Numerous biological processes involve the transport of particles from a cell through its membrane: ugh nuclear pores.
Passive diffusion of molecules (e.g. CO_{2} and O_{2}) through cell membrane.

- Diffusion of ions through protein channels (e.g. Na-K-Cl co-transporter in blood cells) Typical size of transport regions is $\sim 0.1 \%$ relative to overall cell size.

Three-Dimensional domain Ω
Boundary traps: $\partial \Omega_{\epsilon_{j}}(j=1, \ldots, N)$.
Brownian motion.
Mean first passage time (MFPT): $v(\mathrm{x})$
Average MFPT: $\bar{v} \equiv \frac{1}{|\Omega|} \int_{\Omega} v(\mathbf{x}) d^{3} \mathbf{x}$.
Dirichlet-Neumann Boundary Value Problem [3]:

$$
\Delta v(\mathbf{x})=-\frac{1}{D}, \quad \mathbf{x} \in \Omega ;
$$

$\partial_{n} v(\mathbf{x})=0, \quad \mathbf{x} \in \partial \Omega \backslash \cup_{j} \partial \Omega_{\epsilon_{j}}$ $v(\mathbf{x})=0, \quad \mathbf{x} \in \bigcup_{j} \partial \Omega_{\epsilon_{j}}$

Asymptotic Solutions

- The problem (1) does not admit a known analytic solution
- It is difficult to solve numerically due to its highly heterogeneous boundary conditions.

An asymptotic approximation is beneficial because it offers fast computation times, and gives properties of
the solution that would otherwise be hidden by numerical data. One considers asymptotic expansion of
the form
$v(\mathbf{x}) \sim \epsilon^{-1} v_{0}(\mathbf{x})+v_{1}(\mathbf{x})+\epsilon \log \left(\frac{\epsilon}{2}\right) v_{2}(\mathbf{x})+\epsilon v_{3}(\mathbf{x})+\ldots$
where ϵ is the trap size parameter. Using the method of matched asymptotic expansions one then obtains
the average MFPT of the form

$$
v(\mathbf{x})=\bar{v}+\sum_{j=1}^{N} k_{j} G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right),
$$

where k_{j} are particular constants. The function $G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right)$ is known as the surface Neumann Green's function and it satisfies the boundary value problem

$\Delta G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right)=\frac{1}{\|\Omega\|}$,	$\mathbf{x} \in \Omega ;$
$\partial_{n} G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right)=\delta_{s}\left(\mathbf{x}-\mathbf{x}_{j}\right)$,	$\mathbf{x} \in \partial \Omega ;$
$\int_{\Omega} G_{s}\left(\mathbf{x} ; \mathbf{x}_{j}\right) d^{3} \mathbf{x}=0$.	

The Unit Sphere

When Ω is the unit sphere with N holes of radii ϵa_{j} located at \mathbf{x}_{j} respectively, it was found in $[1]$ that $\bar{v}=\frac{|\Omega|}{2 \pi \epsilon D N \bar{c}}\left[1+\epsilon \log \left(\frac{2}{\epsilon}\right) \frac{\sum_{j=1}^{N} c_{j}^{2}}{2 N \bar{c}}+\frac{2 \pi \epsilon}{N \bar{c}} p_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)-\frac{\epsilon}{N \bar{c}} \sum_{j=1}^{N} c_{j} \kappa_{j}+O\left(\epsilon^{2} \log \epsilon\right)\right]$. In this expression $p_{c}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ depends on the hole sizes and their relative distances, the constants κ depend only on the hole radii a_{j}, and the c_{j} are known as the trap capacitance and are given by

Such a high order asymptotic expansion for the average MFPT is made possible by the explicit knowledge of the surface Neumann Green's function for the sphere. Unfortunately this is not the case for non-spherical domains

Singer, Schuss, and Holcman Approximation

For non-spherical domains the surface Neumann-Green's function is not explicitly known. Nevertheless, for such a domain, Ω, with exactly one circular trap of radius ϵ centred at x_{0} the average MFPT is given in [4] by
$\bar{\nu} \equiv \frac{|\Omega|}{\epsilon \epsilon D}\left[1+\frac{H\left(\mathbf{x}_{0}\right)}{\pi} \epsilon \log \epsilon+O(\epsilon)\right]^{-1}$,
where $H\left(\mathbf{x}_{0}\right)$ is the mean curvature of $\delta \delta$ at \mathbf{x}_{0}. While this formula approximates the average MFPT for an arbitrary domain, its limitations are.

- Only valid for one absorbing window.
- Error bound is $O(\epsilon)$ as opposed to $O\left(\epsilon^{2} \log \epsilon\right)$ found for sphere

Oblate Spheroid with One Trap

Multi-Trap Generalization

Comparison between the Singer, Schuss, and Holcman approximation (6) and the asymptotic formula for the sphere (4) suggests the introduction of a modified trap capacitance

$$
\tilde{c}_{j}=\frac{2 a_{j} H\left(\mathbf{x}_{j}\right)}{\pi},
$$

where $H\left(\mathbf{x}_{j}\right)$ is the mean curvature at the j th trap location. With the modified trap capacitance the proposed multi-trap average MFPT approximation takes on the form

$$
\bar{v}=\frac{|\Omega|}{4 \epsilon D \sum_{j=1}^{N} a_{j}}\left[1+\frac{\epsilon}{2} \log \epsilon \frac{\sum_{j=1}^{N} \tilde{c}_{j}^{2}}{\sum_{j=1}^{N} \tilde{c}_{j}}+O(\epsilon)\right]^{-1} .
$$

Testing Procedure and COMSOL

Used oblate spheroid, prolate spheroid, and biconcave disk
geometries.
Provide range of local curvatures.
Represent different biological cells.
Finite Multiphysics 4.3b software used for numerical results.
Comsol Mest Refiemenent Ezampe

- Finite element PDE solver.

Numerical results for two and three traps of equal and different sizes
compared to proposed multi-trap approximation in MATLAB.
Obbae Spheraid with Thee Taps

Conclusions

- A multi-trap generalization of (6) was proposed and tested

Relative error remained below 10% for $\epsilon \leq 0.01$ for tested geometries (numerical error ~ 1%)

Future Research

Comparison of numerical simulation to proposed formula for greater number of traps on more varied geometries. Determination of surface Neumann Gren's function and derivion expansions for non-spherical domains.
Study of dilute trap limit of homogenization theory for non-spherical domains [2].

References

Alexei F. Cheviakov, Michael J. Ward, and Ronny Straube
An asymptotic analysis of the mean first passage time for narrow escape problems. II. The sphere
Multiscale Model. Simul., 8(3):836-870, 2010.
Cyrill B. Muratov and Stanislav Y. Shvartsman.
Boundary homogenization for periodic arrays of absorbers.
Boundary homogenization for periodic arrays of absorbers.
Multiscale Model. Simul. 7(1):44-61, 2008
3] Zeev Schuss.
Zeev Schuss.
Theory and applications of stochastic differential equations.
John Wiley \& Sons Inc., New York, 1980.
John Wiley \& Sons Inc., New York, 1980
Wiley Series in Probability and Statistics.
4] A. Singer, Z. Schuss, and D. Holcman.
Narrow escape and leakage of Brownian particles.

