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The Mathematical Model for the Narrow Escape Problem

The Narrow Escape Problem concerns the calculation of the mean first passage
time (MFPT) required for a Brownian particle confined in a bounded domain
Ω ∈ Rd (two or three dimensional spaces) to escape through one of finitely many small
boundary windows, or traps. The domain boundary ∂Ω = ∂Ωr ∪ ∂Ωa is almost
entirely reflecting (∂Ωr), except for traps, ∂Ωa).

The MFPT v(x) satisfies the mixed Dirichlet-Neumann problem

4v = − 1

D
, x ∈ Ω;

v = 0, x ∈ ∂Ωa =
⋃N
j=1 ∂Ωεj; ∂nv = 0, x ∈ ∂Ωr,

(1)

where D is constant diffusivity. An important integral characteristic of escape times
from a domain with a prescribed trap arrangement is the Average MFPT:

v̄ =
1

|Ω|

∫
Ω

v(x), dx = 0 , (2)

where |Ω| is the measure of the domain.
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FIG. 1. Schematic of the narrow-escape problem in a 3D domain.

where kj for j = 1, . . . ,N are certain constants, and G(x; xj )
is the Neumann Green’s function for the spherical domain �

with a singularity at xj ∈ ∂�. Importantly, the third term in
the formula for v̄, i.e., the trap interaction energy, depends
on mutual locations of the boundary traps, which allows
for a global optimization of the average MFPT through the
computation of optimal arrangements of trap positions on the
boundary of the unit sphere. (This result is discussed in Sec. II
below.) In a recent paper [11], the results of [10] have been
justified rigorously.

The computation of globally optimal arrangements of N

point particles on the surface of a smooth domain, which repel
to minimize a certain interaction energy, is a complicated
problem that has recently attracted attention (e.g., [12–14]).
Putative optimal configurations of 4 � N � 282 particles
have been computed in Ref. [15] for the Coulombic interaction
potential.

The minimization of the average escape time v̄ with respect
to positions of N small equal traps on a unit sphere involves
the global optimization of the trap interaction energy function,
which contains Coulombic and logarithmic terms. Such
globally optimal arrangements were computed numerically in
Ref. [10] for N � 65 using global optimization software
packages; these arrangements were compared with optimal
arrangements for purely Coulombic and purely logarithmic
pairwise trap interactions up to N � 20. Moreover, an asymp-
totic scaling law for the trap interaction energy for N � 1 was
derived. In Ref. [16], optimal arrangements of configurations
containing traps of two kinds were computed.

In Ref. [16], a numerical solution of (1.1) was compared to
the asymptotic formula (1.4), and the corresponding formula
for the average MFPT v̄. It was shown for circular, rectangular,
and spherical domains that the asymptotic formulas closely
match the numerical results even when the traps are relatively
large or close to each other.

The “brute force” approach to numerically find optimal
spherical trap arrangements involves numerical global opti-
mization of the trap interaction energy function in (2N − 3)-
dimensional space. Even the fastest available software can
take a very long time (weeks to months) to compute a trap
arrangement for N over one hundred. Results obtained using
LIPSCHITZ-CONTINUOUS GLOBAL OPTIMIZER (LGO) software
for N � 200 are listed in Sec. IV of this paper.

In Secs. III and IV, we develop a heuristic algorithm to find
the optimal arrangement of N + k traps from a known optimal

arrangement of N traps. It is motivated by the concept of the
topological derivative introduced in Ref. [17]. In Sec. III, we
derive a change in the total trap interaction energy due to an
addition of one trap to a given N -trap spherical configuration
(“Principal result 1”). This result is used in the algorithm of
Sec. IV, where additional traps are introduced at minima of
the topological derivative of the trap interaction energy. The
trap configuration is subsequently evolved via a dynamical
system driven by forces that are gradients of the trap interaction
energy function. Using the proposed method, putative optimal
locations of N � 1004 traps are computed.

In order to verify the validity of the putative optimal spher-
ical trap arrangements obtained in Sec. IV, two approaches are
used. First, the computed minimal interaction energy values
are compared with an asymptotic scaling law of [10], and
demonstrate close agreement. Second, the putative optimal
trap arrangements were tested against the N2 conjecture
(Sec. IV C). This remarkable property was initially found for
the known optimal trap arrangements for N � 200; it says
that the sum of pairwise squared distances between optimally
located traps is equal to N2.

