Symmetry Properties of a Family of Benjamin-Bona-Mahony-type Equations

Alexei Cheviakov

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

Yanenko 100 conference 2021

August 25, 2021

Collaborators

- D. Dutykh, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France
- A. Assylbekuly, Department of Mathematics, Novosibirsk State University, Novosibirsk, Russia
- Symmetries (point \& local) and conservation laws (multiplier method) have been computed in Maple using GeM software [A.C. 2004-2021]

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM
(4) The A-family of BBM-like PDEs
(5) The eBBM $(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM
4. The A-family of BBM-like PDEs
(5) The eBBM $(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

Shallow water waves and the Korteweg-de Vries (KdV) equation

- Long waves in shallow water:

- Starting from 2D incompressible, irrotational Euler equations
- A: typical wave amplitude; λ : typical wave length
- Surface elevation: $h=h_{0}+\eta(x, t)$; horizontal velocity: $u(x, t)$
- Wave speed: $c_{0}=\sqrt{g h_{0}}$
- Small parameters: $\varepsilon=A / h_{0}, \delta=h_{0} / \lambda$

Shallow water waves and the KdV

- The Boussinesq regime: $\varepsilon \sim \delta^{2} \ll 1$
- Dimensional KdV:

$$
\eta_{t}+c_{0} \eta_{x}+\frac{3}{2} \frac{c_{0}}{h_{0}} \eta \eta_{x}+\frac{c_{0}^{2} h_{0}^{2}}{6} \eta_{x x x}=0
$$

- The non-dimensionalizing scaling transformation:

$$
\begin{align*}
& t=\frac{\lambda}{c_{0}} t^{*}, \quad x=\lambda x^{*}, \quad z=h_{0} z^{*}, \quad h=h_{0} h^{*}, \quad \eta=A \eta^{*} \tag{Sc}\\
& v=\varepsilon c_{0} v^{*}, \quad w=\varepsilon \delta c_{0} w^{*}, \quad p=\varepsilon \rho c_{0}^{2} p^{*}, \quad \bar{u}=\varepsilon c_{0} \bar{u}^{*}
\end{align*}
$$

- Dimensionless KdV:

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}+\frac{\delta^{2}}{6} \eta_{x^{*} x^{*} x^{*}}^{*}=0
$$

- Canonical form (further transformed x, t, u):

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

- A well-known S-integrable model with rich analytic structure

The Benjamin-Bona-Mahony (BBM) equation

- The BBM equation can be obtained e.g. from the Korteweg-de Vries equation through a lower-order approximation

$$
\eta_{t^{*}}^{*}=-\eta_{x^{*}}^{*}+O\left(\varepsilon, \delta^{2}\right)
$$

- Dimensional BBM:

$$
\eta_{t}+c_{0} \eta_{x}+\frac{3}{2} \frac{c_{0}}{h_{0}} \eta \eta_{x}-\frac{h_{0}^{2}}{6} \eta_{x x t}=0
$$

- Dimensionless BBM:

$$
\eta_{t^{*}}^{*}+\eta_{x^{*}}^{*}+\frac{3}{2} \varepsilon \eta^{*} \eta_{x^{*}}^{*}-\frac{1}{6} \delta^{2} \eta_{x^{*} x^{*} t^{*}}^{*}=0
$$

- Canonical form:

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}=0
$$

- No Lax pair is known. Solitary wave interactions are inelastic
- Believed to be neither S-integrable nor C-integrable
- Has exactly three local conservation laws [Olver 1979]

The Benjamin-Bona-Mahony (BBM) equation

- The BBM: $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$
- BBM is also known as the regularized long wave equation
- Originally derived by Peregrine (thus satisfying the Arnold Principle: "If a notion bears a personal name, then this name is not the name of the discoverer.")
- Unlike the KdV, the Benjamin-Bona-Mahony equation has a more physical dispersion relation:

$$
\omega=\frac{c_{0} k}{1+h_{0}^{2} k^{2} / 6}, \quad c=\frac{c_{0}}{1+h_{0}^{2} k^{2} / 6}
$$

