Narrow Escape Problems in 3D Domains

Daniel Gomez and Alexei F. Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan

Motivation/Application

- Numerous biological processes involve the transport of particles from a cell through its membrane:
- ► RNA transport through nuclear pores.
- ▶ Passive diffusion of molecules (e.g. CO_2 and O_2) through cell membrane.
- Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells). Typical size of transport regions is $\sim 0.1\%$ relative to overall cell size.

The Narrow Escape Problem

The Narrow Escape Problem (NEP) consists in finding the mean first passage time (MFPT) for a particle undergoing Brownian motion to escape an enclosing three-dimensional domain.

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps

Singer, Schuss, and Holcman Approximation

When Ω is a general three-dimensional domain, previous results are limited to the case of one trap $\partial \Omega_{\epsilon}$ of radius ϵ (i.e. a = 1) located at \mathbf{x}_0 [4]. Surface-Neumann Green's Function:

$$G_s(\mathbf{x}, \mathbf{x}_0) = \frac{1}{2\pi |\mathbf{x} - \mathbf{x}_j|} - \frac{H(\mathbf{x}_0)}{4\pi} \log |\mathbf{x} - \mathbf{x}_0| + v_s(\mathbf{x}, \mathbf{x}_0),$$

Proposed Asymptotic Solutions for MFPT and Average MFPT

STUDC

 $\triangleright \tilde{p}_c(\mathbf{x}_1, ..., \mathbf{x}_N)$ is a modified version of $p_c(\mathbf{x}_1, ..., \mathbf{x}_N)$ for the sphere, depending only on $G_s(\mathbf{x}_i, \mathbf{x}_j)$. \blacktriangleright b_i is modified version of κ_i for the sphere, determined by the far field behaviour of w_2 .

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk

COMSOL Mesh Refinement Example

Biconcave Disk with Three Traps

Dirichlet-Neumann Boundary Value Problem [3]:

$$\Delta v(\mathbf{x}) = -\frac{1}{D}, \ \mathbf{x} \in \Omega;$$
$$\partial_n v(\mathbf{x}) = 0, \ \mathbf{x} \in \partial \Omega \setminus \bigcup_j \partial \Omega_{\epsilon_j}; \qquad v(\mathbf{x}) = 0, \ \mathbf{x} \in \bigcup_j \partial \Omega_{\epsilon_j}$$

Asymptotic Solutions

- The boundary value problem (1) does not admit a known analytic solution. Difficulties arise because of the strongly heterogeneous boundary conditions.
- Instead focus on finding high-order asymptotic approximations. Benefits of asymptotic solutions over numerical methods include:
- ► Faster computation times.
- Properties of exact solutions can be extracted.

Asymptotic approximations are of the form

$$v(\mathbf{x}) \sim \epsilon^{-1} v_0(\mathbf{x}) + v_1(\mathbf{x}) + \epsilon \log\left(\frac{\epsilon}{2}\right) v_2(\mathbf{x}) + \epsilon v_3(\mathbf{x}) + \dots$$

where ϵ is the order of magnitude of trap sizes.

Surface Neumann-Green's Function

Of critical importance to the NEP is the surface Neumann-Green's Function, $G_s(\mathbf{x}, \mathbf{x}_i)$, satisfying

where $v_s(\mathbf{x}, \mathbf{x}_i)$ is an unknown bounded function of $\mathbf{x}, \mathbf{x}_i \in \Omega$. ► Average MFPT:

- Limitations of this approach are:
- Approximation is only valid for one absorbing window.
- ► No asymptotic expression for the (non-averaged) MFPT is given.
- Error bound of $\mathcal{O}(\epsilon)$ is worse than that for sphere.

Singer, Schuss, and Holcman Approximation for Oblate Spheroid with One Trap

Oblate Spheroid with One Trap

Towards a Wider Class of Three-Dimensional Domains

Consider a class of 3D domains where boundary is a coordinate surface for some orthonormal coordinate

Provide range of local curvatures. Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

- ► Finite element PDE solver.
- Tetrahedral mesh.

geometries.

Numerical results for two and three traps of equal and different sizes compared to proposed multi-trap approximation in MATLAB.

Oblate Spheroid with Three Traps

Prolate Spheroid with Three Traps

Results for Three Traps of Different Sizes

Using the method of matched asymptotic expansions, the surface Neumann-Green's function appears in the expression for the MFPT as

$$v(\mathbf{x}) = \bar{v} + \sum_{j=1}^{N} k_j G_s(\mathbf{x}; \mathbf{x}_j), \qquad \qquad k_j = \text{ const.}$$

The Unit Sphere

The special case when Ω is a unit sphere with N holes of radii ϵa_i centred at \mathbf{x}_i respectively yields numerous results [1].

