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The Narrow Escape Problem

The narrow escape problem concerns the motion of a Brownian particle confined in a bounded domain Ω ∈ Rd (d = 2, 3 in two
or three space dimensions) whose boundary ∂Ω = ∂Ωr

⋃
∂Ωa is almost entirely reflecting (∂Ωr), except for small windows (traps,

∂Ωa), through which the particle can escape.

Applications

Pores in cell nuclei: Synaptic receptors on dendrites: Ion channels in cell membranes:

The Mathematical Model

The mean first passage time (MFPT), v(x), is defined as the
expectation value of the time taken for a Brownian particle starting initially
from some point x in a domain Ω to escape through any window on the
boundary ∂Ω. To find v(x), one must solve the

Dirichlet-Neumann boundary problem for MFPT v(x):

4v = − 1
D
, x ∈ Ω ,

v = 0, x ∈ ∂Ωa =
N⋃
j=1
∂Ωεj ; ∂nv = 0, x ∈ ∂Ωr.

(1)

Where D is the diffusivity coefficient (D = const or D = D(x)). A useful
quantity is the average MFPT defined as v̄.

I Average MFPT:

v̄ = 1
|Ω|

∫
Ω
v(x) dx = const. (2)
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problem in the limit when the measure of the absorbing set |∂Ωa| = O(ε) is asymp-
totically small, where 0 < ε � 1 measures the dimensionless radius of an absorbing
window.

It is well known (cf. [10], [15], [16]) that the MFPT v(x) satisfies a Poisson
equation with mixed Dirichlet–Neumann boundary conditions, formulated as

�v = − 1
D

, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr ,(1.1b)

where D is the diffusion coefficient associated with the underlying Brownian motion.
In (1.1), the absorbing set consists of N small disjoint absorbing windows ∂Ωεj cen-
tered at xj ∈ ∂Ω (see Figure 1). In our two-dimensional setting, we assume that the
length of each absorbing arc is |∂Ω| = εlj, where lj = O(1). It is further assumed
that the windows are well separated in the sense that |xi − xj | = O(1) for all i �= j.
With respect to a uniform distribution of initial points x ∈ Ω, the average MFPT,
denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1
|Ω|

∫

Ω

v(x) dx ,

where |Ω| denotes the area of Ω.

Fig. 1. Sketch of a Brownian trajectory in the two-dimensional unit disk with absorbing windows
on the boundary.

Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x), and that
of the average MFPT v̄, constitutes a singular perturbation problem. It is the goal
of this paper to systematically use the method of matched asymptotic expansions to
extend previous results on two-dimensional narrow escape problems in three main
directions: (i) to examine the effect on the MFPT of multiple absorbing windows
on the boundary, (ii) to provide both a two-term and an infinite-order logarithmic
asymptotic expansion for the solution v to (1.1) for arbitrary two-dimensional domains
with a smooth boundary, and (iii) to develop and implement a numerical method
to compute the surface Neumann Green’s function, which is required for evaluating
certain terms in the asymptotic results.
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1
D

, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1
|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

The Asymptotic Solution

Approximate asymptotic solutions have been obtained for some 2D and 3D domains using the method of matched
asymptotic expansions. The method consists of writing separate expansions of v(x) in terms of ε both near a trap and
away from a trap. The expansions are then matched in an intermediate region (see Refs. [1, 2]). Some examples of such
solutions are presented here.

I Assumptions:

I Domain size L = diam Ω ∼ 1.

I Small parameter: ε� 1; trap sizes ∼ ε.

I Traps are well-separated: |xi − xj| � ε.

The Asymptotic MFPT in a 2D Domain

The leading-term asymptotic behaviour for the MFPT in a 2D domain Ω with N equal length ε sized traps located at x1, ..., xN ,
is given by [1]:

v(x) ∼ v̄ − |Ω|
ND

N∑
i=1
G(x;xi), (3)

|Ω| is the measure of Ω, and G(x;xi) is the corresponding surface Neumann Green’s function. In the vicinity of the trap xi,
the 2D Green’s function behaves like

G(x;xi) ∼ −
1
π

log |x− xi| + R(xi;xi).

