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Applications of Magnetohydrodynamic

Plasma confinement in a tokamak
Astrophysical jets

Helical lab plasma jets

The Mathematical Model – Magnetohydrodynamics Equations

The system of Isotropic Magnetohydrodynamic (MHD) equations takes the form
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V: plasma velocity, B: magnetic field, J: current density, ρ: mass density, µ: magnetic permeability

I An equation of state – incompressible plasmas: divV = 0.

Static Plasma Equilibrium Equations

I Equilibrium reduction: ∂/∂t = 0.

I Static equilibrium reduction: V = 0.

I Static plasma equilibrium equations:

curlB×B = gradP, divB = 0.

I Magnetic field lines of B(r) are defined as parametric
curves r(s) solving dr/ds = B(r).

I For equilibrium MHD, magnetic field lines are tangent to
magnetic surfaces ψ = const.

I Bounded magnetic surfaces are commonly tori.

Magnetic field lines on a magnetic surface

Axially Symmetric Plasma

I Use cylindrical coordinates (r, φ, z) and impose axial symmetry ∂/∂φ = 0.

I The static MHD equations collapse into a single PDE called the Grad-Shafranov Equation
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were I(ψ) and P (ψ) are an arbitrary functions.

Exact Axially Symmetric Equilibrium Solutions: First Family

I For I(Ψ) = αΨ and P (Ψ) = P0 − q2Ψ2, (1) becomes linear.

I After separation of variables one arrives at separated solutions

Ψω(r, z) = (C1WM (η, 1/2, qr2) + C2WW (η, 1/2, qr2)) sin(ωz + C3)

Where ω, q, Ci =const, and WM , WW are basis solutions of the Whittaker ODE
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I A general solution of (1) includes all linear combinations of particular solutions Ψ(r, z), such as
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Exact Axially Symmetric Plasma Physical solutions: First Family

For integer values of η, Whittaker functions become polynomials multiplied by a Gaussian term [?]. These
polynomials are related to the Laguerre polynomials. Exact solutions can be written as [?]
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Quasi-periodic level curves Ψ = const for N = 3, β = 0.1, α2 = 24β. Magnetic surfaces in the form of wavy cylinders and nested tori.

Exact Axially Symmetric Equilibrium Solutions: Second Family

I For I(Ψ) = αΨ and P (Ψ) = P0+q2Ψ2, (1) is also linear; one has separated solutions

Ψω(r, z) = (C1CF (0, η, qr2) + C2CG(0, η, qr2)) sin(ωz + C3).

Here q, ω, and Ci = const, and CF (L, η, x) and CG(L, η, x) are Coulomb wave functions, the basis
solutions of the Coulomb ODE
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where L = 0, and η is the same as before. General solution Ψ(r, z) includes discrete and continuous
combinations of Ψω(r, z).

Sample level curves Ψ = const, ω = 2, C1 =
√

2, C2 = 0, C3 = π/4, α2 = 25, q =
√

3 Magnetic Surface

Positive-Pressure Axially Symmetric Plasma Configurations

I In order for plasma region surrounded by vacuum to
have positive pressure and a finite amount of
magnetic energy in each z-layer, a solution may be
truncated beyond a given magnetic surface.

I Maxwell’s electrodynamic equations provide the new
boundary conditions: a boundary current sheet and
can be expressed as

B× n = µ0K,

and K is the current density along the boundary.

I Outside the plasma domain, B = P = 0.
Pressure in layer z = 0.46

Helically Symmetric Plasmas

I Helical coordinates (r, η, ξ) are defined using cylindricals:
ξ = az + bφ, η = aφ− bz/r2.

I MHD equations admit helical symmetry. Seek invariant
solutions: ∂/∂η = 0.

I The 4 PDEs collapse into the JFKO equation (a = 1,
b = −γ):

Ψξξ

r2
+

1

r

∂

∂r

(
r

r2 + γ2
Ψr

)
+
I(Ψ)I ′(Ψ)

r2 + γ2
+

2γI(Ψ)

(r2 + γ2)2
= −µP ′(Ψ). (3)

I Magnetic field and pressure: B =
Ψξ
r
er +

I(Ψ)

r
eη −

Ψr
r
eξ, P = P (Ψ).

Exact Helically Symmetric Equilibrium Solutions: 1st family

For I(Ψ) = αΨ and P (Ψ) = P0 − 2β2Ψ2, (3) is Linear. After separation of variables:
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where a = 2βγ2, b = γω, c = γ2(4β2γ2 − α2 + ω2)/4, d = 1− β2γ4 + (α2 − ω2)γ2/4 + αγ/2,
and α, β, ω, γ, Ci = const and HC(a, b, 2, c, d, x) is a basis solution of the confluent Heun ODE
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Examples of Solutions: First Family

The confluent Heun functions with the ‘right’ parameters produce polynomials which again can be expressed in
terms of Laguerre polynomials [?]. A solution can then be written as a linear combination of separated forms
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where N, n,m ∈ N, 2N > 2n + m, and Bmn(x) =
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Sample level curves Ψ = const

Exact helically Symmetric Plasma: 2nd family

Again, the linear case of JFKO (3) with the positive pressure is obtained when I(Ψ) = αΨ,
P (Ψ) = P0+2β2Ψ2. In particular, one obtains real separated solutions

Ψ(r, ξ) = C1e
−ir2βrbHC(ia, b,−2, c, d,−r2/γ2) sin(ωξ + C2),

where HC is the confluent Heun function, and α, β, ω, γ, Ci ∈ R.

Sample level curves Ψ = const.

Conclusions

Summary

I Exact solutions of nonlinear physical equations like MHD are highly important; hard to obtain.

I In axially and helically symmetric reductions, the model is drastically modified to yield single PDEs (GS,
JFKO).

I Even Linear cases of GS, JFKO correspond to nonlinear MHD equations. Using linear methods
(separation of variables), one can find physically meaningful exact solutions corresponding to static
plasma equilibria.

I New results:
I use special functions (Whittacker, Coulomb, Heun) to extend the set of known exact solutions;

I Find regular closed-form exact solutions for physical cases of plasma surrounded by vacuum, with positive
internal pressure. This is achieved using boundary conditions with current sheets.

Future Work
I Use Galas-Bogoyavlenskij transformations [?] to obtain exact dynamic localized plasma equilibria

(V 6= 0) from new solutions.

I Analyze stability of the new exact solutions.

I Take into account other effects including anisotropy, viscosity and conductivity in non-ideal plasmas.
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