Optimal Arrangements and Homogenization Limit for Traps on the Sphere

Daniel J. Zawada and Alexei F. Cheviakov Department of Mathematics and Statistics, University of Saskatchewan

(11)

The Narrow Escape Problem

Consider a particle that undergoes Brownian motion while confined to the interior of a domain Ω . The boundary of this domain is made up of almost entirely a reflecting portion, $\partial \Omega_r$ and a relatively small absorbing portion, $\partial \Omega_a$. Define $v(\mathbf{x}), \mathbf{x} \in \Omega$ as the expectation time a particle will stay in the domain starting at point \mathbf{x} . Dirichlet-Neumann Boundary Problem

$\Delta v = -\frac{1}{D}, \mathbf{x} \in \Omega v = 0, \mathbf{x} \in \partial \Omega_a \partial_r v = 0, \mathbf{x} \in \partial \Omega_r,$
where D is the diffusion constant for the system.
Mean First Passage Time (MFPT):
$ar{v} = \int v(\mathbf{x}) d\mathbf{x}$
Applications

Optimal Trap Locations on the Unit Sphere

The optimal trap configuration corresponds to the minimized MFPT, or maximized diffusion rate. Examples of optimal configurations:

Using global optimization software (GANSO, LGO), results were computed up to N = 200. The computations take a long time since this is minimizing a function in (2N-3)-dimensional space.

The Topological Derivative

In [3], the notion of a topological derivative is developed. Consider a functional $\mathcal{J}: \Omega \mapsto \mathbb{R}$; define the topological derivative as

Simulation Results

Optimal trap locations were computed up to N = 400 in steps of 10.

The interaction energies from the simulation results were compared against a polynomial extrapolation of the N = 2..200 numerical results up to N=400:

N = 300

The Asymptotic Solution For the Unit Sphere

An asymptotic solution was derived for the unit sphere with traps located at x_i using the method of matched asymptotic expansions.

Assumptions:

- Small trap sizes, $\epsilon \ll 1$
- ▶ Well separated traps, $|\mathbf{x}_i \mathbf{x}_j| \ll \epsilon$

 $\bar{v} = \frac{|\Omega|}{4\epsilon DN} \left[1 + \frac{\epsilon}{\pi} \log\left(\frac{2}{\epsilon}\right) + \frac{\epsilon}{\pi} \left(-\frac{9N}{5} + 2(N-2)\log 2 + \frac{3}{2} + \frac{4}{N} \mathcal{H}(x_1, \dots, x_N) \right) \right]$ (3)

 $\mathcal{H}(x_1,\ldots,x_N)$ is the interaction energy defined by

 $\mathcal{H}(x_1, \dots, x_N) = \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(\frac{1}{|x_i - x_j|} - \frac{1}{2} \log |x_i - x_j| - \frac{1}{2} \log(2 + |x_i - x_j|) \right)$ (4)

More generally, for unequal trap lengths the MFPT was found to be

$$\bar{v} = \frac{|\Omega|}{2\pi\epsilon D N\bar{c}} \bigg[1 + \epsilon \log \bigg(\frac{2}{\epsilon}\bigg) \frac{\sum_{j=1}^{N} c_j^2}{2N\bar{c}} + \frac{2\pi\epsilon}{N\bar{c}} \mathcal{C}^T \mathcal{G} \mathcal{C} - \frac{\epsilon}{N\bar{c}} \sum_{j=1}^{N} c_j \kappa_j \bigg],$$
(5)

where c_i are the elements of the capacitance vector C, given by $c_i = 2a_i/\pi$ where $a_i\epsilon$ is the radius of the trap corresponding to index j. \bar{c} is the mean of the capacitance vector, and \mathcal{G} is the surface Green's function matrix given by

$$\mathcal{G}_{ij} = G_s(x_i; x_j) = \frac{1}{2\pi |x_i - x_j|} + \frac{1}{4\pi} \log \left(\frac{2}{1 - \cos \gamma + |x_i - x_j|} \right) - \frac{9}{20\pi} , i \neq j,$$

$$\mathcal{G}_{ii} = \frac{-9}{20\pi},$$
(6)

where $B_{\rho}(\mathbf{x})$ is a ball of radius ρ located at point $\mathbf{x} \in \Omega$.

• Example:

(1)

(2)

Topological Derivative for Narrow Escape on Unit Sphere

In our case the shape functional $\mathcal J$ is $\bar v$, the MFPT and $B_{
ho}({f x})$ is a trap of radius hocentered at point \mathbf{x} on the sphere.

► Topological derivative calculated using (5)

Simulation \mathcal{H} matches extrapolated numerical \mathcal{H} within 0.005%.

