Brownian Dynamics Modelling for the Narrow Escape Problem

Vaibhava Srivastava ${ }^{1}$, Jason Gilbert, Mohamad Alwan and Alexei F. Cheviakov

University of

SASKATCHEWAN
Department of Mathematics, Indian Institute of Technology, Gandhinagar

The Mathematical Model for the Narrow Escape Problem

The Narrow Escape Problem concerns the calculation of the mean first passage time (MFPT) required for a Brownian particle confined in a bounded domain $\Omega \in \mathbb{R}^{d}$ (two or three dimensional spaces) to escape through one of finitely many smal boundary windows, or traps. The domain boundary $\partial \Omega=\partial \Omega_{r} \cup \partial \Omega_{a}$ is almost boundary windows, or traps. . he domais $\partial \Omega_{a}$).
The MFPT $v(x)$ satisfies the mixed Dirichlet-Neumann problem

$$
\Delta v=-\frac{1}{D}, \quad x \in \Omega ;
$$

$$
v=0, \quad x \in \partial \Omega_{a}=\bigcup_{j=1}^{N} \partial \Omega_{\epsilon j} ; \quad \partial_{n} v=0, \quad x \in \partial \Omega_{r},
$$

where D is constant diffusivity. An important integral characteristic of escape times from a domain with a prescribed trap arrangement is the Average MFPT

$$
\bar{v}=\frac{1}{|\Omega|} \int_{\Omega} v(x), d x=0
$$

where $|\Omega|$ is the measure of the domain.

Areas of Application \& Study

The Asymptotic MFPT for the Unit Sphere
Approximate asymptotic solutions of (1) have been obtained for various 3D domains WLOG, the physical problem (1) can be re-scaled

- $\operatorname{diam} \Omega \sim 1$
- trap sizes $\sim \epsilon$, where $\epsilon \ll 1$
- $D=1$ - well-separated traps: $\left|x_{i}-x_{j}\right| \gg \epsilon$

The MFPT $v(x)$ for the unit sphere with N non-equal traps was obtained in Ref. [1] using the method of matched asymptotic expansions, and is given by

$$
v(x)=\bar{v}-\frac{|\Omega|}{D N \bar{c}} \sum_{j=1}^{N} c_{j} G_{s}\left(x ; x_{j}\right)+\mathcal{O}(\epsilon \log \epsilon) .
$$

Correspondingly, the asymptotic average MFPT \bar{v} is given by
$\bar{v}=\frac{|q|}{2 \pi e D N c}\left(1+\epsilon \log \left(\frac{2}{\epsilon}\right) \frac{\sum_{-1}^{N} c_{1}^{2}}{2 N \bar{c}}+\frac{2 \pi \epsilon}{N c} p_{c}\left(x_{1}, \ldots, x_{N}\right)-\frac{\epsilon}{N \bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j}+\mathcal{O}\left(\epsilon^{2} \log \epsilon\right)\right)$. Here $p_{c}\left(x_{1}, \ldots, x_{N}\right)$ is a 'repulsive potential' depending on the specific trap arrangement [1].

MATLAB Code for Brownian Simulations

- A MATLAB code was developed that can be to trace the trajectories of Brownian particles starting from a given point up to their escape through a trap
- Code takes into account boundary reflections.
- Parameters were chosen to match asymptotic MFPT results.

Parameters used in the code

- $d \tau=6 \times 10^{-6}$
$|d \vec{x}| \approx 0.0067$
- $=1$

Specification of the machine used to run the simulations

- OS: Red Hat Linux 7.6 - Memory: 128 GiB
- Processor: Intel Xeon(R) E5-2687W (3.10GHz) $\times 16$

Comparison Between Asymptotic and Numerical Simulation Results

- Brownian numerically simulated MFPT is computed by averaging escape times of N Brownian particles launched from the same starting point

$$
v_{N}^{B}(x)=\frac{1}{N} \sum_{i=1}^{N} v_{i}
$$

- Number of Brownian particle runs from each starting location: $N=20000$

Averaged Escape Time vs Asymptotic Results for Trajectories of 4000 Brownian Particles Launched from Various Points (ϕ, r), $0 \leq \phi \leq 2 \pi \&$ $0 \leq r \leq 1$ with Each Tuple Specifying a Point of Launch

Averaged Brownian Escape Times: the Effect of Number of Launches

- N Brownian particles are launched from the sphere center, $v_{N}^{B}(0)$ is computed, and compared with the asymptotic value of $v(0)$:

$$
\delta v(0)=\frac{\left|v(0)-v_{N}^{B}(0)\right|}{v(0)} \times 100 \% .
$$

Dynamics of Brownian Particle Near the Boundary

- Observation: MFPT PDE problem doesn't retain any information the about the 3D trajectories of the Brownian particles.
- 4000 particles are launched from various positions inside the domain
- Parameters for tracing Brownian Dynamics near the boundary: $R=1, \delta=10^{-2}$
- Relative time at the boundary, τ

$$
\tau=\frac{T_{\delta}}{T} \sim 3.5
$$

- τ, when expressed as function of launching coordinates, $\tau(\phi, R)$ is constant $\sim 3.5 \%$ throughout the domain

Discussion

Efficient and flexible, fully parallelized Matlab code was developed and tested; can Efficient and flexible, fully parallelized Matlab code was developed and tested; can be applied to study diffusion processes/average values as well as multipla

- A comprehensive study of results obtained from the simulations showed that averages of $\sim 10^{4}$ single-particle simulations are sufficient to closely match the asymptotic MFPT values for the unit sphere.
- Time spent by Brownian particles near the boundary was studied; it was shown that irrespective of initial conditions and relative trap location, time near the domain boundary remains about 3.5% of the particle's life time.

What Next

1. The developed code can be used to study the dynamics of Brownian particles in any 3D domains, for instance:

- nanoparticle diffusion within inverse opals [2] and related man-made materials with cavities;
- domains with long necks [3].

2. The code may be further optimized, and possibly improved by taking into account particle velocity-based simulated Brownian motion

References

Cheviakov, A., Ward, M., Straube, R. (2010). An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere. Multiscale Modeling Simulation, $8(3)$, 836-870.
Skaug. M Wang L Ding. Y Schwartz D (2015) Hindered Nanoparticle Diffusion and Void Accessibility in a Three-Dimensional Porous Medium. ACS Nano, 9(2), 2148-2156.
 Xiaofei Li. (2014). Matched asymptotic analysis to solve the narrow escape problem

