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Motivation/Application

Numerous biological processes involve the transport of particles from a cell through its membrane:

I RNA transport through nuclear pores.

I Passive diffusion of molecules (e.g. CO2 and O2) through cell membrane.

I Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).

Typical size of transport regions is ∼0.1% relative to overall cell size.
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The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle
undergoing Brownian motion to escape an enclosing three-dimensional domain.

I Ω: three-Dimensional domain.

I ∂Ωεj : absorbing boundary trap (j = 1, ..., N).

I v(x): MFPT for particle starting at x ∈ Ω.

I D: diffusion coefficient.

I Average MFPT: v̄ ≡ 1

|Ω|

∫

Ω
v(x) d3x.
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

I Dirichlet-Neumann Boundary Value Problem [3]:

∆v(x) = − 1

D
, x ∈ Ω;

∂nv(x) = 0, x ∈ ∂Ω \⋃j ∂Ωεj ; v(x) = 0, x ∈ ⋃
j ∂Ωεj.

Asymptotic Solutions

The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of
the strongly heterogeneous boundary conditions.
Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over
numerical methods include:

I Faster computation times.

I Properties of exact solutions can be extracted.

Asymptotic approximations are of the form

v(x) ∼ ε−1v0(x) + v1(x) + ε log

(
ε

2

)
v2(x) + εv3(x) + ....

where ε is the order of magnitude of trap sizes.

Surface Neumann-Green’s Function

Of critical importance to the NEP is the surface Neumann-Green’s Function, Gs(x,xj), satisfying

∆Gs(x;xj) =
1

|Ω|, x ∈ Ω;

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω;
∫

ΩGs(x;xj)d
3x = 0.

Using the method of matched asymptotic expansions, the surface Neumann-Green’s function appears in
the expression for the MFPT as

v(x) = v̄ +

N∑

j=1

kjGs(x;xj), kj = const.

The Unit Sphere

The special case when Ω is a unit sphere with N holes of radii εaj centred at xj respectively yields
numerous results [1].

I Surface Neumann-Green’s Function:

Gs(x,xj) =
1

2π|x− xj|
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj|

)
− 7

10π

I Mean First Passage Time:

v(x) =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

∑N
j=1 cjκj +O(ε2 log ε).

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

N∑

j=1

cjκj + O(ε2 log ε)

]
.

I Two important quantities depending only on ∂Ωεj :

cj =
2aj
π

(trap capacitance), κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
.

Self-Interaction Term pc(x1, ...,xN )

Term pc(x1, ...,xN ) appearing in expressions for v(x) and v̄(x) is a self-interaction term.

I Describes interaction between individual traps ⇒ important for optimization.

I Depends only on Gs(xi,xj) and each cj according to

pc(x1, ...,xN ) = CTGsC

Gs ≡




− 9

20π
Gs(x1,x2) · · · Gs(x1,xN )

Gs(x2,x1) − 9

20π
· · · Gs(x2,xN )

... ... . . . ...

Gs(xN ,x1) · · · Gs(xN ,xN−1) − 9

20π



, C ≡



c1
...
cN


 .

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps
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Singer, Schuss, and Holcman Approximation

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap ∂Ωε of
radius ε (i.e. a = 1) located at x0 [4].

I Surface-Neumann Green’s Function:

Gs(x,x0) =
1

2π|x− xj|
− H(x0)

4π
log |x− x0| + vs(x,x0),

where vs(x,xj) is an unknown bounded function of x,xj ∈ Ω.

I Average MFPT:

v̄ ≡ |Ω|
4εD

[
1 +

H(x0)

π
ε log ε + O(ε)

]−1

.

Limitations of this approach are:

I Approximation is only valid for one absorbing window.

I No asymptotic expression for the (non-averaged) MFPT is given.

I Error bound of O(ε) is worse than that for sphere.

