Brownian Dynamics Modelling for the Narrow Escape Problem Vaibhava Srivastava¹, Jason Gilbert, Mohamad Alwan and Alexei F. Cheviakov

¹Department of Mathematics, Indian Institute of Technology, Gandhinagar

$$\Delta v = -\frac{1}{D}, \quad x \in \Omega;$$
$$v = 0, \quad x \in \partial \Omega_a = \bigcup_{j=1}^N \partial \Omega_{\epsilon_j}; \qquad \partial_n v = 0, \quad x \in \partial \Omega_n$$

$$\bar{v} = \frac{1}{|\Omega|} \int_{\Omega} v(x), dx = 0,$$

$$v(x) = \bar{v} - \frac{|\Omega|}{DN\bar{c}} \sum_{j=1}^{N} c_j G_s(x; x_j) + \mathcal{O}(\epsilon \log \epsilon).$$

$$\bar{v} = \frac{|\Omega|}{2\pi\epsilon DN\bar{c}} \left(1 + \epsilon \log\left(\frac{2}{\epsilon}\right) \frac{\sum_{j=1}^{N} c_j^2}{2N\bar{c}} + \frac{2\pi\epsilon}{N\bar{c}} p_c(x_1, \dots, x_N) - \frac{\epsilon}{N\bar{c}} \sum_{j=1}^{N} c_j \kappa_j \right)$$

$$\sum_{i=1}^{N} v_i.$$

Coordinates	Percentage Difference (%)
(0,0,-1)	0.0957
(0,0,-0.9)	0.1346
(0,0,-0.7)	0.0229
(0,0,-0.6)	0.0379
(0,0,-0.5)	0.1775
(0,0,0)	0.1633
(0,0,0.5)	0.3419
(0,0,0.6)	0.6044
(0,0,0.7)	1.1117
(0,0,0.9)	1.1960

Dynamics of Brownian Particle Near the Boundary

- 3D trajectories of the Brownian particles.

- Relative time at the boundary, τ :
- $\sim 3.5\%$ throughout the domain.

Launching coordinates for the Brownian traiectorie

Discussion

- asymptotic MFPT values for the unit sphere.

What Next

3D domains, for instance:

with cavities;

domains with long necks [3].

2. The code may be further optimized, and possibly improved by taking into account particle velocity-based simulated Brownian motion.

3D Model for Inverse Opal Structure

References

- 836-870.

Observation: MFPT PDE problem doesn't retain any information the about the

► 4000 particles are launched from various positions inside the domain

• Parameters for tracing Brownian Dynamics near the boundary: $R = 1, \delta = 10^{-2}$.

$$\tau = \frac{T_{\delta}}{T} \sim 3.5$$

 \blacktriangleright τ , when expressed as function of launching coordinates, $\tau(\phi, R)$ is constant

Dynamics of Brownian particle near the

Efficient and flexible, fully parallelized Matlab code was developed and tested; can be applied to study diffusion processes/average values as well as multiple other statistical characteristics for Brownian motion-based diffusion processes.

A comprehensive study of results obtained from the simulations showed that averages of $\sim 10^4$ single-particle simulations are sufficient to closely match the

► Time spent by Brownian particles near the boundary was studied; it was shown that irrespective of initial conditions and relative trap location, time near the domain boundary remains about 3.5% of the particle's life time.

1. The developed code can be used to study the dynamics of Brownian particles in any

nanoparticle diffusion within inverse opals [2] and related man-made materials

Geometry Model of a Dendritic Spine with a Non-Straight Long Spine Neck where Ω is the domain with a long neck, $\partial \Omega_r$ is the reflection Part, and $\partial \Omega_a$ is the absorbing Part.

Cheviakov, A., Ward, M., Straube, R. (2010). An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere. Multiscale Modeling Simulation, 8(3),

Skaug, M., Wang, L., Ding, Y., Schwartz, D. (2015). Hindered Nanoparticle Diffusion and Void Accessibility in a Three-Dimensional Porous Medium. ACS Nano, 9(2), 2148-2156.

Xiaofei Li. (2014). Matched asymptotic analysis to solve the narrow escape problem in a domain with a long neck. Journal Of Physics A: Mathematical And Theoretical, 47(50), 505202.