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Motivation

Mooney-Rivlin elasticity equations are nonlinear coupled partial differential equations that are used to
model various elastic materials. Models can be extended to account for fiber-reinforced materials. We
study analytical properties of models of wave propagation in fiber-reinforced elastic solids using Lie
symmetry and conservation law analysis.

Applications

Biological materials have been modeled as incompressible hyperelastic solids with anisotropic fiber bundles
[1]. Material parameters are found for several internal organs in [2].

Biological Materials
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Arteries

Diagram of arterial tissue from [1]

Theory of Incompressible Hyperelastic Solids

When an elastic solid undergoes a deformation, points ~X in the reference configuration Ω0 at a time
t = 0 are transformed to points ~x in the current configuration Ω at time t.
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Here ρ0 and ρ are mass densities in the reference and current configuration, respectively.

I The Jacobian matrix of the deformation is called the deformation gradient F.

F ij( ~X, t) =
∂xi

∂Xj

I The material behaviour of a hyperelastic solid is described by the strain energy density W (F).

I The first Piola-Kirchhoff stress P measures the stress within an incompressible hyperelastic solid with
respect to undeformed area in the reference configuration:

P i j = ρ0
∂W

∂F i j
− p(F−1)j i

where ρ0 is mass density (assumed constant), and p( ~X, t) is hydrostatic pressure.

I For an incompressible Mooney-Rivlin material reinforced with a fiber bundle oriented along ~A, the
strain energy density takes the form

W = Wiso(I
1, I2) + Waniso(I

4)

= a(I1 − 3) + b(I2 − 3) + c(I4 − 3)2, a, b, c > 0,

where I1 and I2 are principal invariants under orthogonal transformations of the right Cauchy-Green
stress tensor C = FTF, and I4 is a fiber-specific invariant.

I1(C) = Tr(C)

I2(C) =
1

2

(
Tr(C)2 − Tr(C2)

) I4 = ~AT C ~A

I The equations of motion can be derived from the incompressibility condition and moment balance as

detF = 1

ρ0x
i
tt =

∑
j

∂P i j

∂Xj

Lie Point Symmetries

Consider the differentiable function

f (x, y) = 0.

Suppose this equation undergoes a transformation of variables with parameter ε:

x∗ = g(x, y, ε), y∗ = h(x, y, ε).

This forms a symmetry transformation of the equation if it maps solutions into solutions; i.e.

f (x∗, y∗) = 0 when f (t, x) = 0.

A local Lie point symmetry of a differential equation is a symmetry transformation which is a Lie group of
point transformations. Consider the Taylor expansion of a Lie point transformation about ε = 0:

x∗ = g(x, y, ε) ≈ g(x, y, 0) + εξ(x, y) + O(ε2),

y∗ = h(x, y, ε) ≈ h(x, y, 0) + εη(x, y) + O(ε2).

The tangent vector field (ξ(x, t), η(x, t) of the transformation is defined by the O(ε) terms, which form
coefficients of the operator equivalent to the Lie group of point transformations, the infinitesimal
generator.

X = ξ
∂

∂x
+ η

∂

∂y

(ξ,η)

(x,y) (x*,y*)

The symmetry condition for Lie symmetries can thus be written in the form

Xf = 0 when f = 0.

Applications to Differential Equations
I Obtain the general solution of ODEs, and particular solutions of PDEs.

I New solutions can be generated from known ones through a Lie group of point transformations.

Traveling Wave Solutions through the Invariant Form Method

An important application of Lie symmetries is in seeking solutions to differential equations.
Example: consider traveling wave solutions for the wave equation

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
.

This equation admits time and spatial translation Lie symmetries. Hence, it is also invariant under the
linear combination of the equivalent infinitesimal generators.

X1 =
∂

∂t
, X2 =

∂

∂x
→ X̄ = c

∂

∂x
+
∂

∂t
;

t∗ = t + ε, x∗ = x + cε,

u∗ = u.

Quantities invariant under the action of a Lie group of point transformations X̄ are

I = x− ct, V = u.

To seek solutions invariant under X̄, one substitutes into the differential equation the invariant form V (I),
which is exactly the traveling wave ansätze

V (I) = u(x− ct).

Conservation Laws

A conservation law of a system of differential equations is a divergence expression that vanishes on
solutions of the system. For example, the nonlinear wave equation

∂2u

∂t2
−

((
∂u

∂x

)2
)
∂2u

∂x2
= 0

can be written in the divergence (conservation law) form

Dt

(
∂u

∂t

)
− Dx

(
1

3

(
∂u

∂x

)3
)

= 0.

where Dt represents the total derivative with respect to t. Here, ∂u∂t is the conserved density, while

−1
3

(
∂u
∂x

)3
is the flux.

Applications to Differential Equations
I Conservation laws allow for a better understanding of underlying physical processes.

I Advanced numerical methods based on divergence forms have been developed.