- Cf. for the KdV:

$$
\omega=c_{0} k\left(1-\frac{1}{6} h_{0}^{2} k^{2}\right), \quad c=c_{0}\left(1-\frac{1}{6} h_{0}^{2} k^{2}\right)
$$

- Full water wave theory:

$$
\omega=c_{0} \sqrt{\frac{k}{h_{0}} \tanh k h_{0}}, \quad c=c_{0} \sqrt{\frac{\tanh k h_{0}}{k h_{0}}}
$$

Symmetries of the BBM

- The BBM: $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$
- Point symmetries:

$$
\mathrm{X}_{1}=\partial_{t}, \quad \mathrm{X}_{2}=\partial_{x}, \quad \mathrm{X}_{3}=t \partial_{t}-(u+1) \partial_{u}
$$

- Not Galilei-invariant as it stands!
- Considering approximate point symmetries $\mathrm{X}=\mathrm{X}^{(0)}+\varepsilon \mathrm{X}^{(1)}+\mathcal{O}\left(\varepsilon^{2}\right)$, the BBM admits a Galilei-type generator

$$
\mathrm{X}_{G}=\partial_{u}+\frac{3}{2} \varepsilon t \partial_{x}
$$

with the corresponding global group

$$
t^{*}=t, \quad x^{*}=x+\frac{3}{2} a \varepsilon t, \quad u^{*}=u+a
$$

Local conservation laws of the BBM

- The BBM: $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$
- Local CLs [Olver 1979]:

$$
\begin{aligned}
& \mathcal{D}_{t}\left(u-u_{x x}\right)+\mathcal{D}_{x}\left(u+\frac{u^{2}}{2}\right)=0 \\
& \mathcal{D}_{t}\left(\frac{1}{2}\left(u^{2}+u_{x}^{2}\right)\right)+\mathcal{D}_{x}\left(\frac{1}{3} u^{3}+\frac{1}{2} u^{2}-u u_{x t}\right)=0 \\
& \mathcal{D}_{t}\left(\frac{1}{2} u^{2}+\frac{1}{6} u^{3}\right)+ \\
& \mathcal{D}_{x}\left(\frac{1}{8} u^{4}+\frac{1}{2}\left(u-u_{x t}+1\right) u^{2}-u u_{x t}+\frac{1}{2}\left(u_{x t}^{2}-u_{t}^{2}\right)\right)=0 .
\end{aligned}
$$

- Corresponding global conserved quantities:

$$
\begin{array}{ll}
M(t)=\int_{a}^{b}\left(u-u_{x x}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} M}{\mathrm{~d} t}=0, \\
E(t)=\int_{a}^{b} \frac{1}{2}\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x, & \frac{\mathrm{~d} E}{\mathrm{~d} t}=0, \\
\mathcal{H}(t)=\frac{1}{2} \int_{a}^{b}\left(u^{2}+\frac{1}{3} u^{3}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} \mathcal{H}}{\mathrm{~d} t}=0
\end{array}
$$

(momentum; kinetic energy; Hamiltonian)

BBM: Hamiltonian and Lagrangian formulations

- The BBM: $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$
- Hamiltonian formulation:

$$
\begin{aligned}
& u_{t}=\mathrm{J} \frac{\delta \mathcal{H}}{\delta u} \\
& \mathrm{~J}=\left(\mathbb{1}-\partial_{x}^{2}\right)^{-1} \cdot\left(-\partial_{x}\right), \quad \mathcal{H}=\frac{1}{2} \int_{\mathbb{R}}\left(u^{2}+\frac{1}{3} u^{3}\right) \mathrm{d} x
\end{aligned}
$$

