastic solids in the next section.

2.4 Constitutive Relationships for Elastic Materials

The equations of motion for continuum mechanics have been derived in (2.14) and (2.23) for

a given mass density ρ0. This PDE system cannot be studied until a relationship between

stress and strain is specified.

In the current section, we present the relationship between the first Piola-Kirchhoff stress

and strain for elastic and hyperelastic materials. Afterwards, we discuss several material

properties which restrict the stress-strain relationship, such as, e.g., isotropy of the material.

The exact PDEs governing motion of hyperelastic materials are then stated. Then, specific

strain energy densities for isotropic hyperelastic materials appearing in the literature are

discussed. Lastly, we discuss how the theory is extended to model fiber reinforced materials,

as well as examples of forms of the strain energy density of these models.

2.4.1 Elasticity and Hyperelasticity

Consider Hooke’s Law, which states that the restoring force acting on a mass attached to

a spring is proportional to the displacement of the mass from equilibrium. In continuum

mechanics, elastic solids follow broad strokes of Hooke’s Law in that the stress is a function

of the deformation. A material is said to be elastic if the first Piola-Kirchhoff stress can

be expressed as a function P̂ of material points ~X and the deformation gradient F (i.e.

P( ~X, t) = P̂( ~X, F( ~X, t))) [83].

A material is hyperelastic if there exists a stored energy function W ( ~X, F) such that

P̂( ~X, t) = ρ0( ~X)
∂W

∂F
( ~X, t). (2.24)

68



Hyperelastic models assume that the stress is related only to the material points ~X and the

deformation F, and is independent of history and rate of loading [26].

2.4.2 Frame Indifference and Material Properties of Isotropy, Ho-

mogeneity, and Incompressiblity

We now present assumptions on the form of the first Piola-Kirchhoff stress based on the

axiom of material frame indifference (i.e. objectivity), and the material properties of isotropy,

homogeneity, and incompressibility. We state the form of the stress for each assumption, and

the respective form of the strain energy density for hyperelastic materials.

The axiom of material frame indifference states an observable quantity must be indepen-

dent of the orthogonal basis in which it is measured [36]. In elasticity, the observable quantity

of interest is the stress.

Axiom 2.4.1. Let the deformation ~φ : Ω0 → Ω be rotated into another deformation ~φ
′

:

Ω0 → Ω
′
, i.e. ~φ

′
= Q~φ for proper orthogonal matrix Q. Then,

P̂( ~X,QF) = P̂( ~X,F) ∀ ~X ∈ Ω0. (2.25)

For hyperelastic materials with strain energy densityW ( ~X,F), material frame indifference

is equivalent to

W ( ~X,QF) = W ( ~X,F) ∀ ~X ∈ Ω0. (2.26)

An important class of materials are isotropic materials, for which material properties are

the same in each direction [36].

Definition 2.4.2. An elastic material is isotropic at a point ~X ∈ Ω0 if, for any proper

orthogonal matrix Q,

P̂( ~X,FQ) = P̂( ~X,F)Q. (2.27)

Furthermore, a material is isotropic if it is isotropic at every point ~X ∈ Ω0.

For hyperelastic materials, the material is isotropic if

W ( ~X,FQ) = W ( ~X,F)Q ∀ ~X ∈ Ω0. (2.28)

Another important class of material are homogeneous materials [36,83].
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Definition 2.4.3. An elastic material is homogeneous if the first Piola-Kirchhoff stress does

not depend explicitly on the material points ~X ∈ Ω0; that is

P̂( ~X,F) = P̂(F). (2.29)

Similarly, a hyperelastic material is homogeneous if

W ( ~X,F) = W (F). (2.30)

Lastly is the important class of incompressible (or isochoric) materials, for which the

volume is preserved as the solid undergoes deformation [83].

Definition 2.4.4. An elastic material is incompressible if the deformation undergoes no

change in volume; that is, for any open subset A0 ∈ Ω with smooth boundary and A such

that ~φ : A0 → A, ∫
A

d~x =

∫
A0

d ~X. (2.31)

Proposition 2.4.5. The incompressibility condition (2.31) is equivalent to

J = 1, (2.32)

where J = det F.

Proof. By a change of variables, we have∫
A

d~x =

∫
A0

J d ~X, (2.33)

where J = det F. As such, comparing (2.31) and (2.33) yields J = 1.

Remark 2.4.6. It can be shown that a Lagrange multiplier p = p( ~X, t) (hydrostatic pressure)

arises in the first Piola-Kirchhoff stress for the equation of constraint (2.32) [83]. In particular,

for incompressible materials, the first Piola-Kirchhoff stress takes the form

P( ~X, t) = P̂( ~X, F( ~X, t))− p( ~X, t)F−T ( ~X, t). (2.34)
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2.4.3 Special form of Strain Energy Density for Isotropic, Frame

Indifferent, Homogeneous Hyperelastic Materials

For isotropic, frame indifferent, homogeneous, hyperelastic materials, the strain energy den-

sity can be expressed as a function of the principal invariants of the tensor C = FTF. In the

literature, many constitutive models of hyperelastic materials are presented in terms of these

invariants. As such, we present the principal invariants of C, as well as the representation of

the strain energy density as a function of these invariants.

First consider the polar decomposition of deformation gradient F. The determinant of the

deformation gradient satisfies J = det F > 0 since the deformation ~φ preserves orientation.

As a consequence, F is invertible and can be represented uniquely in the polar decomposition

[83]

F = RU = VR,

where R is a proper orthogonal matrix, and U and V are symmetric positive-definite matrices.

Consider the right Cauchy-Green tensor C = FTF = U2. The following quantities defined

in terms of C can be shown to be invariant under an orthogonal transformation [83]:

I1(C) = TrC, (2.35a)

I2(C) =
1

2

(
Tr(C)2 − Tr(C2)

)
, (2.35b)

I3(C) = det C. (2.35c)

Note that each invariant can be shown to be positive by expressing each invariant in terms

of the eigenvalues of C, and then noting that the eigenvalues of C are positive (since C is

positive-definite) [36].

Theorem 2.4.7. The strain energy density W (F) of a homogeneous hyperelastic material is

frame indifferent and isotropic if and only if

W (F) = W (I1, I2, I3). (2.36)

The proof appears in [36].

In Section 2.4.5, constitutive relations between the stress and strain will be stated in

terms of the invariants (2.35a)-(2.35c).

71



Remark 2.4.8. For finite-deformation models of nearly incompressible materials, the fol-

lowing set of invariants are sometimes used [26,59,75,112]:

Ī1 = (J)−2/3I1, Ī2 = (J)−4/3I2, Ī3 = J, (2.37)

where (J)−1 = 1/J . The invariants (2.37) are used to circumvent computational problems

that arise in simulations of nearly incompressible materials [75,112].

2.4.4 Equations of Motion for Frame Indifferent, Homogeneous

Hyperelastic Materials

The motion of a frame indifferent, homogeneous, hyperelastic solid in terms of the Lagrangian

coordinates ~X is governed by equations (2.23) for the stress-strain relationship established

in Sections 2.4.1-2.4.3:

ρ0
∂2~x

∂t2
= div ~X P + ρ0

~B, (2.38a)

PFT = FPT , (2.38b)

P = ρ0
∂W

∂F
, (2.38c)

where ρ0 = ρ0( ~X) is the mass density, ~x = ~x( ~X, t) are Eulerian coordinates, P = P( ~X, t)

is the first Piola-Kirchhoff stress, ~B = ~B( ~X, t) are the body forces, F = F( ~X, t) is the

deformation gradient (2.2), W = W (I1, I2, I3) is the strain energy density, and {I1, I2, I3}

are the invariants (2.35).

For incompressible materials, the equations of motion with respect to the Lagrangian

coordinates are

ρ0
∂2~x

∂t2
= div ~X P + ρ0

~B, (2.39a)

PFT = FPT , (2.39b)

P( ~X, t) =
∂W

∂F
− pF−T , (2.39c)

J ≡ det F = 1, (2.39d)

where p = p( ~X, t) is the hydrostatic pressure.
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As such, one needs only to specify the exact relationship between the strain energy density

W and the invariants (2.35) of the material under study.

Remark 2.4.9. It can be shown that (2.38b) (equation (2.39b) for incompressible materials)

is an identity for isotropic materials [35].

2.4.5 Constitutive Laws for Particular Nonlinear Hyperelastic

Models

In the current section, we review particular models of isotropic, frame indifferent, homo-

geneous hyperelastic materials. Applications of each model are provided in the Chapter

Discussion.

Saint Venant-Kirchhoff Model

The ‘simplest’ nonlinear model of a hyperelastic solid is the Saint Venant-Kirchhoff model

[36], which has strain energy density

W =
λ

2
(Tr(E))2 + µTr(E2), (2.40)

where E = 1
2
(C− I) is the Green-Saint Venant tensor, C = FTF, and λ and µ are the Lamé

constants of a material.

Ogden Model

The strain energy density of an Ogden material is given by [36,83]

W =
m∑
i=0

ai(Tr(Cγi/2)− 3) +
n∑
i=0

bi(Tr(Cof Cδi/2)− 3) + Γ(I3), (2.41)

where ai > 0, γi ≥ 1, bj > 0, and δj ≥ 1 are model parameters; C = FTF; CofC is the matrix

of cofactors of C; and, Γ : (0, ∞) → R is a convex function such that limδ→0+ Γ(δ) → +∞

and suitable growth conditions as δ → +∞ [36]. Constants m and n are chosen to obtain an

accurate fit of the model to experimental data.

Of note, the ‘-3’ in (2.41) are normalization constants to ensure the strain energy density

W is zero for the identity deformation (i.e. F = I). Without a loss of generality, these ‘-3’
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can be dropped since they disappear upon differentiation in (2.38b) and (2.39b). As well,

Γ(I3) is a constant in the incompressible materials, and so can be dropped [36].

Mooney-Rivlin Model

A sub-class of Ogden materials that model nonlinear dynamics are the compressible Mooney-

Rivlin materials [36] (also called Hadamard materials [35, 47, 83]). Upon restricting (2.41)

for m = 0, n = 0, a0 = a, b0 = b, and γ0 = δ0 = 2, the Mooney-Rivlin strain-energy density

can be represented in terms of the invariants (2.35a)-(2.35c) as

W = a(I1 − 3) + b(I2 − 3) + Γ(I3), (2.42)

where the constants a > 0 and b > 0 are material parameters to be determined experimen-

tally. The ‘-3’ are normalization constants so that W = 0 as in (2.41). Again, the ‘-3’ terms

can be ignored in general, as well as Γ(I3) in the incompressible case.

Of note, taking b = 0 yields the neo-Hookean strain-energy density

W = a(I1 − 3) + Γ(I3), (2.43)

where a > 0.

Generalized Mooney Rivlin Model

An extension of the Mooney-Rivlin model is the generalized Mooney-Rivlin model, also called

the generalized polynomial-type material [57], with strain energy density

W =
m∑
i=0

n∑
j=0

cij(I
1 − 3)i(I2 − 3)j + Γ(I3), (2.44)

where cij are material constants, and {I1, I2, I3} are the invariants (2.35). The ‘-3’ can again

be dropped, as well as Γ(I3) in the incompressible case. As in the Ogden model (2.41),

constants m and n are chosen such that the model accurately fits experimental data.

Model of Limiting Polymeric Chain Extensibility

For incompressible materials composed of polymers (e.g. rubber bands), the polymeric chains

are limited in in the maximum length they may stretch [64]. The isotropic strain energy
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density proposed by Gent [53] to model an incompressible material composed of polymers is

W = −µ
2
k log

(
1− I1 − 3

k

)
, (2.45)

where µ is the shear modulus, and k is a limiting value such that I1−3 < k. Here, the strain

energy density W takes into account limiting stretch length since it approaches infinity as I1

approaches k + 3.

2.4.6 Extension to Hyperelastic Materials with Embedded Fibers

We now present the theory for fiber reinforced isotropic hyperelastic materials. Examples

of materials which display this type of composition are arteries (see [10, 59, 60]) and skin

(see [11, 100]). We limit our discussion to one fiber bundle, and comment on the multiple

fiber bundles after.

A fiber bundle is a collection of fibers in Ω0 oriented along a unit vector A1. The rein-

forcement of an isotropic hyperelastic material by a fiber bundle is modeled by adding an

anisotropic term to the strain energy density corresponding to the fiber bundle [10, 39, 59];

that is, the strain energy density takes the form

W = Wiso +Waniso, (2.46)

where Wiso corresponds to the isotropic matrix, and Waniso captures the anisotropic effects

of the fiber bundle.

The anisotropic strain energy is constructed from new invariants corresponding to the

fiber behaviour,

I4 =
(
A1
)T

C
(
A1
)
, (2.47a)

I5 =
(
A1
)T

C2
(
A1
)
, (2.47b)

where C = FTF is the right Cauchy stress tensor, and C2 = CC. Here, I4 accounts for

deformations that modify the length of the fiber, and I5 to the effect of the fiber on shear

response in the material [39, 88].

The anisotropic component of the strain energy density is then modeled as a functions of

the invariants I4 and I5,

Waniso = f
(
I4 − 1, I5 − 1

)
, (2.48)
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where the ‘-1’ are normalization constants as in (2.41).

For this model, we obtain the same general equations of motion (2.38) (equations (2.39) for

incompressible materials) in Section 2.4.4, noting PFT = FPT may no longer hold identically

due to the anisotropy of the material.

Note that multiple fiber bundles can be taken into account by letting the anisotropic

strain energy density depend on invariants specific to each fiber bundle, and on invariants

which capture fiber bundle interactions [59].

2.4.7 Particular Strain Energy Densities for Fiber Reinforced Ma-

terials

We now discuss particular strain energy densities applicable to modeling fiber reinforced

materials. We again restrict our attention to one fiber family.

Note that many of the models discussed assume the material is incompressible. This

is common practice in modeling fiber reinforced biological materials, as can be seen in the

references for each model.

Standard Reinforcing Model

The standard reinforcing model of an incompressible material has neo-Hookean isotropic

strain energy density (2.43) and the anisotropic strain energy density [40,64]

Waniso = c(I4 − 1)2, (2.49)

where c > 0 is a material constant.

Arterial Models

The Gasser-Holzapfel-Ogden model is a model of an artery is proposed by Holzapfel, Gasser,

and Ogden [59] (see also [60]), in which the isotropic strain energy density is neo-Hookean

(2.43), and the anisotropic strain energy density for a single fiber family is of the form

Waniso =
k1

k2

(
ek

2(I4−1)2 − 1
)
, (2.50)
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where k1 and k2 are material parameters.

The choice of an exponential function is due to the strong stiffening of the arterial tissue

at higher loads, which is thought to be due to the fiber bundles [59,60].

An additional incompressible artery model can be found in [10], where the isotropic

component is neo-Hookean (2.43), and the anisotropic component is a nonlinear polynomial.

Waniso =
n∑
k=2

ck
(
I4 − 1

)k
, (2.51)

where ck are material constants to be determined, and n is chosen such that model accuracy

fits the data. The polynomial form of (2.51) was taken with n = 6 in [10] to optimize finite

element computations.

Model of Shear Response in Fiber Reinforced Materials

Merodio and Ogden [88] test the effect of a fiber family on shear response of an incompressible

material by taking a strain energy density with neo-Hookean isotropic strain energy density

(2.43) and anisotropic strain energy density of the form

Waniso = c(I5 − 1)2, (2.52)

where c is a material parameter.

Namani and Bayly [93] study at shear waves in anisotropic tissue, in which the isotropic

strain energy density is of a compressible neo-Hookean material, while the anisotropic strain

energy density is

Waniso = c(I5 − (I4)2), (2.53)

for c a material parameter.

Limited Fiber Extension Models

Horgan and Saccomandi [64] derive two anisotropic strain energy densities to account for the

limited extensibility of fibers as

Waniso = −µk1

(
(I4 − 1) + k1 ln

(
1− I4 − 1

k1

))
, (2.54)

Waniso = −µk2 ln

(
1− (I4 − 1)2

k2

)
, (2.55)
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where µ is a shear modulus measuring the degree of anisotropy, and k1 and k2 are constants

that measure rigidity of the fiber reinforcement. Note that I4 − 1 < ki, i = 1, 2, such that

the stress P is finite.

Materials with limited fiber extensibility can be modelled by both (2.54) and (2.55).

Horgan and Saccomandi comment that model (2.54) exhibits a stronger stiffening effects

compared to (2.55) in a uniaxial load test [64]. However, due to the similarity between the

models, they focused on (2.55) due to its simpler form.

2.5 Discussion

In this Chapter, we presented the relevant notions from the theory of elastodynamics to be

used in later chapters. We discussed the coordinates of continuum mechanics, the material

derivative, and the deformation gradient. Additionally, we derived the equations of motion

in terms of the Cauchy stress (in Eulerian coordinates) and the first Piola-Kirchhoff stress

(in Lagrangian coordinates) from conservation of mass, balance of linear momentum, and

balance of angular momentum. The form of the Piola-Kirchhoff stress was presented for

isotropic, homogeneous, hyperelastic solids under the assumption of material frame indif-

ference. Afterwards, examples of the stress-strain relationship were provided for isotropic

materials, including the Mooney-Rivlin and Ogden models. Lastly, we presented the form

of the strain energy density of fiber reinforced materials, and gave examples of this density

commonly used in the literature.

We now remark on results pertaining to existence and uniqueness of solutions in elasto-

statics and elastodynamics from the work of Marsden and Hughes [83]. The linear theory of

elasticity requires the strong ellipticity of the first Piola-Kirchhoff stress for ‘good existence

and uniqueness’ of solutions in elastostatics, and local existence and uniqueness for small

times in elastodynamics. In nonlinear elastostatics of hyperelastic materials, global existence

and uniqueness has been shown for a polyconvex strain energy density. Regarding nonlinear

elastodynamics, conditions have been derived in [83] for global existence and uniqueness for

a compressible semilinear system of equations (see Theorem 5.1, Corollary 5.4, and Example

5.7), and for local existence and uniqueness in time of solutions to compressible quasilinear
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systems (see Theorems 5.9 and and 5.10, and Example 5.12). Ball provides a detailed discus-

sion of further results with many references, including an important review of open problems

in elastostatics and thermoelasticity [7].

We now discuss applications of, and extensions to, models of hyperelastic solids presented

in the current Chapter, after which we discuss the same of fiber reinforced models.

The Saint-Venant Kirchhoff model has been applied primarily in numerical simulations.

A finite element method tailored to the Saint Venant-Kirchhoff model for improved compu-

tational efficiency is presented in [72]. As well, the model is utilized in [94] to test a newly

developed numerical method in scenarios of material compression and buckling.