N^2 Conjecture

Asymptotic Motivation:

► In the limit of many traps we can approximate the sum of the trap square distances as an integral

$\sum |\mathbf{x}_i - \mathbf{x}_j|^2 \approx \frac{N^2}{8\pi} \int_0^\pi \int_0^{2\pi} (2 - 2\cos\theta) \cdot \sin\theta d\phi d\theta = N^2.$

(15)

(16)

We conjecture that for an arrangement of traps in the minimal energy configuration, $N^2 = \sum |x_i - x_j|^2$

The difference between N^2 and numerical/simulation \mathcal{H} was plotted up to N = 400:

Since the absolute differences were less than 0.01 for all computed N, we conclude that

where γ is the angle between traps \mathbf{x}_i and \mathbf{x}_j .

The Homogenization Problem

The homegenization problem deals with the limit of many equally spaced traps that cover a fixed percentage, σ , of the boundary. In this limit, it is possible to replace the Dirchlet-Neumann boundary conditions with an equivalent **Robin Boundary Condition Problem:**

 $\Delta v_H = -\frac{1}{D}, \quad v_H \in \Omega; \quad \epsilon \partial_r v_H + \kappa v_H = 0, \quad v \in \partial \Omega,$

where κ is a factor that depends on the geometry of the domain. This equation can be solved immediately for the sphere; from (2), one gets

 $\bar{v}_H = \frac{1}{15D} + \frac{1}{3D}\frac{\epsilon}{\kappa}.$

 \blacktriangleright \mathcal{H} can be estimated by replacing the sum with an integral over the sphere. One gets

 $\bar{v} \approx \frac{|\Omega|}{4\epsilon DN} \left[1 - \frac{\epsilon}{\pi} \log \epsilon + \frac{\epsilon N}{\pi} \left(\frac{1}{5} + \frac{4b_1}{\sqrt{N}} \right) \right].$

 κ without l

Comparison of Numerical H to Integral H

 κ with fitted b

(7)

(8)

(9)

Expect leading order term is correct.

• Consider leading order terms $\mathcal{H} \approx N^2 \frac{1}{2}(1 - \log 2) + b_1 N^{3/2}$ where b_1 is a constant.

We iterate this process to obtain a rough estimate for the minimum energy.

 \mathcal{F}_{i}

Application of Topological Derivative to Computation of Optimal Arrangements

For two particles, the interaction energy is a strictly decreasing function in terms of the separation distance $|\mathbf{x}_i - \mathbf{x}_j|$. We introduce the pseudo-force vector

$$\vec{F}_{ij} = \left(\frac{1}{|\mathbf{x}_i - \mathbf{x}_j|} - \log(|\mathbf{x}_i - \mathbf{x}_j|) - \log(2 + |\mathbf{x}_i - \mathbf{x}_j|)\right) \mathbf{e}_{ij}$$

And the total force on a trap \mathbf{x}_i is thus

$$= \sum_{j=1, j\neq i}^{N} \vec{F}_{ij}$$

We start by introducing a new particle in the point of the minimal topological derivative. Then we move each particle a distance proportional to $\vec{\mathcal{F}}_i$. Each particle is subsequently pushed back to the sphere in the normal direction. This process is iterated until a local energy minimum is achieved, which may or may not be the global energy minimum.

Testing the Simulation against Known Results

Results for the values of ${\cal H}$ from the above simulation were compared against the numerical global optimization results:

the conjecture holds at least for $N \leq 400$.

Conclusions

(13)

(14)

- An estimate of κ was obtained for the unit sphere.
- Simulation results shown to match previous results within 0.01% for the $N \ge 100$ region.
- Topological derivative-based Simulation provides a faster method of computing the optimal trap arrangement on the sphere.
- $N^2 \sum |\mathbf{x}_i \mathbf{x}_j|^2 < 0.01$ for all computed N.

Further Research Directions / Open Problems

- Rigorous derivation of κ for the homogenization limit.
- Simulation could be programmed with higher precision.
- ► Computing the topological derivative without the use of the asymptotic formula for *H*.
- Rigorous justification for N^2 conjecture.
- Asymptotic solution of the narrow escape problem for on an arbitrary domain $\Omega \in \mathbb{R}^3$.

References

[1] M. J. Ward A. F. Cheviakov and R. Straube.

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere.

SIAM Multiscale Modeling and Simulation, 2009.

[2] A. Peirce M. J. Ward, S. Pillay and T. Kolokolnikov.

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part I: Two-Dimensional Domains.

• Equate \bar{v} and \bar{v}_H in the limit $N \to \infty$ to estimate κ :

The topological derivative-based simulation showed to be accurate within 0.01% for

 $N \ge 100$. The simulation is naturally much faster compared to full global optimization.

SIAM Multiscale Modeling and Simulation, Vol. 8, No. 3, pp. 803-835., 2010.

[3] J. Sokolowski and A. Zochowski.

On the Topological Derivative in Shape Optimization. SIAM Journal on Control and Optimization, 1997.

Department of Mathematics and Statistics - University of Saskatchewan - Saskatoon, Saskatchewan