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A Dimensionless Model for the Fluid with Gas Bubbles

Motivation & Application Areas Traveling Wave Solutions of the Burgers Equation

Bubble flow: a two-phase flow; small bubbles are dispersed or suspended in liquid continuum. We recast the model (2) — (6) into the dimensionless form, using the substitution One can obtain particular solutions of (13) and (17) using the traveling wave ansatz: u(z,t) = g(z)
_ _ _ _ . ¢, , p , , where z = x — ct. This approach is based on symmetries of PDEs, and is useful in many cases, since a
» General interest: bubbles change flow dynamics by increasing or decreasing local turbulence. t = C—Ot , x=Vlx, u=cyou, n=Rym, P=PFPFP +F), (7) PDE can be reduced to a much simpler ODE. For example, the Burgers equation reduces to the following
» A specific application: bubble regime of laminar magma flow in a volcanic conduit. | o SE o _ ODE:
where £ is the characteristic wavelength, and ¢y = \/m is the characteristic wave speed. The primes on — g’ (2) + g(2)d(2) — ¢"'(2) = 0. (19)

the new variables will be dropped for convenience. The latter can be solved by integrating twice:

Making the substitutions, we arrive at the following dimensionless model for a fluid with gas
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e A A L
Dynamics of a Single Gas Bubble . s | We use travelling wave ansatz for the KdV, reducing it to an ODE. The latter admits the well-known

solitary wave-type exact solutions

An Asymptotic Approximation

C
ST u(x —ct) =g(z) = ERAL (21)
R(t) is the radius of the bubble; P = Pj(t), P»(t) denote the == Rescale the independent variables: 2 cosh (_72)
pressure of fluid and gas; T(?), T({), the temperature of fluic {=c"x—1), T= 5m+1ta 0<el, m>0. (9) where ¢, the wave's speed, is an arbitrary constant. (21) is known as a single-soliton travelling wave

and gas; Fy, 1 and R are the initial values of gas pressure,
temperature, and the gas bubble radius; p; is the mass density
of the liquid; v is the fluid kinematic viscosity coefficient; v is

» & a large-scale moving spatial variable (£ ~ 1 when z ~ 7" > 1) solution for the KdV equation.

» 7: 'slow time'.

the adiabatic constant;  is the gas thermal conduction = A
coefficient; Nu is the dimensionless Nusselt number (relative Assume a standard asymptotic expansion of flow parameters near the equilibrium: | I A LI u(x — cto)
gas: P(2) Ly thickness of the thermal layer). 5 ) ) , 5 |
: U=€cul+euy, nN=cn+en P=cP+eh. (10) Su— 3 1 = =u(z —ct1), t1 >t
Fluid: P.(2),T.(2) ‘
> (9), (10) are substituted in (8). -." ‘ u(z — cty), ty >t

Gas bubble dynamics equations: » Various m can be chosen.

» The Rayleigh equation: single bubble radius dynamics [3]

» Coefficients at different powers of £ must vanish independently.

Py= P+ p; (RRtt + ;RtQ + %RO . (1a) » Obtain a single PDE on P;(&, 7): a scaled, dimensionless pressure perturbation. Travelling wave soliton solution of the KdV equation.
» Pressure equation, from conservation of energy and assumption that Nusselt number is constant: Multi-Soliton Solutions of the KdV equation
37, 3xNu(y —1)

P —R To —1T7) =0 Nu = const. 1b . . . . . .

(Fa) + R i 2R? (T2 —=T1) =0, (16) Multi-soliton solutions exist for (17); a two-soliton solution, for example, is given by
» |deal gas relationship: _ _ ’ . w(e,t) = 2 (cosh (ki (4K:%t — )" ka%ks® — (cosh (ky (4 kit — 2))) ko' + (cosh (ky (4 ko2t — 2))) kit = (cosh (ks (4 ko2 — 2)))" ki 2ka? — k't + ki 2ky? (22)

TPy [ R 3 In this case, we arrive at the Burgers’ equation | (cosh (k1 (4t — ) ks cosh (ks (4t — ) — sinh (ks (4t — 7)) by sinth (ks (4 5%t — 7)) |
15 = ( ) : (1c) where k1 and k9 are constants.
Py \ Ry Py + AP P + B1Pige = 0, (11) : .

where

» Derivatives are denote by subscripts: 0P /0t = (P),, etc.

2 6k ) » KdV is an integrable di J\ t=0 -

equation.

. — 1 . 0 Nonlinear solitary L |
Dynamics of a Fluid with Gas Bubbles __ _ waves interact like ; | | | | |
A

particles.

maps (11) into the standard form Higher waves have

higher speeds. 0 — . .

Increasing c in (21)
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height.

Main assumptions:

» Quantities depend on space and time (R = R(x,t), P = P(x,t), etc.).

In this case, we arrive at the PDEs

» Fluid temperature is constant: 17 = 1j,.
P+ A2P1P1§ + BQP1§§§ = 0, Cgplf = 0, (14)

» The bubble radius is a small deviation from its average:

where .
R(x,t) = Ry +nlx,1). 1 fpRy Ry 1 B ( 2 o9 ) » Solitons on water surface are
o e A= 3 ( PO M t2) s 6(51 Th)s Co=(3m” = 3m7 4 51 ) (15) straightforward to reproduce in shallow
From these assumptions and (1), the following PDE is obtained (cf. [1]): When C5 = 0, a change of variables constant-depth channels.

E » Stable solitary wave-type arise for various
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P — P+ ﬁnP + %Pnt + kP + atl ??RJF w{)ﬁtt + PO By 5 M)nmt ¢ — 657 v T = (216BQ> ° LooPE,T) = (216BQ> . u(z, 1) (16) nonlinear models, including fluid dynamics,
! ! ! 31 As Ay’ Ao’ plasma physics, and nonlinear optics, and
+Pl<8V"3(3V —1)+9Ry%) n 4vpy n 2R - S3Hy o (3) maps (14) into a canonical Korteweg - de Vries (KdV) equation dre ol?served in laboratory and numerical
6 Ry’ "t 3R, "t Ry R0277 experiments.
4o kR _ 3 P+ ok + pir(3y + 4) — 0 ut _I_ 6““33 _I_ u.ﬁCCBQZ — O (17) » It has been shown that the classical

PO ROQW% PLAITIELE T PIRAY e = Burgers' and KdV equations arise in the

where context of bubble flow dynamics.

2Ry? Py
3x Nu(v—1)Ty Other Cases and Further Work

Kk = const = » Ongoing work: consider more general

: asymptotic expansions of the form (9), (10)
Boat following a solitary wave to model a wider range of physical
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situations for the bubble flows.

o

Physical motivations were not considered in the choosing of m. Cases m =1 and m = % work well with

the Taylor expansion (10). Some other cases of m that were tried yielded results that were similar

(differed by a term) to the cases m = 1 and m = % while other cases were degenerate.

Density of the fluid mixture:

P1
p = =, 4
1 - X+ Vp )

where V' is the relative volume of gas (gas volume per unit mass of mixture) and X is the relative mass
content of gas (mass of gas per unit mass of mixture).
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Pr+3m =0 (18)

Fundamental equations of fluid dynamics:

» Physically, 7 is the dimensionless scaled radius perturbation of the gas bubbles. The meaning of the

The standard Euler equations that describe fluid dynamics are also used: | |
relationship (18) is that higher pressure leads to lower bubble radius.

pt + (pu)z = 0, (5)

plug + uuy) + Py = 0. (6) » It remains to systematically study the case of general m and its compatibility with more general

asymptotic expansions (10), which will possibly lead to more general nonlinear PDE models.