The Ogden model can be simplified by excluding the cofactor terms in equation (2.41)

(see, e.g., [9, 26, 109]). Applications of the Ogden model are as follows. Material parameters

for the Ogden model have been found for internal organs in [109]. Basar and Itskov [9]

develop a finite element numerical scheme for models of rubber-like shells as incompressible

Ogden materials. Further discussion of the Ogden model and its applications appears in [26].

Lie symmetries and equivalence transformations of the compressible Mooney-Rivlin model

have been found in [35] for Γ(I3) = −cI3 − (d/2) log(I3) in (2.42), c, d ≥ 0. Testing of a

numerical method using the Mooney-Rivlin model is done in [94]. Further discussion of the

Mooney-Rivlin model and its applications can be found in [26,109].

Hartmann [57] tests the assumption of positive parameters for the generalized Mooney-

Rivlin model for validity of modeling physical behaviour. Parameters for internal organs are

found in [109] for biological tissues modeled as generalized Mooney-Rivlin materials.

Horgan and Saccomandi [62] test phenomenological models of incompressible isotropic

solids accounting for limited chain extensibility against experimental data, including the Gent

model (2.45). Generalizations of the Gent model for incompressible materials are studied

in [61], and for compressible materials in [63].

In [33], continuum models are introduced that account for effects of micro-structures in

the material, such as strain-softening behaviour and wave propagation as a result of dispersion

effects.

The interaction of longitudinal and transverse waves in compressible hyperelastic solids

is studied in [41].
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Destrade and Saccomandi [42] discuss connections between the nonlinear equations of

motion of hyperelastic isotropic solids and the Milne-Pinney ODE, as well as connections

with Carroll waves.

A study of porous materials are modeled as incompressible hyperelastic materials with

pressurized cavities is done by Idiart and Lopez-Pamies in [69].

Models of fiber reinforced materials are applied, or extended, in the following.

The standard reinforcing model and the Gasser-Ogden-Holzapfel model is tested against

experimental data in [40].

Applications and extensions to the Gasser-Ogden-Holzapfel model (2.50) appear in [100,

102]. A general discussion of modelling arterial systems is given in [106]. A review of arterial

mechanics can be found in [71], with open problems discussed in [8].

Limited fiber extension models are tested for mathematical and mechanical feasibility by

Horgan and Saccomandi in [64]. Additionally, Horgan and Saccomandi comment that one

may substitute I5 for I4 into (2.54) and (2.55) to obtain models which describe the shear

response of the material.

In [111], a fiber reinforced model of an incompressible material is considered where the

fiber family is not uniform and oriented along a single direction, but distributed across an

angle with respect to a ‘dominant’ direction.

The interaction of the fiber bundle and underlying matrix in incompressible hyperelastic

materials is examined in [55].

Models of damaging fiber reinforced solids are studied in [101], with further study on fiber

re-assembly after damage has occurred in [39].
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Chapter 3

Symmetry Properties of Planar Incompress-

ible Mooney-Rivlin Materials

3.1 Introduction

With the methodology reviewed in Chapter 1 and necessary physical theory outlined in

Chapter 2, we wish to provide a detailed example of Lie symmetry and conservation law

analysis. We consider a two dimensional incompressible Mooney-Rivlin model of an isotropic,

frame indifferent, homogeneous elastic solid with no external forces. We classify the Lie

symmetries of the equations of motion, and reduce the equations for selected Lie symmetries.

Afterwards, we study the conservation laws of the system, and compare them with the

admitted Lie point symmetries.

In Section 3.2, we begin by presenting the incompressible planar Mooney-Rivlin model to

be studied, which includes the statement of the equations of motion, as well as a discussion of

certain properties of these equations. Section 3.3 is dedicated to studying the Lie symmetries

of the equations of motion, which includes the reduction of order of the system for several

admitted symmetries. In Section 3.4, we determine the conservation laws of the current model

through the direct method and discuss the physical significance of the conserved densities.

Additionally, we analyze the similarities and differences between the admitted Lie symmetries

and conservation laws of the PDE system.

3.2 Incompressible Planar Mooney-Rivlin Model

We now outline important features of the incompressible planar Mooney-Rivlin model.
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The model is restricted to planar motion by specifying Eulerian coordinates ~x ∈ Ω = R3 to

depend on the Lagrangian coordinates ~X ∈ Ω0 = R3 at a time t (without a loss of generality)

as

~x =


x1 (X1, X2, t)

x2 (X1, X2, t)

X3

 . (3.1)

This choice in coordinate dependency sets displacement from equilibrium of the third co-

ordinate x3 to zero, restricting the motion of the solid to the plane. For clarity, a sample

planar deformation is provided in Figure 3.1. We assume that the hydrostatic pressure p has

coordinate dependence p = p(X1, X2, t).

We assume a constant mass density ρ0 in the Lagrangian frame. Under the assumption of

material frame indifference, the equations of motion for an isotropic, homogeneous, incom-

pressible hyperelastic solid are given by (2.39). For the coordinate dependence (3.1), these

equations simplify as

∂x1

∂X1

∂x2

∂X2
− ∂x1

∂X2

∂x2

∂X1
= 1. (3.2a)

∂2x1

∂t2
= α

(
∂2x1

∂ (X1)2 +
∂2x1

∂ (X2)2

)
− ∂p

∂X1

∂x2

∂X2
+

∂p

∂X2

∂x2

∂X1
, (3.2b)

∂2x2

∂t2
= α

(
∂2x2

∂ (X1)2 +
∂2x2

∂ (X2)2

)
− ∂p

∂X2

∂x1

∂X1
+

∂p

∂X1

∂x1

∂X2
, (3.2c)

where α = 2(a+ b)ρ0 > 0 is a constant related to material parameters of the Mooney-Rivlin

model and constant mass density ρ0.

Equations (3.2) form a system of constraint equation (from the incompressibility condition

J = 1) and two linear wave equations with nonlinear first order coupling in p. Of importance,

the dynamics of the current model are solely neo-Hookean since the Mooney-Rivlin parameter

b does not appear independently in the PDE system.

In addition, equations (3.2) admit a Cauchy-Kovalevskaya (CK) form (see Theorem 3.2.1).

As such, all conservation laws of the current model can be obtained through the direct

method, as will be discussed in Section 3.4.

Theorem 3.2.1. Equations (3.2) admit a Cauchy-Kovalevskaya form with respect to X1 for

x2
2 6= 0, and with respect to X2 for x1

1 6= 0.
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Figure 3.1: Deformation of sample mesh at time t under a planar deformation with
coordinate dependence (3.1).
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Proof. Let x2
2 6= 0. We wish to show equations (3.2) can be written in CK-form with respect

to X1.

First, we may write equation (3.2a) in the form

0 =
∂x1

∂X1
−

1 + ∂x1

∂X2
∂x2

∂X1

∂x2

∂X2

, (3.3)

with leading derivative x1
1.

Upon substituting (3.3) for x1
1 and its derivatives into (3.2b), we can solve this equation

for p1.

0 =
∂p

∂X1
− 1((

∂x1

∂(X2)

)2

+
(

∂x2

∂(X2)

)2
)(

∂x2

∂X2

)2

(
α

(
∂2x1

∂(X2)2

(
∂x2

∂X2

)3

− ∂x
1

∂X2

∂2x2

∂(X2)2

(
∂x2

∂X2

)2

− ∂x1

∂X2

∂2x2

∂(X2)2

(
∂x2

∂X1

)2

+
∂x2

∂X2

∂2x1

∂(X2)2

(
∂x2

∂X1

)2

(3.4)

− ∂x
2

∂X1

∂2x2

∂(X2)2 −
∂x2

∂X2

∂2x2

∂X1∂X2

)
− ∂2x1

∂t2

(
∂x2

∂X2

)3

+
∂x1

∂X2

∂x2

∂X2

∂p

∂X2

+
∂p

∂X2

∂x2

∂X1

∂x2

∂X2

(
∂x1

∂X2

)2

+
∂p

∂X2

∂x2

∂X1

(
∂x2

∂X2

)3

+
∂x1

∂X2

∂2x2

∂t2

(
∂x2

∂X2

)2
)
,

where (x1
2)

2
+ (x2

2)
2 6= 0 by the assumption x2

2 = 0.

We substitute (3.3) for x1
1 and its derivatives, as well as (3.4) for p1 and its derivatives,

into (3.2c). As such, we can solve this equation for the highest derivative of x2 with respect

to X1:

0 =
∂2x2

∂(X1)2 −
1((

∂x1

∂(X2)

)2

+
(

∂x2

∂(X2)

)2
)(

∂x2

∂X2

)2

(
− ∂x

1

∂X2

∂2x1

∂(X2)2

(
∂x2

∂X2

)3

− ∂2x2

∂(X2)2

(
∂x2

∂X2

)4

+
∂x1

∂X2

∂x2

∂X1

∂2x2

∂(X2)2 −
∂x1

∂X2

∂x2

∂X2

∂2x1

∂(X2)2

(
∂x2

∂X1

)2

(3.5)

+

(
∂x2

∂X1

)2
∂2x2

∂(X2)2

(
∂x1

∂X2

)2

+
∂x1

∂X2

∂2x2

∂X1∂X2

∂x2

∂X2

+
1

α

(
∂2x2

∂t2

(
∂x2

∂X2

)4

+
∂x1

∂X2

∂2x1

∂t2

(
∂x2

∂X2

)3

+
∂p

∂X2

(
∂x2

∂X2

)3
))

.

Thus, we have a system with leading derivatives p1, x1
1, and x2

11, proving that was to be

shown.
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The proof that equations (3.2) can be written in CK-form with respect to X2 for x1
1 6= 0

can be shown by a symmetric argument.

3.3 Symmetry Analysis

Using the symmetry analysis methods outlined in Chapter 1, we study equations (3.2). We

first present the Lie point symmetries admitted by the system. Afterwards, we provide an

example of the invariants for the multi-parameter Lie group of point transformations. Then,

we perform reductions to the PDE system for several sets of interesting invariants.

3.3.1 Admitted Lie Point Symmetries

Theorem 3.3.1. The equations of motion (3.2) are invariant under the local Lie groups of

point transformations with infinitesimal generators

R1 =
∂

∂t
, R2 =

∂

∂X1
, R3 =

∂

∂X2
, R4 = F 1(t)

∂

∂p
,

R5 = X2 ∂

∂X1
− X1 ∂

∂ X2
, R6 = x2 ∂

∂x1
− x1 ∂

∂x2
,

R7 = F 2 ∂

∂x1
− F 2

t,t x
1 ∂

∂p
, R8 = F 3 ∂

∂x2
− F 3

t,t x
2 ∂

∂p
,

R9 = x1 ∂

∂x1
+ x2 ∂

∂x2
+ X1 ∂

∂X1
+ X2 ∂

∂X2
+ t

∂

∂t
,

where F 1(t), F 2(t), and F 3(t) are arbitrary functions of time.

Proof. The above Lie groups of point transformations follow from applying the constructive

algorithm outlined in Chapter 1.

Of importance, no special symmetry classification occurs for particular values of α > 0.

We now derive the global group of transformations associated with the infinitesimal gen-

erators in 3.3.1. Below, εi is the parameter corresponding to Ri for i = 1, . . . , 9.
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Symmetries R1, R2, and R3 correspond to translations in t, X1, and X2, respectively:

R1 : t∗ = t+ ε1, (X1)∗ = X1, (X2)∗ = X2, (x1)∗ = x1, (x2)∗ = x2, p∗ = p.

R2 : t∗ = t, (X1)∗ = X1 + ε2, (X2)∗ = X2, (x1)∗ = x1, (x2)∗ = x2, p∗ = p.

R3 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2 + ε3, (x1)∗ = x1, (x2)∗ = x2, p∗ = p.

The symmetry R4 time dependent translations in p by a function F 1(t):

R4 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2, (x1)∗ = x1, (x2)∗ = x2, p∗ = p+ ε4F 1(t).

Symmetries R5 and R6 correspond to rotations in the independent and dependent spatial

variables respectively.

R5 : t∗ = t, (X1)∗ = cos(ε5)X1 − sin(ε5)X2, (X2)∗ = cos(ε5)X2 + sin(ε5)X1,

(x1)∗ = x1, (x2)∗ = x2, p∗ = p.

R6 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2,

(x1)∗ = cos(ε6)x1 − sin(ε6)X2, (x2)∗ = cos(ε6)x2 + sin(ε6)x1, p∗ = p.

Here, R7 and R8 are generalized boost symmetries in x1 and x2 respectively, and reduce

to Galilean boost symmetries for F 2 = t and F 3 = t.

R7 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2,

(x1)∗ = x1 + ε7F 2(t), (x2)∗ = x2, p∗ = p− ε7F 2
ttx

1 − 1

2
(ε7)2F 2F 2

tt.

R8 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2,

(x1)∗ = x1, (x2)∗ = x2 + ε8F 3(t), p∗ = p− ε8F 3
ttx

2 − 1

2
(ε8)2F 3F 3

tt.

The symmetry R9 corresponds to scaling in all variables but p.

R9 : t∗ = eε
9
t, (X1)∗ = eε

9
X1, (X2)∗ = eε

9
X2,

(x1)∗ = eε
9
x1, (x2)∗ = eε

9
x2, p∗ = p.
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3.3.2 Example of General Invariants

Recall from Chapter 1, Lie Symmetries admit quantities (called invariants) that do not change

under the action of the Lie group of point transformations. We find invariants for the linear

combination of admitted Lie point symmetries in Theorem 3.3.1.

The general form of the infinitesimal generator for the multi-parameter Lie group of point

transformations for {R}9
i=1 is

R =
9∑
i=1

ci Ri, (3.6)

where ci are arbitrary parameters. Of note, we use the set of parameters {ci}9
i=1 to make

clear where each symmetry generator has contributed. In application, one would reduce the

number of parameters to a minimum by reparametrizing several parameters into one.

To find the invariants of (3.6), we must solve the characteristic system RI = 0, which is

dt

c1 + c9t
=

dX1

c2 + c5X2 + c9X1
=

dX2

c3 − c5X1 + c9X2

=
dx1

c7 F 2 (t) + c6 x2 + c9 x1
=

dx2

c8 F 3 (t)− c6 x1 + c9 x2
(3.7)

=
dp

c4 F 1 (t)− c7
(
d2F 2

dt2
(t)
)
x1 − c8

(
d2F 3

dt2
(t)
)
x2
.

Note that the differentials in the independent variables have coefficients which only depend

on the independent variables. The dependent variables follow the same pattern, except for

the arbitrary functions of t. Thus, the characteristic system may be solved for the invariants

depending on the independent variables first, followed by those depending on the dependent

variables

Recall that we also have a choice of which independent variable to solve the characteristic

system with respect to. As a result, the invariants can take different forms based upon this

choice. Note it may be the case that the characteristic system cannot be solved in terms of

a particular independent variable, but can be with respect to another.

Invariants Depending on the Independent Variables

To provide an example of the general invariants, we solve the characteristic system (3.7) for

the invariants with respect to time (assuming c9 6= 0). This yields invariants which depend
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on the independent variables as

I1 =
1

ω1 + t

[(
X1 +

ω2 − ω3 ω5

1 + (ω5)2

)
cos
(
ω5 ln

(
ω1 + t

))
−
(
X2 +

ω3 + ω2 ω5

1 + (ω5)2

)
sin
(
ω5 ln

(
ω1 + t

))]
, (3.8a)

I2 =
1

ω1 + t

[(
X1 +

ω2 − ω3 ω5

1 + (ω5)2

)
sin
(
ω5 ln

(
ω1 + t

))
+

(
X2 +

ω3 + ω2 ω5

1 + (ω5)2

)
cos
(
ω5 ln

(
ω1 + t

))]
, (3.8b)

where we have reparametrized the constants such that ωi = ci/c9 to provide clarity.

Consider now the structure of the invariants. First, the invariants do not contain the

parameters corresponding to Lie point symmetries R4, R6, R7, and R8; this is expected

since the independent variables are invariant under these point transformations. Second,

the symmetry parameters give an indication of the associated point transformation in the

invariants. For example, ω1 corresponds to time translations after scaling by c9, and ω5 to

rotations after scaling by c9. In addition, we may exclude the action of certain symmetries

(except scaling) by setting the corresponding parameter to zero. For example, to exclude

time translations, we set ω1 = 0. To exclude the scaling symmetry, one would need to resolve

the characteristic system (3.7) from the beginning for c9 = 0.

Invariants Depending on the Dependent Variables

We now consider the invariants which depend on the dependent variables. Solving the charac-

teristic system (3.7) in the general case yields large, unwieldy integrals. As such, we comment

upon the expected form of these invariants, and then find the invariants for a simpler example

important to later study.

As with the invariants dependent on the independent variables, we solve the dependent

variable portion of the characteristic system with respect to time. A consequence is that the

invariants depend explicitly upon time and the dependent variables. As a side note, consider

the arbitrary functions of time in R4, R7, and R8, and suppose we solve the characteristic

system (3.7) with respect to, e.g., X1. In this case, t would now be a function of X1. As

such, we would need to solve the system of invariants of the independent variables for t, and
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substitute this t into each F i(t). Upon this substitution, solving for the invariants of the

dependent variables may become significantly more complicated.

We now find invariants depending on the dependent variables (3.7) excluding the boost

symmetries R7 and R8. These invariants are found as

V 1 =
1

ω1 + t

(
x1 cos

(
ω6 ln

(
ω1 + t

))
− x2 sin

(
ω6 ln

(
ω1 + t

)))
, (3.9a)

V 2 =
1

ω1 + t

(
x1 sin

(
ω6 ln

(
ω1 + t

))
+ x2 cos

(
ω6 ln

(
ω1 + t

)))
, (3.9b)

V 3 = p− ω4

∫
F 1(t)

ω1 + t
dt, (3.9c)

where we have again reparametrized the constants such that ωi = ci/c9 for clarity.

To make the invariants simpler, we may exclude the time translation symmetry by setting

c1 = 0, the hydrostatic pressure translation by setting c4 = 0, and the rotational symmetry

by setting c6 = 0. To exclude the scaling symmetry, one would need to solve the characteristic

system (3.7) from scratch with c9 = 0.

3.3.3 Symmetry Reductions for Several Sets of Invariants

We now present the reduced equations of motion (3.2) for several sets of simpler invariants

by use of the invariant form method presented in Chapter 1. As well, we comment on the

reduced equations type and how the equations of motion have changed under the reduction.

We do not present reductions under the more general invariants (3.8) and (3.9) since it would

be uninformative as to reduction methodology.