In Sec. V, the dilute trap fraction limit of homogenization
theory is considered for the unit sphere. A similar approach
has been used in Ref. [18] for a unit disk. The homogenization
theory framework provides a simplified approximate
description of the MFPT problem (1.1) for the unit sphere in
the case of N � 1 small boundary traps. In the homogenized
problem, the strongly heterogeneous boundary conditions
of (1.1) are replaced with Robin boundary conditions. The
“Principal result 2” of Sec. V contains asymptotic expressions
for the Robin boundary condition; it is obtained using the
asymptotic average MFPT formula of [10]. The resulting
Robin problem for the sphere is solved analytically. For
a sample optimal arrangement of N = 802 traps, a good
agreement is demonstrated between the asymptotic and the
homogenization MFPT values throughout the sphere, except
for, as expected, the neighborhoods of the actual boundary
traps.

Finally, Sec. VI contains conclusions and discusses open
problems.

II. ASYMPTOTIC EXPRESSIONS FOR THE MFPT AND
THE AVERAGE MFPT

Consider a unit sphere with N nonequal small well-
separated circular boundary traps of radii εaj , j = 1, . . . ,N ,
ε � 1, centered at points xj ∈ ∂�, |xj | = 1. In Ref. [10], an
asymptotic solution to the problem (1.1) in the limit ε → 0 was
derived using the method of matched asymptotic expansions.
It has the general form

v(x) = v̄ − |�|
DNc̄

N∑
j=1

cjGs(x; xj ) + O(ε log ε). (2.1)

In Eq. (2.1), |�| = 4π/3 is the volume of the spherical
domain, cj = 2aj/π are constant trap capacitances, c̄ =
N−1 (c1 + · · · + cN ) is the average capacitance, and G(x; xj )
is the Neumann Green’s function for the domain � with a
singularity at xj ∈ ∂�. The Green’s function G(x; ξ ) is the
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one makes the homogenization MFPT v̄h (5.5) become

v̄h = πε

12Dσ
+ 1

15D
, (5.9)

which contains the correct first and third terms of the
asymptotic MFPT (5.7).

In order to match additional terms of (5.7), one can consider
the coefficients f (ε) and κ(σ ) of the extended form

f (ε) = ε + αε2 log ε + βε2, κ(σ ) = 4σ

π + γ
√

σ
.

(5.10)

The homogenization MFPT (5.5) consequently becomes

v̄h = πε

12Dσ
+ πε2

12Dσ
(β + α log ε) + 1

15D

+ γ ε

12D
√

σ
+ Q(ε,σ ), (5.11)

where

Q(ε,σ ) = γ ε2

12Dσ
(β + α log ε). (5.12)

The form (5.11) of the homogenization MFPT can be used to
match the first four leading terms of (5.7) upon choosing

α = − 1

π
, β = 1

π
log 2, γ = 8b1. (5.13)

A direct computation shows that under the choice of
parameters (5.13), the additional term Q(ε,σ ) (5.12) is small
compared to both of the higher-order terms A(ε,σ ) and B(ε,σ )
in the limit ε → 0, N � O(log ε). We have thus arrived at the
following result.

Principal result 2. Consider an arrangement of N �
1 equal small traps on a unit sphere. Suppose that this
arrangement is optimal, i.e., it minimizes the interaction energy
(2.8). Then, in an asymptotic limit ε → 0, N � O(log ε), the
asymptotic expression for the MFPT v(x) (2.1) and the average
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FIG. 7. (Color online) MFPT comparison plots for N = 802 traps with ε = 0.0005. (a) The putative optimal trap arrangement. (b) The
equatorial cross section (z = 0) of the asymptotic MFPT v(x) (2.1). (c) The equatorial cross section of the homogenization MFPT vh(ρ) (5.4).
(d) The absolute difference |vh(ρ) − v(x)|.
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Areas of Application & Study

Receptor Trafficking in a Synaptic
Membrane

(Retrieved from
https://www.researchgate.net)

Motivation: Example 2, Narrow Escape Problems

Example 2: Chemical exchange through nuclear pores
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RNA Transport from Cell Nucleus
(Retrieved from Wikipedia)

Diffusion through Postsynaptic Membrane
(Retrieved from https://www.pnas.org)

The Asymptotic MFPT for the Unit Sphere

Approximate asymptotic solutions of (1) have been obtained for various 3D
domains WLOG, the physical problem (1) can be re-scaled :

I diam Ω ∼ 1

I D = 1

I trap sizes ∼ ε, where ε� 1

I well-separated traps: |xi − xj| � ε

The MFPT v(x) for the unit sphere with N non-equal traps was obtained in Ref. [1]
using the method of matched asymptotic expansions, and is given by

v(x) = v̄ − |Ω|
DNc̄

∑N
j=1 cjGs(x;xj) +O(ε log ε).