- Lagrangian formulation: the Lagrangian density

$$
L[w]=-\frac{1}{2}\left(\frac{1}{3} w_{x}^{3}+w_{x}^{2}+w_{x} w_{t}+w_{x x} w_{x t}\right)
$$

yields the potential BBM equation ($u=w_{x}$)

$$
w_{x t}+w_{x x}+w_{x} w_{x x}-w_{x x x t}=0
$$

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM
(4) The A-family of BBM -like PDEs
(5) The eBBM $(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

A Galilei-invariant BBM equation

- Dimensionless BBM:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x \times t}=0
$$

- With the next term:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x x t}-\frac{1}{4} \varepsilon \delta^{2} \eta \eta_{x x x}=0
$$

- The two are equivalent in the Boussinesq regime
- A rescaled form (iBBM):

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}-u u_{x x x}=0
$$

- iBBM is exactly Galilei-invariant!
- Point symmetries: $\mathrm{X}_{1}=\partial_{t}, \mathrm{X}_{2}=\partial_{x}, \mathrm{X}_{3}=t \partial_{x}+\partial_{u}$

A Galilei-invariant BBM equation

- Dimensionless BBM:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x \times t}=0
$$

- With the next term:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x x t}-\frac{1}{4} \varepsilon \delta^{2} \eta \eta_{x x x}=0
$$

- The two are equivalent in the Boussinesq regime
- A rescaled form (iBBM):

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}-u u_{x x x}=0
$$

- Has peakon solutions $u(x, t)=C_{1}+C_{2} e^{|x-c t|}$
- Belongs to the b-family (with $b=0$) of equations

$$
u_{t}+2 \kappa u_{x}+(b+1) u u_{x}-b u_{x} u_{x x}-u_{x x t}-u u_{x x x}=0
$$

that include the integrable Camassa-Holm ($b=2$) and Degasperis-Procesi ($b=3$) equations.

¡BBM: conservation laws

- iBBM: $u_{t}+u_{x}+u u_{x}-u_{x x t}-u u_{x x x}=0$
- Two local CLs:

$$
\begin{array}{ll}
\mathcal{D}_{t}\left(u-u_{x x}\right)+\mathcal{D}_{x}\left(\frac{1}{2}\left(u^{2}+u_{x}^{2}\right)+u\left(1-u_{x x}\right)\right) & =0 \\
\mathcal{D}_{t}\left(e^{u-u_{x x}}\right)+\mathcal{D}_{x}\left(u e^{u-u_{x x}}\right) & =0
\end{array}
$$

- Global conserved quantities:

$$
\begin{aligned}
& M(t)=\int_{a}^{b}\left(u-u_{x x}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} M}{\mathrm{~d} t}=0 \\
& P(t)=\int_{a}^{b} e^{u-u_{x x}} \mathrm{~d} x, \quad \frac{\mathrm{~d} P}{\mathrm{~d} t}=0
\end{aligned}
$$

- No conservation of energy $E(t)$!

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM

4 The A-family of BBM-like PDEs
(5) The $\operatorname{eBBM}(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

A Galilei-invariant and energy-preserving BBM-type model: eBBM

- Dimensionless BBM:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x x t}=0
$$

- With the next-order term:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x x t}-\frac{1}{4} \varepsilon \delta^{2} \eta \eta_{x x x}=0
$$

- With an extra term of the same higher order:

$$
\eta_{t}+\eta_{x}+\frac{3}{2} \varepsilon \eta \eta_{x}-\frac{1}{6} \delta^{2} \eta_{x x t}-\frac{1}{4} \varepsilon \delta^{2} \eta \eta_{x x x}-\frac{1}{2} \varepsilon \delta^{2} \eta_{x} \eta_{x x}=0
$$

(equivalent in the Boussinesq regime; follows from energy CL multiplier)

- A rescaled form (eBBM):

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}-u u_{x x x}-2 u_{x} u_{x x}=0
$$