In the reductions below, we state the invariants and how the variables X1, X2, t, x1, and

x2, depend upon them.

Reduction under Rotational Invariance of Independent Variables

We consider here a reduction of order by the invariant form method for the rotation sym-

metry R5 in the independent variables. Afterwards, we consider a particular solution type

in cylindrical coordinates (r(R,Θ, Z), θ(R,Θ, Z), z(R,Θ, Z)), where lowercase symbols cor-

respond to the Eulerian frame and uppercase symbols to the Lagrangian frame. The motion
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of interest in the latter case is deformations in which the material is not rotated (i.e. θ = Θ),

and the Eulerian radius r is independent of the Lagrangian angle Θ (i.e. r = r(R, t)).

Reduction under R5 First, for the rotation symmetry R5 in the independent variables,

the invariants are

I1 =

√
(X1)2 + (X2)2, I2 = t (3.10a)

V 1(I1, I2) = x1, V 2(I1, I2) = x2, V 3(I1, I2) = p. (3.10b)

Note there is no dependence on the angle θ = arctan(X1/X2) each V i.

Upon direct substitution of the invariants into the PDE system (3.2a) as per the invariant

form method, we obtain the expression

1 = 4X1X2V 1
1 V

1
1 − 4X1X2V 1

1 V
1

1 ≡ 0,

which is a contradiction. Thus, there does not exist a solution to the system (3.2) that

is invariant under rotations R5 alone. (Of note, this result is also arrived at in Lei and

Blume [76]).

Special Rotation Deformation We now analyze a particular case in which the mate-

rial undergoes zero rotation, and the radius r in the Eulerian frame is independent of the

Lagrangian angle Θ. The coordinate dependence corresponding to this type of motion in

cylindrical coordinates is

x1 = r(F, t) cos θ, x2 = r(R, t) sin θ, p = p(R, t). (3.11)

Upon changing variables in (3.2) and substituting (3.11), the equations of motion (3.2) be-

come

det F =
r

R

∂r

∂R
≡ 1, (3.12a)

∂2r

∂t2
= α

(
∂2r

∂R2 +
1

R

∂r

∂R
− r

R2

)
− r

R

∂p

∂R
, (3.12b)

where the incompressibility condition (3.2a) is transformed into (3.12a), and (3.2b) and (3.2c)

are transformed into the same equation (3.12b).
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We now solve (3.12a)-(3.12b). Solving (3.12a) for r yields the solution

r =
√
R2 + f(t), (3.13)

where f(t) is an arbitrary function of time.

Consider the point R = 0. As such, we have that r(0) =
√
f(t), where f(t) ≥ 0 for r to be

real. For f(t) > 0, the point R = 0 will be deformed into a circle with radius r =
√
f(t) > 0.

This deformation requires the formation of a void within the solid at the origin for time t > 0,

resulting in a non-smooth solution in r. As such, the only smooth solution for r occurs if

f(t) ≡ 0, which is the stationary solution r = R. In turn, equation (3.12b) reduces to pR = 0

for all R, yielding the hydrostatic pressure p as p = p(t) which is then fixed by appropriate

initial and boundary values.

Reduction under Traveling Wave Coordinates

Using the linear combination of time and spatial translation symmetries R = c1R1 + c2R2 +

c3R3, we obtain the travelling wave invariants

I1 = X1 − c2

c1
t, I2 = X2 − c3

c1
t. (3.14)

x1, x2, and p, are invariant under translations in the independent variables, leading to in-

variants V i such that x1 = V 1(I1, I2), x2 = V 2(I1, I2), and p = V 3(I1, I2). Thus, equations

(3.2) are transformed to

V 1
1 V

2
2 − V 1

2 V
2

1 = 1, (3.15a)

0 =

(
α−

(
c2

c1

)2
)
V 1

1,1 +

(
α−

(
c3

c1

)2
)
V 1

2,2

−2
c2c3

(c1)2
V 1

1,2 + V 3
2 V

2
1 − V 3

1 V
2

2 , (3.15b)

0 =

(
α−

(
c2

c1

)2
)
V 2

1,1 +

(
α−

(
c3

c1

)2
)
V 2

2,2

−2
c2c3

(c1)2
V 2

1,2 + V 3
1 V

1
2 − V 3

2 V
1

1 . (3.15c)

Clearly, the incompressibility condition has the same form under the coordinate transfor-

mation. The two coupled equations (3.2b) and (3.2c) are transformed into coupled PDEs of
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a similar form, with the addition of terms containing mixed partial derivatives V i
1,2. As well,

the nonlinearity and coupling are due to the terms containing V 3 (related to the hydrostatic

pressure).

Reduction under Time and Spatial Translation Symmetries plus Scaling Symme-

try

For the linear combination of time and spatial translation symmetries with the scaling sym-

metry R = c1R1 + c2R2 + c3R3 + c9R9, the corresponding invariants are

I1 =
c2 + c9X1

c9 (c1 + c9 t)
, I2 =

c3 + c9X2

c9, (c1 + c9 t)
. (3.16a)

V 1(I1, I2) =
1

(c1 + c9t)
x1, V 2(I1, I2) =

1

(c1 + c9t)
x2, V 3(I1, I2) = p(I1, I2). (3.16b)

Fixing the invariants I1 and I2 as constant and solving for X1 and X2 yields equations for

straight lines in the X1-t plane and X2-t plane respectively.

By the invariant form method, equations (3.2) reduce for the invariants (3.16) to

V 1
1 V

2
2 − V 1

2 V
2

1 = 1, (3.17a)

0 = α
(
V 1

1,1 + V 1
2,2

)
+ V 3

2 V
2

1 − V 3
1 V

2
2

−(c9)2
(
(I1)2V 1

1,1 + 2I1I2V 1
1,2 + (I2)2V 1

2,2

)
, (3.17b)

0 = α
(
V 2

1,1 + V 2
2,2

)
+ V 3

1 V
1

2 − V 3
2 V

1
1

−(c9)2
(
(I1)2V 2

1,1 + 2I1I2V 2
1,2 + (I2)2V 2

2,2

)
. (3.17c)

As in the previous reduction, the incompressibility condition does not change under the

coordinate transformation. The equations (3.2b) and (3.2c) are autonomous, and have been

transformed into non-autonomous equations (3.17b) and (3.17c).

Reduction under Time Translation and Spatial Rotation Invariance

For the time translation symmetry added to the rotation symmetry in the independent vari-

ables R = c1R1 + c5R5, we obtain the invariants I1 and I2 as

I1 = X1 cos

(
c5 t

c1

)
−X2 sin

(
c5 t

c1

)
, (3.18a)

I2 = X1 sin

(
c5 t

c1

)
+X2 cos

(
c5 t

c1

)
. (3.18b)
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To develop intuition on what each invariant I1 and I2 look like in (X1, X2, t)-space, we

consider the isocurves defined by setting I1 and I2 constant.

The isocurve in (X1, X2, t)-space defined by setting I1 to a constant and solving (3.18a)

for X1 and X2 is given as

X1 = I1 cos

(
c5 t

c1

)
, X2 = −I1 sin

(
c5 t

c1

)
,

which is the equation of a helix centered about the line (X1, X2, t) = (0, 0, t). Similarly, the

isocurve from setting I2 to a constant and solving (3.18b) for X1 and X2 is

X1 = I2 sin

(
c5 t

c1

)
, X2 = I2 cos

(
c5 t

c1

)
,

which is the equation of a helix in (X1, X2, t)-space. As such, the isocurves defined by each

invariant are transverse families of helix’ in (X1, X2, t)-space that intersect for I1 = I2.

The invariants V 1 and V 2 are related to the dependent variables by x1 = V 1(I1, I2),

x2 = V 2(I1, I2), and p = V 3(I1, I2). Thus, equations (3.2) reduce to

V 1
1 V

2
2 − V 1

2 V
2

1 = 1, (3.19a)

0 = α
(
V 1

1,1 + V 1
2,2

)
− V 3

1 V
2

2 + V 3
2 V

2
1

−(c5)
2

(c1)2

(
V 1

1,1

(
I2
)2 − 2V 1

1,2I
1I2 + V 1

2,2

(
I1
)2 − V 1

1 I
1 − V 1

2 I
2
)
, (3.19b)

0 = α
(
V 2

1,1 + V 2
2,2

)
+ V 3

1 V
1

2 − V 3
2 V

1
1

−(c5)
2

(c1)2

(
V 2

1,1

(
I2
)2 − 2V 2

1,2I
1I2 + V 2

2,2

(
I1
)2 − V 2

1 I
1 − V 2

2 I
2
)
. (3.19c)

The incompressiblity condition is again unchanged under the transformation. As in the

previous reduction with invariants (3.16), equations (3.2b) and (3.2c) are transformed into

non-autonomous equations (3.19b) and (3.19c).

Reduction under Translation and Rotation Invariance of Independent Variables

For the sum of the translation symmetries and rotation symmetry in the independent vari-

ables R = c1R1 + c2R2 + c3R3 + c5R5, we obtain the invariants

I1 =
1

c5

((
c2 + c5X2

)
cos

(
c5 t

c1

)
+
(
−c3 + c5X1

)
sin

(
c5 t

c1

))
, (3.20a)

I2 =
1

c5

((
c3 − c5X1

)
cos

(
c5 t

c1

)
+
(
c2 + c5X2

)
sin

(
c5 t

c1

))
. (3.20b)
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We again consider the isocurves in (X1, X2, t)-space defined by setting each invariant in

(3.20) constant.

For I1 constant, solving equation (3.20a) for X1 and X2 to yields the following isocurve

in (X1, X2, t)-space:

X1 = I1 cos

(
c5 t

c1

)
− c2

c5
, X2 = I1 sin

(
c5 t

c1

)
+
c3

c5
,

which is the equation of a helix with centered about the line (X1, X2, t) = (−c2/c5, c3/c5, t).

Similarly, setting I2 to a constant and solving (3.20b) for X1 and X2 yields

X1 = −I2 cos

(
c5 t

c1

)
+
c3

c5
, X2 = I2 sin

(
c5 t

c1

)
− c2

c5
,

which is also the equation of a helix in (X1, X2, t)-space centered about the line (X1, X2, t) =

(c3/c5,−c2/c5, t).

The invariants V 1, V 2, and V 3 are related to the dependent variables through x1 =

V 1(I1, I2), x2 = V 2(I1, I2), and p = V 3(I1, I2). Under this transformation, equations (3.2)

are reduced to (3.19a)-(3.19c), and so is equivalent to no spatial translations taken into

account.

3.4 Conservation Laws

We now study the conservation laws of the system (3.2). We begin by deriving the admitted

conservation law multipliers, and the resulting conservation law fluxes.

3.4.1 Conservation Law Multipliers

Using the algorithm outlined in Chapter 1, we seek zeroth and first order conservation law

multipliers of equations (3.2).

Note that all conservation laws of a given PDE system arise from multipliers of the

equivalent Cauchy-Kovalevskaya form of the system (see Section 1.4.3). Equations (3.2)

admit a CK-form (see Theorem 3.2.1), but the resulting multipliers and conservation laws

are difficult to work with. As such, we present the multipliers and conservation laws for

equations (3.2) as written, noting that we have obtained all conservation laws (up to first
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order); this was verified by a direct comparison with the results of studying the system in

CK-form given in Theorem 3.2.1.

In the subsequent sections, it is understood that Λ1 multiplies equation (3.2a), Λ2 multi-

plies (3.2b), and Λ3 multipliers (3.2c).

Theorem 3.4.1. Equations (3.2) admit the following zeroth order conservation law multi-

pliers:

Λ1 = F 1
ttx

1 + F 2
ttx

2 + F 3(t), (3.21a)

Λ2 = C1x2 + F 1(t), (3.21b)

Λ3 = −C1x1 + F 2(t), (3.21c)

where F 1(t), F 2(t), and F 3(t) are arbitrary functions of t; and, C1 is an arbitrary constant.

Proof. The multipliers (3.21) follow from application of the constructive algorithm (outlined

in Chapter 1) with multipliers of the form

Λi = Λi(X1, X2, t, x1, x2, p), i = 1, 2, 3.

Theorem 3.4.2. Equations (3.2) admit the following first order conservation law multipliers

(in addition to the zeroth order multipliers presented in Theorem 3.4.1)

Λ1 = C2pt + C3p1 + C4p2 + C5(X1p2 −X2p1), (3.22a)

Λ2 = −C2x1
t − C3x1

1 − C4x1
2 + C5(X2x1

1 −X1x1
2), (3.22b)

Λ3 = −C2x2
t − C3x2

1 − C4x2
2 + C5(X2x2

1 −X1x2
2), (3.22c)

where {Ci}5
i=1 are arbitrary constants.

Proof. Using multipliers of the form

Λi = Λi(X1, X2, t, x1, x2, p, ∂x1, ∂x2, ∂p), i = 1, 2, 3,

the multipliers (3.22) follow from the constructive method outlined in Chapter 1.
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Note that singular first order conservation law multipliers arise in the proof of Theorem

3.4.2 due to the multiplier dependence upon x1
1, x1

2, x2
1, and x2

2. In particular, the singular

first order multipliers are of the form

Λ1(X1, X2, t, x1, x2, p, ∂x1, ∂x2, ∂p) =
f i(X1, X2, t, x1, x2, p)

x1
1x

2
2 − x1

2x
2
1 − 1

, (3.23)

which become singular on solutions to (3.2a). We disregard multipliers of this form since they

can potentially lead to divergence expressions that are not conservation laws of the system

(3.2) [22].

3.4.2 Divergence Conservation Law Forms

For each set of conservation law multipliers in Theorem 3.4.1 and 3.4.2, we apply the direct

method of flux analysis (as in [22]) to construct the divergence conservation law forms of

equations (3.2).

Recall that we assumed mass density ρ0 was constant and was cancelled from the PDE

system (3.2). As such, we assume the divergence conservation law equations in the follow-

ing are implicitly multiplied by a factor of mass density ρ0 to obtain the correct physical

interpretation.

We utilize the notation Di for the total derivative operator with respect to the ith inde-

pendent variable, as presented in Chapter 1.

Conservation of Mass in the Eulerian Frame

We first make a note on the conservation of mass in the Eulerian frame. In Chapter 2, it

was presented that conservation of mass can be represented by the relation ρ0 = Jρ, where

ρ0 is the mass density in the Lagrangian frame, ρ is mass density in the Eulerian frame, and

J = det F is the determinant of the deformation gradient F. As such, mass density in the

Eulerian frame is constant due to the Lagrangian mass density assumed constant, and J = 1

from the incompressibility condition.
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Conservation of Momentum in the Eulerian Frame

Recall that velocity ~V and spatial velocity ~v are equivalent. For the velocity ~Gt = ~V = ~v,

the model admits conservation of generalized momentum (in x1, and x2) and conservation

of angular momentum (in x3), in the Eulerian frame (multiplier set of F 1(t), F 2(t), and C1,

respectively). The divergence conservation law forms are as follows.

For arbitrary F 1(t), we obtain the conservation of generalized momentum in x1:

Dt

(
F 1x1

t − F 1
t x

1
)

−DX1

(
αF 1x1

1 − pF 1x2
2 −

1

2
F 1
tt

(
x1
)2
x2

2

)
(3.24)

−DX2

(
αF 1x1

2 + pF 1x2
1 +

1

2
F 1
tt

(
x1
)2
x2

1

)
= 0.

For arbitrary F 2(t), we obtain the conservation of generalized momentum in x2:

Dt

(
F 2x2

t − F 2
t x

2
)

−DX1

(
αF 2x2

1 + pF 2x1
2 + F 2

tt

(
x2
)2
x1

2

)
(3.25)

−DX2

(
αF 2x2

2 − pF 2x1
1 −

1

2
F 2
tt

(
x2
)2
x1

1

)
= 0.

Note that we have the conservation of linear momentum in x1 for F 1(t) a constant, and

in x2 for F 2(t) a constant.

From the multiplier set with coefficient C1, we obtain the conservation of angular mo-

mentum in x3:

Dt

(
x1x2

t − x1
tx

2
)

+DX1

(
α
(
x1

1x
2 − x1x2

1

)
− px1x1

2 − px2x2
2

)
(3.26)

+DX2

(
α
(
x1

2x
2 − x1x2

2

)
+ px1x1

1 + px2x2
1

)
= 0.

Except for the incompressibility condition, the equations of motion were constructed from

the balance of linear momentum, and so it is expected that linear momentum is conserved. In

addition, conservation of angular momentum is also an expected result since it is equivalent to

the equation FPT = PFT , which holds identically for the current model due to the assumed

isotropy (see Chapter 2, Section 2.4.2).
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Conservation of Energy

Applying the multiplier set with coefficient C2, we obtain the conservation of energy:

Dt

(
α

2

((
x1

1

)2
+
(
x1

2

)2
+
(
x2

1

)2
+
(
x2

2

)2
)

+
1

2

(
x1
t

)2
+

1

2

(
x2
t

)2
)

−DX1

(
α
(
x1
tx

1
1 + x2

tx
2
1

)
− px1

tx
2
2 + px1

2x
2
t

)
(3.27)

−DX2

(
α
(
x1
tx

1
2 + x2

tx
2
2

)
+ px1

tx
2
1 − px1

1x
2
t

)
= 0.

Here, kinetic energy K is given as

K =
ρ0

2

(
x1
t

)2
+
ρ0

2

(
x2
t

)2
,

and potential energy P as

P = ρ0

(α
2

((
x1

1

)2
+
(
x1

2

)2
+
(
x2

1

)2
+
(
x2

2

)2
))

.

Generalized Incompressibility Condition

The multiplier set with function F 3(t) corresponds to a generalized version of the incom-

pressibility condition, which has divergence conservation law form

Dt

(∫
F 3dt

)
−DX1

(
F 3x1x2

2

)
+ DX2

(
F 3x1x2

1

)
= 0. (3.28)

If one expands the above expression and simplifies (assuming F 3(t) 6= 0), then the incom-

pressiblity condition (3.2a) is obtained.

Conservation of Momentum in the Lagrangian Frame

There are three additional conservation laws for two components of linear momentum, and

one component of angular momentum, in the Lagrangian (or material) frame (corresponding

to the multiplier sets with coefficient C3, C4, and C5, respectively). Note these momenta are

also referred to as material momenta [83].

