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@ Exact solutions of ODE, PDE models are required where possible.

@ Admitted Lie groups of point symmetries can reduce order of ODEs, without loss of
solutions.

e First integrals (Fl, constants of motion) also lead to direct integration of ODEs.

@ For PDEs, point symmetries lead to reductions, interesting particular solutions,
mappings between solutions.

@ Conservation laws (CL) for PDEs yield global conserved quantities, and are highly
useful in analysis.

@ Local symmetries and FI/CLs are related.
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Motivation (ctd.)

@ Symmetries, as well as CL/FI, can be systematically computed. For nontrivial
models, these computations are, however, computationally demanding. Pencil /paper
computations usually not realistic.

o Maple: a great symbolic package for DEs. It has built-in Symm/CL routines, but
they are slow and not flexible.

@ This talk: examples of the use of GeM module for Maple to compute symmetries,
FI, CL for ODEs and PDEs.
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o Independent variables: x = (x!, x%,...,x") or (t,x*,x%,...) or (£,x,y,...).

Dependent variables: u = (u*(x), u*(x), ..., u™(x)) or (u(x), v(x),...).

@ Ordinary derivatives: d};E(X) =y'(x).

. L au*
o Partial derivatives: —— = u;im = u,.
oxm x m

o All p*P-order partial derivatives: 9°u.
@ A differential function: a function on the jet space, F[u] = F(x,u,0u,...,d"u).

A total derivative of a differential function: a basic chain rule

°
0 0 0 0
D; = . B_— [ M -
Ox' tu Our + U ouy/ Ui ouy, "
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Outline

© Symmetries of ODE/PDE, applications, computation

A. Shevyakov (Uof? L symbolic computati December 2019



Point symmetries

Consider a general DE system R°[u] = R°(x,u,du,...,8u) =0, o=1,...,N.

@ A one-parameter Lie group of point transformations (the global group):
(x) = fi(x,u;e) = x' + €' (x,u) + O(e?), i=1,...,n,
() = g'(x,w;e) = v +en(x,u) + O(e?), p=1,...,m.

o Infinitesimal generator: X = ¢/(x, u)i + 0t (x,u)

Oxi dur’

@ Infinitesimal components:

; _ Of'(x,u;¢) p _ 9g"(x,u;¢)
£ (X7 ll) - 85 I 77 (X7 ll) - 85

e=0 5:0.
@ Global group recovery:

() = Flxue) = X, (') = g"(x we) = e u,
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Point symmetries

Consider a general DE system R°[u] = R°(x,u,du,...,8u) =0, o=1,...,N.

@ A one-parameter Lie group of point transformations (the global group):

(x) = fi(x,u;e) = x' + €' (x,u) + O(e?), i=1,...,n,
(u")" = g"(x,we) = v +en’(x,u) + O(e?), p=1,....m.

o Infinitesimal generator: X = ¢/(x, u)i + 0t (x,u)

Ox’ Our’
o k' prolongation:
0 0
Xk =X ¢ nfl)“(x, u, 8U)W + 4 nflk')”‘,fk(x, u,0u,..., 8ku)8uH -
i ik

o A group-invariant differential function Flu]: X(*)F = 0.
@ Infinitesimal criterion of invariance of a DE system under the Lie group action:

XWRY(x,u,du,...,0u) =0, a=1,...,N.

R[u]=0
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Point symmetries — remarks and applications

Consider a general DE system R°[u] = R°(x,u,du,...,8u) =0, o=1,...,N.

@ For an ODE, an admitted one-parameter Lie group of point symmetries can be used
to reduce ODE order by one, using differential invariants or canonical coordinates.

o A solvable m-parameter Lie algebra of point symmetries can be used to reduce ODE

order by m.

@ Reduction of order: using canonical coordinates or differential invariants.

Example:
y'(x) =0,

admitting an 8-parameter symmetry group, maximal for 2nd-order ODEs. [Maple file]

@ For an ODE of order n, one can have at most (n + 4)-parameter Lie group of point
symmetries.

