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The Plasma Equilibrium Problem

Magnetohydrodynamics (MHD) is the description of the macroscopic behavior of
plasmas. To describe the physical principles considered, the system of plasma
equilibrium equations is used. Using this model, analytical solutions will be examined in
order to better understand this “fourth state of matter”.

Physical Applications

Astrophysical Jets Solar Flares
Plasma confinement in
Tokamak

Ball lightning

The Mathematical Model

The System of isotropic ideal MHD equilibrium equations is simply a combination of
the Navier-Stokes equations in addition to Maxwell’s equations (without the time
dependence) and consists of the following:

ρV × curlV − 1

µ
B× curlB− gradP − ρgrad

V2

2
= 0, (1)

curl(V ×B) = 0, (2)

divB = 0, (3)

divρV = 0. (4)

Here B is the magnetic field, V is the plasma velocity, ρ plasma density, and µ is the
magnetic permeability of free space.

We consider incompressible plasma flows satisfying

divV = 0. (5)

There is no general method of obtaining solutions to the above nonlinear equations. To
simplify, certain assumptions are made:

I V = 0

I Scalar pressure

I Viscosity is negligible

I Plasma is a perfect conductor

This allows us to obtain the system plasma equilibrium equations:

curlB×B = µgradP, divB = 0. (6)

Equilibrium Topologies of Isotropic MHD

The magnetic field lines of a given magnetic field B(r) are defined as parametric curves
(x(t), y(t), z(t)) that are solutions of:

dx

dt
= B1(x, y, z),

dy

dt
= B2(x, y, z),

dz

dt
= B3(x, y, z). (7)

The same way, plasma streamlines are defined as curves tangent to the plasma velocity
vector field V(r) [3].

Consider curl(V ×B) = 0 and curlB×B = µgradP . We have two cases:

1. V 6= 0
Now curl(V ×B) = 0⇒ V ×B = gradΨ(r) which implies there exist magnetic
surfaces on which V and B are tangent.

2. V= 0
It follows from
curlB×B = µgradP that
there again must exist surfaces
of constant pressure (magnetic
surfaces).

As an additional note, the
magnetic surfaces examined in
this model are generally in the
form of nested tori.

Magnetic surfaces form nested tori.
Blue lines represent magnetic field lines.

The Grad-Shafranov Equation

From the equations (6), one can obtain the Grad-Shafranov equation in cylindrical
coordinates (r, φ, z) by imposing axial symmetry and independence of φ.

The magnetic field of the plasma has the form

B =
Ψz
r

er +
I(Ψ)

r
eφ −

Ψr
r

ez.

The Grad-Shafranov equation reads

Ψrr −
Ψr
r

+ Ψzz + I(Ψ)I ′(Ψ) = −µr2P ′(Ψ). (8)

Here, P (Ψ) is the plasma pressure and I(Ψ) is an arbitrary function.

Lastly, one can see from (8) that surfaces Ψ = const define magnetic surfaces.

Astrophysical Jets

In this application, I(Ψ) = αΨ and P (Ψ) = Po − 2β2Ψ2/µ where
Po > (2β2/µ)max(Ψ2(r, z)) and α and β are arbitrary constants. Under these
assumptions, the Grad-Shafranov equation becomes linear:

Ψrr −
Ψr
r

+ Ψzz = −α2Ψ + 4βr2Ψ. (9)

Solutions to (9) are obtained for all of R3. Only solutions that have no singularities, are
bounded for all z and tend to zero as r →∞ are considered.
And so the following exact solutions are obtained [2]:

Ψ(r, z) = e−βr
2
(
aNL

∗
N (2βr2) +

N−1∑
n=1

(an sin(ωnz) + bn cos(ωnz))L∗n(2βr2)

)
, (10)

where ωn =
√

8β(N − n) and the functions L∗n(x) are the generalized Laguerre
polynomials:

L∗n(x) = − x
n!
ex
dn

dxn
(e−xxn−1), L∗0(x) = −1. (11)

Quasi-periodic level curves Ψ = const for N = 3, β = 0.1, α2 = 24β Magnetic surfaces Ψ = const. in the form of wavy cylinders and nested tori.

Solar Flares

When modeling solar flares, one can seek smooth solutions of equation (9) in the half
space z ≥ 0 which have no singularities and tend to zero both as r →∞ and as
z →∞.