The vectors for the linear momentum (p) and angular momentum ( ~X × p) in the La-

grangian frame are defined, respectively, as [83]:

p = ρ0F
T~xt = ρ0(x1

tx
1
1 + x2

tx
2
1)̂i+ ρ0(x1

tx
1
2 + x2

tx
2
2)ĵ, (3.29)

~X × (p) = ρ0(X1(x1
tx

1
2 + x2

tx
2
2)−X2(x1

tx
1
1 + x2

tx
2
1))k̂, (3.30)
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where ρ0 is the Lagrangian mass density; and, î, ĵ, and k̂ are the standard Cartesian basis

vectors in the Lagrangian frame. Here, the coefficients of î and ĵ in the (3.29) are the linear

momenta in the Lagrangian frame, and the coefficient of k̂ in (3.29) is the angular momentum

in the Lagrangian frame [83].

For C3, we obtain the conservation of linear momentum in X1:

Dt

(
x1
tx

1
1 + x2

tx
2
1

)
+DX1

(
α
((
x1

2

)2
+
(
x2

2

)2 −
(
x1

1

)2 −
(
x2

1

)2
)

+ p− 1

2

(
x1
t

)2 − 1

2

(
x2
t

)2
)

(3.31)

−DX2

(
α
(
x1

1x
1
2 + x2

1x
2
2

))
= 0.

For C4, we obtain the conservation of linear momentum in X2:

Dt

(
x1
tx

1
2 + x2

tx
2
2

)
−DX1

(
α
(
x1

1x
1
2 + x2

1x
2
2

))
+DX2

(
α
((
x1

1

)2
+
(
x2

1

)2 −
(
x1

2

)2 −
(
x2

2

)2
)

+ p− 1

2

(
x1
t

)2 − 1

2

(
x2
t

)2
)

= 0. (3.32)

For C5, we obtain the conservation of angular momentum in X3 (i.e. the k̂ component of

(3.30)):

Dt

(
X2(x1

tx
1
1 + x2

tx
2
1)−X1(x1

tx
1
2 + x2

tx
2
2)
)

+DX1

(α
2
X2
(
−
(
x1

1

)2 −
(
x2

1

)2
+
(
x1

2

)2
+
(
x2

2

)2
)

+αX1
(
x1

1x
1
2 + x2

1x
2
2

)
+X2p− 1

2
X2
(
x1
t

)2 − 1

2
X2
(
x2
t

)2
)

(3.33)

+DX2

(α
2
X1
(
−
(
x1

1

)2 −
(
x2

1

)2
+
(
x1

2

)2
+
(
x2

2

)2
)

−αX2
(
x1

1x
1
2 + x2

1x
2
2

)
−X1p+

1

2
X1
(
x1
t

)2
+

1

2
X1
(
x2
t

)2
)

= 0.

We would like to remark about the form of material momenta here and in the literature.

The linear material momentum (3.29) and angular material momentum (3.30) are written in

the form used by Marsden and Hughes [83]. Other researchers have defined these quantities

in varying forms. For example, linear material momenta is written as p = −ρ0F
t~xt in [28]

and [85], in which the latter author calls this ‘pseudomomentum’. It should be noted that

Maugin [85] normally discusses pseudomomentum with respect to ‘forces’ acting on, e.g.,

defects and cracks in material solids. Similarly, material angular momentum takes on different

forms in the literature (see, e.g., [45, 85,86]).
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3.4.3 Connection Between Conservation Laws and Symmetries

Recall from Chapter 1 that Lie symmetries of a variational system of partial differential

equations are connected to the conservation laws of the system through Noether’s theorem.

For a PDE system to be variational, it is required that the linearizing operator of the system

is self-adjoint. If so, under Boyer’s formulation of Noether’s theorem, the evolutionary form of

the Lie symmetries admitted by the associated Lagrangian to the PDE system are equivalent

to the conservation law multipliers of the equations of motion.

In addition, the Lie symmetries admitted by the Lagrangian are also Lie symmetries

admitted by the associated Euler-Lagrange equations. As such, it is possible to obtain

conservation laws of a variational PDE system from Lie symmetries admitted by the same

system without knowing the Lagrangian. However, it is important to note the converse is not

necessarily true: a Lie symmetry admitted by the Euler-Lagrange equations is not necessarily

a Lie symmetry admitted by the associated Lagrangian. A symmetry of this type is called

non-variational symmetry. An example would of a non-variational symmetry admitted by a

variational PDE system is the scaling symmetry [14] [96].

We show the system (3.2) is non-variational in the proof of the following theorem.

Theorem 3.4.3. Equations (3.2) do not form a variational system of PDEs.

Proof. To show the system is non-variational, it is sufficient to show inequality of one entry

in the matrices defining the linearizing operator L and its adjoint operator L∗ (see Section

1.5.2). We do so by considering the matrix entry of each operator corresponding to the

incompressibility condition (3.2a).

By the formula in Chapter 1, the first row of the linearizing operator corresponds to

the first equation of the system being linearized (in our case, (3.2a)), where the ith column

corresponds to the ith dependent variable. Entries in the linearizing operator are found

through equation (1.122) in Section 1.5.2. As such, the first row of the linearizing operator

L is

L1[~U ] =

[
U2

2

∂

∂X1
− U2

1

∂

∂X2
, −U1

2

∂

∂X1
+ U2

2

∂

∂X2
, 0

]
.
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We find the first row of the adjoint operator as

L∗1[~U ] =

[
−U2

2

∂

∂X1
+ U2

1

∂

∂X2
, U1

2

∂

∂X1
− U1

1

∂

∂X2
, 0

]
,

where the entries are found through formula (1.123) presented in Section 1.5.2.

Clearly, L cannot be equal to L∗ since the first rows are not equivalent. As such, the

system of PDEs is non-variational.

In light of Theorem 3.4.3, there does not exist a direct correspondence between the ad-

mitted Lie symmetries and conservation laws of the PDE system (3.2). However, one can still

compare the symmetries and conservation laws of the system of PDEs (for example, see [24]),

which is instructive as to how one would proceed if the PDE system were variational. To

make the comparison, the Lie point symmetries in Section 3.3.1 are expressed in evolutionary

form, which are presented in the left column of Table 3.1.

In the current system (3.2), there are only eight conservation law multipliers (of zeroth

and first order) and nine Lie point symmetries. The scaling symmetry R9 is not similar to

any zeroth or first order conservation law multiplier obtained in Section 3.4.1. As such, we

provide the evolutionary form of R9 separately.

R̂9 =
(
x1 −X1x1

1 −X2x1
2 − tx1

t

) ∂

∂x1
+
(
x2 −X1x2

1 −X2x2
2 − tx2

t

) ∂

∂x2

+
(
−X1p1 −X2p2 − tpt

) ∂
∂p
.

To compare the Lie point symmetries and conservation law multipliers, we must determine

which infinitesimal η̂i corresponds to which multiplier Λj. For a variational system, the

correspondence is given based on the Euler operator used to derive the particular equation

(i.e. Λj = η̂i for an equation derived by applying Eui to the Lagrangian, where ui is the ith

dependent variable). In the non-variational case, we must compare symmetry infinitesimals

and conservation law multipliers to establish a correspondence (if one exists).

From a preliminary comparison, each η̂i in Lie symmetry generator R̂6 corresponds to

the set of conservation law multipliers with constant C1. This yields the correspondence

between certain Lie point symmetry infinitesimals and conservation law multipliers. Com-

paring the remaining Lie point symmetries and first order conservation laws based on this

correspondence, we obtain similarity between certain symmetry infinitesimals and multipliers
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with equality in particular cases. These similarities and equalities can be seen in Table 3.1,

where we also note the physical meaning of each symmetry and conserved quantity associated

with each set of multipliers. The consistent difference between Lie symmetry infinitesimals

η̂i and the conservation law multiplier Λi is a negative sign on one multiplier relative to the

others (under the current sign convention). For example, this can be seen in the first row of

Table 3.1, in which all the infinitesimals have the same sign whereas the multipliers undergo

a change in sign from one to the next. These differences can be attributed to the system not

being variational.

3.5 Discussion

In this Chapter, a detailed symmetry and conservation law analysis was performed for a two

dimensional model of an incompressible Mooney-Rivlin solid. It was shown the Mooney-

Rivlin strain energy density yields the same equations of motion as derived for the neo-

Hookean strain energy density, and that these equations admit a Cauchy-Kovalevskaya form.

In the symmetry analysis of Section 3.3, Lie point symmetries of the governing PDE system

were classified, invariants for various linear combinations of the symmetry generators were

obtained, and the system of equations was reduced for several sets of these invariants. After-

wards, in Section 3.4, the zeroth and first order conservation law multipliers were classified,

as well as the resulting divergence conservation law forms. The physical interpretation of the

conserved densities was then discussed. The system (3.2) is then shown to be non-variational

(i.e. not a system of Euler-Lagrange equations). In the spirit of [24], symmetries and con-

servation law multipliers were compared, with differences and similarities noted where they

arise.

We now discuss work in the literature related to the incompressible two-dimensional

Mooney-Rivlin model.

Lie point symmetries and invariant solutions of the incompressible planar neo-Hookean

model are studied by Lei and Blume in [76]. The Lie symmetry classification and reductions

of the PDE system discussed in this paper can be compared to that done in the current

chapter since the model studied in this Chapter is equivalent to the planar neo-Hookean
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Table 3.1: Comparison of Lie point symmetries in evolutionary form to zeroth and
first order conservation law multipliers of the system (3.2).

Symmetry Generator Similar Conservation Law Multiplier

R̂1 = −x1
t
∂
∂x1
− x2

t
∂
∂x2
− pt ∂∂p

Time Translation

Λ1 = pt, Λ2 = −x1
t ,Λ

3 = −x2
t

Conservation of Energy

R̂2 = −x1
1
∂
∂x1
− x2

1
∂
∂x2
− p1

∂
∂p

Translation in X1

Λ1 = p1, Λ2 = −x1
1,Λ

3 = −x2
1

Conservation of Momentum in X1

R̂3 = −x1
2
∂
∂x1
− x2

2
∂
∂x2
− p2

∂
∂p

Translation in X2

Λ1 = p2, Λ2 = −x1
2,Λ

3 = −x2
2

Conservation of Momentum in X2

R̂4 = F 1 (t) ∂
∂p

Time dependent

Translation in p

Λ1 = F 3(t),Λ2 = 0, Λ3 = 0

Generalized Incompressiblity Condition

R̂5 = (−X2x1
1 +X1x1

2) ∂
∂x1

+

(−X2x2
1 +X1x2

2) ∂
∂x2

+

(−X2p1 +X1p2) ∂
∂p

X1-X2 Rotations

Λ1 = (X1p2 −X2p1),Λ2 =

(X2x1
1 −X1x1

2),Λ3 = (X2x2
1 −X1x2

2)

Angular Momentum in Lagrangian Frame

R̂6 = x2 ∂
∂x1
− x1 ∂

∂x2

x1-x2 Rotations

Λ1 = 0, Λ2 = x2,Λ3 = −x1

Angular Momentum in Eulerian Frame

R̂7 = F 2 ∂
∂x1
− F 2

t,t x
1 ∂
∂p

Generalized Boost in x1

Λ1 = F 1
ttx

1,Λ2 = F 1(t), Λ3 = 0

Generalized Momentum in x1

R̂8 = F 3 ∂
∂x2
− F 3

t,t x
2 ∂
∂p

Generalized Boost in x2

Λ1 = F 2
ttx

2, Λ2 = 0,Λ3 = F 2(t)

Generalized Momentum in x2
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model.

Cheviakov and Ganghoffer [35] analyze conditions such that a constitutive law for a

hyperelastic material admits a natural (stress free) state under zero deformation. In addition,

they study the equivalence transformations and Lie symmetries of the planar compressible

Mooney-Rivlin model (also called the Ciarlet-Mooney-Rivlin model).

A discussion of materials best modelled by Mooney-Rivlin elasticity, as well as applications

of other elasticity models, can be found in Bower [26].

Dai [38] studies nonlinear dispersive wave solutions for a Mooney-Rivlin elastic rod.

Applications of numerical methods to the incompressible Mooney-Rivlin model can be

found in [94].
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Chapter 4

Fiber Reinforced Hyperelastic Materials

4.1 Introduction

In this chapter, analytical properties are analyzed for three types of motion in an incom-

pressible fiber reinforced Mooney-Rivlin solid with constant mass density ρ0. In particular,

we are interested in the Lie symmetry and conservation laws of admitted by the PDE system

governing each motion. In Section 4.2, the general equations of motion for a Mooney-Rivlin

solid reinforced with two fiber families is recalled from Chapter 2.

Section 4.3 is dedicated to the study of a one dimensional incompressible fiber reinforced

Mooney-Rivlin model. After the equations of motion are presented, a numerical simulation

is studied to develop intuition of solution behaviour. Then, admitted Lie symmetries of the

PDE system are classified, and the equations of motion are reduced for particular symmetries.

Afterwards, conservation law multipliers are classified for the system, and the conservation

law form of the equations are derived and discussed. Finally, the Hodograph transformation

is outlined and applied to the equations of motion to obtain a linear non-constant coefficient

PDE system, after which we determine if it can be mapped into one of constant coefficients

using a point transformation.

In Section 4.4, a two dimensional fiber reinforced model for which the displacement of

the solid is transverse to the X1X2-plane is studied. First, the PDE system governing the

motion is derived, and one dimensional solutions are discussed. After, Lie symmetries of the

system are classified, and conservation laws are obtained through the direct method (i.e. by

multipliers) and discussed.

Another model in three dimensions with two transverse displacements orthogonal to the

X3-axis is analyzed in Section 4.5. As in the first two dimensional model, the one dimensional

105



solutions to the model equations are discussed. After, Lie symmetries of the PDE system are

classified, and conservation laws are analyzed.

Lastly, a two dimensional two fiber family model is presented in Section 4.6, which may

be studied in future work.

4.2 General Equations of Motion for Fiber Reinforced

Mooney-Rivlin Elasticity

Recall the equations governing the motion of a fiber reinforced, homogeneous, incompressible

hyperelastic material with zero external body forces are (c.f. (2.39))

det F = 1, (4.1a)

ρ0
∂2xi

∂t2
=

3∑
j

∂P i j

∂Xj
, i = 1, 2, 3, (4.1b)

P i j = ρ0
∂W

∂F i j
− p(F−1)j i, i, j = 1, 2, 3, (4.1c)

PFT = FPT , (4.1d)

where xi = xi( ~X, t) ∈ Ω ⊂ R3 are Eulerian points, X i ∈ Ω0 ⊂ R3 are Lagrangian points,

P i j are the components of the First Piola-Kirchhoff stress P, p = p( ~X, t) is the hydrostatic

pressure, and W = W (I1, I2, I3, I4, I5, I6, I7) is the strain energy density defined in terms of

the matrix invariants (c.f. (2.35) and (2.47))

I1(C) = TrC, (4.2a)

I2(C) =
1

2

(
(TrC)2 − Tr(C2)

)
, (4.2b)

I3(C) = det C, (4.2c)

I4(A1,C) =
(
A1
)T

C
(
A1
)
, (4.2d)

I5(A1,C) =
(
A1
)T

C2
(
A1
)
, (4.2e)

I6(A2,C) =
(
A2
)T

C
(
A2
)
, (4.2f)

I7(A2,C) =
(
A2
)T

C2
(
A2
)
, (4.2g)
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where C = FTF, C2 = CC, and A1 and A2 correspond to unit vectors corresponding to the

direction of the two fiber families.

The strain energy density W can be written as the sum of the isotropic component Wiso =

Wiso(I1, I2, I3) and anisotropic component Waniso = Waniso(I4, I5, I6, I7), which account for

the underlying material and fiber reinforcement respectively. In the current Chapter, we

consider a Mooney-Rivlin isotropic strain energy density (2.42), and the anisotropic strain

energy density (2.51) with n = 2 originally studied by Basciano et al [10]; that is,

W = aI1 + bI2 + q
(
I4 − 1

)2
+ s

(
I6 − 1

)2
, (4.3)

where a, b, q, s > 0 are material parameters, I1 and I2 are the Mooney-Rivlin invariants,

and I4 and I6 are invariants specific to two fiber families.

Of importance, the form of the strain energy density (4.3) allows for a simplification of

system (4.1).

Theorem 4.2.1. For the strain energy density (4.3), equation (4.1d) is an identity.

Proof. The proof follows by direct calculation.

Remark 4.2.2. For b = 0 and (I4 − 1) sufficiently small, the strain energy density (4.3)

approximates (up to addition of a constant) the Holzapfel, Gasser, and Ogden model [59],

W = a(I1 − 1) +
k1

k2

(
ek

2(I4−1)2 − 1
)

+
k1

k2

(
ek

2(I6−1)2 − 1
)

(4.4)

for k1 = q = s and k2 material parameters. Here, it was assumed the fiber families were

nearly perpendicular. Parameters for (4.4) have been determined for the adventia layer of

an artery as a = 0.15 kPa, k1 = 0.5620 kPa, and k2 = 0.7112 [59].

4.3 One Dimensional Transverse Motion

We now turn our attention to one dimensional transverse motion of a incompressible Mooney-

Rivlin material reinforced with a single fiber family.
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4.3.1 Equations of Motion

We first state the fiber angle convention and the coordinate dependency for the motion under

consideration. After, we present the specific equations of motion to be studied, and as well

as particular properties of these equations.

The single fiber family is oriented at an angle γ clockwise from the X1-axis in the X1X3-

plane with unit vector

A1 =


cos(γ)

0

sin(γ)

 . (4.5)

Note that we do not consider γ < 0 or γ > π/2 since the same dynamics can be obtained

by flipping the system about the X3-axis. For example, if γ = −π/3, the material can be

flipped about the X3-axis to yield the equivalent model with γ = π/3

Displacement G(X1, t) of the solid from equilibrium along the X3-axis is described by the

coordinate dependence

~X =


X1

X2

G (X1, t) +X3

 . (4.6)

As such, the incompressibility condition is identically satisfied, and the hydrostatic pressure

is given by p = p(X1, t).

For clarity, we make the change of notation X1 = x for the remainder of the current

Section. As such, the equations of motion for an incompressible Mooney Rivlin solid with

fiber family oriented at an angle γ from the x-axis are derived from (4.3)-(4.6) as

∂2G

∂t2
=

(
α + β cos2(γ)

(
3 cos2(γ)

(
∂G

∂x

)2

+ 6 cos(γ) sin(γ)
∂G

∂x
+ 2 sin2 γ

))
∂2G

∂x2 , (4.7a)

0 =
∂p

∂x
− 2βρ0 cos3 γ

(
cos γ

∂G

∂x
+ sin γ

)
∂2G

∂x2 , (4.7b)

where G = G(x, t), p = p(x, t), α = 2(a+ b) > 0 and β = 4q > 0 are constants related to the

material parameters, and ρ0 is mass density.
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ɣX3
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(a) Reference Configuration

X3

-1

1

0

-1
X1
0 1

(b) Deformed Configuration

Figure 4.1: Sample deformation of solid along the X3-axis with fiber family (red lines)

oriented along ~A1 at an angle γ counter-clockwise from the X1-axis in the X1X3-plane.
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We now make several remarks about equations (4.7).