December 2019 8 /31
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Another ODE example

Another example: the Blasius equation (first-order boundary layer theory for the
Navier-Stokes equations):
1
y/// + Eyy// = 0.
It admits a 2-parameter symmetry group, with Lie algebra [Maple file]

0 0 0
Xl—i Xz—Xa*_yaiy'

Since every 2-dimensional Lie algebra is solvable, the order can be reduced by 2, to get a
1st-order ODE on V/(U):
’ _VU+V+1)2
V=30 v
As a result, the general solution of the Blasius equation can be written in quadratures
[Bluman & Kumei].
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A PDE example

Symmetries of a PDE model:

@ A PDE arising in a model of a flame front propagating upwards in a vertical channel
[M. Ward & A.C. (2007)]:

ur = € (U + tyy) + ulog u,

where u = u(x,y,t), and € is a parameter.

@ The admitted 7-parameter Lie algebra of point symmetry generators [Maple]

_9 _9 _9 _ e 0 _,9 9
Xi=go K=, Xemgp Xe=eug, Xe=xpr—yao
0 e'x 0 0 ey 0
st — — et = _ _
Xo=e ox 2o Xr=e dy  2e? You

@ An invariant solution w.r.t. X3, Xg, X7: an all-space Gaussian bell equilibrium
[eS) |X _ XO|2 2
u(x;x0) =exp|(l—"——>—), x€R";

a spike of width ~ € about xo.
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Outline

e First integrals of ODEs, conservation laws of PDEs, applications, computation
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Local conservation laws of DEs

@ A system of differential equations (PDE or ODE) R[u] = 0:

R°[u] = R7(x,u,du,...,8u) =0, o=1,... N.

@ The basic notion:

A local conservation law:

A divergence expression
Did[

vanishing on solutions of R[u] = 0. Here ® = (®'[u], ..., ®"[u]) is the flux vector.
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Local and global CL form — PDEs

@ For time-dependent PDEs, the meaning of a local conservation law is that the rate
of change of some “total amount” is balanced by a boundary flux.

@ (141)-dimensional PDEs: u = u(x, t), only one CL type.
Local CL form:

| D Tlu] + DW[u] = 0. |

T[u]: CL density; W[u]: CL flux.
Global CL form:

d bT d v ’
a | Thldx= vl
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Local and global CL form — PDEs

@ (3+1)-dimensional PDEs: R[u] =0, u=u(t,x,y,z).

@ Local CL form: ‘ D: T[u] + Div®[u] =0 ‘ & Di®'[u] =0

@ Global CL form: i/ T[u]dV = —% Wu] - dS
dt Jy oV

@ Holds for all solutions u(t, x, y, z), for V C €, in some physical domain Q.

A. Shevyakov (UofS, Canada) Symm/CL symbolic computations December 2019 14 / 31



The idea of the direct (multiplier) CL construction method

Independent and dependent variables of the problem:
x = (x', ., x"), u(x) = (d ..., u"m).

Definition

The Euler operator with respect to an arbitrary function «/:

0 0 s 0
—% ialf{.+"'+(—1)D,1...D,saLH.

i...is

E, 4+, j=1,...,m.

| |
)
£l

Theorem

The equations
E, Flul=0, j=1,....m

hold for arbitrary u(x) if and only if F is a divergence expression

Flu] = D;®'

for some functions ®' = ®'[u].
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The direct (multiplier) method

Given:
o A system of M DEs R°[u] =0, o=1,...,M.

The direct (multiplier) method
@ Specify the dependence of multipliers: As[u] = Ax(x,u,du, .. .).

@ Solve the set of determining equations Ei(A,[u]R%[u]) =0, j=1,..., m, for
arbitrary u(x), to find all sets of multipliers.

© Find the corresponding fluxes ®'[u] satisfying the identity
As[u]R% [u] = D;d'[ul].
@ For each set of fluxes, on solutions, get a local conservation law

D;®'[u] = 0.