- Same point symmetries as for the iBBM. Galilean invariance is preserved
- Energy-preserving; has additional CLs (below)

Local conservation laws of the eBBM

- Shared with the BBM: momentum; kinetic energy

$$
\begin{array}{ll}
M(t)=\int_{a}^{b}\left(u-u_{x x}\right) \mathrm{d} x, & \frac{\mathrm{~d} M}{\mathrm{~d} t}=0, \\
E(t)=\int_{a}^{b} \frac{1}{2}\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x, & \frac{\mathrm{~d} E}{\mathrm{~d} t}=0
\end{array}
$$

- A conserved quantity related to the Hamiltonian structure:

$$
\mathcal{N}(t)=\int_{a}^{b}\left(\frac{1}{3} u^{3}+(u-1) u_{x}^{2}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} \mathcal{N}}{\mathrm{~d} t}=0
$$

- An additional conserved quantity \sim "center of mass theorem":

$$
\begin{gathered}
\mathcal{C}(t)=\int_{a}^{b}\left(\left(t\left(1+\frac{1}{2} u\right)-x\right)\left(u-u_{x x}\right)\right) \mathrm{d} x \\
\mathcal{A}=\mathcal{A}_{0}+\mathcal{B} t \\
\mathcal{A}=\int_{a}^{b} x\left(u-u_{x x}\right) \mathrm{d} x, \quad \mathcal{B}=\int_{a}^{b}\left(1+\frac{1}{2} u\right)\left(u-u_{x x}\right) \mathrm{d} x, \quad \mathcal{A}_{0}=\text { const. }
\end{gathered}
$$

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM
(4) The A-family of BBM-like PDEs
(5) The eBBM $(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

The A-family of BBM-like PDEs

- Consider a one-parameter A-family of equations

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}-A\left(u u_{x x x}+2 u_{x} u_{x x}\right)=0, \quad A=\mathrm{const}
$$

- Reduces to the BBM when $A=0$, to the eBBM when $A=1$
- The A-term has the highest asymptotic order $\mathcal{O}\left(\varepsilon^{2}\right) \sim \mathcal{O}\left(\delta^{4}\right)$ in the Boussinesq regime $\varepsilon \sim \delta^{2}$
- Shares/generalizes multiple properties of the BBM and the eBBM

A-family: symmetries, CLs, Hamiltonian structure

- A-family: $u_{t}+u_{x}+u u_{x}-u_{x x t}-A\left(u u_{x x x}+2 u_{x} u_{x x}\right)=0$
- Three point symmetries:

$$
\mathrm{X}_{1}=\partial_{t}, \quad \mathrm{X}_{2}=\partial_{x}, \quad \mathrm{X}_{3}=(A-1) t \partial_{t}+A t \partial_{x}+(1+(1-A) u) \partial_{u}
$$

- Conserved quantities:

$$
\begin{aligned}
& M(t)=\int_{a}^{b}\left(u-u_{x x}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} M}{\mathrm{~d} t}=0 \\
& E(t)=\int_{a}^{b} \frac{1}{2}\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=0 \\
& \mathcal{N}_{A}(t)=\int_{a}^{b}\left(\frac{1}{3} u^{3}+(A u-1) u_{x}^{2}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} \mathcal{N}_{A}}{\mathrm{~d} t}=0
\end{aligned}
$$

- A linear combination of $\mathcal{N}_{A}(t)$ and $E(t)$ defines a Hamiltonian

$$
\mathcal{H}_{A}(t)=\frac{1}{2} \int_{a}^{b}\left(u^{2}+\frac{1}{3} u^{3}+A u u_{x}^{2}\right) \mathrm{d} x, \quad \frac{\mathrm{~d} \mathcal{H}_{A}}{\mathrm{~d} t}=0,
$$

which yields the same Hamiltonian form of the whole A-family as for the original BBM above.

