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Motivation & Examples of Applications

Viscous fluid flows with gas bubbles: multiple applications, e.g.,

I laminar magma flows in volcanic conduits and subaerial lava flow fields;

I oil and freon flows; other industrial processes.
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The Mathematical Model

The state variables of the system are:

I P = P (x, t): pressure of the mixture.

I P2 = P2(x, t): pressure of the gas.

I ρ = ρ(x, t): density of the mixture.

I u = u(x, t): velocity of the mixture.

I R = R(x, t): radius of the gas bubbles.

Constant parameters:

I µ: dynamic viscosity of the mixture,

I ρl: density of the liquid,

I γ: ratio of the specific heats,

I h: heat transfer coefficient,

I X : mass of the gas per 1 kg of mixture,

I T0: temperature of the liquid,

I N : number of bubbles in the mixture.
The first two equations are standard 1-D Naiver-Stokes equations for mass
conservation and momentum conservation:

ρt + (ρu)x = 0 (1)

(ρu)t + (ρu2 + P )x − µuxx = 0 (2)

The Rayleigh-Plesset equation describes bubble dynamics:
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The heat transfer equation, from conservation of energy using Newton’s law of cooling to
describe heat transfer through the bubble’s surface:
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Rt
R

+
3(γ − 1)h

R

(
Tg − T0

)
= 0 (4)

Ideal gas relationship to relate the pressure of the gas to the temperature of the gas:
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Density-bubble radius relation, from the conservation of mass:
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Derivatives are denoted by subscripts: ∂f/∂t = ft, etc.

Non-Dimensionalization of the Model

Rescale the physical variables using typical values:

P = ApP̃ , ρ = ρ1ρ̃, x = Lx̃, u = v0ũ

t =
v0
L
t̃, R = R0R̃, T = AT T̃ ,

Ap: characteristic pressure, rho1: density of the liquid, L: characteristic length, v0:
characteristic speed, R0: initial bubble radius, AT : characteristic temperature.

The dimensionless system:
ρ̃t + (ρ̃ũ)x = 0 (7)

(ρ̃ũ)t + (ρ̃ũ2)x + EuP̃x −
1
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ũxx = 0 (8)
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(P̃2)t + 3γP̃2
R̃t
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)
= 0 (10)

(1−X +BR̃3)ρ̃− 1 = 0 (11)

Fundamental dimensionless parameters:
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The Asymptotic Approximation

Change of the independent variables:

ξ = εα(x− a0t), τ = εα+1t, 0 < ε� 1;

∂
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∂ξ
,

∂
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= a0ε

α+1 ∂
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− εα ∂

∂ξ
, α, a0 > 0.

(12)

I ξ: a large-scale moving wave variable (ξ ∼ 1 when x ∼ ε−α � 1).

I τ : ‘slow time’.

Assume a standard asymptotic expansion of flow parameters near the equilibrium:

u = εu(1) + ε2u(2) + ..., R = R0 + εR(1) + ε2R(2) + ..., ρ = ρ0 + ερ(1) + ε2ρ(2) + ...,

P = P0 + εP (1) + ε2P (2) + .., P2 = P20 + εP
(1)
2 + ε2P

(2)
2 + ..,

(13)

I (12), (13) are substituted in (7)–(11) (tildes omitted).

I Various α can be chosen.

I Coefficients at different powers of ε must vanish independently ⇒ parameter relationships.

I Obtain a single PDE for ρ(1)(ξ, τ ), describing small perturbations of the equilibrium state.

Case A: α = 1

In this case, we arrive at the classical Burgers’ equation

ρ
(1)
τ + Aρ(1)ρ

(1)
ξ +Bρ

(1)
ξξ = 0, (14)
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A change of variables
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maps (14) into the standard form

vt + vvx = vxx. (16)

Case B: α = 1
2

In this case, we arrive at the Korteweg-de Vries equation

ρ
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I This case has another equation to be satisfied:

1

Re
ρ
(1)
ξξ = 0, (19)

hence the dynamic viscosity must vanish: µ = 0.

A scaling-type change of variables
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maps (17) into a canonical form

vt + 6 vvx + vxxx = 0. (21)

Traveling Wave Solutions of the Burgers Equation

One can obtain particular solutions of (16) and (21) using the traveling wave ansatz:

v(x, t) = g(z), z = x− ct, c = const.

I The approach is based on symmetries of the PDEs at hand, and is useful since the PDEs are reduced to much
simpler ODEs.

I For example, the Burgers’ equation reduces to the following ODE:

− cg′(z) + g(z)g′(z)− g′′(z) = 0. (22)

The latter can be solved by integrating twice:

v(x− ct) = g(z) = − tanh

(
z+C2

4
√
c2−C1

)
+

√
c2−C1
c (23)

where C1 and C2 are arbitrary constants.

I Sample front-type traveling wave solutions:

Traveling wave solution for the
Burgers equation (16).

Weak solution of the Burgers
equation (16) with C = 0 (shock

wave).

Solutions of the KdV equation

We use traveling wave ansatz for the Korteweg - de Vries equation, reducing it to an ODE. The latter
admits the well-known wave-type exact solutions

v(x− ct) = g(z) = 2k2
(

c
2k2−1

)
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(24)

where cn(z, k) denotes a Jacobi elliptic cosine function with the parameter k, 0 < k < 1, and c is the wave
speed.

Sample plots of v(z) = cn(z, k)2; blue: k = 0, red: k = 0.9, green: k = 0.9999.

(24) is a cnoidal traveling wave solution for the KdV equation. , and k are arbitrary constants.
For k = 1, (24) becomes

v(x− ct) = 2c

(
sech

(√
c

2
(x− ct)

))2

(25)

which is a solitary (single-soliton) traveling wave solution:

x

u

u(x − ct0)

u(x − ct1), t1 > t0

u(x − ct2), t2 > t1

Traveling wave soliton solution of the KdV equation.

Multi-Soliton Solutions of the KdV equation

The Korteweg - de Vries equation (21) is exactly solvable (integrable).

I Nonlinear PDE whose solutions can be exactly and precisely specified for a wide class of initial data.

I multi-soliton solutions can be systematically constructed.

Example of an exact two-soliton solution:

u(x, t) = −2
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where k1 and k2 are constants.

I Two soliton waves
scatter elastically.

I After the collision,
solitons regain their
original shape and
velocity.

I The only difference is a
slight change in the
position they would have
reached without the
collision.

I Higher waves have higher
speeds. Increasing c in
(24) will increase the
wave’s speed and height.
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Evolution of a two soliton solution when k1 =
1
2 and k2 = 1.

Conclusions & Future Work

I An extended model compared to [1].

I The Su-Gardner-type [2] asymptotic analysis for the complex bubble fluid model leads, under different
assumptions, to Burgers’ and Korteweg-de Vries equations.

I The classical, well-understood Burgers’ and Korteweg-de Vries equations arise in various nonlinear models,
including fluid dynamics, plasma physics, and nonlinear optics, and are observed in laboratory and numerical
experiments.

I First-order perturbations of all parameters in the approximate solution are related linearly. In particular, in both
Cases (A) and (B), one has:

P (1) + 3R(1) = 0; (27)

thus higher pressure leads to lower bubble radius.

I Ongoing work: Asymptotic analysis around non-constant equilibrium solution.

I Future work direction 1: Systematic study the case of general α and its compatibility with general asymptotic
expansions (13).

I Future work direction 2: Study vertical flows through the addition of z-dependence (gravity term); apply to
the study of magmas in volcanic conduits; extend the model as required.
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