Study of Wave Propagation in Fiber-reinforced Elastic Solids

Using Lie
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Mooney-Rivlin elasticity equations are nonlinear coupled partial differential equations that are used to
model various elastic materials. Models can be extended to account for fiber-reinforced materials. We
study analytical properties of models of wave propagation in fiber-reinforced elastic solids using Lie
symmetry and conservation law analysis.

Applications

Biological materials have been modeled as incompressible hyperelastic solids with anisotropic fiber bundles
[1]. Material parameters are found for several internal organs in [2].
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Diagram of arterial tissue from [1]

Theory of Incompressible Hyperelastic Solids

When an elastic solid undergoes a deformation, points X in the reference configuration {)j at a time
t = 0 are transformed to points T in the current configuration () at time ¢.

Reference Configuration
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Here pg and p are mass densities in the reference and current configuration, respectively.
» The Jacobian matrix of the deformation is called the deformation gradient F.
O
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» The material behaviour of a hyperelastic solid is described by the strain energy density W (F').

Fii(%, 1) =

» The first Piola-Kirchhoff stress P measures the stress within an incompressible hyperelastic solid with
respect to undeformed area in the reference configuration:
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where py is mass density (assumed constant), and p(X,t) is hydrostatic pressure.

P = py

» For an incompressible Mooney-Rivlin material reinforced with a fiber bundle oriented along A, the
strain energy density takes the form

= a(I* = 3) +b(1* = 3) + c(I* = 3)%, a,b,c>0,

where T and I? are principal invariants under orthogonal transformations of the right Cauchy-Green
stress tensor C = F!F, and I? is a fiber-specific invariant.

(C) = Tx(C)

12(C) = % (Tr(C)? ~ ()

» The equations of motion can be derived from the incompressibility condition and moment balance as
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Lie Point Symmetries

Consider the differentiable function

flz,y)=0.
Suppose this equation undergoes a transformation of variables with parameter ¢:
r*=g(x,y, ¢, Yy =hz, y, e
This forms a symmetry transformation of the equation if it maps solutions into solutions; i.e.
f(z*,y*)=0 when f(t,2)=0.

A local Lie point symmetry of a differential equation is a symmetry transformation which is a Lie group of
point transformations. Consider the Taylor expansion of a Lie point transformation about € = 0:

r* = g(z, y, €) = g(x,y,0) + e(z,y) + O(e*),
y* = h(z, y, €) = h(z,y,0) + en(z,y) + O(e?).

The tangent vector field (£(x,t), n(x,t) of the transformation is defined by the O(¢) terms, which form
coefficients of the operator equivalent to the Lie group of point transformations, the infinitesimal
generator.
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The symmetry condition for Lie symmetries can thus be written in the form
Xf=0 when f=0.

Applications to Differential Equations
» Obtain the general solution of ODEs, and particular solutions of PDEs.

» New solutions can be generated from known ones through a Lie group of point transformations.

Traveling Wave Solutions through the Invariant Form Method

An important application of Lie symmetries is in seeking solutions to differential equations.
Example: consider traveling wave solutions for the wave equation

0%u(z, t) B 0%u(zx, t)
ot? ox?
This equation admits time and spatial translation Lie symmetries. Hence, it is also invariant under the
linear combination of the equivalent infinitesimal generators.

0 * *

~ ot or or | Ot = u.

Quantities invariant under the action of a Lie group of point transformations X are

I =x—ct, V =u.

To seek solutions invariant under X, one substitutes into the differential equation the invariant form V' (1),
which is exactly the traveling wave ansatze

V(I)=u(x — ct).

Conservation Laws

A conservation law of a system of differential equations is a divergence expression that vanishes on
solutions of the system. For example, the nonlinear wave equation

Ot? ox ox?

can be written in the divergence (conservation law) form

ou 1 /0u\°
ou

where Dy represents the total derivative with respect to ¢. Here, ‘57 is the conserved density, while

3
—% (%) is the flux.

Applications to Differential Equations
» Conservation laws allow for a better understanding of underlying physical processes.

» Advanced numerical methods based on divergence forms have been developed.