The above system of equations (4.7) is neo-Hookean due to the Mooney-Rivlin parameter

b not appearing independently of the neo-Hookean parameter a. As such, we may assume

the hyperelastic matrix is neo-Hookean.

Note that equation (4.7b) admits the conservation law form

Dx

(
p− βρ0 cos3 γ

[
cos γ(Gx)

2 + 2 sin γGx

])
= 0, (4.8)

which is solved for p as

p = βρ0 cos3 γ

(
cos γ

(
∂G

∂x

)2

+ 2 sin γ
∂G

∂x

)
+ f(t), (4.9)

for an arbitrary f(t). Thus, p can be determined for a known solution G to equation (4.7a).

As such, we may study equation (4.7a) alone and obtain p through (4.9).

Of importance, equation (4.7a) is in Cauchy-Kovalevskaya form with respect to t. As

such, all symmetries may be obtained through the algorithm presented in Chapter 1, and

all conservation laws of (4.7a) can be found by the direct method [22]. Additionally, given

analytic initial data, there exist unique analytic solutions to equation (4.7a) within some

neighbourhood of the origin by the Cauchy-Kovalevskaya Theorem [46].

Two important cases of the current model are the restriction of the fiber family parallel

to the x-axis (i.e. γ = 0) and perpendicular to the x-axis (i.e. γ = π/2). The former results

in equation (4.7a) reducing to

∂2G

∂t2
=

(
α + 3β

(
∂G

∂x

)2
)
∂2G

∂x2 . (4.10)

The coefficient of Gxx in the current equation is of a simpler form than in (4.7a), suggesting

the dynamics are different for γ = 0 compared to γ 6= 0. Indeed, equation (4.10) is invariant

under reflection about the X3-axis, given by the discrete transformation

t∗ = t, x∗ = −x, G∗ = G, (Gx)
∗ = −Gx,

whereas equation (4.7a) is not invariant under this transformation for γ ∈ (0, π/2).

For γ = π/2, the fibers will be parallel to the displacement, which implies the fiber family

should have no effect on the motion. Indeed, equation (4.7a) reduces identically to the linear
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wave equation

∂2G

∂t2
= α

∂2G

∂x2 , (4.11)

and, from (4.9), we have p = f(t). The general solution of the linear wave equation is well

known (see, e.g., [56]).

4.3.2 Numerical Solutions

In the current section, we present a numerical simulation of equation (4.10) and (4.9) using

the Maple 18 pdsolve/numeric command. The details relevant to the numerical simulation

are first presented, as well as a plot of G as a function of x at various times t. Afterwards,

the hydrostatic pressure p is plotted from equation (4.9) based on the numerical solution for

G. Lastly, we discuss the results of the numerical simulation.

The pdsolve/numeric command can numerically solve a given scalar PDE in time and

space, given the problem has sufficient initial and boundary values. The default numerical

scheme used by pdsolve/numeric is an implicit, centered finite difference scheme of second

order in time and space [82]. If the scalar PDE contains second or higher order derivatives

in time, then pdsolve/numeric first restates the problem as a PDE system with additional

variables such that the highest derivative in time is first order.

For the current numerical simulation, the material parameters are fixed as α = 1 and

β = 1/3 out of convenience. Note that a different choice of α > 0 will change the overall

wave speed, whereas a different β > 0 will alter the effect of the fiber family on the wave

speed. We also specify a Gaussian initial condition G(x, 0) = exp(−x2) with zero initial

velocity Gt(x, 0) = 0 on the space interval [−8, 8]. To remove boundary effects from the

simulation, the x-interval is taken as [-20,20]. For simplicity, Dirichlet boundary conditions

G(−20, t) = G(20, t) = exp(−400) are chosen. The space step is fixed as ∆x = 0.02 such that

the simulation uses 1000 spatial points. The time step is chosen as ∆t = ∆x/2 = 0.01 due

to the relatively small difference in numerical solutions at t = 4 for ∆t = 0.01 and ∆t = 0.02

(see Figure 4.3).

To obtain a plot for the hydrostatic pressure p, α = 1, β = 1/3, γ = 0, and ρ0 = 1, are
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Figure 4.2: Plot of numerical solution of (4.10) for α = 1, β = 1/3, space step =
0.02, and time step 0.01. The colors red (solid line), magenta (dashed line), and blue
(dotted line) correspond to the solution at times t = 0, 2, 4, respectively.

x (100)

ΔG (10-4)
6

-6

0-8 8

Figure 4.3: Plot of difference ∆G between numerical solutions G of (4.10) for time
steps δt1 = 0.01 and δt2 = 0.02 at time t = 4.
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Figure 4.4: Plot of numerical solution of (4.9) based on solution to (4.10) at times
t = 0, 2, 4 in colors red (solid line), magenta (dashed line), and blue (dotted line),
respectively.

substituted into (4.9) to yield

p =
1

3

(
∂G

∂x

)
+ f(t). (4.12)

The arbitrary function f(t) is taken as f(t) = 0 to determine the behaviour of p due only to

the solution G of (4.10).

In order to plot p from (4.12) and the numerical solutionG in Figure 4.2, an approximation

of Gx at each point x and t is required. For the second order accurate centered difference

approximation,

∂G

∂x
(xj, ti) ≈

G(xj+1, ti)−G(xj−1, ti)

2∆x
,

the plot of p is given in Figure 4.2.

We comment now on the numerical solution in Figures 4.2 and 4.4. First, the solution G

to (4.10) in Figure 4.2 start as a single Gaussian that separates into two profiles travelling

apart in time. These profiles exhibit a change in shape as time increases. In particular, the

velocity of the profile is smaller in magnitude near G ≈ 0 and the peak. Indeed, this can be

seen in (4.10) by observing the ‘wave speed’ α + β(Gx)
2 is larger away from G ≈ 0 and the

peak for α > 0 and β > 0. Figure 4.4 shows that p also separates into two travelling profiles

that approach sawtooth-like shapes as time increases, indicating that a a pressure shock may

form for larger t.
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The particular Maple files used for this analysis can be found within Appendix A.

4.3.3 Lie Point Symmetries

We now classify the Lie point symmetries of equations (4.7a) for the parameters α > 0, β > 0,

and γ ∈ [0, π/2). After, we present the corresponding global groups of point transformations,

and discuss the physical interpretation of the symmetries. For γ = π/2, equation (4.7a)

becomes the well studied linear wave equation, for which the symmetries can be found in [66].

Table 4.1: Lie point symmetry classification of (4.7a).

Parameters Symmetries

arbitrary X1 = ∂
∂t
, X2 = ∂

∂x
, X3 = ∂

∂G
, X4 = t ∂

∂G
,

X5 = x ∂
∂x

+ t ∂
∂t

+G ∂
∂G

4α ≤ β, γ =

cos−1

(√
1
2

(
1±

√
1− 4α

β

)) X1 , X2 , X3 , X4 , X5 , X6 =

cos(γ)x ∂
∂x

+ 2 cos(γ)t ∂
∂t
− sin(γ)x ∂

∂G

Theorem 4.3.1. The Lie point symmetry classification of the system (4.7a) for γ 6= π/2 is

given in Table (4.1).

Proof. Proof of Theorem 4.3.1 follows from the methodology presented in Chapter 1.

We now derive the global groups of point transformations equivalent to the Lie point

symmetries in Theorem 4.3.1. As in Chapter 3, εi corresponds to Xi for i = 1, . . . , 6.

X1 : t∗ = t+ ε1, x∗ = x, G∗ = G;

X2 : t∗ = t, x∗ = x+ ε2, G∗ = G;

X3 : t∗ = t, x∗ = x, G∗ = G+ ε3;

X4 : t∗ = t, x∗ = x, G∗ = G+ ε4t;

X5 : t∗ = eε
5

t, x∗ = eε
5

x, G∗ = eε
5

G.
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Here, we can clearly see that {Xi}3
i=1 correspond to invariance under translations of the inde-

pendent variables, X4 to time-dependent translation of G, and X5 to a uniform scaling of all

variables. Invariance under X1 and X2 is expected due to equation (4.7a) being autonomous.

For the restriction of material parameters such that 4α ≤ β and γ is fixed by

cos2(γ) =
1

2

(
1±

√
1− 4α

β

)
, (4.13)

then equation (4.7a) is invariant under the additional Lie symmetry X6 with global group of

point transformations

t∗ = e2(cos γ)ε6 t, x∗ = e(cos γ)ε6 x, G∗ = G+ (tan γ)
(

1− e(cos γ)ε6
)
x.

Thus, X6 corresponds to equation (4.7a) invariant under a scaling of the independent variables

and x-dependent translation in the variable G.

Note there is one solution γ = π/4 for 4α = β to (4.13), and two solutions about π/4 for

4α < β. As such, we conclude the symmetry X6 is plausible for the fiber bundle having a

strong effect on the motion relative to the underlying Mooney-Rivlin matrix.

Remark 4.3.2. For b = 0 and (I4 − 1) sufficiently small, we may adapt the parameters

for the (4.4) strain energy density discussed in Section 4.2 for our model as α = 0.3 and

β = 2.2480 (omitting units kPa) [59]. Clearly, 4α = 1.2 ≤ 0.2480 = β, so X6 may arise as a

symmetry for this model.

4.3.4 Reductions and Solutions

We now study invariant solutions of equation (4.7a) for particular admitted Lie symmetries.

Travelling Wave Solution

Upon substituting the ansatz G(x, t) = V (z) for z = x − ct with wave speed c into (4.7a),

the resulting ODE is

0 =

(
α + 3β cos4 γ

(
dV

dI

)2

+ 6β cos3 γ sin γ
dV

dI
+ 2β cos2 γ sin2 γ − c2

)
d2V

dI2 , (4.14)
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This equation admits only the trivial solution,

G(x, t) = V (z) = C1z + C2, (4.15)

where C1 and C2 are constants of integration.

This solution is the equation of a line in (x,G)-space that travels to the left or right for

negative or positive wave speed c respectively. This solution is physical only for the stationary

solution G(x, t) = C2.

Special Symmetry Reduction

Suppose that 4α < β and γ = cos−1

(√
1
2

(
1±

√
1− 4α

β

))
. Then equation (4.7a) admits

the symmetry X6 = cos(γ)x ∂
∂x

+ 2 cos(γ)t ∂
∂t
− sin(γ)x ∂

∂G
, which has the following invariants:

I =
t

x2
,

V = G+ tan(γ)x.

Substituting V = V (I) and γ = cos−1

(√
1
2

(
1±

√
1− 4α

β

))
into (4.7a) and simplifying

yields the ODE

0 =
(

2ωI4(V
′
)2 − 1

)
V
′′

+ 3ωI3(V
′
)3, (4.16)

where ω = 12(β − 2α ± β
√
β − 4(α/β)) a constant. The sign in each ± matches the sign

taken for the angle γ.

For any solution V to (4.16), the function G = V − tan(γ)x will be unbounded due to

the tan(γ)x term. As such, reduction of (4.7a) using the special symmetry X6 yields non

physical solutions.

4.3.5 Conservation Laws

We now study the conservation laws to the system (4.7a) through the direct method. We

classify the admitted conservation law multipliers based on the parameter γ, and present the

resulting conserved densities.
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Conservation Law Multipliers

We first present the zeroth order conservation law multipliers of equation (4.7a) through the

methodology presented in Chapter 1. Afterwards, we seek specific first order multipliers of

(4.7a) associated with important physical quantities.

Theorem 4.3.3. The zeroth order conservation law multipliers of (4.7a) are

Λ = C1t+ C2.

Proof. The above zeroth order conservation law multipliers are found through the construc-

tive method outlined in Chapter 1 with multiplier of the form

Λ = Λ(x, t, G).

Of importance, no special cases arise in the classification of conservation law multipliers

of equation (4.7a).

We now present specific first order conservation law multipliers of system (4.7a). The

conservation law multipliers below are found by intuition based on the form of (4.7a) and

the work done in Chapter 3.

Theorem 4.3.4. Equation (4.7a) admits the first order conservation law multipliers

Λ = C3Gt + C4Gx.

Proof. The proof follows from multiplying (4.7a) by each of Gt and Gx, and verifying the

Euler operator annihilates the resulting equations.

Remark 4.3.5. We do not present the classification of first order conservation law multipliers

of (4.7a) in general. This is due to difficulty in solving the determining equations for the

conservation law multipliers, which in each case of the classification contain the determining

equation

∂2

∂Gt
2 Λ1 =

∂2

∂Gx2
Λ1

α + 12Gx
2 cos4 γ β

4
+ 24Gx cos3 γ β

4
sin γ − 8 cos4 γ β

4
+ 8 cos2 γ β

4

, (4.17)
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where Λ = Λ (x, t, G,Gt, Gx). The general solution to the quasilinear equation (4.17) is not

known (to the authors current awareness), and so we cannot proceed in determining the first

order conservation law multipliers by the direct method.

Divergence Conservation Law Form

We now present the divergence conservation law form of the system (4.7a) for the multipliers

in Theorems 4.3.3 and 4.3.4.

Conservation of Energy

For the first order multiplier corresponding to C3, we have the conservation of energy.

Dt

(
1

2
(Gt)

2 +
1

2
(Gx)

2 + β cos2 γ(Gx)
2

[
1

4
cos2 γ(Gx)

2 + cos γ sin γGx + sin2 γ

])
−Dx

(
GtGx

(
α + β cos2 γ

[
cos2 γ(Gx)

2 + 3 cos γ sin γGx + 2 sin2 γ
]))

= 0.

Conservation of Linear Momentum in the Eulerian Frame

For multiplier corresponding to C2, we have the conservation of linear momentum in the

Eulerian frame of reference.

Dt (Gt)−Dx

(
Gx

(
α + β cos2 γ

[
cos2 γ(Gx)

2 + 3 cos γ sin γGx + 2 sin2 γ
]))

= 0.

Center of Mass Theorem

In the current notation for Eulerian and Lagrangian quantities, consider the quantity

ρ0(txit − x), i = 1, 2, 3. (4.18)

The center of mass theorem in the continuum is equivalent to conservation of each quantity

in (4.18). This observation is due to Caviglia and Morro [30, 31], from comparison with a

discrete version derived by Hill [58].

For the multiplier corresponding to C1, we obtain the conservation law in x3 of the center

of mass theorem.

Dt (tGt −G)−Dx

(
tGx

(
α + β cos2 γ

[
cos2 γ(Gx)

2 + 3 cos γ sin γGx + 2 sin2 γ
]))

= 0.
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Note that the center of mass theorem holds identically in the x1 and x2 directions for

equation (4.7a) since x1 = X1 and x2 = X2, which implies

Dt

(
ρ0(txit − xi)

)
≡ 0, i = 1, 2.

Conservation of Linear Momentum in the Lagrangian Frame

For multiplier set corresponding to C4, we have the conservation of material linear momentum

in the Lagrangian frame of reference, for which the divergence conservation law form is

Dt (GxGt)

−Dx

(
1

2
(Gt)

2 +
α

2
(Gx)

2 + β cos2 γ(Gx)
2

[
3

4
cos2 γ(Gx)

2 + 2 cos γ sin γGx + sin2 γ

])
= 0.

4.3.6 Hodograph Transformation and Invertible Mappings

We now present the Hodograph transformation for a quasi-linear second order PDE based

on [114]. Afterwards, we discuss whether the resulting equations can be mapped into a

constant coefficient wave equation [20].

Consider a quasi-linear second order PDE of the form

∂2G

∂t2
= c

(
∂G

∂x

)
∂2G

∂x2 , (4.19)

where c is a function of Gx. We introduce two dependent variables u = Gx and v = Gt. As

such, equation (4.19) becomes the system

∂u

∂t
− ∂v

∂x
= 0,

∂v

∂t
− c(u)

∂u

∂x
= 0 (4.20)

Assuming the Jacobian J = ∂(u,v)
∂(x,t)

6= 0, we apply the Hodograph transformation as out-

lined in [87] [114] to swap the independent and dependent variables of (4.20). The transfor-

mation has the form

ux = J−1tv, ut = −J−1xv, vx = −J−1tu, vt = J−1xu, (4.21)

where x = x(u, v) and t = t(u, v) is assumed in the right hand side of each relation in (4.21).

After substituting (4.21) into (4.20) and cancelling the common factor of J−1, we obtain

the system

∂x

∂v
− ∂t

∂u
= 0,

∂x

∂u
− c(u)

∂t

∂v
= 0.
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Eliminating x from this system of equations yields the linear wave equation with non-constant

coefficients,

∂2t

∂u2 − c(u)
∂2t

∂v2 = 0. (4.22)

Invertible Mapping Theorem

Of interest is if a linear wave equation of the form (4.22) can be mapped (through an invertible

mapping) to one with constant coefficients. We first consider the following theorem by

Bluman [20].

Theorem 4.3.6. A linear wave equation (4.22) with non-constant coefficients can be mapped

into one with constant coefficients by an invertible mapping if and only if the ‘wave speed’

K(u) = ±
√
c(u) is a solution to the differential equation

d

du

(
K2K

′′′

2KK ′′ − (K ′)2

)
= 0, (4.23)

where primes denote differentiation.

For our particular equation (4.7a), the ‘wave speed’ K(u) is

K(u) =
±1√
α + βu2

, (4.24)

where α > 0 and β > 0 are constants.

This leads us to the following theorem regarding (4.22) with wave speed (4.24).

Theorem 4.3.7. Equation (4.22) with K(u) given by (4.24) cannot be mapped by an invert-

ible mapping into a linear PDE with constant coefficients.

Proof. Consider the linear wave equation (4.22) with wave speed (4.24). Suppose that this

equation can be mapped into a linear wave equation with constants coefficients. By Theorem

4.3.6, the wave speed must be a solution to the differential equation (4.23). By substituting

the wave speed (4.24) into (4.23) and simplifying, we obtain the equation

± 3β (20β3u6 − 58αβ2u4 + 21α2βu2 − 6α3)

(3β3u6 + 4αβ2u4 − α2βu2 − 2α3) (3βu2 − 2α)
√
α + βu2

= 0, (4.25)

where α > 0 and β > 0. Since u is arbitrary, the left hand side of the above equation is zero

if and only if β = 0, which is a contradiction.
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4.4 Motion Transverse to a Plane

In this section, we study the motion of a displacement G transverse to a plane of a solid

embedded with a fiber family.

