The Narrow Escape Problem
Consider a particle that undergoes Brownian motion while confined to the interior of a domain Ω. The boundary of this domain is made up of almost entirely a reflecting portio $\partial \Omega_{r}$ and a relatively small absorbing portion, $\partial \Omega_{a}$. Define
Dirichlet-Neumann Boundary Problem
$\Delta v=-\frac{1}{D}, \mathbf{x} \in \Omega \quad v=0, \mathbf{x} \in \partial \Omega_{a} \quad \partial_{r} v=0, \mathbf{x} \in \partial \Omega_{r}$,
where D is the diffusion constant for the system
Mean First Passage Time (MFPT):

$$
\bar{v}=\int v(\mathbf{x}) d \mathbf{x}
$$

Applications

Nuclear export of messenger RNA through nuclear pores Recipricol of MFPT acts as a first order rate constant
The Asymptotic Solution For the Unit Sphere

An asymptotic solution was derived for the unit sphere with traps located at \mathbf{x}_{i} using the method of matched asymptotic expansions.
Assumptions:

- Well separated traps, $\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right| \ll \epsilon$
$\bar{v}=\frac{|\Omega|}{4 \epsilon D N}\left[1+\frac{\epsilon}{\pi} \log \left(\frac{2}{\epsilon}\right)+\frac{\epsilon}{\pi}\left(-\frac{9 N}{5}+2(N-2) \log 2+\frac{3}{2}+\frac{4}{N} \mathcal{H}\left(x_{1}, \ldots, x_{N}\right)\right)\right]$ $\mathcal{H}\left(x_{1}, \ldots, x_{N}\right)$ is the interaction energy defined by
$\mathcal{H}\left(x_{1}, \ldots, x_{x}\right)=\sum_{i=1}^{N} \sum_{j=1+1}^{N}\left(\left.\frac{1}{\left|x_{i}-x_{j}\right|}-\frac{1}{2} \log \left|x_{i}\right| x_{i}-x_{j} \right\rvert\,-\frac{1}{2} \log \left(2+\left|x_{i}-x_{j}\right|\right)\right)(4)$ More generally, for unequal trap lengths the MFPT was found to be

$$
\bar{v}=\frac{|\Omega|}{2 \pi \epsilon D N \bar{c}}\left[1+\epsilon \log \left(\frac{2}{\epsilon}\right) \frac{\sum_{j=1}^{N} c_{j}^{2}}{2 N \bar{c}}+\frac{2 \pi \epsilon}{N \bar{c}} \mathcal{C}^{T} \mathcal{G C}-\frac{\epsilon}{N \bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j}\right],
$$

where c_{j} are the elements of the capacitance vector \mathcal{C}, given by $c_{j}=2 a_{j} / \pi$ where $a_{j} \epsilon$ is the radius of the trap corresponding to index $j . \bar{c}$ is the mean of the capacitance vector, and \mathcal{G} is the surface Green's function matrix given by

```
\(\mathcal{G}_{i j}=G_{s}\left(x_{i} ; x_{j}\right)=\frac{1}{2 \pi\left|x_{i}-x_{j}\right|}+\frac{1}{4 \pi} \log \left(\frac{2}{1-\cos \gamma+\left|x_{i}-x_{j}\right| \mid}\right)-\frac{9}{20 \pi}\)
```

$\mathcal{G}_{i j}=G_{s}\left(x_{i} ; x_{j}\right)=\frac{1}{2 \pi\left|x_{i}-x_{j}\right|}+\frac{1}{4 \pi} \log \left(\frac{2}{1-\cos \gamma+\left|x_{i}-x_{j}\right| \mid}\right)-\frac{9}{20 \pi}$
$\mathcal{G}_{i i}=\frac{-9}{20 \pi}$,

```
                        \(\mathcal{G}_{i i}=\frac{-9}{20 \pi}\),
```

where γ is the angle between traps \mathbf{x}_{i} and \mathbf{x}_{j}.