Surface Neumann-Green's Function:

Mean First Passage Time:

► Average MFPT:

system (μ, ν, ω) . Then assume the coordinate surface is $\mu = \mu_0$.

- Examples: spheres, spheroids, ellipsoids, surfaces of rotation.
- ▶ N traps located at (μ_0, ν_j, ω_j) for
- j = 1, ..., N.
- $h_{\mu}, h_{\nu}, h_{\omega}$: scale factors of particular coordinate system.
- Local stretched coordinates:

Local Form of Surface Neumann-Green's Function

Using the expression for the surface Neumann-Green's function (1) and introducing the local stretched coordinates gives:

$$G_s(\eta, s_1, s_2; \mathbf{x}_j) = \frac{1}{2\pi\rho\epsilon} - \frac{H(\mathbf{x}_j)}{4\pi}\log\frac{\epsilon}{2} + g_0(\eta, s_1, s_2; \mathbf{x}_j) + \epsilon\log\frac{\epsilon}{2}g_1(\eta, s_1, s_2; \mathbf{x}_j) + \mathcal{O}(\epsilon),$$

where $\rho = \sqrt{\eta^2 + s_1^2 + s_2^2}$ and g_0 and g_1 are bounded functions depending on the geometry at \mathbf{x}_j .

Method of Matched Asymptotic Expansions

- The solution is formulated in terms of inner and outer solutions, each satisfying a corresponding problem.

 $(\mu_0,
u_j,\omega_j)$

 s_1

Conclusions

- Expressions for the MFPT and average MFTP were developed for a more general class of three dimensional domains.
- ► The average MFPT values following from the proposed asymptotic formulae were found to be in close agreement with numerical simulation results.

Future Research

Comparison to numerical simulation for a more extensive variety of geometries.

Inner Problem (near \mathbf{x}_j)	Outer Problem (far from \mathbf{x}_j)
Local stretched coordinates (η, s_1, s_2) .	► Global coordinates (μ, ν, ω) .
$w(\eta, s_1, s_2) \sim \frac{1}{\epsilon} w_0 + \log \frac{\epsilon}{2} w_1 + w_2 + \mathcal{O}(\epsilon).$	$\blacktriangleright v(\mu,\nu,\omega) \sim \frac{1}{\epsilon} v_0 + v_1 + \epsilon \log \frac{\epsilon}{2} v_2 + \epsilon v_3 + \mathcal{O}(\epsilon).$
Domain: $\eta \ge 0, s_1, s_2 \in \mathbb{R}$.	• Domain: $(\mu, \nu, \omega) \in \Omega$.
Linear PDE: $\Delta_{(\eta,s_1,s_2)}w_k = \delta_{k2}\mathcal{L}w_0.$	• PDE: $\Delta v_k = -\frac{1}{D}\delta_{k1}$.
($\mathcal L$ is a second-order linear differential operator.)	 Boundary Conditions:
Boundary Conditions:	$\partial_n v_k = 0, \qquad \mathbf{x} \in \partial \Omega \setminus \{\mathbf{x}_1, \dots, \mathbf{x}_N\}.$
$ \begin{array}{ll} \partial_\eta w_k = 0, & \eta = 0, \ s_1^2 + s_2^2 \geq a_j^2, \\ w_k = 0, & \eta = 0, \ s_1^2 + s_2^2 \leq a_j^2. \end{array} $	
Matched Asymptotic Ex	pansions Condition
$\frac{1}{\epsilon}w_0 + \log\frac{\epsilon}{2}w_1 + w_2 + \dots \sim \frac{1}{\epsilon}v_0$	$+v_1+\epsilon\log\frac{\epsilon}{2}v_2+\epsilon v_3+\cdots$.
Collect like coefficients of ϵ and sequentially solve f	or yy_1 and y_1 using the inner problem the outer

► Rigorous justification of assumptions used for proposed MFPT and average MFPT formulas. Study of dilute trap limit of homogenization theory for non-spherical domains [2].

References

[1] Alexei F. Cheviakov, Michael J. Ward, and Ronny Straube. An asymptotic analysis of the mean first passage time for narrow escape problems. II. The sphere. Multiscale Model. Simul., 8(3):836–870, 2010.

[2] Cyrill B. Muratov and Stanislav Y. Shvartsman. Boundary homogenization for periodic arrays of absorbers. *Multiscale Model. Simul.*, 7(1):44–61, 2008.

[3] Zeev Schuss.

Theory and applications of stochastic differential equations. John Wiley & Sons Inc., New York, 1980. Wiley Series in Probability and Statistics.

[4] A. Singer, Z. Schuss, and D. Holcman. Narrow escape and leakage of Brownian particles. *Phys. Rev. E (3)*, 78(5):051111, 8, 2008.

- Connect like coefficients of ϵ and sequentially solve for w_k and v_k using the inner problem, the outer problem, and the matching condition.