

The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle undergoing Brownian motion to escape an enclosing three-dimensional domain.

- Ω : three-Dimensional domain.
$\partial \Omega_{\epsilon_{j}}$: absorbing boundary trap $(j=1, \ldots, N)$
$v(\mathbf{x}):$ MFPT for particle starting at $\mathbf{x} \in \Omega$
Average MFPT: $\bar{v} \equiv \frac{1}{|\Omega|} \int_{\Omega} v(\mathbf{x}) d^{3} \mathbf{x}$.
${ }^{3 n_{a}} \oplus$

Dirichlet-Neumann Boundary Value Problem [3]:

$$
\begin{array}{r}
\Delta v(\mathbf{x})= \\
\partial_{n} v(\mathbf{x})=0, \quad \mathbf{x} \in \partial \Omega \backslash \bigcup_{j} \partial \Omega_{\epsilon_{j}} ;
\end{array}
$$

$\mathrm{x} \in \Omega ;$
$v(\mathbf{x})=0, \mathbf{x} \in \bigcup_{j} \partial \Omega_{\epsilon_{j}}$

Asymptotic Solutions

The boundary value problem (1) does not adm
numerical methods include:

- Faster computation times
- Properties of exact solutions can be extracted.

Asymptotic approximations are of the form
$v(\mathbf{x}) \sim \epsilon^{-1} v_{0}(\mathbf{x})+v_{1}(\mathbf{x})+\epsilon \log \left(\frac{\epsilon}{2}\right) v_{2}(\mathbf{x})+\epsilon v_{3}(\mathbf{x})+\ldots$
of magnitude of trap sizes.

where ϵ is the order of magnitude of trap sizes.

Surface Neumann-Green's Function

$\partial_{n} G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right)=\delta_{s}\left(\mathbf{x}-\mathbf{x}_{j}\right), \quad \mathbf{x} \in \partial \Omega ;$
$\int_{\Omega} G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right) d^{3} \mathbf{x}=0$.
Using the method of matched asymptotic expansions, the surface Neumann-Green's function appears in the expression for the MFPT as
$v(\mathbf{x})=\bar{v}+\sum_{j=1}^{N} k_{j} G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right)$,

The Unit Smater

The special case when Ω is a unit sphere with N holes of radii ϵa_{j} centred at \mathbf{x}_{j} respectively yields
numerous results $[1]$.
numerous results [1].

- Surface Neumann-Green's Function:
$G_{s}\left(\mathbf{x}, \mathbf{x}_{j}\right)=\frac{1}{2 \pi\left|\mathbf{x}-\mathbf{x}_{j}\right|}+\frac{1}{8 \pi}\left(|\mathbf{x}|^{2}+1\right)+\frac{1}{4 \pi} \log \left(\frac{2}{1-|\mathbf{x}| \cos \gamma+\left|\mathbf{x}-\mathbf{x}_{j}\right|}\right)-\frac{7}{10 \pi}$ Mean First Passage Time:
$v(\mathbf{x})=\frac{|\Omega|}{2 \pi \epsilon D N \bar{c}}[1$ \qquad

Aneag MPT:

Self-Interaction Term $p_{c}\left(\mathbf{x}_{1}\right.$

erm $p_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ appearing in expressions for $v(\mathbf{x})$ and $\bar{v}(\mathbf{x})$ is a self-interaction term. Describes interaction between individual traps \Rightarrow important for optimization.
Depends only on $G_{s}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ and each c_{j} according to

$$
p_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\mathcal{C}^{T} \mathcal{G}_{\mathcal{S}} \mathcal{C}
$$

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap $\partial \Omega_{\epsilon}$ of radius ϵ (i.e. $a=1$) located at $\mathbf{x}_{0}[4]$. Surface-Neumann Green's Function

$$
G_{s}\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{1}{2 \pi\left|\mathbf{x}-\mathbf{x}_{j}\right|}-\frac{H\left(\mathbf{x}_{0}\right)}{4 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}\right|+v_{s}\left(\mathbf{x}, \mathbf{x}_{0}\right),
$$

where $v_{s}\left(\mathbf{x}, \mathbf{x}_{j}\right)$

$$
\bar{v} \equiv \frac{|\Omega|}{4 \epsilon D}\left[1+\frac{H\left(\mathbf{x}_{0}\right)}{\pi} \epsilon \log \epsilon+O(\epsilon)\right]^{-1} .
$$

Limitations of this approach are:
for one absorbing window.
Approximation is only asymptotic expression for the (non-averaged) MFPT is given.

- No asymptotic expression for the (non-averaged) M
- Error bound of $\mathcal{O}(\epsilon)$ is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap
Oblate Spheroid with One Trap

Towards a Wider Class of Three-Dimensional Domains

system (μ, ν, ω). Then assume the coordinate surface is $\mu=\mu$.

> Examples: spheres, spheroids, ellipsoids surfaces of rotation. N traps located at $\left(\mu_{0}, \nu_{j}, \omega_{j}\right)$ for $j=1, \ldots, N$. $h_{\mu}, h_{\nu}, h_{\omega}:$ scale factors of particular coordinate system.
$\eta=-h_{\mu_{0}} \frac{\mu-\mu_{0}}{\epsilon}, s_{1}=h_{\nu_{j}} \frac{\nu-\nu_{j}}{\epsilon}, s_{2}=h_{\omega_{j}} \frac{\omega-\omega_{j}}{\epsilon}$.