The Homogenization Problem

The homegenization problem deals with the limit of many equally spaced traps that cover a fixed percentage, σ, of the boundary. In this limit, it is possible to replace the Dirchlet-Neumann boundary conditions with an equivalent
Robin Boundary Condition Problem

$$
\Delta v_{H}=-\frac{1}{D}, \quad v_{H} \in \Omega ; \quad \epsilon \partial_{r} v_{H}+\kappa v_{H}=0, \quad v \in \partial \Omega,
$$

where κ is a factor that depends on the geometry of the domain. This equation can be solved immediately for the sphere; from (2), one gets

$$
\bar{v}_{H}=\frac{1}{15 D}+\frac{1}{3 D} \frac{\epsilon}{\kappa} .
$$

- \mathcal{H} can be estimated by replacing the sum with an integral over the sphere. One gets
$\bar{v} \approx \frac{|\Omega|}{4 \epsilon D N}\left[1-\frac{\epsilon}{\pi} \log \epsilon+\frac{\epsilon N}{\pi}\left(\frac{1}{5}+\frac{4 b_{1}}{\sqrt{N}}\right)\right]$.
- Expect leading order term is correct.
- Consider leading order terms $\mathcal{H} \approx N^{2} \frac{1}{2}(1-\log 2)+b_{1} N^{3 / 2}$ where b_{1} is a constant. - Equate \bar{v} and \bar{v}_{H} in the limit $N \rightarrow \infty$ to estimate κ :

$$
\alpha=\frac{4 \pi}{\pi+5 \cdot \sqrt{0}}
$$

Fitting κ to the full numerical results for \mathcal{H} gives us $b_{1}=-0.3672$, because of the reasonable agreement shown above (3) provides a quick way to estimated \bar{v} in the high N

Using global optimization software (GANSO, LGO), results were computed up to $N=200$. The computations take a long time since this is minimizing a function in ($2 N-3$)-dimensional space.
$\operatorname{In}[3]$, the notion of a topological derivative is developed. Consider a functional $\mathcal{J}: \Omega \mapsto \mathbb{R}$; define the topological derivative as

$$
\mathfrak{T}(\mathbf{x})=\lim _{\rho \rightarrow 0} \frac{\mathcal{J}\left(\Omega \backslash \overline{\overline{S \rho}_{\rho}(\mathbf{x})}\right)-\mathcal{J}(\Omega)}{\left|\overline{B_{\rho}(\mathbf{x})}\right|},
$$

where $B_{\rho}(\mathbf{x})$ is a ball of radius ρ located at point $\mathbf{x} \in \Omega$
Example:

Topological Derivative for Narrow Escape on Unit Sphere
In our case the shape functional \mathcal{J} is \bar{v}, the MFPT and $B_{\rho}(\mathbf{x})$ is a trap of radius ρ centered at point x on the sphere

Topological derivative calculated using (5)
$\mathfrak{T}(\mathrm{x})=\frac{|\Omega|}{2 \pi \epsilon D N \bar{c}}\left[-\log \left(\frac{2}{\epsilon}\right)\left(\frac{1}{\pi N^{2}}\right)+\frac{3-4 \log 2}{2 \pi N^{2}}+\frac{8 N \sum_{j=1}^{N} \mathcal{G}_{j(N+1)}-4 \sum_{i, j}^{N} \mathcal{G}_{i j}}{N^{2}}\right]$
Optimal trap location
is when $\mathfrak{T}(x)$
minimized
Topological derivative
is minimized when
$\sum_{j=1} \mathcal{H}_{j(N}$
minimized

Application of Topological Derivative to Computation of Optimal

Arrangements
For two particles, the interaction energy is a strictly decreasing function in terms of the separation distance $\left|\mathrm{x}_{i}-\mathrm{x}_{j}\right|$. We introduce the pseudo-force vector

$$
\overrightarrow{r i}_{i j}=\left(\frac{1}{x_{i}-x_{i j}}-\log \left(\left|x_{i}-x_{j}\right|\right)-\log \left(2+\left|x_{i}-x_{j}\right|\right)\right)_{e_{i j}}
$$

And the total force on a trap x_{i} is thus

$$
\vec{F}_{i}=\sum_{j=1, j e}^{N} \vec{F}_{i j}
$$

We start by introducing a new particle in the point of the minimal topological derivative. Then we move each particle a distance proportional to $\overrightarrow{\mathcal{F}}_{i}$. Each particle is subsequently pushed back to the sphere in the normal direction. This process is iterated until a

Testing the Simulation against Known Results

Results for the values of \mathcal{H} from the above simulation were compared against the numerical global optimization results:

The topological derivative-based simulation showed to be accurate within 0.01% for $N \geq 100$. The simulation is naturally much faster compared to full global optimization.

