Global and local conservation laws for physical models: Cases of static and moving domains

Alexei Cheviakov

Department of Mathematics and Statistics,

University of Saskatchewan, Saskatoon, Canada

May 18, 2018

A B A B A B A

- G. Bluman, Brock University, Canada
- S. Anco, Brock University, Canada
- M. Oberlack, TU Darmstadt, Germany
- J.-F. Ganghoffer, LEMTA ENSEM, Université de Lorraine, Nancy, France
- R. Popovych, Wolfgang Pauli Institute / University of Vienna, Austria.

イロト イヨト イヨト イ

- Discuss a common framework for thinking about conservation laws (CL)
- Different CL types, different applications, examples
- Illustrate "what can happen"
- Discuss systematic CL computation
- The CL ideas are simple, general, and useful in various research areas

A D > A P > A B > A

Outline

- Definitions
- Applications of CLs
- Trivial and equivalent CLs
- Characteristic form of a CL
- How many local CLs?

2 Systematic computation of conservation laws

- The direct CL construction method
- Computational examples

3 Conservation laws in three spatial dimensions

Conservation laws on moving domains in 3D

Talk summary

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Notation

- Independent variables: (x, t), or (t, x, y, z), or $z = (z^1, ..., z^n)$.
- Dependent variables: u(x, t), or generally $v = (v^1(z), ..., v^m(z))$.
- Derivatives:

$$\frac{d}{dt}w(t) = w'(t); \qquad \frac{\partial}{\partial x}u(x,t) = u_x; \qquad \frac{\partial}{\partial z^k}v^p(z) = v_k^p.$$

- All derivatives of order $p: \partial^p v$.
- A differential function:

$$H[v] = H(z, v, \partial v, \ldots, \partial^k v)$$

• A total derivative of a differential function: the chain rule

$$D_i H[v] = \frac{\partial H}{\partial z^i} + \frac{\partial H}{\partial v^{\alpha}} v_i^{\alpha} + \frac{\partial H}{\partial v_j^{\alpha}} v_{ij}^{\alpha} + \dots$$

イロト イヨト イヨト イヨ

Notation

• A PDE Example: the KdV (Korteweg-de Vries) equation

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0$$

for the dimensionless fluid depth u = u(x, t) of long surface waves on shallow water:

$$G[u]=u_t+uu_x+u_{xxx}=0.$$

・ロト ・回ト ・ヨト

Notation

• A PDE Example: the KdV (Korteweg-de Vries) equation

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0$$

for the dimensionless fluid depth u = u(x, t) of long surface waves on shallow water:

$$G[u] = u_t + uu_x + u_{xxx} = 0.$$

- $J^{k}(x, t|u)$: the k-th order jet space with coordinates x, t, u, ∂u , ..., $\partial^{k}u$.
- The solution manifold \mathcal{E} in $J^k(x, t|u)$ is defined by the DE(s)+differential consequences to order k:

$$G[u] = 0$$
, $D_x G[u] = 0$, $D_t G[u] = 0$,...

• Statements are often formulated for differential functions defined in $J^{k}(x, t|u)$.

イロト イヨト イヨト イヨト

Local and global conservation laws

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Local and global conservation laws

• System of differential equations (PDE or ODE) G[v] = 0:

$$G^{\sigma}(z, v, \partial v, \dots, \partial^{q_{\sigma}} v) = 0, \quad \sigma = 1, \dots, M.$$

• The basic notion -

A local (divergence-type) conservation law:

A divergence expression

$$\mathrm{D}_i \Phi^i [v] = 0$$

vanishing on solutions of G[v]. Here $\Phi = (\Phi^1[v], \dots, \Phi^n[v])$ is the flux vector.

・ロト ・日下・ ・ ヨト・

ODE: A constant of motion (conserved quantity):

$$v = v(t),$$
 $D_t T[v] = 0 \Rightarrow T[v] = const.$

・ロト ・回ト ・ヨト

Local and global conservation laws - ODE examples

• Example 1: uniform rectilinear motion, $m\ddot{x}(t) = 0$.

 $D_t P(t) = 0, \qquad P(t) = m\dot{x}(t) = const.$

<ロト <回ト < 回ト

Local and global conservation laws - ODE examples

• Example 2: the Lotka-Volterra model of a predator-prey interaction

$$x'(t) = \alpha x(t) - \beta x(t)y(t), \qquad y'(t) = \delta x(t)y(t) - \gamma y(t).$$

- Here x(t)=number of prey, (for example, baboons), y(t)=number of predator (e.g., cheetah), and α, β, γ, δ = const.
- A constant of motion: $D_t V(t) = 0$,

$$V(t) = \delta x(t) - \gamma \ln x(t) + \beta y(t) - \alpha \ln y(t) = \text{const.}$$

イロト イポト イヨト イヨト

LETTER TO THE EDITORS

DO HARES EAT LYNX?

