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Motivation & Application Areas

Bubble flow: a two-phase flow; small bubbles are dispersed or suspended in liquid continuum.

I General interest: bubbles change flow dynamics by increasing or decreasing local turbulence.

I A specific application: bubble regime of laminar magma flow in a volcanic conduit.
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A schematic of magma flow regimes in a volcanic conduit [2].

Dynamics of a Single Gas Bubble
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R(t) is the radius of the bubble; P = P1(t), P2(t) denote the
pressure of fluid and gas; T1(t), T2(t), the temperature of fluid
and gas; P0, T0 and R0 are the initial values of gas pressure,
temperature, and the gas bubble radius; ρ1 is the mass density
of the liquid; ν is the fluid kinematic viscosity coefficient; γ is
the adiabatic constant; χ is the gas thermal conduction
coefficient; Nu is the dimensionless Nusselt number (relative
thickness of the thermal layer).

Gas bubble dynamics equations:

I The Rayleigh equation: single bubble radius dynamics [3]
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I Pressure equation, from conservation of energy and assumption that Nusselt number is constant:
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I Ideal gas relationship:
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I Derivatives are denote by subscripts: ∂P2/∂t = (P2)t, etc.

Dynamics of a Fluid with Gas Bubbles
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Main assumptions:

I Quantities depend on space and time (R = R(x, t), P = P (x, t), etc.).

I Fluid temperature is constant: T1 = T0.

I The bubble radius is a small deviation from its average:

R(x, t) = R0 + η(x, t). (2)

From these assumptions and (1), the following PDE is obtained (cf. [1]):
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where
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.

Density of the fluid mixture:

ρ =
ρ1

1−X + V̂ ρ1
, (4)

where V̂ is the relative volume of gas (gas volume per unit mass of mixture) and X is the relative mass
content of gas (mass of gas per unit mass of mixture).

Fundamental equations of fluid dynamics:

The standard Euler equations that describe fluid dynamics are also used:

ρt + (ρu)x = 0, (5)

ρ(ut + uux) + Px = 0. (6)

A Dimensionless Model for the Fluid with Gas Bubbles

We recast the model (2) – (6) into the dimensionless form, using the substitution

t =
`

c0
t′, x = `x′, u = c0u

′, η = R0η
′, P = P0P

′ + P0, (7)

where ` is the characteristic wavelength, and c0 =
√
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is the characteristic wave speed. The primes on

the new variables will be dropped for convenience.

Making the substitutions, we arrive at the following dimensionless model for a fluid with gas
bubbles:
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and V0, X0 are the average relative volume and mass content of gas.

An Asymptotic Approximation

Rescale the independent variables:

ξ = εm(x− t), τ = εm+1t, 0 < ε� 1, m > 0. (9)

I ξ: a large-scale moving spatial variable (ξ ∼ 1 when x ∼ ε−m� 1)

I τ : ‘slow time’.

Assume a standard asymptotic expansion of flow parameters near the equilibrium:

u = εu1 + ε2u2, η = εη1 + ε2η2, P = εP1 + ε2P2. (10)

I (9), (10) are substituted in (8).

I Various m can be chosen.

I Coefficients at different powers of ε must vanish independently.

I Obtain a single PDE on P1(ξ, τ ): a scaled, dimensionless pressure perturbation.

Case A: m = 1

In this case, we arrive at the Burgers’ equation

P1τ + A1P1P1ξ +B1P1ξξ = 0, (11)
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A change of variables

ξ =

(
B1

2

A1

)1
3

x, τ = −
(
B1

A1
2

)1
3
t, P1(ξ, τ ) = −

(
B1

A1
2

)1
3
u(x, t) (12)

maps (11) into the standard form

ut + uux = uxx. (13)

Case B: m = 1
2

In this case, we arrive at the PDEs
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When C2 = 0, a change of variables
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maps (14) into a canonical Korteweg - de Vries (KdV) equation

ut + 6uux + uxxx = 0. (17)

Other Cases and Further Work

Physical motivations were not considered in the choosing of m. Cases m = 1 and m = 1
2 work well with

the Taylor expansion (10). Some other cases of m that were tried yielded results that were similar
(differed by a term) to the cases m = 1 and m = 1

2, while other cases were degenerate.

In particular, in both Cases (A) and (B), a determining equation was found that gave the relationship
between P1 and η1 as:

P1 + 3η1 = 0 (18)

I Physically, η1 is the dimensionless scaled radius perturbation of the gas bubbles. The meaning of the
relationship (18) is that higher pressure leads to lower bubble radius.

I It remains to systematically study the case of general m and its compatibility with more general
asymptotic expansions (10), which will possibly lead to more general nonlinear PDE models.

Traveling Wave Solutions of the Burgers Equation

One can obtain particular solutions of (13) and (17) using the traveling wave ansatz: u(x, t) = g(z)
where z = x− ct. This approach is based on symmetries of PDEs, and is useful in many cases, since a
PDE can be reduced to a much simpler ODE. For example, the Burgers equation reduces to the following
ODE:

− cg′(z) + g(z)g′(z)− g′′(z) = 0. (19)

The latter can be solved by integrating twice:
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, (20)

where α and β are arbitrary constants, and c = 1
2(α + β). Assuming α > β, one observes that α is the

top of the waveform and β is its bottom.
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Traveling wave solution for the Burgers equation (13).

One-Soliton Solution of the KdV equation

We use travelling wave ansatz for the KdV, reducing it to an ODE. The latter admits the well-known
solitary wave-type exact solutions

u(x− ct) = g(z) =
c

2 cosh2
(
−
√
c
2 z
), (21)

where c, the wave’s speed, is an arbitrary constant. (21) is known as a single-soliton travelling wave
solution for the KdV equation.
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Travelling wave soliton solution of the KdV equation.

Multi-Soliton Solutions of the KdV equation

Multi-soliton solutions exist for (17); a two-soliton solution, for example, is given by
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where k1 and k2 are constants.

I KdV is an integrable
equation.

I Nonlinear solitary
waves interact like
particles.

I Higher waves have
higher speeds.
Increasing c in (21)
will increase the
wave’s speed and
height.

0

1

2

0

1

2

0

1

2

9

-10 0 10 20 30 40 50
0

1

2

t = 1

t = 0

t = 5

t = 10

Evolution of a two soliton solution when k1 =
1
2 and k2 = 1.

Conclusions & Future Work

Boat following a solitary wave
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I Solitons on water surface are
straightforward to reproduce in shallow
constant-depth channels.

I Stable solitary wave-type arise for various
nonlinear models, including fluid dynamics,
plasma physics, and nonlinear optics, and
are observed in laboratory and numerical
experiments.

I It has been shown that the classical
Burgers’ and KdV equations arise in the
context of bubble flow dynamics.

I Ongoing work: consider more general
asymptotic expansions of the form (9), (10)
to model a wider range of physical
situations for the bubble flows.

References

[1] N.A. Kudryashov and D.I. Sinelshchikov.
Nonlinear waves in bubbly liquids with considersation for viscosity and heat transfer.
Physics Letters A, 374:2011–2016, 2010.

[2] O. Melnik, A.A. Barmin, and R.S.J. Sparks.
Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through
permeable magma.
Journal of volcanology and geothermal research, 143:53–68, 2005.

[3] V.E. Nakoryakov, B.G. Pokusaev, and I.R. Shreiber.
Wave propagation in gas-liquid media.
CRC Press, 1993.

Department of Mathematics and Statistics - University of Saskatchewan - Saskatoon, Saskatchewan