Correspondingly, the asymptotic average MFPT v̄ is given by

v̄ = |Ω|
2πεDNc̄

(
1 + ε log

(
2
ε

)∑N
j=1 c

2
j

2Nc̄ + 2πε
Nc̄pc(x1, . . . , xN)− ε

Nc̄

∑N
j=1 cjκj +O(ε2 log ε)

)
.

Here pc(x1, . . . , xN) is a ‘repulsive potential’ depending on the specific trap
arrangement [1].

MATLAB Code for Brownian Simulations

I A MATLAB code was developed that can be to trace the trajectories of Brownian
particles starting from a given point up to their escape through a trap

I Code takes into account boundary reflections.

I Parameters were chosen to match asymptotic MFPT results.

Parameters used in the code

I dτ = 6× 10−6

I D = 1

I |d~x| ≈ 0.0067

I ε = 10−2

Specification of the machine used to run the simulations

I OS: Red Hat Linux 7.6 I Memory: 128 GiB
I Processor: Intel Xeon(R) E5-2687W (3.10GHz) × 16

Comparison Between Asymptotic and Numerical Simulation Results

I Brownian numerically simulated MFPT is computed by averaging escape times of
N Brownian particles launched from the same starting point:

vBN(x) =
1

N

N∑
i=1

vi.

I Number of Brownian particle runs from each starting location: N = 20000

Brownian particle starting locations Coordinates on Z axis
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Numerical Simulation vs Asymptotic Results

Asymptotic results
Numerical Simulations

Averaged Escape Time vs Asymptotic Results for Trajectories of 4000
Brownian Particles Launched from Various Points (φ, r), 0 ≤ φ ≤ 2π &
0 ≤ r ≤ 1 with Each Tuple Specifying a Point of Launch

Averaged Brownian Escape Times: the Effect of Number of Launches

I N Brownian particles are launched from the sphere center, vBN(0) is computed, and
compared with the asymptotic value of v(0):

δv(0) =
|v(0)− vBN(0)|

v(0)
× 100%.

N #104
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ v
(0

) 

0

0.5

1

1.5

Launching coordinates: (0,0,0)
Coordinates Percentage   

Difference (%) 
(0,0,-1) 0.0957 
(0,0,-0.9) 0.1346 
(0,0,-0.7) 0.0229 
(0,0,-0.6) 0.0379 
(0,0,-0.5) 0.1775 
(0,0,0) 0.1633 
(0,0,0.5) 0.3419 
(0,0,0.6) 0.6044 
(0,0,0.7) 1.1117 
(0,0,0.9) 1.1960 
 Table:Relative percentage error difference with respect to various

launching coordinates for 20000 Brownian trajectories

Dynamics of Brownian Particle Near the Boundary

I Observation: MFPT PDE problem doesn’t retain any information the about the
3D trajectories of the Brownian particles.

I 4000 particles are launched from various positions inside the domain

I Parameters for tracing Brownian Dynamics near the boundary: R = 1, δ = 10−2.

I Relative time at the boundary, τ :

τ =
Tδ
T
∼ 3.5

I τ , when expressed as function of launching coordinates, τ (φ,R) is constant
∼ 3.5% throughout the domain.

Launching coordinates for the
Brownian trajectories Dynamics of Brownian particle near the

boundary

Discussion

I Efficient and flexible, fully parallelized Matlab code was developed and tested; can
be applied to study diffusion processes/average values as well as multiple other
statistical characteristics for Brownian motion-based diffusion processes.

I A comprehensive study of results obtained from the simulations showed that
averages of ∼ 104 single-particle simulations are sufficient to closely match the
asymptotic MFPT values for the unit sphere.