Local Form of Surface Neumann-Green's Function

Using the express
coordinates gives:
$G_{s}\left(\eta, s_{1}, s_{2} ; \mathbf{x}_{j}\right)=\frac{1}{2 \pi \rho \epsilon}-\frac{H\left(\mathbf{x}_{j}\right)}{4 \pi} \log \frac{\epsilon}{2}+g_{0}\left(\eta, s_{1}, s_{2} ; \mathbf{x}_{j}\right)+\epsilon \log \frac{\epsilon}{2} g_{1}\left(\eta, s_{1}, s_{2} ; \mathbf{x}_{j}\right)+\mathcal{O}(\epsilon)$,
where $\rho=\sqrt{\eta^{2}+s_{1}^{2}+s_{2}^{2}}$ and g_{0} and g_{1} are bounded functions depending on the geometry at \mathbf{x}_{j}

Method of Matched Asymptotic Expansions

The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem

Inner Problem (near \mathbf{x}_{j})
Local stretched coordinates $\left(\eta, s_{1}, s_{2}\right)$.
$w\left(\eta, s_{1}, s_{2}\right) \sim \frac{1}{\epsilon} w_{0}+\log \frac{\epsilon}{2} w_{1}+w_{2}+\mathcal{O}(\epsilon)$.

- Domain: $\eta \geq 0, s_{1}, s_{2} \in \mathbb{R}$.

Linear PDE: $\Delta_{\left(\eta, s_{1}, s_{2}\right)} w_{k}=\delta_{k 2} \mathcal{L} w_{0}$.
(\mathcal{L} is a second-order linear differential operator.)

- Boundary Conditions

$\begin{array}{ll}\partial_{\eta} w_{k}=0, & \eta=0, s_{1}^{2}+s_{2}^{2} \geq a_{j}^{2}, \\ w_{k}=0, & \eta=0, s_{1}^{2}+s_{2}^{2} \leq a_{j}^{2} .\end{array}$

Matched Asymptotic Expansions Condition

${ }_{\frac{-}{\epsilon}}^{\epsilon} w_{0}+\log \frac{\epsilon}{2} w_{1}+w_{2}+\cdots \sim \frac{1}{\epsilon} v_{0}+v_{1}+\epsilon \log \frac{\epsilon}{2} v_{2}+\epsilon v_{3}+$
Collect like coefficients of ϵ and seque

- Assumptions: $g_{1}=0$ and $w_{2} \sim \frac{v_{0} b_{j}}{\rho}$
- MFPT:
$v(\mathbf{x})=\frac{|\Omega|}{2 \pi \epsilon D N \bar{c}}\left[1-\epsilon \log \left(\frac{\epsilon}{2}\right) \frac{\sum_{j=1}^{N} c_{j}^{2} H\left(\mathbf{x}_{j}\right)}{2 N \bar{c}}-2 \pi \epsilon \sum_{j=1}^{N} c_{j} G_{s}\left(\mathbf{x}, \mathbf{x}_{j}\right)\right.$ $\quad 2 N \bar{c}$
$\left.+\frac{2 \pi \epsilon}{N \bar{c}} \tilde{p}_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)-\frac{\epsilon}{N \bar{c}} \sum_{j=1}^{N} b_{j}+\mathcal{O}\left(\epsilon^{2} \log \epsilon\right)\right]$.
Average MFPT:

$\bar{v}=\frac{|\Omega|}{2 \pi \epsilon D N \bar{c}}[1-$

$\log \left(\frac{\epsilon}{2}\right) \frac{\sum_{j=1}^{N} c_{j}^{2} H\left(\mathbf{x}_{j}\right)}{2 N \bar{c}}+\frac{2 \pi \epsilon}{N \bar{c}} \tilde{p}_{c}$
$\left.\left.\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)-\frac{\epsilon}{N \bar{c}} \sum_{j=1}^{N} b_{j}+\mathcal{O}\left(\epsilon^{2} \log \epsilon\right)\right]$.
$\tilde{p}_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ is a modified version of $p_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ for the sphere, depending only on G_{s}

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk

geometries.

- Provide range of local curvatures.
- Represent different biological cells.

COMSOL Multiphysics 4.3 b software used for numerical results

- Finite element PDE

Numerical results for
alts for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

Results for Thee Traps of Different Sizes

Conclusions

Expressions for the MFPT and average MFTP were developed for a more general class of three
dimensional domains.
The average MFPT
agreement with numerical following from the proposed asymptotic formulae were found to be in close

Future Research

Comparison to numerical simulation for a more extensive variety of geometries.
Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.
Study of dilute trap limit of homogenization theory for non-spherical domains [2].

References

[1] Alexei F. Cheviakov, Michael J. Ward, and Ronny Straube
An asymptotic analysis of the mean first passage time for narrow escape problems. II. The sphere
-simul., 8(3):836-870, 2010.
[2] Cyrill B. Muratov and Stanislav Y. Shvartsman.
Boundary homogenization for periodic arrays of absorbers.
3] Zeev Schuss.
Zeev Schuss.-
Theory and applications of stochastic differential equations.
Theory and applications of Stochastic diff
John Wiley \& Sons Inc., New York, 1980 .
Wiley Series in Probability and Statistics
[4] A. Singer, Z. Schuss, and D. Holcman.
Narrow escape and leakage of Brownian particles.
Phys. Rev. E (3), 78(5):051111, 8, 2008.