@ Implemented in GeM module for Maple (on my web page)
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Applications of Conservation Laws

Applications to ODEs

o First integrals (constants of motion):
D:T[u] =0 = T[u] = const.

o Reduction of order / integration.
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Applications of Conservation Laws

Applications to PDEs

D; T[u] + Div ¥[u] =0

Rates of change of physical variables; constants of motion.

o Differential constraints (divergence-free or irrotational fields, etc.).

Divergence forms of PDEs for analysis: existence, uniqueness, stability, Fokas
method.

o Weak solutions.
@ Potentials, stream functions, etc.
@ An infinite number of CLs may indicate integrability/linearization.

@ Numerical methods: divergence forms of PDEs (finite-element, finite volume);
constants of motion.
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ODE Fl example 1: harmonic oscillator

ODE example 1: harmonic oscillator, mass-spring system [Maple file]

mx(t) + kx(t) =0; k, m = const.

o Seek multipliers A = A(X), find A = Cx.

@ Conservation law: ) )
d (mx“(t)  kx<*(t)\ _
dt ( 2 T2 =0

o First integral:
mx>(t) n kx?(t)

E =
2 2

= const.
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ODE Fl example 2: predator-prey model

ODE example 2: Lotka-Volterra predator-prey ODE system [Maple file]
x' = ax — Bxy, y' =dxy —vy.
Here x = x(t)=number of prey, y = y(t)=number of predator, and «, 3,~,d = const.
@ Seek CL multipliers: A1 = Ai(x), A2 = Ax(y).
e Find Ay = C(d — g/x), N2 = C(b—a/y).
o Conservation law:

%(dx—wlnx—l—ﬂy—alny):o.

@ First integral:
V(t) =d0x —vInx+ By — alny = const.
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ODE Fl example 2: predator-prey model

ODE example 2: Lotka-Volterra predator-prey ODE system [Maple file]
/ /
X =ax — Bxy, y =dxy —y.
Here x = x(t)=number of prey, y = y(t)=number of predator, and «, 3,7, = const.

o Trajectories: cycles V(t) = const.

65

Number of Pradatars (cheetahs)
2]

5 i ; i i i i ;
o 20 40 1) en 100 120 140 160 180 200
Mumber of Prey (baboons)
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Vol. 107, No. 957 The American Naturalist September-October 1973

LETTER TO THE EDITORS

DO HARES EAT LYNX?

To test a recently developed predator-prey model against reality, I chose
the well-known Canadian hare-lynx system. A measure of the state of this
system for the last 200-odd years is available in the fur catch records of
the Hudson Bay Company (MacLulich 1937; Elton and Nicholson 1942).
Although the accuracy of these data is questionable (see Elton and Nichol-
son 1942 for a full discussion), they represent the only long-term popula-
tion record available to ecologists.

The model T tested is

dH/dt = H (rg + CurL + SyH + I;H?), (1a)
dL/CZt = L(?’L —I— CLHH —I— SLL ‘}‘ ILLQ), (1b)
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F1a. 1.—Yearly states of the Canadian Iynx-hare system from 1875 to 1906.
The numbers on the axes represent the numbers of the respective animals in
thousands.
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ODE Fl example 3: nonlinear ODE integration

ODE example 3: a nonlinear ODE arising in symmetry classification

_ —2(K"()) K(x) = (K'(x))* K" (x)

g
= KGR (x) |
[Maple file]
o Seek multipliers: A = A(x, K, K').
@ Find three multipliers:
K xK KinK
A0 CO R O
@ Three Fls:
KK" K(K' + xK") — x(K')? In(K)(KK" — (K")?)
wy =M (K'Y =M (K'Y -

@ General solution (after redefining the constants):

K(x) = a(x+ ).
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CL computation for PDE systems

[Maple/GeM]:

@ Can compute CLs of several PDEs, with multi-component unknowns u(x)
depending on several scalar variables.

@ Examples: Euler & Navier-Stokes, nonlinear mechanics, integrable
equations/higher-order CLs.

@ New results have been obtained for various models.
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PDE CL example 1: short pulse equation

PDE example 1: the "short pulse” equation [Schifer & Wayne (2004)], a model of
ultra-short optical pulses in nonlinear media

2 2
Uty = U~ 6uuy + 3U° Uxx.