Orientation of Fibers in Reference Configuration

The fiber bundle is oriented along the vector A = [sin(¢), 0, cos(¢)]? at an angle ¢ to the X3-axis in the
X1 X3 plane.
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Case 1: Motion transverse to the X! X2 plane

Consider displacements transverse to the X! X% plane, given by

7=[xX1 X2 xX34+@ (Xl, X2, t)]T, D=7 (Xl, X2,t)
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Lie Point Symmetries for Case 1

The equations of motion in Case 1 are invariant under the following Lie groups of point transformations.

Transformation Symmetry Infinitesimal Generator
Time Translation yl= %
. . 2_ _0 3__0
Spatial Translations Y<= oX 1> Yo = X2
Amplitude translation Y= %
Time dependent amplitude translation YO = t%
: 6 _ yl1_0 2_0 0 0
Time dependent pressure translation Y’ = F(t)a%

The corresponding transformations for the above infinitesimal generators are

tf=ebt e, (XN =X 46 (X2 =e0X? + e,

G* = G + €4 + €5(t + €7), p*=p+ F(t),

where each ¢; is the transformation parameter corresponding to infinitesimal generator Y*.

Case 2: Motion transverse to the X°-axis

The second wave propagation ansitze is given by the displacement orthogonal to the X3-axis, with
coordinate dependence
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Lie Point Symmetries for Case 2

The equations of motion in Case 2 are invariant under the following Lie groups of point transformations.

Transformation Symmetry Infinitesimal Generator
Time Translation A %
. . 2_ 0
Spatial Translation 727 = 553
Amplitude translations 73 = % and Z* = %
Time dependent translations of dependent variables 70 = t%, 70 = % 7" = F(t)a%
Fiber-affected rotations 78 = (Sin(gb)X3 + Cos(qb)Gl) % — Cos(qﬁ)G?%
Scaling 79 :X3%+t%+6'1%+(}2%
The transformation corresponding to infinitesimal generator 78 is
t*:t, (Xg)*:Xga p*:p7
(G1)* = cos(sin(¢)eg) G' — sin(sin(¢)eg) G2 + tan ¢(cos(sin(p)eg) — 1) X7,
(G*)* = cos(sin(¢)eg) G2 + sin(sin(¢)eg) G + tan ¢ sin(sin(¢)eg).
Additional symmetry: for ¢ fixed such that
1
sin%(g) = 5 (1 +/1-2(at b)/e) |
the equations of Case 2 are also invariant under the transformations
t* _ 62 COS(Qb)GlO t,
O O vk ___cos(@)e 3
71V = cos(gb)Xgﬁ + ZCos(gb)ta (X7)" =e DA
) | . 0 (Gl)* =G+ tan(o) (1 — eCOS<¢>€1O) XS,
—2 COS<¢>pa—p — Sln<¢)X 8G17 (GQ)* _ G2,

p* _ 6_2 cos(@)eqg D.

Conserved Quantities for Case 2

» Conservation of Energy. Conserved density = Kinetic + Potential =
1 1
m (SGH 435G+ (a+0) (G2 + (G3P) + ecosto (16
+Hecos(9)sin(6)(G]) + GYGY)) +cos? (G + (G +2(GHHGY? - 4GY?) ).

» Conservation of Linear Momentum in Eulerian Frame. Conserved densities: pOG% and poG%.
» Conservation of Angular Momentum in Eulerian Frame. Conserved density:

00 (Cos(gb) (GlG% — GZG%) + sin(¢) (XSG% + 2(a + b)tG%)) .

» Additional conserved densities: py (tG; — G') and pg (tG7 — G?).

Note: Subscript notation indicates partial differentiation.

Conclusions and Future Research

» Lie point symmetries and conservation laws have been classified in two ansatze for fiber-reinforced
incompressible Mooney-Rivlin solids. Special cases have been isolated.

» Time and spatial translation Lie symmetries are admitted; traveling-wave solutions can be sought.
» Goal 1: Construct invariant solutions for particular symmetries.

» Goal 2: Study relations between symmetries and conservation laws.

» Goal 3: Seek additional conservation laws for each system, study physical meaning.
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