Here R(xi;xi) is the regular part of the Green’s function. Let

G ≡



R1 G12 · · · G1N
G21 R2 · · · G2N... ... . . . ...
GN1 · · · GN,N−1 RN


be the symmetric Green’s function matrix; Gij ≡ G(xi;xj); Ri ≡ R(xi;xi). Then the average MFPT v̄ for ε� 1 is given by

v̄ ∼ |Ω|
πNDµ

+ |Ω|
N 2D

p(x1, ..., xN) +O(µ), µ ≡ − 1
log(ε`/4)

, (4)

where the leading term depends on the total trap size, and in the second term

p(x1, ..., xN) =
N∑
i=1

N∑
j=1
Gij

is an interaction term, dependent on the mutual arrangement of traps. The above results may be generalized for situations
involving traps of non-equal sizes (see Refs. [1,2]).

Asymptotic Results: Unit Circle, Unit Square

I For the unit circle, the surface Green’s function and its regular part are given by

G(x;xi) ∼ −
1
π

log |x− xi| +
|x|2

4π
− 1

8π
, R(xi;xi) = 1

8π
, |xi| = 1.

I For the unit square, both G(x;xi) and R(xi;xi) can be expressed as rapidly converging infinite sums of logarithmic terms
(see Ref. [1]).

3D Domains: The Unit Sphere

In [2], it has been independently shown that the mean first passage time (MFPT) formula (3), also applies to 3-dimensional
domains. For N identical circular windows of radius ε located at points xi on the unit sphere (|xi| = 1), the MFPT and the
average MFPT for a Brownian particle are given by

v(x) ∼ v̄ − |Ω|
ND

N∑
i=1
Gs(x;xi),

Where the spherical surface Neumann-Green’s function is given by:

Gs(xi;xj) = − 9
20π

+ 1
2π

 1
|xi − xj|

− 1
2

log
[
sin2

(γij
2

)
+ sin

(γij
2

)] , cos(γij) = xi · xj
.
The average MFPT has the leading-term behaviour,

v̄ = |Ω|
4εDN

1 + ε

π
log

2
ε

 + ε

π

−9N
5

+ 2(N − 2) log 2 + 3
2

+ 4
N
H


+O(ε2 log ε)
]
.

(5)

The interaction term (interaction energy) H = H(x1, . . . , xN) (depending on the mutual arrangement of traps) is defined by

H(x1, . . . , xN) =
N∑
i=1

N∑
j=i+1

 1
|xi − xj|

− 1
2

log |xi − xj| −
1
2

log (2 + |xi − xj|)
 . (6)

The above results may be generalized for non-equally sized traps (see Ref. [2]). In particular, the interaction energy (6) is a
linear combination of Coulonb potential, logarithmic potential and an addtional logarithmic term.

The Unit Cube

For the unit cube, assuming that (3) holds, one needs to find the corresponding surface Neumann Green’s function to determine
the essential behaviour of the MFPT. For a single trap located at a point (0, y0, z0) in the plane x = 0, the Green’s function
satisfies the problem

4Gc = 1− 2δ(x)δ(y − y0)δ(z − z0) , −1 < x < 1, 0 < y, z < 1;

∂rGc = 0 at x = ±1, or y = 0, 1 or z = 0, 1,
∫ 1
−1 dx

∫ 1
0 dy

∫ 1
0 dz Gc = 0 .

The solution can be found in terms of a triple cosine Fourier series expansion in the double domain, and subsequently converted
into a double summation for faster convergence, using trigonometric identities (see Ref. [3]).

Asymptotic Solution: Applicability Study

For several 2D and 3D domains, we compare known asymptotic solutions of both the mean first passage time (MFPT) and
average MFPT with full numerical finite-difference solutions to experimentally establish applicability limits of the asymptotic
solutions.