Here u = u(t,x). [Maple file]

@ This is an integrable equation [2x Sakovich (2005)] — admits a Lax pair, a recursion
operator, an infinite hierarchy of higher-order symmetries and CLs; related to the
sine-Gordon equation.

o Seek CL multipliers depending on up to 3rd derivatives of u:
A= NA(t, X, u, Up, U, . . ., Ugex)-
@ Find three multipliers.

@ Three CLs in this ansatz, non-polynomial form.
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PDE CL example 2: Mooney-Rivlin incompressible hyperelasticity

AX)

Xl X1

Lagrangian coordinates X, actual (Eulerian) coordinates x = ¢(X, t).

o Deformation gradient: F(X, t) = grad x), ¢(X, t); Jacobian: J = detF > 0.

Density: p(X,t) = po(X)/J.

Isotropic + anisotropic elastic energy density: W = Wiso + Waniso-

o The Piola-Kirchhoff stress tensor: P = —p F~7 + po%—‘g.

Equations of motion: poxy# = divixyP+Q, J=1.
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PDE CL/Symm example: displacements in fiber-reinforced hyperelastic

material

helically arranged fibre-
reinforced adventitial layer

transversely isotropic fibre-
reinforced medial unit

helically arranged fibre-
reinforced intimal layer

collagen fibres
elastic laminaexterna
collagen fibril
smooth muscle cell
elastic fibril
elastic laminainterna

endothelial cell

o Z-displacements G(t; X) for a fiber-reinforced elastic solid, a Cartesian analog:
Gt = (a + 38G2) G [A.C. & J.-F. Ganghoffer (2016)].

1 1
o Dimensionless: ‘ U = (1 + U2) Usx. ‘ Lagrangian: £ = E(uﬁ —ud) + = ug.
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PDE CL/Symm example: displacements in fiber-reinforced hyperelastic

material

PDE: | e = (1+ ).

Noether's theorem — variational symmetries in evolutionary form

5 7]
X =<((x, t,u,.. )57

must match CL multipliers: A = (.
@ 1st-order local symmetries in evolutionary form: ¢ = {(x, t, u, ux, u) [Maple file]

G=1, G=t (G=u, G=u, (=uw, (= —xux— tu—+ u.

o 1st-order CL multiplies: A = A(x, t, u, ux, ut) [Maple file]
AN=1 NA=t, Ns=ux, Na=u, Ns=uxu.
@ (p corresponds to a scaling t* = Ct, x* = Cx, u™ = Cu, which is not a variational

symmetry.
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CLs of the linear wave equation?

@ Linear wave equation: introduced by d'Alembert in 1747.

@ Linear — infinite CL family (multipliers solve the adjoint linear PDE).

@ Some basic CLs:

M =1,
M, = Ux,
Mz = uy,
My = t,
Ms = x,

Me = xux + tuy,

M7 = tuy + xu,

D¢ (ur) — Dx (ux) =0,

D¢ (ueux) — Dy (%) =0,
D, (#) — Dy (i) = 0,
D: (tur — u) — Dyx (tux) =0,
D¢ (xu) — Dy (xux — u) =0,

D; (xutux + %(uf + uf)) — Dy (tutux + %(uf + U)2<)) =0,

D, (tufux + i(uf + uf)) — D« (xutuX + %(u? + uﬁ))

5 0.

@ The full set of local CLs has not been classified to date.