So for any α and β > 0, (9) has the exact solutions [2]:

Ψ(r, z) = e−βr
2
N+m∑
n=N

cne
−κnzL∗n(2βr2) (12)

where N = α2/8β + 1 and κn =
√

8βn− α2 and integer m > 0 is arbitrary.

Poloidal magnetic field lines for N = 2, β = 10, α = 0,m = 1. Cross section of magnetic surfaces.

The JFKO Equation

The JFKO equation (derived from (6)) describes helically symmetric plasma
configurations. In cylindrical coordinates, solutions will depend on (r, ξ) where
ξ = z − γφ. These solutions are invariant with respect to the helical transformations:

z → z + γh, φ→ φ + h, r → r. (13)

Using the above transformations, one can obtain the JFKO equation:

Ψξξ

r2
+

1

r

∂

∂r

(
r

r2 + γ2
Ψr

)
+
I(Ψ)I ′(Ψ)

r2 + γ2
+

2γI(Ψ)

(r2 + γ2)2
= −µP ′(Ψ). (14)

The magnetic field is given by

B =
Ψξ
r

er + B1ez + B2eφ, B1 =
γI(Ψ)− rΨr
r2 + γ2

, B2 =
rI(Ψ) + γΨr
r2 + γ2

(15)

where I(Ψ) and P (Ψ) are arbitrary functions.
Assuming linear I(Ψ) and quadratic P (Ψ), Bogoyavlenskij [2] obtains the following
exact solution to (14):

Ψ = e−βr
2
(
aNB0N (x) + (aln cos(lξ/γ) + bln sin(lξ/γ))rlBln(x)

)
, (16)

where N, l ≥ 1, n ≥ 0, x = 2βr2 and

Bln(x) =
dl

dxl
Ll+n(x)− klnx

dl+1

dxl+1
Ll+n(x). (17)

Here, Lm(x) are the Laguerre polynomials.

Section z = 0 of magnetic surfaces. An illustration of helical symmetry

A Model of Ball Lightning as an Axially Symmetric Plasma Equilibrium

Ball lightning can be described as luminous spherical objects drifting through the air
and vanishing either silently or with a bang [5]. To model this mysterious phenomenon
as a plasma equilibrium, we consider the Grad-Shafranov equation in spherical
coordinates (r, φ, θ):[

∂2

∂r2
+

sin(θ)

r2

∂

∂θ

[
1

sin(θ)

∂

∂θ

]
+ λ2

]
Ψ = δr2 sin2(θ) (18)

with conditions

∆Ψ̂ = 0 in V ∗,

Ψ = Ψ̂ = 0, ∇Ψ = ∇Ψ̂ on Γ
(19)

Diagram of plasma region V , vacuum region V ∗,
boundary Γ, and the outer wall ∂Ω.

where Ψ̂ is the function describing the region outside of V .

Solving (18) yields

Ψ = CW (r) sin2(θ) (20)

with

W (r) = λrj1(λr)− j1(λR)

λR
(λr)2 (21)

where j1 is the spherical Bessel function of the first kind with n=1, and

C = −δ λR

λ4j1(λR)
. (22)

Finally, the magnetic field components for the fireball solution become

Br = −2C
W (r)

r2
cos(θ), Bθ = C

W ′(r)
r

sin(θ), Bφ = Cλ
W (r)

r
sin(θ) (23)

Radial dependence of Ψ Radial dependence of pressure with po = 1.

Magnetic surfaces, λr = 5.76, (first zero of j1).
Cross section of magnetic surfaces. Black lines are magnetic field lines and orange surface
is the plasma boundary.

Lastly, the total magnetic energy of the spherical plasma ball was calculated:

E =

∫∫∫
ball

B2

2
dV. (24)

The above integral was evaluated and the following expression was found:

E =
4πC2

3

(
− sin2(λR)

R2λ2
+

1

5
R3λ4j1(λR)2+

(λR)2 − 1

R
−2Rλ2j1(λR)(4j1(λR)+sin(λR))+2

sin(λR) cos(λR)

R2λ

)
(25)

Conclusions

I Although the system of plasma equilibrium equations is simple-looking, this
simplicity is deceptive. These equations comprise a complicated nonlinear
system of partial differential equations with a nontrivial intrinsic geometry.

I Once axial or helical symmetry is imposed, the system simplifies significantly,
to yield a single equation. Under certain conditions, this equation can become
linear, and hence can be solved by conventional methods (i.e. separation of
variables, integral transforms, etc.).
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