I Time spent by Brownian particles near the boundary was studied; it was shown
that irrespective of initial conditions and relative trap location, time near the
domain boundary remains about 3.5% of the particle’s life time.

What Next

1. The developed code can be used to study the dynamics of Brownian particles in any
3D domains, for instance:

I nanoparticle diffusion within inverse opals [2] and related man-made materials
with cavities;

I domains with long necks [3].

2. The code may be further optimized, and possibly improved by taking into account
particle velocity-based simulated Brownian motion.

Particle Escape from Spherical Cavities with 12 Pores 
We are observing the 3D diffusion of nanoparticle probes within a model porous material, an inverse opal (Fig. 

1), which is composed of a hexagonally close packed arrangement of spherical cavities, where each cavity is 

connected to its 12 neighboring cavities via well-defined pores. Each nanoparticle trajectory is analyzed to 

determine its dwell time within each cavity that is visited.  These dwell times can be considered “escape” times 

for a nanoparticle seeking to exit a spherical cavity with 12 holes. We have performed these experiments using 

a range of different cavity and pore sizes, with two different probe particle diameters.  Fig.2 shows some 

representative complementary cumulative distributions of escape times from 500nm diameter cavities with 

various pore diameters and two different particle sizes. These distributions are fitted to an exponential mixture 

model, and the resulting functions are used to calculate the mean first passage time (MFPT) for escape. Fig. 3 

summarizes the mean first passage times (MFPT) for some representative data involving 28nm and 45nm 

diameter probe particles in inverse opal structures with different cavity sizes and pore sizes.  While the 

qualitative trends are consistent with expectations, we have not been able to connect the quantitative mean 

first passage time measurements with expectations from any particular theory.  For example, Figure 4 shows 

the scaling of MFPT with a parameter that represents the predicted zeroth order term for the narrow escape 

problem. While the data for the two different particle sizes within 500nm cavities collapse in this 

representation, the data involving escape from 800nm cavities do not agree. 

                                   

Fig. 1 (a) 3D model for inverse opal structure. (b) Scanning electron microscope (SEM) image of an inverse opal 

structure comprising spherical cavities connected by small pores. 

 
Fig. 2 Complementary cumulative distributions of escape time from 500nm cavities within inverse opals. 
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3D Model for Inverse Opal Structure.

L for the case where the particle is released at the centre of the head. First, based on a
comparison of the results obtained with the Neumann–Robin model ur and the asymptotic
formula εu , we can see that our derivational calculation for the Neumann–Robin problem is
correct using layer potential techniques, as described in section 3. Second, based on a
comparison between u and εu , we can see that their difference is of order εO ( ), which means
that the asymptotic formula can approximate the MFPT precisely, as mentioned in theorem 2.

Next, we consider the domain with a non-straight neck (see figure 8). Suppose that Ω is a
smooth domain Ωh connected with a smooth long neck and C is the middle curve in the long
neck with length L. Since C is not a straight line, the curvature at each point x on C is denoted
by κ x( ). Numerical simulations show that the Neumann–Robin model can be applied easily to
solve the NEP in this situation. Because the neck is very thin, we also make the assumption
that the escape time is continuous across the part connecting the head and neck, similar to its
derivative. Because of the curvature on the neck, we need to find a better effective length,
rather than the simple neck length L. Eventually, we find that if we insert

Figure 7. Left: comparison between the numerical results for the original narrow escape
problem (1) and the expansion formula (58) derived from the Neumann–Robin model
with different neck radii. We select the head as a unit disk, where the neck length is
L = 2 and the neck radius ε varies from 0.01 to 0.1. Right: comparison between the
numerical results for the original narrow escape problem (1) and the asymptotic
formula (58) derived from the Neumann–Robin model with different neck lengths. The
head is fixed as a unit disk, where the radius of the neck is ε = 0.1 and the neck length
L varies from 1 to 4.

Figure 8. Approximate geometry model of a dendritic spine with a non-straight long
spine neck, where Ω is the domain with a long neck, Ω∂ r is the reflection part, and Ω∂ a

is the absorbing part.

J. Phys. A: Math. Theor. 47 (2014) 505202 Xiaofei Li
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Geometry Model of a Dendritic Spine with a Non-Straight Long Spine Neck,
where Ω is the domain with a long neck, ∂Ωr is the reflection Part, and ∂Ωa is

the absorbing Part.
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