Mathematical Modelling of Narrow Escape Problems

University of SASKATCHEWAN

The asymptotic MFPT and asymptotic average MFPT are given by (2.43) and (2.44) respectively in [2]. The average MFPTs
were calculated lsing the difference between Green's Numerical and each numerical MFPT.

- From the companison of numerical and asymptotic solutions for 22 and 3D problems, it was determined that for the
considered examples, the asymptotic formulas have applicability ranges much wider than one might expect from

 The MFPT predicted by formulas (3), (4) in 2D agrees within $\sim 1 \%$ of the numerical solution when total trap
arclength is $\lesssim 0.1$ or t the unit suare and $\lesssim 0.6$ for the unit disk. The difference between the square ant
the arclength is $\lesssim 0.1$ for the unit square and $\lesssim 0.6$ for the unit disk. [The difference between the
the sphere can be a atributed to effects of corners. $]$ The MFPT predicted by formulas (3), (5) in 3D
total trap area ≤ 0.8 for the e total trap area ≈ 0.8 for the unit sphere. For two traps, the MFPT for the 2D disk and 3D spherical domain predicted by formulas (3), (4), and (5) agree
within $\sim 5 \%$ of the numerical solution when total separation distance $\gtrsim 10$ times the size of traps as within $\sim 5 \%$ of the numerical solution when total separation distance $\gtrsim 10$ times the size of traps as
governed sy above conclusions.
For the square domain, the formulas agree within $\sim 5 \%$ of the numerical solution when total separation For the square d
distance $\gtrsim 0.6$.
(2) We showed that the results for the 3D sphere can be generalized for a unit cube. It has been shown that the MFPT for the cubic domain can be approximately computed using both the truncated 3D Fourier series for the surface

References

A. F. Cheviakov, M. J. Ward, and R. Straube. An asymptotic analysis of the (3)
A. F. Cheviakov, M. J. Ward, and R. Straube. An asymptotic analysisis of the meen
problems:
Part II the sphere Multiscale Model. Simul. 8 (3), 836 - 870 (2010).

