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The Narrow Escape Problem

Consider a particle that undergoes Brownian motion while confined to the interior of a
domain Ω. The boundary of this domain is made up of almost entirely a reflecting portion,
∂Ωr and a relatively small absorbing portion, ∂Ωa. Define v(x),x ∈ Ω as the expectation
time a particle will stay in the domain starting at point x.
Dirichlet-Neumann Boundary Problem

∆v = − 1
D ,x ∈ Ω v = 0 ,x ∈ ∂Ωa ∂rv = 0 ,x ∈ ∂Ωr, (1)

where D is the diffusion constant for the system.
Mean First Passage Time (MFPT):

v̄ =
∫
v(x)dx (2)

Applications

Biological Cell Nuclear Pore

I Nuclear export of
messenger RNA through
nuclear pores

I Recipricol of MFPT acts
as a first order rate
constant

The Asymptotic Solution For the Unit Sphere

An asymptotic solution was derived for the unit sphere with traps located at xi using the
method of matched asymptotic expansions.
Assumptions:

I Small trap sizes, ε� 1

I Well separated traps, |xi − xj| � ε
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H(x1, . . . , xN ) is the interaction energy defined by
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More generally, for unequal trap lengths the MFPT was found to be
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where cj are the elements of the capacitance vector C, given by cj = 2aj/π where ajε is
the radius of the trap corresponding to index j. c̄ is the mean of the capacitance vector,
and G is the surface Green’s function matrix given by
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where γ is the angle between traps xi and xj.

The Homogenization Problem

The homegenization problem deals with the limit of many equally spaced traps that cover
a fixed percentage, σ, of the boundary. In this limit, it is possible to replace the
Dirchlet-Neumann boundary conditions with an equivalent
Robin Boundary Condition Problem:

∆vH = − 1
D, vH ∈ Ω; ε∂rvH + κvH = 0, v ∈ ∂Ω, (7)

where κ is a factor that depends on the geometry of the domain. This equation can be
solved immediately for the sphere; from (2), one gets
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I H can be estimated by replacing the sum with an integral over the sphere. One gets

v̄ ≈ |Ω|
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Comparison of Numerical H to Integral H κ without b1 κ with fitted b1

I Expect leading order term is correct.

I Consider leading order terms H ≈ N2 1
2(1− log 2) + b1N

3/2 where b1 is a constant.

I Equate v̄ and v̄H in the limit N →∞ to estimate κ:

κ = 4σ
π+8b1

√
σ
. (10)

Fitting κ to the full numerical results for H gives us b1 = −0.3672, because of the
reasonable agreement shown above (3) provides a quick way to estimated v̄ in the high N ,
low σ limit.

Optimal Trap Locations on the Unit Sphere

The optimal trap configuration corresponds to the minimized MFPT, or maximized
diffusion rate. Examples of optimal configurations:

N = 5 N = 65 N = 200

Using global optimization software (GANSO, LGO), results were computed up to
N = 200. The computations take a long time since this is minimizing a function in
(2N − 3)-dimensional space.

The Topological Derivative

In [3], the notion of a topological derivative is developed. Consider a functional
J : Ω 7→ R; define the topological derivative as

T(x) = limρ→0
J (Ω\Bρ(x))−J (Ω)

|Bρ(x)|
, (11)

where Bρ(x) is a ball of radius ρ located at point x ∈ Ω.

I Example:

Ω Ω\Bρ(x)

Topological Derivative for Narrow Escape on Unit Sphere

In our case the shape functional J is v̄, the MFPT and Bρ(x) is a trap of radius ρ
centered at point x on the sphere.

I Topological derivative calculated using (5)
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I Optimal trap location
is when T(x) is
minimized

I Topological derivative
is minimized when∑N
j=1 Gj(N+1) is

minimized

Topological derivative on the surface of the sphere for
N = 4

Optimal trap placement (red) for possible N = 4
configuration (black)

We iterate this process to obtain a rough estimate for the minimum energy.

Application of Topological Derivative to Computation of Optimal
Arrangements

For two particles, the interaction energy is a strictly decreasing function in terms of the
separation distance |xi − xj|. We introduce the pseudo-force vector

~Fij =

(
1

|xi − xj|
− log(|xi − xj|)− log(2 + |xi − xj|)

)
eij (13)

And the total force on a trap xi is thus

~Fi =

N∑
j=1,j 6=i

~Fij (14)

We start by introducing a new particle in the point of the minimal topological derivative.
Then we move each particle a distance proportional to ~Fi. Each particle is subsequently
pushed back to the sphere in the normal direction. This process is iterated until a local
energy minimum is achieved, which may or may not be the global energy minimum.

Testing the Simulation against Known Results

Results for the values of H from the above simulation were compared against the
numerical global optimization results:

The topological derivative-based simulation showed to be accurate within 0.01% for
N ≥ 100. The simulation is naturally much faster compared to full global optimization.

Simulation Results

Optimal trap locations were computed up to N = 400 in steps of 10.

N = 200 N = 300 N = 400

The interaction energies from the simulation results were compared against a polynomial
extrapolation of the N = 2..200 numerical results up to N=400:

Simulation H matches extrapolated numerical H within 0.005%.

N2 Conjecture

Asymptotic Motivation:

I In the limit of many traps we can approximate the sum of the trap square distances as
an integral

∑
|xi − xj|2 ≈ N2

8π

∫ π
0

∫ 2π
0 (2− 2 cos θ) · sin θdφdθ = N2. (15)

We conjecture that for an arrangement of traps in the minimal energy configuration,

N2 =
∑
|xi − xj|2 (16)

The difference between N2 and numerical/simulation H was plotted up to N = 400:

Since the absolute differences were less than 0.01 for all computed N , we conclude that
the conjecture holds at least for N ≤ 400.

Conclusions

I An estimate of κ was obtained for the unit sphere.

I Simulation results shown to match previous results within 0.01% for the N ≥ 100
region.

I Topological derivative-based Simulation provides a faster method of computing the
optimal trap arrangement on the sphere.

I N2 −
∑
|xi − xj|2 < 0.01 for all computed N .

Further Research Directions / Open Problems

I Rigorous derivation of κ for the homogenization limit.

I Simulation could be programmed with higher precision.

I Computing the topological derivative without the use of the asymptotic formula for H.

I Rigorous justification for N2 conjecture.

I Asymptotic solution of the narrow escape problem for on an arbitrary domain Ω ∈ R3.
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