To test a recently developed predator-prey model against reality, I chose the well-known Canadian hare-lynx system. A measure of the state of this system for the last 200-odd years is available in the fur catch records of the Hudson Bay Company (MacLulich 1937; Elton and Nicholson 1942). Although the accuracy of these data is questionable (see Elton and Nicholson 1942 for a full discussion), they represent the only long-term population record available to ecologists.

The model I tested is

$$dH/dt = H(r_H + C_{HL}L + S_HH + I_HH^2),$$
(1a)

$$dL/dt = L(r_L + C_{LH}H + S_LL + I_LL^2),$$
 (1b)

Fig. 1.—Yearly states of the Canadian lynx-hare system from 1875 to 1906. The numbers on the axes represent the numbers of the respective animals in thousands.

イロン イヨン イヨン イヨン

Local and global conservation laws – PDE examples

- For PDEs, the meaning of a local conservation law is different: the total amount of "density" is "conserved" in another sense.
- (1+1)-dimensional PDEs: v = v(x, t), only one CL type.

Local form:

$$\mathrm{D}_t T[v] + \mathrm{D}_x \Psi[v] = 0.$$

Global form:

$$\frac{d}{dt}\int_a^b T[v]\,dx = -\Psi[v]\Big|_a^b.$$

Conservation principles to derive model DEs.

Continuity equation – gas/fluid flow:

$$\rho_t + (\rho v)_x = 0, \qquad \rho = \rho(x, t), \qquad v = v(x, t).$$

• Global form:

$$\frac{d}{dt}m = \frac{d}{dt}\int_{x}^{x+\Delta x}\rho\,dx = (\rho v)\Big|_{x}^{x+\Delta x}.$$

Image: A match the second s

(1+1)-dimensional linear wave equation:

$$u_{tt} = c^2 u_{xx}, \quad u = u(x,t), \quad c^2 = \tau/
ho, \quad a < x < b \text{ or } -\infty < x < \infty.$$

A D > A B > A B

(1+1)-dimensional linear wave equation:

$$u_{tt} = c^2 u_{xx}, \quad u = u(x,t), \quad c^2 = \tau/\rho, \quad a < x < b \text{ or } -\infty < x < \infty.$$

- A local CL momentum conservation: $D_t(\rho u_t) D_x(\tau u_x) = 0$.
- Global form:

$$\frac{d}{dt}M = \frac{d}{dt}\int_{a}^{b}\rho u_{t}\,dx = \tau u_{x}\Big|_{a}^{b}.$$

- dM/dt = 0 for zero Neumann BCs \rightarrow the momentum is conserved, M = const.
- (E.g., a finite perturbation of an infinite string.)

・ロン ・回 と ・ ヨン・

(1+1)-dimensional linear wave equation:

$$u_{tt} = c^2 u_{xx}, \quad u = u(x,t), \quad c^2 = \tau/\rho, \quad a < x < b \text{ or } -\infty < x < \infty.$$

• A local CL – energy conservation:
$$D_t \left(\frac{\rho u_t^2}{2} + \frac{\tau u_x^2}{2} \right) - D_x(\tau u_t u_x) = 0.$$

• Global form:

$$\frac{d}{dt}E = \frac{d}{dt}\int \left(\frac{\rho u_t^2}{2} + \frac{\tau u_x^2}{2}\right)dx = \tau u_t u_x\Big|_a^b.$$

• For which BCs is E = const?

Image: A match the second s

• (3+1)-dimensional PDEs: R[v] = 0, v = v(t, x, y, z).

• Local form:
$$D_t T[v] + \text{Div } \Psi[v] = 0$$
 \Leftrightarrow $D_i \Phi^i[v] = 0$

• Global form:
$$\frac{d}{dt} \int_{\mathcal{V}} T \, dV = - \oint_{\partial \mathcal{V}} \Psi \cdot d\mathbf{S}$$

• Holds for all solutions $v(t, x, y, z) \in \mathcal{E}$, in some physical domain \mathcal{V} .

• In 3D, CLs of other types on static and moving domains can exist.

Applications

メロト メポト メヨト メヨト

Applications to ODEs

• Constants of motion:

$$D_t T[v] = 0 \Rightarrow T[v] = const.$$

• Reduction of order / integration.

イロト イヨト イヨト イヨ

Applications to PDEs

 $D_t T[v] + \operatorname{Div} \Psi[v] = 0$

- Rates of change of physical variables; constants of motion.
- Differential constraints (divergence-free or irrotational fields, etc.).
- Analysis of solution behaviour: existence, uniqueness, stability.
- Potentials, stream functions, etc.
- An infinite number of CLs may indicate integrability/linearization.
- Conserved PDEs forms and constants of motion for numerical methods.