The potential A-family: Lagrangian structure; symmetries

- A-family: $u_{t}+u_{x}+u u_{x}-u_{x x t}-A\left(u u_{x x x}+2 u_{x} u_{x x}\right)=0$
- Potential variable: $u=w_{x}$
- The potential A-family:

$$
w_{t x}+w_{x x}+w_{x} w_{x x}-w_{x x x t}-A\left(w w_{x x x x}+2 w_{x x} w_{x x x}\right)=0
$$

- A Lagrangian formulation holding for all A :

$$
L[w]=-\frac{1}{2}\left(\frac{1}{3} w_{x}^{3}+w_{x}^{2}+w_{x} w_{t}+w_{x x} w_{x t}+A w_{x} w_{x x}^{2}\right), \quad \frac{\delta L}{\delta w}=0 .
$$

The potential A-family: Lagrangian structure; symmetries

- A-family: $u_{t}+u_{x}+u u_{x}-u_{x x t}-A\left(u u_{x x x}+2 u_{x} u_{x x}\right)=0$
- Potential variable: $u=w_{x}$
- The potential A-family:

$$
w_{t x}+w_{x x}+w_{x} w_{x x}-w_{x x x t}-A\left(w w_{x x x x}+2 w_{x x} w_{x x x}\right)=0
$$

- Symmetries of the potential A-family, $\hat{\mathrm{X}}=\zeta\left(x, t, w, w_{x}, w_{x x}, w_{x x t}, w_{x x x}\right) \partial_{w}$:

$$
\begin{aligned}
& \zeta_{1}= w_{t}, \quad \zeta_{2}=w_{x}, \quad \zeta_{3}=x-(A-1)\left(w+t w_{t}\right)-A t w_{x}, \quad \zeta_{F}=F(t), \\
& \zeta_{4}= 2\left(x-t w_{x}\right)+(A-1)^{2} t\left(w_{x x}^{2}+2 w_{x} w_{x x x}\right) \\
& \quad \quad+(A-1)\left(2 w+t\left(2 w_{x x t}+w_{x x}^{2}+2 w_{x} w_{x x x}-w_{x}^{2}\right)\right) \\
& \zeta_{5}= w_{x}^{2}-2 w_{x x t}-A\left(w_{x x}^{2}+2 w_{x} w_{x x x}\right)
\end{aligned}
$$

- ζ_{4} : a nonlocal symmetry of the A-family.

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM
4. The A-family of BBM-like PDEs
(5) The $\operatorname{eBBM}(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

The eBBM $(1 / 3)$ equation

- A-family: $u_{t}+u_{x}+u u_{x}-u_{x x t}-A\left(u u_{x x x}+2 u_{x} u_{x x}\right)=0$
- $A=1 / 3$: the $\operatorname{eBBM}(1 / 3)$ equation

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}-\frac{1}{3} u u_{x x x}-\frac{2}{3} u_{x} u_{x x}=0
$$

- The eBBM $(1 / 3)$ equation has a hierarchy of higher-order symmetries

$$
\hat{\mathrm{X}}_{1}=\frac{u_{x}-u_{x x x}}{\left(2\left(u-u_{x x}\right)+3\right)^{3 / 2}} \partial_{u}, \quad \hat{\mathrm{X}}_{2}=\frac{A[u]}{2\left(2\left(u-u_{x x}\right)+3\right)^{9 / 2}} \partial_{u}, \quad \ldots
$$

and similar conserved quantities of increasing orders.