4.4.1 Equations of Motion

The coordinate dependence for a displacement G(X1, X2, t) transverse to the X1X2 plane

can be written as (without a loss of generality)

~X =


X1

X2

G (X1, X2, t) +X3

 . (4.26)

See Figure 4.5 for a sample deformation of this type.

By observation of (4.26), the incompressibility condition is identically satisfied. The

hydrostatic pressure then takes the form p(X1, X2, t).

We now discuss the expected dynamics of the fiber reinforced system based on the ori-

entation of a fiber family with respect to the X1X2-plane. If a fiber family is oriented

perpendicular to the plane, then the system becomes isotropic about the X3-direction and

there should be no effect on the motion. As well, the dynamics should be the same for any

orientation of a single fiber in the X1X2-plane. With this in mind, we consider the fiber

family to have orientation vector

A1 =


cos(γ)

0

sin(γ)

 , (4.27)

where γ is a constant angle γ ∈ [0, π/2]. Here, A1 is taken in the X1X3-plane to observe the

effect of a fiber family outside of the plane. The choice to measure the angle γ with respect

to the X1X2 plane is taken such that our convention is consistent with the one dimensional

case studied in Section 4.3. Additionally, this allows us to more easily compare the one

dimensional results to the two dimensional results to follow.
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Figure 4.5: Deformation of sample meshes under transverse to plane motion.
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(a) Reference mesh in X1 X3-plane.
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Figure 4.6: Fiber bundle in reference configuration.
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By use of the angle convention in (4.27), the equations of motion for an incompressible

Mooney Rivlin solid with fiber family oriented at an angle γ from the X1-axis in the X1X3-

plane are derived from (4.1)-(4.3), (4.26), and (4.27) as

∂2G

∂t2
= 2 (a+ b)

(
∂2G

∂ (X1)2 +
∂2G

∂ (X2)2

)
+4q cos2(γ)

(
3 cos2(γ)

(
∂G

∂X1

)2

+ 6 cos(γ) sin(γ)
∂G

∂X1
+ 2 sin2 γ

)
∂2G

∂ (X1)2 , (4.28a)

0 =
∂p

∂X1
+ 2bρ0

(
∂G

∂X1

∂2G

∂(X2)2 −
∂G

∂X2

∂2G

∂(X1)∂(X2)

)
−8q cos3 γ

(
cos γ

∂G

∂X1

∂2G

∂(X1)2 + sin γ
∂2G

∂(X1)2

)
, (4.28b)

0 =
∂p

∂X2
+ 2bρ0

(
∂G

∂(X2)

∂2G

∂(X1)2 −
∂G

∂(X1)

∂2G

∂(X1)∂(X2)

)
, (4.28c)

where a, b > 0 are the Mooney-Rivlin material parameters, q > 0 is the fiber family parame-

ter, and ρ0 is the mass density.

We now discuss several properties of the system (4.28). First, note that these equations

reduce to a Mooney-Rivlin system for q = 0, as well as a neo-Hookean model under the further

restriction b = 0. Second, we see that for the fiber bundle parallel to X3 (i.e. γ = π/2), the

system again reduces to the Mooney-Rivlin model.

In addition, equations (4.28b) and (4.28c) contain no explicit time derivatives. As such,

these equations can be viewed to define p in terms of G. Furthermore, one may first study

the motion in G alone, and then solve for p as in the 1D case. However, we may not

ignore equations (4.28b) and (4.28c) without first considering if there is some differential

consequence in G upon elimination of p from this subsystem . To remove p, we compute

the compatibility conditions on the derivatives of p, which yields the equation (written in a

divergence form for clarity)

0 = DX1

(
b
∂G

∂X2

(
∂2G

∂(X1)2 +
∂2G

∂(X2)2

))
+DX2

(
4q cos3 γ

∂2G

∂(X1)2

(
cos γ

∂G

∂X1
+ sin γ

)
− b ∂G

∂X1

(
∂2G

∂(X1)2 +
∂2G

∂(X2)2

))
. (4.29)

As such, we cannot ignore equations (4.28b) and (4.28c) in our analysis of the motion of

G alone as we had done for the one dimensional case. However, by having this differential
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consequence explicitly, we have the option to analyze (4.28a) to determine G with (4.29) as

a restriction, and then can solve for p using (4.28b) and (4.28c).

4.4.2 Remarks on One Dimensional Solutions

We now discuss connections between solutions of the current two dimensional system (4.28)

and those of the one dimensional system (4.7). We first show how solutions to the one

dimensional system are also solutions to the two dimensional system. Afterwards, we briefly

consider if the superposition of the discussed one dimensional solutions is also a solution.

Consider the one dimensional restriction G = A(X1, t) in the system (4.28). As such, the

model equations become

∂2A

∂t2
=

(
2(a+ b) + 4q cos2(γ)

(
cos2(γ)

(
3

(
∂A

∂X1

)2

− 2

)

+6 cos(γ) sin(γ)
∂A

∂X1
+ 2

))
∂2A

∂X12 , (4.30a)

0 =
∂p

∂X1
− 8qρ0 cos3 γ

(
cos γ

∂A

∂X1

∂2A

∂(X1)2 + sin γ
∂2A

∂(X1)2

)
, (4.30b)

∂p

∂X2
= 0. (4.30c)

Thus, the hydrostatic pressure takes the form p = p(X1, t), and equations (4.28) reduce

exactly to the system (4.7).

Consider the one dimensional case such that G = B(X2, t). As such, the system (4.28)

reduces to

∂2B

∂t2
= 2(a+ b)

∂2B

∂(X2)2 , (4.31a)

∂p

∂X1
= 0, (4.31b)

∂p

∂X2
= 0. (4.31c)

Clearly, the system (4.28) has been reduced to the linear wave equation with the hydrostatic

pressure p = p(t) as some function of time. For an initial boundary value problem (IBVP)

with sufficient data, the general solution of the linear wave equation (4.31a) can be obtained,

for example, as a Fourier series through separation of variables [56].
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A natural question to ask is if A(X1, t) and B(X2, t) solve equations (4.30a) and (4.31a)

respectively, then is the superposition G(X1, X2, t) = A(X1, t) +B(X2, t) a physical solution

to the system (4.28) We explore this question in the following.

Recall that we may solve the system (4.28) by first solving (4.28a) and (4.29) for G, and

then substituting this solution into (4.28b) and (4.28c) to obtain p. As such, we first consider

substituting G(X1, X2, t) = A(X1, t) + B(X2, t) into the differential consequence (4.29), for

which we obtain the separable PDE

0 = 2b

(
∂A

∂X1

∂3B

∂(X2)3 −
∂3A

∂(X1)3

∂B

∂X2

)
. (4.32)

Before proceeding, we note that to solve the linear wave equation (4.31a) for B, we may

use the separation of variables solution B = τ(t)χ(X2) to obtain the system of ODEs

τ
′′

= −λτ, (4.33a)

χ
′′

=
−λ

2(a+ b)
χ, (4.33b)

where λ is a constant from the separation of variables, and prime denotes differentiation

with respect to the appropriate variable. This system can be solved for physical initial and

boundary values (as in, e.g., a vibrating string), yielding τ and χ as linear combinations of

sines and cosines in t and X2 respectively [56]. Here, the restriction λ ≥ 0 is determined

from the boundary conditions. Without finding the general solution χ to (4.33b), we proceed

to solve the separated equation (4.32) with B = χ(X2)τ(t).

Upon separating (4.32) with respect to X1 and X2 and substituting B = χ(X2)τ(t), we

obtain (
∂3A

∂(X1)3

)
∂A
∂X1

=
χ
′′′

χ′
. (4.34)

Clearly, each side of the above equation must be constant as each of X1, X2, and t vary.

So, upon setting each side of (4.34) to the constant −k, we obtain the following system of

equations in A and χ:

A111 = −kA1, (4.35a)

χ
′′′

= −kχ′ , (4.35b)
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where k is a constant. Furthermore, we may simplify (4.35b) by substituting (4.33b) to

obtain (
−λ

2(a+ b)
− k
)
χ
′
= 0. (4.36)

Equation (4.36) admits two solutions: χ is constant, or 2(a + b)k = λ. The case when

χ is constant corresponds to the trivial solution B(x, t) = C1t + C2 of (4.31a) for constants

{Ci}2
i=1. This implies equation (4.29) is identically zero, and the system (4.28) reduces to

the one dimensional system (4.7) discussed in Section 4.3.

In the case when 2(a + b)k = λ, we proceed to solve (4.35a) for A. Note there are two

distinct cases for k to consider: k = 0 when λ = 0; or, k > 0 when λ ≥ 0.

For k = 0, B is stationary (i.e. constant), and so equation (4.32) is identically zero. Thus,

A(X1, t) is any solution to the one dimensional equation (4.7a) in Section 4.3.

In the case when k > 0, (4.35a) has a solution of the form

A(X1, t) = f 1(t) + f 2(t) sin(
√
kX1) + f 3(t) cos(

√
kX1). (4.37)

Upon substituting (4.37) this into (4.30a) and solving for each {f i(t)}3
i=1, one obtains the

solution A as

A(X1, t) = κ2t+ κ1, (4.38)

where {κi}2
i=1 are constants. This is the trivial solution to (4.30a) and (4.32).

In summary, we have shown that the only solutions of the form G(X1, X2, t) = A(X1, t)+

B(X2, t) to equations (4.28a) and (4.29) are: A is a solution to the one dimensional equation

(4.30a) and B is constant; or, B is a solution to the linear wave equation (4.31a) and A is

the trivial solution to (4.30a).

4.4.3 Lie Point Symmetries

We now classify the Lie point symmetries of (4.28a) and (4.29) for material parameters

a > 0, b > 0, q > 0, and γ ∈ [0, π/2]. After, we derive the equivalent global group of point

transformations for each symmetry, and discuss the physical interpretation of each symmetry.
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We do not consider equations (4.28b) and (4.28c) in our analysis since we are only inter-

ested in the symmetries of G. However, we must include the differential consequence (4.29)

in our study. This is because equation (4.29) limits the Lie symmetry determining equations

for G in the same way that equations (4.28b) and (4.28c) would have.

Theorem 4.4.1. The Lie point symmetry classification of the system (4.28a) and (4.29) for

material parameters a > 0, b > 0, q > 0, and γ ∈ [0, π/2], is given in Table (4.4.1).

Proof. Proof of Theorem 4.4.1 follows from the methodology presented in Chapter 1.

Table 4.2: Lie point symmetry classification of (4.28a) and (4.29).

Parameters Symmetries

arbitrary Y1 = ∂
∂t
, Y2 = ∂

∂X1 , Y3 = ∂
∂X2 , Y4 = ∂

∂G
, Y5 = t ∂

∂G
,

Y6 = X1 ∂
∂X1 +X2 ∂

∂X2 + t ∂
∂t

+G ∂
∂G

γ = π/2 or q = 0 Y1 , Y2 , Y3 , Y4 , Y5 , Y6 , Y7 = −X2 ∂
∂X1 +X1 ∂

∂X2 , Y8 = G ∂
∂G

The Lie point symmetries for γ = π/2 or q = 0 correspond to the fiber bundle perpen-

dicular to the X1X2-plane, which is equivalent to the isotropic Mooney-Rivlin model with

no fibers present. It is clear from the symmetry classification that the admitted Lie point

symmetries in the anisotropic model (γ arbitrary) are fewer in number compared to those of

the isotropic model (γ = π/2 or q = 0).

We now derive the global groups of point transformations equivalent to the Lie point

symmetries in Theorem 4.4.1. As in the preceding sections, the parameter εi corresponds to

Yi for i = 1, . . . , 8.

For the material parameters arbitrary, the global one-parameter groups of point transfor-
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mation equivalent to Lie point symmetries {Yi}6
i=1 and Y8 are:

Y1 : t∗ = t+ ε1, (X1)∗ = X1, (X2)∗ = X2, (G)∗ = G;

Y2 : t∗ = t, (X1)∗ = X1 + ε2, (X2)∗ = X2, (G)∗ = G;

Y3 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2 + ε3, (G)∗ = G;

Y4 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2, (G)∗ = G+ ε4;

Y5 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2, (G)∗ = G+ ε5t;

Y6 : t∗ = eε
6

t, (X1)∗ = eε
6

X1, (X2)∗ = eε
6

X2, (G)∗ = eε
6

G.

Here, we can clearly see that {Yi}4
i=1 correspond to invariance under translations, Y5 to

time-dependent translations of G, and Y6 to scaling of all variables. Invariance of (4.28a)

and (4.29) under Y1, S2, and Y3 was expected since (4.28a) and (4.29) are autonomous.

For γ = π/2 or q = 0, equations (4.28a) and (4.29) admit two additional Lie point

symmetries Y7 and Y8, which have the equivalent global groups of transformations

Y7 : t∗ = t, (X1)∗ = cos(ε7)X1 − sin(ε7)X2,

(X2)∗ = sin(ε7)X1 + cos(ε7)X2, (G)∗ = G,

Y8 : t∗ = t, (X1)∗ = X1, (X2)∗ = X2, (G)∗ = eε
8

G.

Clearly, Y7 corresponds to invariance under rotations of the independent spatial variables,

and Y8 to a scaling of the dependent variables G.

4.4.4 Conservation Laws

We classify the conservation laws of equation (4.28a) for a > 0, b > 0, q > 0, and γ ∈

0, π/2). The equations is written in Cauchy-Kovalevskaya form with respect to t, and so all

conservation laws may be found as non-trivial conservation law multipliers with a one-to-one

correspondence to the conserved quantities. It is clear that conservation laws admitted by

(4.28a) also hold for any solution of the system (4.28).

Conservation Law Multipliers

We now proceed to find the zeroth order conservation laws of the equations of motion.
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Theorem 4.4.2. Any zeroth order conservation law multiplier Λ(t, X2) of the wave equation

∂2G

∂t2
= 2(a+ b)

∂2G

∂X22 (4.39)

is also a conservation law multiplier of equation (4.28a).

Proof. Equation (4.28a) can be written in the form

∂2G

∂t2
= 2(a+ b)

∂2G

∂(X2)2

+D1

(
4q cos4(γ)

(
∂G

∂X1

)3

+ 12q cos3(γ) sin γ

(
∂G

∂X1

)2

+ 2(a+ b+ sin2 γ)
∂G

∂X1

)
, (4.40)

which is equation (4.39) plus a divergence in X1.

For any function f(t, X2), we have that f(t, X2)D1(Φ1) = D1(f(t, X2)Φ1). As such,

any conservation law multiplier Λ(t, X2) of equation (4.39) is also a multiplier of (4.28a), as

desired.

Of importance, the conservation law multipliers Λ of equation (4.7a) in Theorem 4.4.2

are the only zeroth order.

Corollary 4.4.3. The zeroth order conservation law multipliers of the linear wave equation

(4.39)

Λ1 = F 1

(
X2 − t

(2(a+ b))
1
2

)
+ F 2

(
X2 +

t

(2(a+ b))
1
2

)
(4.41)

are the only zeroth order conservation law multipliers of (4.28a).

Proof. The above zeroth order conservation law multipliers are found through the construc-

tive method outlined in Chapter 1 with multipliers of the form

Λ = Λ(X1, X2, t, G).

The completeness of this result follows from equation (4.28a) being in Cauchy-Kovalevskaya

form.

Of importance, no special conservation laws appear for particular values of a, b, q, or γ.

We now present the first order multiplier of equation (4.28a) for the conservation of energy.
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Theorem 4.4.4. Equation (4.28a) admits the first order conservation law multiplier

Λ = Gt. (4.42)

Proof. The proof follows from multiplying (4.7a) by Gt and verifying the Euler operator

annihilates the resulting equation.

Divergence Conservation Law Form

The divergence conservation law forms for the multipliers in Theorems 4.4.3 and 4.4.4 are

now presented.

Conservation of Generalized Quantities

The model admits conservation of generalized quantities for multipliers F 1 and F 2 in Theorem

4.4.3. The divergence conservation law forms are as follows.

From the multiplier F 1 + F 2, we obtain

Dt

(
(F 1 + F 2)Gt − ((F 1)

′
+ (F 2)

′
)G
)

−D1

(
(F 1 + F 2)

(
2(a+ b)G1 + 4e cos2 γ

[
cos2 γ(G1)3 + 3 cos γ sin γ(G1)2 + 2 sin2 γG1

]))
(4.43)

−D2

(
2(a+ b)(F 1 + F 2)G2 +

√
2(a+ b)((F 1)

′
+ (F 2)

′
)G
)

= 0,

where prime denotes differentiation with respect to the functions argument. Note we may

set F 2 = 0 to obtain the divergence conservation law for the multiplier F 1 alone, and vice

versa for F 2.

Of interest is the above divergence conservation law form encompasses an infinite number

of conservation laws. Three particular conservation laws encompassed in the above general

divergence expression are the conservation of linear momentum in x3 (for F 1 + F 2 = 1).

Conservation of Energy

The model admits conservation of energy for the multiplier Gt. The divergence conservation
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law form is

Dt

(
1

2
(Gt)

2 + (a+ b)
(
(G1)2 + (G1)2

)
+q cos2 γ

(
cos2 γ(G1)4 + 4 cos γ sin γ(G1)3 + 4 sin2 γ(G1)2

))
(4.44)

−DX1

(
2(a+ b)G2Gt + q cos2 γ

(
8 sin2 γG1Gt + 12 cos γ sin γ(G1)2Gt + 4 cos2 γ(G1)3Gt

))
−DX2 (2(a+ b)G2Gt) = 0.

Here, we have the kinetic energy density K as

K =
ρ0

2
(Gt)

2,

and potential energy density is P as

P = ρ0

(
(a+ b)

(
(G1)2 + (G1)2

)
+q cos2 γ

(
cos2 γ(G1)4 + 4 cos γ sin γ(G1)3 + 4 sin2 γ(G1)2

))
.

Comparing P to the strain energy density

W = (a+ b)(3 + (G1)2 + (G2)2) + q cos2 γ
(
cos2 γ(G1)4 + 4 cos γ sin γ(G1)3 + 4 sin2 γ(G1)2

)
,

we observe that P = (W − 3(a + b)). As such, the potential energy is equal to the strain

energy density up to addition of a constant.

4.5 Motion Transverse to an Axis

We now study another type of two-dimensional motion in which the solid is displaced trans-

verse to an axis.

4.5.1 Equations of Motion

Motion accounting for the displacement G1(X3, t) in the X1-direction and G2(X3, t) in the

X2-direction (see Figure 4.7) can be written for the coordinate dependence (without a loss
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of generality) as

~X =


G1 (X3, t) +X1

G2 (X3, t) +X2

X3

 . (4.45)

As a result, the incompressibility condition is identically satisfied. The hydrostatic pressure

p is of the form p = p(X3, t).

