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Motivation/Application

Numerous biological processes involve the transport of particles from a cell through its membrane:

I RNA transport through nuclear pores.

I Passive diffusion of molecules (e.g. CO2 and O2) through cell membrane.

I Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).

Typical size of transport regions is ∼0.1% relative to overall cell size.
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The Narrow Escape Problem (NEP)
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the method of matched asymptotic expansions to study the narrow escape problem
in a certain three-dimensional context.

In a three-dimensional bounded domain Ω, it is well known (cf. [19], [35], [38]) that
the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet–Neumann boundary
conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃

j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr .(1.1b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set
consists of N small disjoint absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each
of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as ε → 0 for j = 1, . . . , N and
that the traps are well separated in the sense that |xi −xj| = O(1) for all i �= j. With
respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the
average MFPT, denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx ,

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its
boundary is depicted in Figure 1.1.

Fig. 1.1. Sketch of a Brownian trajectory in the unit sphere in R3 with absorbing windows on
the boundary.

There are only a few results for the MFPT, defined by (1.1), for a bounded three-
dimensional domain. For the case of one locally circular absorbing window of radius ε
on the boundary of the unit sphere, it was shown in [41] (with a correction as noted
in [44]) that a two-term expansion for the average MFPT is given by

(1.3) v̄ ∼ |Ω|
4εD

[
1 − ε

π
log ε + O (ε)

]
,

where |Ω| denotes the volume of the unit sphere. This result was derived in [41] by
using the Collins method for solving a certain pair of integral equations resulting from
a separation of variables approach. A similar result for v̄ was obtained in [41] for the

I Three-Dimensional domain Ω.

I Boundary traps: ∂Ωεj (j = 1, ..., N).

I Brownian motion.

I Mean first passage time (MFPT): v(x).

I Average MFPT: v̄ ≡ 1

|Ω|

∫

Ω
v(x) d3x.

I Dirichlet-Neumann Boundary Value Problem [3]:

∆v(x) = − 1

D
, x ∈ Ω;

∂nv(x) = 0, x ∈ ∂Ω \⋃j ∂Ωεj ;

v(x) = 0, x ∈ ⋃
j ∂Ωεj.

(1)

Asymptotic Solutions

I The problem (1) does not admit a known analytic solution.

I It is difficult to solve numerically due to its highly heterogeneous boundary conditions.

An asymptotic approximation is beneficial because it offers fast computation times, and gives properties of
the solution that would otherwise be hidden by numerical data. One considers asymptotic expansion of
the form

v(x) ∼ ε−1v0(x) + v1(x) + ε log

(
ε

2

)
v2(x) + εv3(x) + ....

where ε is the trap size parameter. Using the method of matched asymptotic expansions one then obtains
the average MFPT of the form

v(x) = v̄ +

N∑

j=1

kjGs(x;xj), (2)

where kj are particular constants. The function Gs(x;xj) is known as the surface Neumann Green’s
function and it satisfies the boundary value problem

∆Gs(x;xj) =
1

|Ω|, x ∈ Ω;

∂nGs(x;xj) = δs(x− xj), x ∈ ∂Ω;
∫

ΩGs(x;xj)d
3x = 0.

(3)

The Unit Sphere

When Ω is the unit sphere with N holes of radii εaj located at xj respectively, it was found in [1] that

v̄ =
|Ω|

2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, ...,xN )− ε

Nc̄

N∑

j=1

cjκj + O(ε2 log ε)

]
. (4)

In this expression pc(x1, ...,xN ) depends on the hole sizes and their relative distances, the constants κj
depend only on the hole radii aj, and the cj are known as the trap capacitance and are given by

cj =
2aj
π
. (5)

Such a high order asymptotic expansion for the average MFPT is made possible by the explicit knowledge
of the surface Neumann Green’s function for the sphere. Unfortunately this is not the case for
non-spherical domains.

Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps
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Singer, Schuss, and Holcman Approximation

For non-spherical domains the surface Neumann-Green’s function is not explicitly known. Nevertheless, for
such a domain, Ω, with exactly one circular trap of radius ε centred at x0 the average MFPT is given in
[4] by

v̄ ≡ |Ω|
4εD

[
1 +

H(x0)

π
ε log ε + O(ε)

]−1

, (6)

where H(x0) is the mean curvature of ∂Ω at x0. While this formula approximates the average MFPT for
an arbitrary domain, its limitations are:

I Only valid for one absorbing window.

I Error bound is O(ε) as opposed to O(ε2 log ε) found for sphere.

Oblate Spheroid with One Trap
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Multi-Trap Generalization

Comparison between the Singer, Schuss, and Holcman approximation (6) and the asymptotic formula for
the sphere (4) suggests the introduction of a modified trap capacitance

c̃j =
2ajH(xj)

π
,

where H(xj) is the mean curvature at the jth trap location. With the modified trap capacitance the
proposed multi-trap average MFPT approximation takes on the form

v̄ =
|Ω|

4εD
∑N
j=1 aj

[
1 +

ε

2
log ε

∑N
j=1 c̃

2
j∑N

j=1 c̃j
+ O(ε)

]−1

. (7)

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.

I Provide range of local curvatures.

I Represent different biological cells.

COMSOL Multiphysics 4.3b software used for numerical results.

I Finite element PDE solver.

I Tetrahedral mesh.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.

COMSOL Mesh Refinement Example

Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps Biconcave Disk with Three Traps

Results for Three Different Sized Traps
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Prolate Spheroid
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Biconcave Disk
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Conclusions

I A multi-trap generalization of (6) was proposed and tested.

I Relative error remained below 10% for ε ≤ 0.01 for tested geometries (numerical error ∼ 1%).

Future Research

I Comparison of numerical simulation to proposed formula for greater number of traps on more varied
geometries.

I Asymptotic methods for narrow escape problems with non-constant diffusivity.

I Determination of surface Neumann Green’s function and derivation of higher-order asymptotic
expansions for non-spherical domains.

I Study of dilute trap limit of homogenization theory for non-spherical domains [2].
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