@ (2019) R. Popovych, A.C.: complete CL classification, using the second canonical

form we, = 0.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

[@ A. Cheviakov and M. Oberlack (2014)
Generalized Ertel's theorem and infinite hierarchies of conserved quantities for
three-dimensional time-dependent Euler and Navier-Stokes equations. JFM 760: 368-386.

o seek CLs to second-order multipliers, depending on up to 45 variables,
1,2 3 11 2 2 2 3.3 .3
t7X7y727 u ,U ,U 7p7 uyyuz7 uxvuyyuz7 uxzuyyuzv ptapX7p)/7pla
2 12
uyy7 Uy27 Uzz, Uxx, uxy: Uz, uyya uyza Uzzy,  Uxx, uxy: Uxz,s uyy: Uyz: Uzz,

Ptt; Ptx, Pty Ptzs Pxxs Pxy s Pxzy Pyys Pyz Pzz-
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

1. Conservation of generalized momentum.

A = f(t)u' — xF'(t), Aa=Ff(t), As=NA=0;

%( (t)u 1)—|— ((u f(t) — Xf/(t))u1+f(t)p)
%((”lm) s (O)) + 5L (W)~ ()) =0

with analogous expressions holding for y- and the z-directions.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

2. Conservation of the angular momentum.

/\1:u§—u}3,, N=0, N3s=2z, N=-—y;

O 2 3, O 2 3y 1
8t(zu yu’) + o ((zu yu)u )
0 2 3y 2 0 2 3y 3 _
+3y ((zu yui)u —|—zp) + e ((zu yu)u yp) =0.

with cyclic permutations for y- and the z-directions.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

v
3. Conservation of the kinetic energy.

A=K+ P, [A27/\37A4] =u

a _ _ 1 2
aK+V~((K+p)u)_o, K =1l
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

4. Generalized continuity equation.

/\1:/((1')7 N=Ns =N =0;

V- (k(t)u) = 0.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

v
5. Conservation of helicity.

A =0, [A2,A3,A\s] =w = curlu;

h=u-w; E=K-+p, K:%\u|2;

%h—l—V-(uxVE—i—(wxu)xu):O.
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Example: CLs of NS and Euler equations under helical symmetry

@ Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013)
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and
inviscid flows. JFM 721, 340-366.

Helically-invariant equations

o Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

@ Two-component reductions.

Additional conservation laws — through direct construction

@ Three-component Euler:

o Generalized momenta. Generalized helicity. Additional vorticity CLs.
@ Three-component Navier-Stokes:

o Additional CLs in primitive and vorticity formulation.
@ Two-component flows:

o Infinite set of enstrophy-related vorticity CLs (inviscid case).
o Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Example: CLs of NS and Euler equations under helical symmetry

@ Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

ACUSIM ( 5“\5 Velocity Magnitude
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Example: CLs of NS and Euler equations under helical symmetry

@ Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]
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Example: CLs of NS and Euler equations under helical symmetry

@ Helical water flow past a propeller
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Example: CLs of NS and Euler equations under helical symmetry

Helical Coordinates

o Helical coordinates: (r,n,¢&);
z 2 2
& =az+ by, n:agp—bﬁ, a,b=const, a"+b" >0.

@ Helical invariance: f = f(r,&), a,b#0.

o Axial: a=1, b=0. z-Translational: a=0, b=1.
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Conclusions

Summary:

@ Simple, systematic computation of point and higher-order symmetries of ODE/PDE
in Maple/GeM; global group.

o Similarly, Lie groups of equivalence transformations can be computed.

o Systematic computation of Fls for ODE, CLs for PDE in Maple/GeM: direct
(multiplier) method.

@ Symbolic software capable of working with multiple PDEs with many
dependent/independent variables.

o Classification of symm/F1/CLs for families of DEs using Maple/rifsimp.

Work to do:
o Computation of invariants, differential invariants.
o Lie group structure.
@ Canonical coordinates, invariant reduction.

@ Object-oriented approach; parallelization for heavy computations.
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Some references

@ GeM for Maple: a symmetry/CL symbolic computation package.
https://math.usask.ca/ shevyakov/gem/

[§ A.C. & M. Ward. (2007)
A two-dimensional metastable flame-front and a degenerate spike-layer problem.
Interfaces and Free Boundaries 9 (4), 513-547.

@ T. Schéfer & C. Wayne (2004)
Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196,
90-105.

3 AC. &J-F. Ganghoffer (2016)
One-dimensional nonlinear elastodynamic models and their local conservation laws
with applications to biological membranes. JMBBM 58, 105-121.

Thank you for your attention!
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