Orientation of Fibers in Reference Configuration

The fiber bundle is oriented along the vector ~A = [sin(φ), 0, cos(φ)]T at an angle φ to the X3-axis in the
X1X3-plane.
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Solid with Sample Fiber Bundle (blue lines)

Case 1: Motion transverse to the X1X2-plane

Consider displacements transverse to the X1X2-plane, given by

~x = [X1, X2, X3 + G
(
X1, X2, t

)
]T , p = p

(
X1, X2, t

)
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Lie Point Symmetries for Case 1

The equations of motion in Case 1 are invariant under the following Lie groups of point transformations.

Transformation Symmetry Infinitesimal Generator

Time Translation Y 1 = ∂
∂t

Spatial Translations Y 2 = ∂
∂X1 , Y

3 = ∂
∂X2

Amplitude translation Y 4 = ∂
∂G

Time dependent amplitude translation Y 5 = t ∂∂G

Scaling Y 6 = X1 ∂
∂X1 + X2 ∂

∂X2 + t ∂∂t + G ∂
∂G

Time dependent pressure translation Y 7 = F (t) ∂∂p

The corresponding transformations for the above infinitesimal generators are

t∗ = eε6t + ε1, (X1)∗ = eε6X1 + ε2, (X2)∗ = eε6X2 + ε3,

G∗ = eε6G + ε4 + ε5(t + ε1), p∗ = p + F (t),

where each εi is the transformation parameter corresponding to infinitesimal generator Yi.

Case 2: Motion transverse to the X3-axis

The second wave propagation ansätze is given by the displacement orthogonal to the X3-axis, with
coordinate dependence

~x = [X1 + G1
(
X3, t

)
, X2 + G2

(
X3, t

)
, X3]T , p = p

(
X3, t

)
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Lie Point Symmetries for Case 2

The equations of motion in Case 2 are invariant under the following Lie groups of point transformations.

Transformation Symmetry Infinitesimal Generator

Time Translation Z1 = ∂
∂t

Spatial Translation Z2 = ∂
∂X3

Amplitude translations Z3 = ∂
∂G1 and Z4 = ∂

∂G2

Time dependent translations of dependent variables Z5 = t ∂
∂G1, Z6 = t ∂

∂G2, Z7 = F (t) ∂∂p

Fiber-affected rotations Z8 =
(
sin(φ)X3 + cos(φ)G1

) ∂
∂G2 − cos(φ)G2 ∂

∂G1

Scaling Z9 = X3 ∂
∂X3 + t ∂∂t + G1 ∂

∂G1 + G2 ∂
∂G2

The transformation corresponding to infinitesimal generator Z8 is

t∗ = t, (X3)∗ = X3, p∗ = p,

(G1)∗ = cos(sin(φ)ε8)G1 − sin(sin(φ)ε8)G2 + tanφ(cos(sin(φ)ε8)− 1)X3,

(G2)∗ = cos(sin(φ)ε8)G2 + sin(sin(φ)ε8)G1 + tanφ sin(sin(φ)ε8).

Additional symmetry: for φ fixed such that

sin2(φ) =
1

2

(
1±

√
1− 2 (a + b)/e

)
,

the equations of Case 2 are also invariant under the transformations

Z10 = cos(φ)X3 ∂

∂X3
+ 2 cos(φ)t

∂

∂t

−2 cos(φ)p
∂

∂p
− sin(φ)X3 ∂

∂G1
,

t∗ = e2 cos(φ)ε10 t,

(X3)∗ = ecos(φ)ε10 X3,

(G1)∗ = G1 + tan(φ)
(

1− ecos(φ)ε10
)
X3,

(G2)∗ = G2,

p∗ = e−2 cos(φ)ε10 p.

Conserved Quantities for Case 2

I Conservation of Energy. Conserved density = Kinetic + Potential =

ρ0

(
1

2
(G1

t )
2 +

1

2
(G2

t )
2 + (a + b)

(
(G1

3)2 + (G2
3)2
)

+ e cos2 φ
(

4(G1
3)2

+4 cos(φ) sin(φ)((G1
3)3 + G1

3(G2
3)2)
)

+ cos2 φ
(

(G1
3)4 + (G2

3)4 + 2(G1
3)2(G2

3)2 − 4(G1
3)2
))

.

I Conservation of Linear Momentum in Eulerian Frame. Conserved densities: ρ0G
1
t and ρ0G

2
t .

I Conservation of Angular Momentum in Eulerian Frame. Conserved density:

ρ0

(
cos(φ)

(
G1G2

t −G2G1
t

)
+ sin(φ)

(
X3G2

t + 2(a + b)tG2
3

))
.

I Additional conserved densities: ρ0
(
tG1

t −G1
)

and ρ0
(
tG2

t −G2
)

.
Note: Subscript notation indicates partial differentiation.

Conclusions and Future Research

I Lie point symmetries and conservation laws have been classified in two ansätze for fiber-reinforced
incompressible Mooney-Rivlin solids. Special cases have been isolated.

I Time and spatial translation Lie symmetries are admitted; traveling-wave solutions can be sought.

I Goal 1: Construct invariant solutions for particular symmetries.

I Goal 2: Study relations between symmetries and conservation laws.

I Goal 3: Seek additional conservation laws for each system, study physical meaning.
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