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Motivation/Application Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps

. . . . : _ verage o o Vb
Numerous biological processes involve the transport of particles from a cell through its membrane: Average MFPT MFPT (epsilon = 0.02) MFPT (epsilon = 0.02) » Assumptions: g; = 0 and w9y ~ 0%
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Singer, Schuss, and Holcman Approximation

> Pe(X1, ..., X)) is a modified version of pc(xX1,...,xy) for the sphere, depending only on Gs(x;,X;).
> b; is modified version of k; for the sphere, determined by the far field behaviour of ws.
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The Narrow Escape Problem

» Surface-Neumann Green's Function: Testing Procedure and COMSOL
The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle 1 H(xo) Used ob!ate spheroid, prolate spheroid, and biconcave disk COMSOL Mesh Refinement Example
undergoing Brownian motion to escape an enclosing three-dimensional domain. Gs(x,xg) = X — x| e log |x — x| + vs(x, xq), geometries.
J » Provide range of local curvatures.

» (). three-Dimensional domain.
> OSle;: absorbing boundary trap (j=1,....,N).
» v(x): MFPT for particle starting at x € (.

where v5(x,X;) is an unknown bounded function of x,x; € (1.

» Average MFPT:

» Represent different biological cells.
COMSOL Multiphysics 4.3b software used for numerical results.
» Finite element PDE solver.
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» D: diffusion coeffluent.1 — €2 [+ H<Xo>eloge Lo . Tetrahedral mesh. OREREEO
» Average MFPT: v = ﬁ/ v(x) d’x. deD T Numerical results for two and three traps of equal and different sizes

& Jo Limitations of this approach are: compared to proposed multi-trap approximation in MATLAB.
» Dirichlet-Neumann Boundary Value Problem [3]: » Approximation is only valid for one absorbing window. Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps

» No asymptotic expression for the (non-averaged) MFPT is given.
» Error bound of O(¢) is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Asymptotic Solutions

Oblate Spheroid with One Trap

Average MFPT

The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of

MFPT (epsilon = 0.02)

the strongly heterogeneous boundary conditions. . - 4o
Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over 7 Singer, Schuss, and Holcman Approximation
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» Faster computation times. §4°° ] Results for Three Traps of Different Sizes
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Of critical importance to the NEP is the surface Neumann-Green's Function, G(x, Xj), satisfying Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate S 200 E i
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Using the method of matched asymptotic expansions, the surface Neumann-Green's function appears in surfaces of rotation. epsilon epsilon
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» Local stretched coordinates:

The Unit Sphere . :
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The special case when () is a unit sphere with IV holes of radii ea; centred at x; respectively yields
numerous results [1].
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» Surface Neumann-Green’'s Function:
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Local Form of Surface Neumann-Green’s Function L
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coordinates gives:
» Mean First Passage Time: Conclusions
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. Average MFPT: Method of Matched Asymptotic Expansions
Future Research
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7=1 Inner Problem (near x;) Outer Problem (far from x;) » Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.
» Two important quantities depending only on 8Q€j; » Local stretched coordinates (1, s1, s9). » Global coordinates (u, v, w). » Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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Collect like coefficients of € and sequentially solve for w; and v;. using the inner problem, the outer
\GS(XN, X1) e Gs(Xn,XN_1) > q y k k g P

207w ) problem, and the matching condition.