- It can be shown that a time scaling $t=3 \tau, \tau \rightarrow t$ maps the $\operatorname{eBBM}(1 / 3)$ into the Camassa-Holm equation with $\kappa=3 / 2$:

$$
u_{t}+3 u_{x}+3 u u_{x}-2 u_{x} u_{x x}-u_{x x t}-u u_{x x x}=0
$$

Outline

(1) The classical BBM equation

(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM

4 The A-family of BBM-like PDEs
(5) The eBBM $(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

Numerical investigations

- Simple traveling waves $u=u(x-c t)$ for BBM, iBBM, eBBM, and eBBM $(1 / 3)$:

$$
\begin{aligned}
& (1-c) u^{\prime}+c u^{\prime \prime \prime}+\left(\frac{1}{2} u^{2}\right)^{\prime}=0 \\
& (1-c) u^{\prime}+c u^{\prime \prime \prime}+\left(\frac{1}{2} u^{2}\right)^{\prime}-u u^{\prime \prime \prime}=0 \\
& (1-c) u^{\prime}+c u^{\prime \prime \prime}+\left(\frac{1}{2} u^{2}\right)^{\prime}-u u^{\prime \prime \prime}-2 u^{\prime} u^{\prime \prime}=0, \\
& (1-c) u^{\prime}+c u^{\prime \prime \prime}+\left(\frac{1}{2} u^{2}\right)^{\prime}-\frac{1}{3} u u^{\prime \prime \prime}-\frac{2}{3} u^{\prime} u^{\prime \prime}=0
\end{aligned}
$$

- Sample $c=1.1,1.2,1.3,1.4$; numerical Petviashvili iteration

Numerical investigations

Bump evolution

- Bump evolution:

$$
u(x, 0)=e^{-\frac{1}{2} x^{2}}
$$

- Numerical method: Fourier-type pseudo-spectral method with periodic boundary conditions [D.D.]
- Energy $E(t)$ is conserved for BBM, $\operatorname{eBBM}(1 / 3)$, and eBBM; for the latter, loss of solution regularity leads to $\sim 0.015 \%$ growth around $t=3$.

Solitary wave collisions

- Solitary wave collisions: initial condition

- Inelastic for BBM, iBBM, eBBM
- Elastic for eBBM(1/3)

Solitary wave collisions

Outline

(1) The classical BBM equation
(2) A Galilei-invariant version: iBBM
(3) A Galilei-invariant \& energy-preserving model: eBBM
(4) The A-family of BBM-like PDEs
(5) The eBBM $(1 / 3)$ equation
(6) Numerical investigations
(7) Discussion

Discussion

- A Galilei-invariant (iBBM) extension of the Benjamin-Bona-Mahony (BBM) equation is presented, asymptotically equivalent to the BBM in the Boussinesq approximation.
- A further Galilei-invariant and energy-preserving (eBBM) extension is derived based on local conservation law multipliers.
- The one-parameter A-family of PDEs is found, which includes both the BBM and eBBM as special cases, and admits multiple common analytical properties, including symmetries, conservation laws, Lagrangian and Hamiltonian structures.
- For $A=1 / 3$, the $\operatorname{eBBM}(1 / 3)$ equation has advanced symmetry/conservation law structure with rational fractional-order generators/multipliers. The eBBM $(1 / 3)$ is shown to be related to the Camassa-Holm equation.
- Numerical investigations show existence of solitary waves for all models, the expected elastic solitary wave collisions for $\operatorname{eBBM}(1 / 3)(C H)$, and inelastic wave interactions for $\mathrm{BBM}, \mathrm{iBBM}$, and eBBM models.
- Techniques similar to ones considered here can be applied to other Boussinesq-type equations; many systems of this kind lack the Galilean invariance and/or energy conservation.

Some references

Benjamin, T. B., Bona, J. L., and Mahony, J. J. (1972).
Model equations for long waves in nonlinear dispersive systems.
Philos. Trans. Royal Soc. London Ser. A 272, 47-78.
Olver, P. J. (1979).
Euler operators and conservation laws of the BBM equation.
Math. Proc. Camb. Phil. Soc. 85, 143-160.
T Cheviakov, A., Dutykh, D., and Assylbekuly, A. (2021).
On Galilean Invariant and Energy Preserving BBM-Type Equations.
Symmetry, 13 (5), 878.

Thank you for your attention!