Simulation Results

Optimal trap locations were computed up to $N=400$ in steps of 10

The interaction energies from the simulation results were compared against a polynomial extrapolation of the $N=2.200$ numerical results up to $\mathrm{N}=400$: 2.

Simulation \mathcal{H} matches extrapolated numerical \mathcal{H} within

Conjecture

Asymptotic Motivation:

- In the limit of many traps we can approximate the sum of the trap square distances as an integral
$\sum\left|x_{i}-\mathbf{x}_{j}\right|^{2} \approx \frac{N^{2}}{\delta_{\pi}} \int_{0}^{\pi} \int_{0}^{2 \pi}(2-2 \cos \theta) \cdot \sin \theta d d \theta \theta=N^{2}$.

We conjecture that for an arrangement of traps in the minimal energy configuration, $V^{2}=\sum\left|x_{i}-x_{j}\right|^{2}$
The difference between N^{2} and numerical/simulation \mathcal{H} was plotted up to $N=400$:

omen	- Usinamenemeial
${ }^{\text {oneo }}$	
Tyour	
toomb	
-	-
${ }_{\text {cose }}$	

Since the absolute differences were less than 0.01 for all computed N, we conclude that the conjecture holds at least for $N \leq 400$.
Conclusions

- An estimate of κ was obtained for the unit sphere.
- Simulation results shown to match previous results within 0.01% for the $N \geq 100$
region.
- Topological derivative-based Simulation provides a faster method of computing the
optimal trap arrangenent on the sphere.
- $N^{2}-\sum\left|\mathbf{x}_{i}-\mathrm{x}_{j}\right|^{2}<0.01$ for all computed N.
Further Research Directions / Open Problems
- Rigorous derivation of κ for the homogenization limit.
- Simulation could be programmed with higher precision.
- Computing the topological derivative wwithout the use of the asymptotic formula for \mathcal{H}.
- Rigorous justification for N^{2} conjecture.
- Asymptotic solution of the narrow escape problem for on an arbitrary domain $\Omega \in \mathbb{R}^{3}$.
References
Rer M. J. Ward A. F. Cheviakov and R. Straube.
[1]
An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems:
Part II: The Sphere.
SIAM Multiscale Modeling and Simulation, 2009.
[2] A. Peirce M. J. Ward, S. Pillay and T. Kolokolnikov.
An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems:
Part I: Two-Dimensional Domains.
SIAM Multiscale Modeling and Simulation, Vol. 8, No. 3, pp. 803-835., 2010.
[3] J. Sokolowski and A. Zochowski.
On the Topological Derivative in Shape Optimization.
SIAM Journal on Control and Optimization, 1997.

Simulation results as obtained for the unit sphere.
region.
Topological derivative-based Simulation provides a faster method of computing the optimal trap arrangement on the sphere

Further Research Directions / Open Problems

- Rigorous derivation of κ for the homogenization limit.
- Simulation could be programmed with higher precision.
- Computing the topological derivative without the use of the asymptotic formula for Rigorous justification for N^{2} conjecture.

References

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere.
SAMM Multiscale Modeling and Simulation, 2000.
A. Peirce M. J. Ward, S. Pillay and T. Kolokolnikov

An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems
Part I: Two-Dimensional Domains.
PaM Multiscale Modeling and Simulation Vol. 8, No. 3, pp. 803-835, 2010.
On the Topological Derivative in Shape Optimization.
SIAM Journal on Control and Optimization, 1997.

