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Motivation/Application Asymptotic and Numerical MFPT for Unit Sphere with Six Identical Traps Results for Three Different Sized Traps

Numerous biological processes involve the transport of particles from a cell through its membrane: Average MFPT MFPT (epsilon = 0.02) MFPT (epsilon = 0.02) Oblate Spheroid
» RNA transport through nuclear pores. 4ot Ao Average MFPT

— 86 MFPT (epsilon = 0.02)
» Passive diffusion of molecules (e.g. CO9 and O9) through cell membrane. * Namercl (ot : I

» Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells).
Typical size of transport regions is ~0.1% relative to overall cell size.
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such a domain, €2, with exactly one circular trap of radius ¢ centred at x( the average MFPT is given in VP (epston =002 L
The Narrow Escape Problem (NEP) [4] by - S - '12
1 x Numerical (exact) o
o ‘Q’ H(XO) —Three Trap Approximation I
» [ hree-Dimensional domain §2. U= deD L+ o eloge+ O(e) ) (6) ]

Boundary traps: 8Q€j (j=1,...,N). where H(x() is the mean curvature of 9€) at xq. While this formula approximates the average MFPT for
an arbitrary domain, its limitations are:
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Brownian motion.

» Only valid for one absorbing window.

Mean first passage time (MFPT): v(x). » Error bound is O(e) as opposed to O(e”log €) found for sphere.
Oblate Spheroid with One Trap
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Average MFPT: v = —/ v(x) dx.
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Dirichlet-Neumann Boundary Value Problem [3]: e e I Biconcave Disk

—Singer, Schuss, and Holcman Approximation
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Asymptotic Solutions
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» The problem (1) does not admit a known analytic solution.

e . L . Multi-Trap Generalization
» |t is difficult to solve numerically due to its highly heterogeneous boundary conditions. P
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An asymptotlc approximation s beneflc.lal because it o.ffers fast computatl.on times, and gives propertles of Comparison between the Singer, Schuss, and Holcman approximation (6) and the asymptotic formula for epsilon epsilon
tEe 1s:,olutlon that would otherwise be hidden by numerical data. One considers asymptotic expansion of the sphere (4) suggests the introduction of a modified trap capacitance

the Torm

1 € _ 2a;H(xj) Conclusions
v(x) ~ € tug(x) + vi(x) + €log (§> v9(x) + ev3(x) + .... 6 =

)
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where € is the trap size parameter. Using the method of matched asymptotic expansions one then obtains where H(x;) is the mean curvature at the jth trap location. With the modified trap capacitance the ~ A multi-trap generalization of (6) was proposed and tested.

the average MFPT of the form proposed multi-trap average MFPT approximation takes on the form » Relative error remained below 10% for ¢ < 0.01 for tested geometries (numerical error ~ 1%).
N
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where k; are particular constants. The function G's(x;x;) is known as the surface Neumann Green'’s
function and it satisfies the boundary value problem

i Testing Procedure and COMSOL

Asymptotic methods for narrow escape problems with non-constant diffusivity.
AGg(x;x4) = — x € (;

Q) Determination of surface Neumann Green's function and derivation of higher-order asymptotic
Used oblate spheroid, prolate spheroid, and biconcave disk esh Refinement Example . . .
v ) | . . P P P COMBOR Mesh Refinement Examel expansions for non-spherical domains.
G s(x; X]> = ds(x — X])? X € 0f); geometries. _

Study of dilute trap limit of homogenization theory for non-spherical domains [2].

Future Research

Comparison of numerical simulation to proposed formula for greater number of traps on more varied
geometries.

[ Gs(x; Xj)d?)x — 0. » Provide range of local curvatures.
» Represent different biological cells.

VAV )
COMSOL Multiphysics 4.3b software used for numerical results. VA OO 1‘ ' References
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The Unit Sphere

» Tetrahedral mesh.

When €2 is the unit sphere with N holes of radii ea; located at x; respectively, it was found in [1] that Numerical results for two and three traps of equal and different sizes

Q) 9 . . . N compared to proposed multi-trap approximation in MATLAB.
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t0) XN) o FE Z Cj K/] _l_ 0(62 log 6) . (4) Oblate Spheroid with Three Traps Prolate Spheroid with Three Traps [2] Cyn” B Muratov and StanIS|aV Y Shvartsman.

— Boundary homogenization for periodic arrays of absorbers.
J=1
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In this expression pq(X1,...,X) depends on the hole sizes and their relative distances, the constants K j - 5 Y anv \ = —
depend only on the hole radii a;, and the ¢; are known as the trap capacitance and are given by . - AT VAVAA A | Zeev Schuss.

€

, - e '!N\“\ " A\i foSIS SRy A\ Theory and applications of stochastic differential equations.
_ 7 (5) :,‘r“’ AVA‘}IV AN % ) tararang ﬁ%ﬁwﬁ'ﬂ'ﬁ \ John Wiley & Sons Inc., New York, 1980.
s N K Wit Wiley Series in Probability and Statistics.

C; =
J i

Such a high order asymptotic expansion for the average MFPT is made possible by the explicit knowledge : _ / Vaviry A Singer 7 Schuss and D. Holeman
of the surface Neumann Green's function for the sphere. Unfortunately this is not the case for \\xxgmg%%” \§ < 7 S OSILEP 5 . .

herical d . = - .. - Narrow escape and leakage of Brownian particles.
non-spherical domains.
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