We are interested in determining the
I maximal trap sizes,

I minimal trap separation distances,
for which the asymptotic solutions hold within reasonable precision.

For example, in the term O(µ) in formula (4), µ ∼ 0.01 only when ε . 10−40; in the term O(ε2 log ε) in formula (5),
ε2 log ε ∼ 0.01 only when ε . 0.06. We test whether the asymptotic formulas still hold outside these predicted ranges of ε.

The Numerical Method

We solve problem (1) in two and three dimensions numerically, using a variable-step first-order finite-difference numerical
method. For example, in the case of the unit square, the approximate solution at a grid point (xi, yj) is given by vij ≈ v(x, y).
The Laplacian differential operator is approximated by a finite difference operator:

4v(x, y) ≡
 ∂2

∂x2 + ∂2

∂y2

 v(x, y) ≈ (Λxx + Λyy) [vij],

Λxx[vij] ≡
(hx)−1

i (vi j+1 − vij)− (hx)−1
i−1(vij − vi j−1)

0.5((hx)i + (hx)i−1)
, similar for Λyy[vij].

The step sizes {(hx)i}, {(hy)j}, i = 1, ..., n, j = 1, ...,m, are chosen so that more grid points are produced near each trap than
far from traps. Normally, near 100 points per trap were taken.

Mesh refinement
illustration for a

2D square
domain:

Computations and plotting were done in Matlab.

2D Domain: Numerical vs. Asymptotic Results

Unit disk with seven equally spaced traps, each with a width of 2ε = 0.02.

Unit square with two traps separated by 0.5, each with a width of 2ε = 0.02.

2D Domain: Effects of Trap Size

Average MFPT for unit disk with one, two, and seven equally spaced traps with width 2ε = 0.02. For the three trap curve, two traps have width 2ε = 0.02 centred at π/2 and
3π/2 and one trap has width 6ε = 0.06 centred at π.

2D Domain: Effects of Trap Separation

For polar domain, separation distance is arc length. For square domain, separation distance is measured along one side.

3D Sphere and Effects of Trap Size

MFPT for unit sphere with one circular trap with radius ε = 0.01.

MFPT for unit sphere with four optimally placed circular traps with radius ε = 0.01.

Numerical average MFPT vs. asymptotic average MFPT given by (4).

Narrow Escape from a 3D Cube

Left: Numeric MFPT. Right: Numeric MFPT vs. Truncated Fourier Series of Green’s Function.

The asymptotic MFPT and asymptotic average MFPT are given by (2.43) and (2.44) respectively in [2]. The average MFPTs
were calculated using the difference between Green’s Numerical and each numerical MFPT.

Conclusions

1 From the comparison of numerical and asymptotic solutions for 2D and 3D problems, it was determined that for the
considered examples, the asymptotic formulas have applicability ranges much wider than one might expect from the
asymptotic formulas. In particular:

Percent difference between both numerical and asymptotic average MFPTs as a function of trap size.

Percent difference between both numerical and asymptotic average MFPTs as a function of trap separation.

I The MFPT predicted by formulas (3), (4) in 2D agrees within ∼ 1% of the numerical solution when total trap
arclength is . 0.1 for the unit square and . 0.6 for the unit disk. [The difference between the square and
the sphere can be attributed to effects of corners.]

I The MFPT predicted by formulas (3), (5) in 3D agrees within ∼ 1% of the numerical solution when
total trap area . 0.8 for the unit sphere.

I For two traps, the MFPT for the 2D disk and 3D spherical domain predicted by formulas (3), (4), and (5) agree
within ∼ 5% of the numerical solution when total separation distance & 10 times the size of traps as
governed by above conclusions.
For the square domain, the formulas agree within ∼ 5% of the numerical solution when total separation
distance & 0.6.

2 We showed that the results for the 3D sphere can be generalized for a unit cube. It has been shown that the
MFPT for the cubic domain can be approximately computed using both the truncated 3D Fourier series for the surface
Neumann Green’s function for the cube and formula (3).
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