Similar to the other two cases of motion studied, we consider the following unit vector to

describe the fiber family

A =


sin(δ)

0

cos(δ)

 , (4.46)

where δ ∈ [0, π/2] is related to the previous angle convention (in Section 4.3 by δ = π/2 −

γ. Note that while this vector measures the orientation of the fiber family with respect

to a different reference axis than the motions in Sections 4.3 and 4.4, it follows the same

convention in that the orientation of the fiber family is measured at an angle with respect to

an independent spatial variable.
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Figure 4.7: Deformation of sample meshes under transverse to axis motion.
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Figure 4.8: Fiber bundle in reference configuration.
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The equations of motion for arbitrary angle δ are derived from (4.3)-(4.1) and (4.46) as

∂2G1

∂t2
= α

∂2G1

∂ (X3)2

+β cos2(δ)

[
cos2 δ

(
2
∂G1

∂X3

∂G2

∂X3

∂2G2

∂(X3)2 +
∂2G1

∂(X3)2

(
∂G2

∂X3

)2

+3

(
∂G1

∂X3

)2
∂2G1

∂(X3)2 − 2
∂2G1

∂(X3)2

)
(4.47a)

+2 cos δ sin δ

(
3
∂G1

∂X3

∂2G1

∂(X3)2 +
∂G2

∂X3

∂2G2

∂(X3)2

)
+ 2

∂2G1

∂(X3)2

]
,

∂2G2

∂t2
= α

∂2G2

∂ (X3)2

+β cos2(δ)

[
cos2 δ

(
2
∂G1

∂X3

∂G2

∂X3

∂2G1

∂(X3)2 +

(
∂G1

∂X3

)2
∂2G2

∂(X3)2 + 3

(
∂G2

∂X3

)2
∂2G2

∂(X3)2

)
(4.47b)

+2 cos δ sin δ

(
∂2G1

∂(X3)2

∂G2

∂X3
+
∂G1

∂X3

∂2G2

∂(X3)2

)]
,

∂p

∂X3
= 2βρ0 cos3 δ

(
cos δ

(
∂G1

∂X3

∂2G1

∂(X3)2 +
∂G2

∂X3

∂2G2

∂(X3)2

)
+ sin δ

∂2G1

∂(X3)2

)
. (4.47c)

where α = 2(a + b) > 0, β = 4q > 0, and ρ0 is mass density. The parametrization in terms

of α and β is done to provide clarity in the following study, and to keep with the notation

used in the one dimensional motion (Section 4.3).

We now comment on the form of the equations (4.47). First, the neo-Hookean and

Mooney-Rivlin parameters a and b do not appear independently in (4.47), and so the dy-

namics are fundamentally neo-Hookean. Additionally, the dynamics due to the fiber family

only disappear if the fiber family assumed not present (i.e. q = 0), which is contrary to the

two dimensional motion in Section 4.4. In the case when q = 0 or δ = π/2, (4.47) reduce to a

system of uncoupled, one dimensional, linear wave equations in G1 and G2, and an equation

defining p = p(t). The linear wave equation is well-studied, with solutions found in, for

example, [56].

Of significance, the equation (4.47c) defines p in terms of G1 and G2 (as in the one

dimensional case, Section 4.3), and can be put into the divergence conservation law form

D3

(
4q cos3 δ(cos δ((G1

3)2 + (G2
3)2) + 2 sin δG1

3)− p
)

= 0. (4.48)
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Equation (4.48) can be solved to obtain the family of solutions

p = 2βρ0 cos3 δ

(
cos δ

2

((
∂G1

∂y3

)2

+

(
∂G2

∂y3

)2
)

+ sin δ
∂G1

∂y3

)
+ f(t), (4.49)

where f(t) is a function of time to be fixed by the initial and boundary conditions. As such,

through the remainder of the current Chapter, we study equations (4.47a)-(4.47b), noting

that any solution G1 and G2 can be substituted into (4.49) to obtain p. With that said, we

focus our study on equations (4.47), which are highly coupled and nonlinear.

Additionally, the system (4.47) is currently written in Cauchy-Kovalevskaya form with

respect to t, and the right hand side of each equation is analytic in its arguments. Thus,

solutions G1 and G2 to these equations exist and are unique in some neighbourhood about

the origin, by the Cauchy-Kovalevskaya theorem [46]. Additionally, there exists a one-to-one

correspondence between conservation law multipliers and equivalence classes of conservation

laws.

4.5.2 Remarks on One Dimensional Solutions

We now consider the motion being restricted to one dimension. In the case where G1 =

G1(X3, t) and G2 ≡ 0, equation (4.47c) becomes identically zero and (4.47a) reduces to the

quasilinear wave equation,

∂2G1

∂t2
=

(
α + β cos2(δ)

(
cos2(δ)

(
3

(
∂G1

∂X3

)2

− 2

)
+ 6 cos(δ) sin(δ)

∂G1

∂X3
+ 2

))
∂2G1

∂ (X3)2 ,

(4.50)

which is equivalent to (4.7a) in Section 4.3 up to a relabelling of parameters and variables.

As such, any solution G1 to (4.50) with G2 ≡ 0 is also a solution to the system (4.47).

Now, for the case G2 = G2(X3, t) and G1 ≡ 0, (4.47a) becomes identically zero and

(4.47b) reduces to the quasilinear wave equation

∂2G2

∂t2
=

(
α + β

(
∂G2

∂X3

)2
)

∂2G2

∂ (X3)2 , (4.51)

which is equivalent to (4.10) up to a relabelling. As such, any solution G2 to equation (4.51)

with G1 ≡ 0 is a solution to the system (4.47).
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4.5.3 Lie Point Symmetries

We now classify the Lie point symmetries of equations (4.47a) and (4.47b) for α > 0, β > 0,

and δ ∈ [0, π/2). Symmetries for equations (4.47a) and (4.47b) in the case when δ = π/2 are

equivalent to those of the linear wave equation, which are studied in [66].

Theorem 4.5.1. The Lie point symmetry classification of the system (4.47a) and(4.47b) for

material parameters α > 0, β > 0, and δ ∈ [0, π/2) is given in Table (4.3).

Proof. Proof of Theorem 4.5.1 follows from the methodology presented in Chapter 1.

Table 4.3: Lie point symmetry classification of (4.47a) and (4.47b).

Parameters Symmetries

arbitrary Z1 = ∂
∂t
, Z2 = ∂

∂X3 , Z3 = ∂
∂G1 , Z4 = ∂

∂G2 ,

Z5 = t ∂
∂G1 , Z6 = t ∂

∂G2 ,

Z7 =

− cos(δ)G2 ∂
∂G1 + (sin(δ)X3 + cos(δ)G1) ∂

∂G2 ,

Z8 = X3 ∂
∂X3 + t ∂

∂t
+G1 ∂

∂G1 +G2 ∂
∂G2

4α ≤ β and cos2(δ) = 1
2

(
1±

√
1− 4α

β

)
Z1 , Z2 , Z3 , Z4 , Z5 , Z6 , Z7 , Z8 ,

Z9 = cos(δ)X3 ∂
∂X3 + 2 cos(δ)t ∂

∂t
− sin(δ)X3 ∂

∂G1

We now derive the global groups of point transformations equivalent to the Lie point

symmetries in Theorem 4.5.1. As before, the parameter εi corresponds to Zi for i = 1, . . . , 9.

For the material parameters arbitrary, the global one-parameter groups of point transfor-
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mation equivalent to Lie point symmetries {Zi}6
i=1 and Z8 are:

Z1 : t∗ = t+ ε1, (X3)∗ = X3, (G1)∗ = G1, (G2)∗ = G2;

Z2 : t∗ = t, (X3)∗ = X3 + ε2, (G1)∗ = G1, (G2)∗ = G2;

Z3 : t∗ = t, (X3)∗ = X3, (G1)∗ = G1 + ε3, (G2)∗ = G2;

Z4 : t∗ = t, (X3)∗ = X3, (G1)∗ = G1, (G2)∗ = G2 + ε4;

Z5 : t∗ = t, (X3)∗ = X3, (G1)∗ = G1 + ε5t, (G2)∗ = G2;

Z6 : t∗ = t, (X3)∗ = X3, (G1)∗ = G1, (G2)∗ = G2 + ε6t;

Z8 : t∗ = eε
8

t, (X3)∗ = eε
8

X3, (G1)∗ = eε
8

G1, (G2)∗ = eε
8

G2.

From the transformations, we can see that {Zi}4
i=1 correspond to invariance under transla-

tions, Z5 and Z6 to time-dependent translations of the dependent variables, and Z8 to scaling

of all variables. Invariance of (4.47a) and (4.47b) under the translations Z1 and Z2 are

expected since equations (4.47a) and (4.47b) are autonomous.

For δ 6= π/2, the global group of point transformations equivalent to Z7 has the form

t∗ = t, (X3)∗ = X3,

(G1)∗ = cos(cos(δ)ε8)G1 − sin(cos(δ)ε8)G2 + tan(δ)(cos(cos(δ)ε8)− 1)X3,

(G2)∗ = cos(cos(δ)ε8)G2 + sin(cos(δ)ε8)G1 + tan(δ) sin(cos(δ)ε8)X3.

Here, we can see that Z7 corresponds to a rotation in the variables G1 and G2, with an X3-

dependent translation of G1 and G2. For δ = 0, we obtain the standard rotation symmetry

in G1 and G2. Setting δ = π/2, we obtain the global group of point transformations for Z7

as

t∗ = t, (X3)∗ = X3, (G1)∗ = G1 (G2)∗ = G2 + ε7X3,

which is an X3 dependent translation of G2.

For the restriction of material parameters such that 4α ≤ β and δ is fixed to a solution of

cos2(δ) =
1

2

(
1±

√
1− 4α

β

)
, (4.52)
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then, we have the additional Lie symmetry Z9 with equivalent transformation

t∗ = e2 cos(δ)ε9 t, (X3)∗ = ecos(δ)ε9 X3,

(G1)∗ = G1 + tan(δ)
(

1− ecos(δ)ε9
)
X3, (G2)∗ = G2.

Thus, Z9 corresponds to a special scaling in the independent variables and a special X3

translation in the dependent variable G.

Note that there are two solutions to (4.52) about π/4 for 4α < β, and δ = π/4 for 4α = β.

Thus, the resulting symmetry Z9 is plausible since multiple angles exist for which (4.52) is

true.

Remark 4.5.2. For b = 0 and (I4 − 1) sufficiently small, we may adapt the parameters

for the (4.4) strain energy density discussed in Section 4.2 for our model as α = 0.3 and

β = 2.2480 (omitting units kPa) [59]. Clearly, 4α = 1.2 ≤ 0.2480 = β, so Z9 may arise as a

symmetry for this model.

4.5.4 Conservation Laws

We now classify the conservation law multiplers of equations (4.47a) and (4.47b). As written,

equations (4.47a) and (4.47b) are in Cauchy-Kovalevskaya form with respect to t. Thus,

all conservation laws can be found from non-trivial multipliers, and there is a one-to-one

correspondence between these multipliers and divergence conservation law form (up to an

equivalence class of conservation laws). It is clear that conservation laws of (4.47a) and

(4.47b) also hold on solutions to the system (4.47) and (4.47b)

As in Chapter 3, it is understood that Λ1 multiplies (4.47a), and Λ2 multiplies (4.47b).

Conservation Law Multipliers

The zeroth and first order conservation law multipliers of equations (4.47a) and (4.47b) are

as classified as follows.

Theorem 4.5.3. The zeroth order conservation law multipliers of the system (4.47a) and
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(4.47b) are

Λ1 = −C1 cos δG2 + C2t+ C3, (4.53a)

Λ2 = C1(sin δX3 + cos δG1) + C4t+ C5. (4.53b)

Proof. The above zeroth order conservation law multipliers are found through the construc-

tive method outlined in Chapter 1 with multipliers of the form

Λ1 = Λ1(X3, t, G1, G2),

Λ2 = Λ2(X3, t, G1, G2).

Theorem 4.5.4. The first order conservation law multipliers of the system (4.47a) and

(4.47b) are

Λ1 = C6G1
t + C7G1

3, (4.54a)

Λ2 = C6G2
t + C7G2

3. (4.54b)

Proof. The above first order conservation law multipliers are found through the constructive

method outlined in Chapter 1 with multipliers of the form

Λ1 = Λ1(X3, t, G1, G2, G1
3, G

1
t , G

2
3, G

2
t ),

Λ2 = Λ2(X3, t, G1, G2, G1
3, G

1
t , G

2
3, G

2
t ).

Of importance, no special conservation laws for particular values of the material param-

eters.

Divergence Conservation Law Form

We now present the divergence conservation law forms of (4.47a) and (4.47b) for the multi-

pliers in Theorems 4.5.3 and 4.5.4.

Conservation of Energy
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The model admits conservation of energy (multiplier set with coefficient C6). The divergence

conservation law form is

Dt

(
1

2
(G1

t )
2 +

1

2
(G2

t )
2 +

α

2

(
(G1

3)2 + (G2
3)2
)

+ β cos2 δ
(
(G1

3)2

+ cos δ sin δ((G1
3)3 +G1

3(G2
3)2)
)

+
β

4
cos2 δ

(
(G1

3)4 + (G2
3)4 + 2(G1

3)2(G2
3)2 − 4(G1

3)2
))

−DX3

(
α(G1

tG
1
3 +G2

tG
2
3) + 2β cos2 δG1

tG
1
3 (4.55)

+β cos3 δ sin δ
(
3(G1

3)3 +G1
t (G

2
3)2 + 2G1

3G
1
tG

2
3

)
+β cos3 δ

(
G2

3G
2
t (G

1
3)2 +G1

3G
1
t (G

2
3)2 +G1

t (G
1
3)3 +G2

t (G
2
3)3 − 2G1

tG
1
3

))
= 0.

Here, kinetic energy K is of the form

K =
ρ0

2
(G1

t )
2 +

ρ0

2
(G2

t )
2,

and potential energy P is of the form

P = ρ0

(α
2

(
(G1

3)2 + (G2
3)2
)

+ β cos2 δ
(
(G1

3)2

+ cos δ sin δ((G1
3)3 +G1

3(G2
3)2)
)

+
β

4
cos2 δ

(
(G1

3)4 + (G2
3)4 + 2(G1

3)2(G2
3)2 − 4(G1

3)2
))

.

Conservation of Momentum in Eulerian Frame

The model admits conservation of linear momentum in x1 and x2 (multiplier set of C3 and C5,

respectively). Additionally, the system admits a conservation law related angular momentum

(multiplier set of C1). The divergence conservation law forms are as follows.

From the multiplier set with coefficient C3, we obtain the conservation of linear momen-

tum in x1.

Dt

(
G1
t

)
−DX3

(
αG1

3 + 8q cos2 δ G1
3

+β cos3 δ sin δ
(
3(G1

3)2 + (G2
3)2
)

+ β cos4 δ
(
(G1

3)3 − 2G1
3 +G1

3(G2
3)2
))

= 0. (4.56)

From the multiplier set with coefficient C5, we obtain the conservation of linear momen-

tum of x2.

Dt

(
G2
t

)
−DX3

(
G2

3

(
α + β cos3 δ

(
cos δ

(
(G1

3)2 + (G2
3)2
)

+ 2 sin δG1
3

)))
= 0. (4.57)
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From the multiplier set with coefficient C1, we obtain a conservation related to the con-

servation of angular momentum.

Dt

(
cos δ

(
G1G2

t −G2G1
t

)
+ sin δ

(
X3G2

t + αtG2
3

))
+DX3

(
α cos δ

(
G2G1

3 −G1G2
3

)
− α sin δ

(
tG2

t +X3G2
3

)
+β cos3 δ

(
2G2G1

3 −X32G1
3G

2
3 (4.58)

+ cos δ sin δ
[
−X3G2

3(G1
3)2 +G2(G2

3)2 − 2G1G1
3G

2
3 + 3G2(G1

3)2 −X3(G2
3)3
]

+ cos2 δ
[
2X3G1

3G
2
3 +G2(G1

3)3 −G1G2
3(G1

3)2 −G1(G2
3)3 +G2G1

3(G2
3)2 − 2G2G1

3

]))
= 0.

For δ = 0, this divergence expression is conservation of angular momentum.

Center of Mass Theorem

Recall the center of mass theorem in the continuum is equivalent to three conservation laws

with conserved densities (4.18) [30,31],

ρ0(txit − xi), i = 1, 2, 3.

As such, the model admits the continuum analog of the center of mass theorem in x1 and x2.

From the multiplier set with coefficient C2, we obtain the first conservation law of the

center of mass theorem.

Dt

(
tG1

t −G1
)
−DX3

(
αtG1

3 + 2β cos2 δ tG1
3

+β cos3 δ sin δ t
(
3(G1

3)3 + (G2
3)2
)

+ β cos4 δ t
(
(G1

3)3 − 2G1
3 +G1

3(G2
3)2
))

= 0. (4.59)

From the multiplier set with coefficient C4, we obtain the second conservation law of the

center of mass theorem.

Dt

(
tG2

t −G2
)

−DX3

(
tG2

3

[
α + β cos3 δ

(
cos δ((G1

3)2 + (G2
3)2)
)

+ 2 sin δG1
3

])
= 0. (4.60)

Note that the third conservation law in the center of mass theorem holds identically for

the system (4.47a) and (4.47b) since x3 = X3, which implies

Dt

(
ρ0(tx3

t − x3)
)
≡ 0.
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Conservation of Linear Momentum in Lagrangian Frame

For the multiplier set with coefficient C7, we obtain the conservation of material linear

momentum in the X3 as

Dt

(
G1

3G
1
t +G2

3G
2
t

)
+DX3

(
−1

2
(G1

t )
2 − 1

2
(G2

t )
2 − α

2
((G1

3)2 + (G2
3)2)

−β cos2 δ
(
(G1

3)2 + 2 cos δ sin δ
[
G1

3(G2
3)2 + (G1

3)3
])

(4.61)

−β
4

cos4 δ
(
4(G1

3)2 − 3(G2
3)4 − 6(G1

3)2(G2
3)2 − 3(G1

3)4
))

= 0.

4.6 Two Fiber Family Model

We briefly present a fiber reinforced incompressible Mooney-Rivlin model with two planar

fiber families. In particular, the solid has a displacement G(X1, X2, t) along the X3-direction,

which has the same coordinate dependence as the one fiber model in Section 4.4. As such,

we recall the essential relations from Section 4.4 with few details to avoid repetition. We also

discuss the similarities and difference of this model with the one fiber case.