Singer,Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Oblate Spheroid with One Trap
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Towards a Wider Class of Three-Dimensional Domains

Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate
system (µ, ν, ω). Then assume the coordinate surface is µ = µ0.

I Examples: spheres, spheroids, ellipsoids,
surfaces of rotation.

I N traps located at (µ0, νj, ωj) for
j = 1, ..., N .

I hµ, hν, hω: scale factors of particular
coordinate system.

I Local stretched coordinates:

η = −hµ0

µ− µ0

ε
, s1 = hνj

ν − νj
ε

, s2 = hωj
ω − ωj
ε

.

(µ0, νj, ωj)

η

s1 s2

Local Form of Surface Neumann-Green’s Function

Using the expression for the surface Neumann-Green’s function (1) and introducing the local stretched
coordinates gives:

Gs(η, s1, s2;xj) =
1

2πρε
− H(xj)

4π
log

ε

2
+ g0(η, s1, s2;xj) + ε log

ε

2
g1(η, s1, s2;xj) +O(ε),

where ρ =
√
η2 + s2

1 + s2
2 and g0 and g1 are bounded functions depending on the geometry at xj.

Method of Matched Asymptotic Expansions

The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem.

Inner Problem (near xj)

I Local stretched coordinates (η, s1, s2).

I w(η, s1, s2) ∼ 1

ε
w0 + log

ε

2
w1 + w2 +O(ε).

I Domain: η ≥ 0, s1, s2 ∈ R.

I Linear PDE: ∆(η,s1,s2)wk = δk2Lw0.

(L is a second-order linear differential operator.)

I Boundary Conditions:

∂ηwk = 0, η = 0, s2
1 + s2

2 ≥ a2
j,

wk = 0, η = 0, s2
1 + s2

2 ≤ a2
j.

Outer Problem (far from xj)

I Global coordinates (µ, ν, ω).

I v(µ, ν, ω) ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 +O(ε).

I Domain: (µ, ν, ω) ∈ Ω.

I PDE: ∆vk = − 1

D
δk1.

I Boundary Conditions:

∂nvk = 0, x ∈ ∂Ω \ {x1, ...,xN}.

Matched Asymptotic Expansions Condition

1

ε
w0 + log

ε

2
w1 + w2 + · · · ∼ 1

ε
v0 + v1 + ε log

ε

2
v2 + εv3 + · · · .

I Collect like coefficients of ε and sequentially solve for wk and vk using the inner problem, the outer
problem, and the matching condition.

Proposed Asymptotic Solutions for MFPT and Average MFPT

I Assumptions: g1 = 0 and w2 ∼
v0bj
ρ

.

I MFPT:

v(x) =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
− 2πε

∑N
j=1 cjGs(x,xj)

+
2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

∑N
j=1 bj +O(ε2 log ε)

]
.

I Average MFPT:

v̄ =
|Ω|

2πεDNc̄

[
1− ε log

(
ε

2

)∑N
j=1 c

2
jH(xj)

2Nc̄
+

2πε

Nc̄
p̃c(x1, ...,xN )− ε

Nc̄

N∑

j=1

bj +O(ε2 log ε)

]
.

I p̃c(x1, ...,xN ) is a modified version of pc(x1, ...,xN ) for the sphere, depending only on Gs(xi,xj).

I bj is modified version of κj for the sphere, determined by the far field behaviour of w2.

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.

I Provide range of local curvatures.

I Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

I Finite element PDE solver.

I Tetrahedral mesh.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

COMSOL Mesh Refinement Example

Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps Biconcave Disk with Three Traps

Results for Three Traps of Different Sizes

Prolate Spheroid
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Biconcave Disk
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Conclusions

I Expressions for the MFPT and average MFTP were developed for a more general class of three
dimensional domains.

I The average MFPT values following from the proposed asymptotic formulae were found to be in close
agreement with numerical simulation results.

Future Research

I Comparison to numerical simulation for a more extensive variety of geometries.

I Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas.

I Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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