We consider the coordinate dependence for a displacement G(X1, X2, t) transverse to

the X1X2 plane,

~X =


X1

X2

G (X1, X2, t) +X3

 . (4.62)

A sample deformation of this type can be found in Figure 4.5 of Section 4.4.

By observation of (4.26), the incompressibility condition is identically satisfied, and we

obtain hydrostatic pressure p(X1, X2, t) as a Lagrange multiplier.

We consider two fiber families oriented along the X1X2 plane with orientation vectors

A1 =


1

0

0

 , A2 =


cos(θ)

sin(θ)

0

 , (4.63)
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Figure 4.9: Two planar fibers in Lagrangian configuration separated by an angle θ.

where θ ∈ [0, π/2] is a constant angle. Note we do not consider θ < 0 or θ > π/2 due

to equivalence in dynamics of a two fiber system up to rotation about the X3-axis. For

example, if θ = 3π/4, we could rotate the system by 3π/4 to obtain an equivalent model as

if we originally considered θ = π/4.

For the orientation vectors in (4.63), the equations of motion for an incompressible

Mooney Rivlin solid with two planar fiber families are derived from (4.3)-(4.1) and (4.62)-
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(4.63) as

∂2G

∂t2
= 2 (a+ b)

(
∂2G

∂ (X1)2 +
∂2G

∂ (X2)2

)
+ 12q

(
∂G

∂X1

)2
∂2G

∂ (X1)2

+12s

[(
cos4(θ)

(
∂2G

∂ (X1)2 −
∂2G

∂ (X2)2

)
+ 2 cos3(θ) sin(θ)

∂2G

∂X1∂X2

+ cos2(θ)
∂2G

∂ (X2)2

)(
∂G

∂X1

)2

+

(
−4 cos4(θ)

∂2G

∂X1∂X2
+ 2 cos3(θ) sin(θ)

(
∂2G

∂ (X1)2 +
∂2G

∂ (X2)2

)
+4 cos2(θ)

∂2G

∂X1∂X2
+ 2 cos(θ) sin(θ)

∂2G

∂ (X2)2

)
∂G

∂X1

∂G

∂X2

+

(
cos4(θ)

(
∂2G

∂ (X2)2 −
∂2G

∂ (X1)2

)
− 2 cos3(θ) sin(θ)

∂2G

∂X1∂X2

+ cos2(θ)

(
∂2G

∂ (X1)2 − 2
∂2G

∂ (X2)2

)
+2 cos(θ) sin(θ)

∂2G

∂X1∂X2
+

∂2G

∂ (X2)2

)(
∂G

∂X2

)2
]
, (4.64a)

0 =
∂p

∂X1
+ 2b

(
∂G

∂X1

∂2G

∂(X2)2 −
∂G

∂X2

∂2G

∂X1∂X2

)
− 8q

∂G

∂X1

∂2G

∂(X1)2

+8s

[
cos4 θ

(
− ∂G

∂X1

∂2G

∂(X1)2 + 2
∂G

∂X2

∂2G

∂X1∂X2
+

∂G

∂X1

∂2G

∂(X2)2

)
+ cos3 θ sin θ

(
− ∂2G

∂(X1)2

∂G

∂X2
+

∂G

∂X2

∂2G

∂(X2)2 − 2
∂G

∂X1

∂2G

∂X1∂X2

)
− cos2 γ

(
2
∂G

∂X2

∂2G

∂X1∂X2
+

∂G

∂X1

∂2G

∂(X2)2

)
− cos γ sin γ

∂G

∂X2

∂2G

∂(X2)2

]
, (4.64b)

0 =
∂p

∂X2
+ 2b

(
∂G

∂X2

∂2G

∂(X1)2 −
∂G

∂X1

∂2G

∂X1∂X2

)
+8s

[
cos4 θ

(
∂G

∂X2

∂2G

∂(X1)2 −
∂G

∂X2

∂2G

∂(X2)2 + 2
∂G

∂X1

∂2G

∂X1∂X2

)
+ cos3 θ sin θ

(
− ∂2G

∂(X1)2

∂G

∂X1
+ 2

∂G

∂X2

∂2G

∂X1∂X2
+

∂G

∂X1

∂2G

∂(X2)2

)
− cos2 γ

(
− ∂G

∂X2

∂2G

∂(X1)2 + 2
∂G

∂X2

∂2G

∂(X2)2 − 2
∂G

∂X1

∂2G

∂X1∂X2

)
− cos γ sin γ

(
2
∂G

∂X2

∂2G

∂X1∂X2
+

∂G

∂X1

∂2G

∂(X2)2

)
− ∂G

∂X2

∂2G

∂(X2)2

]
. (4.64c)
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The nonlinear terms arising from each fiber family in this PDE system are determined by

observing the parameters q and s. Of importance, the two fiber families contribute separate

terms, which is expected since fiber effects are included in the model through addition of

individual anisotropic terms in the strain energy densityW for each fiber family. In particular,

the terms in the PDE system introduced by the fiber family oriented along the X1-axis

(parameter q) are quasilinear, whereas the second fiber family (parameter s) gives rise to

many complicated nonlinear terms.

We now compare the current system with the one fiber model (4.28) for γ = 0, which we

refer to as the one planar fiber family system.

First, the PDE system (4.64) is equivalent to the one planar fiber family system for s = 0,

as well as for θ = 0 up to parametrizing q + s as a single constant. As such, the one planar

fiber model may be viewed as a special case of the two planar fiber system.

Additionally, the admitted Lie symmetries of the two fiber family system are expected

to be fewer in number than those for the one planar fiber system. This seems reasonable

since adding more complicated nonlinear terms to a PDE results in additional symmetry

determining equations, which in turn may restrict the solution space of the determining

equations and thus the number of admitted Lie symmetries. Regarding conservation laws,

the addition of a second fiber family to the one planar fiber family model will reduce the

number of conservation laws since the two fiber model is nonlinear in the X2-direction for

γ 6= 0.

4.7 Discussion

In the current Chapter, analytical properties of three types of motion of an incompressible,

isotropic, hyperelastic material interspersed with anisotropic fiber families were studied.

In Section 4.2, the necessary relationships are recalled from Chapter 2 to construct the

equations of motion for a general fiber reinforced Mooney-Rivlin solid.

Section 4.3 is dedicated to the study of the one dimensional, one fiber reinforced Mooney-

Rivlin model. A numerical simulation of the one dimensional equations of motion (4.10)

and (4.9) is studied for the fiber oriented along the x-axis. The resulting numerical solution
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showed a splitting of the Gaussian initial condition (taken with zero initial velocity) into

two profiles traveling apart, suggesting the existence of some traveling wave solutions. The

Lie symmetries of the PDE system are classified with respect to the material parameters.

Of importance, for a special angle/s of the fiber with respect to the plane, an additional

symmetry is admitted by the system that consists of a scaling of the independent variables

and a translation of the displacement dependent on the Lagrangian variable x. Afterwards,

invariant solutions of the system are derived for the travelling wave invariants, and for the

special symmetry. Then, conservation laws of the governing PDE system are classified.

Lastly, the Hodograph transformation was applied to the system, and it was determined the

resulting linear non-constant coefficient PDE system cannot be mapped to one with constant

coefficients by an invertible mapping.

In Section 4.4, the motion of a Mooney Rivlin material reinforced by a single fiber was

studied for displacements transverse to a reference plane in the solid. It was determined

that solutions to the one dimensional model in the previous Section are also solutions to the

current system. Then, Lie symmetries of the equations of motion were classified, as well as

the conservation laws.

Our attention was focused in Section 4.4 on another type of motion in Mooney-Rivlin fiber

reinforced materials, for which there are two displacements orthogonal to each other and the

X3-axis. As in the previous model, it was determined that solutions to the one dimensional

model in Section 4.3 are also solutions to the current PDE system. After, Lie symmetries

of the equations of motion were classified, for which a special symmetry is admitted similar

additional symmetry of the one dimensional model for the same angle between fiber of axis

and direction of motion. Finally, conservation laws of the model were classified and discussed.

In the final Section, 4.6, a model of a Mooney-Rivlin material reinforced by two fiber

families which as the same coordinate dependence as Section 4.4 was derived. We do not

study this model in the current Thesis, but discuss it in the Concluding Remarks with respect

to future study.
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Concluding Remarks

We now provide a brief summary of the current Thesis and discuss future directions of

research.

Summary

In Chapter 1, we outlined the fundamental notions to Lie symmetry and conservation law

analysis in the context of studying differential equations. After providing a review of the

fundamental definitions and theorems for Lie symmetry analysis, we presented the applica-

tion of Lie symmetries to obtain the general solution of ordinary differential equations and

invariant solutions of partial differential equations. We then discussed the direct method to

obtain conservation laws for a given PDE system, particularly how to obtain conservation

law multipliers by a constructive algorithm. Finally, we presented Noether’s theorem and

discussed how it connects Lie symmetries and the conservation laws for a variational system

of PDEs. Within this discussion, we also outlined a method to determine if a given PDE

system is variational. References to further work with Lie symmetry and conservation law

analysis are provided in the chapter discussion.

The second chapter is dedicated to introducing the equations of motion governing hy-

perelasticity, which includes a brief review of the theory of elastodynamics. First, notions

essential to describing the motion of a body through continuum mechanics are presented.

After, the equations of motion for an elastic solid are given in terms of the Cauchy and First

Piola-Kirchhoff stress’ in the Eulerian and Lagrangian frames of reference, respectively. Af-

terwards, the assumptions of elasticity are outlined with respect to the First Piola-Kirchhoff

stress. Lastly, the constitutive relations for various models of hyperelasticity are discussed,

and the extension to fiber reinforced materials is presented.

A detailed example of the Lie symmetry and conservation law analysis methodology is
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provided in Chapter 3. In particular, a two dimensional incompressible Mooney-Rivlin model

is studied, for which the Lie symmetries and conservation laws are classified. Reductions of

the PDE system governing the motion are performed for particular Lie symmetries. The

model equations are determined to be a non-variational system. Admitted Lie symmetries

and conservation laws of the model are compared, with similarities and differences noted

therein.

Chapter 4 is dedicated to the study of analytical properties for one and two dimensional

models of a fiber reinforced incompressible Mooney-Rivlin solid. In particular, we focused on

three types of motion, including deformations transverse to a plane depending on one and

two dimension(s), and deformations transverse to an axis. In the one dimensional transverse

motion, we numerically simulated the system of PDEs to develop intuition as to the solution

behaviour. Lie symmetries and conservation laws of the system are classified, and invariant

solutions were studied for the traveling wave ansatz and a special symmetry. As well, we

applied the Hodograph transformation to map the primary equation of motion to a linear

non-constant coefficient PDE. We then verified this linear non-constant coefficient PDE could

not be mapped to one with constant coefficients. For each of the two dimensional motions in

the current model, we studied the one dimensional solutions admitted by the corresponding

PDE system, and classified the Lie point symmetries and conservation laws of this system.

Future Directions

There are a number of potential directions for future research based on material within the

current Thesis, of which we discuss a handful of possibilities here.

First, one may focus on a deeper Lie symmetry and conservation law analysis of the

systems of partial differential equations studied in Chapters 3 and 4. This includes making

further reductions to the PDE systems for admitted Lie symmetries, as well as solving the

reduced systems of equations to obtain invariant solutions. One may also seek additional

symmetries in each model, such as higher order, approximate, and nonlocal symmetries. In

addition, further conservation laws for each PDE system can be sought, particularly higher

order and nonlocal conservation laws.
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One may also analyze other models of fiber reinforcement than those studied in Chapters

3 and 4 using the constitutive relations discussed in Chapter 2. Furthermore, one may study

models for reinforcement by multiple fiber families, such as the model presented in Section

4.6. In particular, hyperelastic models with two fibers are of interest due to applications in

modelling arterial tissue (see, for example, [10,59,60]).

Additionally, numerical simulations for each model presented in Chapters 3 and 4 can

be performed. Of interest, these solutions could be compared to existing finite element

simulations of fiber reinforced hyperelastic materials. Another avenue to explore would be

the application of symmetry and conservation law based numerical schemes using the results

obtained in the current Thesis.
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aneurysms: influence of diameter, asymmetry, and material anisotropy. Journal of
Biomechanical Engineering, 130:021023, 2008.

[101] J.F. Rodriquez, V. Alastrue, and M. Doblare. Finite element implementation of a
stochastic three dimensional finite-strain damage model for fibrous soft tissue. Com-
puter Methods in Applied Mechanics and Engineering, 197:946–958, 2008.
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Appendix A

Numerical Solution Code

The following is the Maple code for the numerical solution computed in Section 4.3.2.

> restart;

> with(DEtools):with(PDEtools):with(plots):with(LinearAlgebra):

> # The problem is defined on the interval [-xend,xend]. NOTE: We use a
boundary larger than the one of interest (which is [-8,8]) to mitigate
boundary effects on the numerical method.

> xend:=20:

> # Specify space step of spatial coordinate for numerical method.

> xspacing:=0.02:

> # Obtain desired number of spatial points to consider based on space
stepsize (xspacing) and boundary (xend).

> num_of_pts:=floor(2*xend/xspacing):

> # Equation to be studied.
> sys:= diff(G(t,x),t,t) = (alpha + 2*beta*(diff(G(t,x),x))^2)
*diff(G(t,x),x,x);

sys :=
∂2

∂t2
G (t, x) =

(
α + 2 β

(
∂

∂x
G (t, x)

)2
)

∂2

∂x2
G (t, x)

> # Initial and boundary conditions to be used by pdsolve.

> IBC:={G(0,x)=exp(-x^2),D[1](G)(0,x)=0,G(t,-xend)=exp(-(xend^2)),
G(t,xend)=exp(-(xend^2))};

IBC :=
{
G (0, x) = e−x

2

, G (t,−20) = e−400, G (t, 20) = e−400, D1 (G) (0, x) = 0
}

> # Specify the parameters in ‘sys’ for the numerical simulation.
> alpha:=1:
> beta:=1/3:

> # Creating module from pdsolve/numeric for timestep equal to the
spacestep.
> pdsxspace:=pdsolve(sys,IBC,numeric,G(t,x),time=t,range=-xend..xend,
spacestep=xspacing,timestep=xspacing):
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> # Creating module from pdsolve/numeric for timestep equal to half of
the spacestep.

> pdshalfxspace:=pdsolve(sys,IBC,numeric,G(t,x),time=t,
range=-xend..xend,spacestep=xspacing,timestep=xspacing/2):

> # Computing and plotting the solution for several times (t=0,2,4) on
interval [-8,8].

> phalfxspace0:=pdshalfxspace:-plot(t=0,numpoints=num_of_pts,
color=red):
> phalfxspace2:=pdshalfxspace:-plot(t=2,numpoints=num_of_pts,
color=magenta):
> phalfxspace4:=pdshalfxspace:-plot(t=4,numpoints=num_of_pts,
color="SteelBlue"):
> plots[display]({phalfxspace0,phalfxspace2,phalfxspace4},
view=[-8..8,0..1]);

> # Determine solution G(t,x) at time t=4 (as a function of x).

> Gfullspacing4:=pdsxspace:-value(t=4):
> Ghalfspacing0:=pdshalfxspace:-value(t=0):
> Ghalfspacing1:=pdshalfxspace:-value(t=1):
> Ghalfspacing2:=pdshalfxspace:-value(t=2):
> Ghalfspacing3:=pdshalfxspace:-value(t=3):
> Ghalfspacing4:=pdshalfxspace:-value(t=4):

> # Defining procedure to convert the functions above
(e.g. Gfullspacing4) to vectors.

> vector_output_of_fn:=proc(fnCN,xspacing,num_of_pts,xend) local H;
local m; local n;
> m:=-xend;
> n:=1;
> H:=Vector(num_of_pts+1);
> while m<=xend do
> H[n]:= rhs(fnCN(m)[3]);
> m:=m+xspacing;
> n:=n+1;
> end do;
> H;
> end proc:

> # Creating vectors with entries having value of above functions
(e.g. Gfullspacing4) at spatial points.
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> GValsfirst4:=vector_output_of_fn(Gfullspacing4,xspacing,num_of_pts,
xend):
> GValshalf0:=vector_output_of_fn(Ghalfspacing0,xspacing,num_of_pts,
xend):
> GValshalf1:=vector_output_of_fn(Ghalfspacing1,xspacing,num_of_pts,
xend):
> GValshalf2:=vector_output_of_fn(Ghalfspacing2,xspacing,num_of_pts,
xend):
> GValshalf3:=vector_output_of_fn(Ghalfspacing3,xspacing,num_of_pts,
xend):
> GValshalf4:=vector_output_of_fn(Ghalfspacing4,xspacing,num_of_pts,
xend):

> # Creating vector with spatial points.
> f := proc (i) options operator, arrow; -xend+xspacing*(i-1) end proc :
> vec_x:=Vector(num_of_pts+1,f):

> # Calculating maximum value for display size of plot of difference
between timestep=spacestep and timestep=(1/2*spacestep.

> difference_of_CN_fns:=GValshalf4-GValsfirst4:
> h_disp:=1.1*max({max(difference_of_CN_fns),
-min(difference_of_CN_fns)}):

> # Plotting difference between plots with timestep=spacestep and
timestep=(1/2*spacestep).

> pointplot(vec_x,difference_of_CN_fns,view=[-8..8,-h_disp..h_disp]);

> # Function to convert values of G to values of p (hydrostatic
pressure) based on the expression in equation (4.8) of Chapter 4.

> g_vector_to_p:=proc(vector,xspacing) local H; local m; local n;
> n:=2;
> m:=Dimension(vector);
> H:=Vector(m);
> while n<=(m-1) do
> H[n]:= ((vector(n+1) - vector(n-1))/(2*xspacing))^2;
> n:=n+1;
> end do;
> H[1]:=H(2);
> H[m]:=H(m-1);
> H;
> end proc:

> # Plotting hydrostatic pressure p.
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> pValshalf0:=g_vector_to_p(GValshalf0,xspacing):
> pValshalf2:=g_vector_to_p(GValshalf2,xspacing):
> pValshalf4:=g_vector_to_p(GValshalf4,xspacing):
> plot_of_p_half0:=plot(vec_x,pValshalf0,color=red):
> plot_of_p_half2:=plot(vec_x,pValshalf2,color=magenta):
> plot_of_p_half4:=plot(vec_x,pValshalf4,color="SteelBlue"):
> display(plot_of_p_half0,plot_of_p_half2,plot_of_p_half4,
view=[-8..8,0..1]);
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