(a)

・ロト ・回ト ・ヨト ・

Applications of Conservation Laws

CLs with no physical content?

・ロ・・ (日)・ ・ ヨ・ ・ ヨ・

Example: (1+1)-dimensional linear wave equation

$$u_{tt} = c^2 u_{xx}, \quad u = u(x, t).$$

Trivial conservation laws:

 Density/flux vanishes on solutions (Type I, vanishing density/flux). For example,

$$D_t(u_{tt}-c^2u_{xx})+D_x\left(2u\left[u_{ttx}-c^2u_{xxx}\right]\right)=0.$$

• Holds as an identity for any u(x, t) (Type II, null divergence). For example,

$$D_t(x+u_x)+D_x(2t-u_t)\equiv 0.$$

• A combination thereof.

・ロン ・回 と ・ ヨン・

Example: (1+1)-dimensional linear wave equation

$$u_{tt} = c^2 u_{xx}, \quad u = u(x, t).$$

Equivalent conservation laws

• Differ by a trivial one. For example,

$$D_t(u_t) - D_x(c^2 u_x) = 0$$

and

$$D_t(u_t+x)-D_x(c^2u_x-1)=0$$

describe the same physical quantity.

- Natural to seek all different equivalence classes of CLs.
- Same ideas for multi-dimensional models.

rXiv.org > math-ph > arXiv:1803.08859	Search or Article ID	All fields \sim	
	(Help Advanced search)		
Mathematical Physics	Dow	vnload:	
On the different types of global and local conservation laws for par differential equations in three spatial dimensions	tial • PDI • Pos • Oth	PDF PostScript Other formats (leense)	
Stephen C. Anco, Alexei F. Cheviakov (Submitted on 23 Mar 2018)	Current browse conte math-ph	nt browse context	
For systems of partial differential equations in three spatial dimensions, dynamical conservation laws holding on volur surfaces, and curves, as well as topological conservation laws holding on surfaces and curves, are studied in a unlie Both global and local formulations of these different conservation laws are discussed, including the forms of global co motion. The main results consist of providing an explicit characterization for when two conservation laws are locally or equivalent, and for when a conservation law is locally or globally trivial, as well as deriving relationships among the di of conservation laws. In particular, the notion of a "trivial" conservation law is clarified for all of the types of conservation Moreover, as further new results, conditions under which a trivial local conservation law on a domain can yield a non- 1 conservation law on the domain boundary are determined and shown to be related to differential identities that hold for systems containing both evolution equations and spatial constraint equations. Numerous physical examples from fluid dynamics, electromagnetism, and magnetohydrodynamics are used as illustrations.	es, <pre>rev framework.</pre>	< prev next > new recent 1803	
	stants of Chang globally math physics n laws. physic physical global	ge to browse by: sics.flu-dyn	
	PDE Refere	ences & Citations	
	Bookn	nark (what is this?) 🔁 📲 😭 👾 🗱	
Subjects: Mathematical Physics (math-ph); Fluid Dynamics (physics.flu-dyn) Cite as: arXiv:1803.08859 [math-ph] (or arXiv:1803.088591 [math-ph] for this version)			

firefox 17/05/2018 , 11:58:57 AM

[1803.08859] On the different types of global and local conservation laws for partial differential equations in three spatial dimensions - Mozilla Firefox

Characteristic form of a CL

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Characteristic form of a CL

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

イロト イヨト イヨト イヨ

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a *totally nondegenerate* PDE system $G^{\sigma}[v] = 0$ if and only if it has the form, for all v,

 $Q[v] = \Lambda_{\sigma}[v]G^{\sigma}[v] + \Lambda_{\sigma}^{k}[v]D_{k}G^{\sigma}[v] + \dots$

イロト イヨト イヨト イヨト

• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i [v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a *totally nondegenerate* PDE system $G^{\sigma}[v] = 0$ if and only if it has the form, for all v,

 $Q[v] = \Lambda_{\sigma}[v]G^{\sigma}[v] + \Lambda_{\sigma}^{k}[v]D_{k}G^{\sigma}[v] + \dots$

• Off of solution set, for all v:

$$\mathbf{D}_{i}\Phi^{i}[\mathbf{v}] = \Lambda_{\sigma}[\mathbf{v}]G^{\sigma}[\mathbf{v}] + \Lambda_{\sigma}^{k}[\mathbf{v}]\mathbf{D}_{k}G^{\sigma}[\mathbf{v}] + \dots$$

イロト イヨト イヨト イヨト
• What is an "algebraic handle" to compute divergence-type CLs

 $D_i \Phi^i[v] = 0$

of a DE system $G^{\sigma}[v] = 0, \sigma = 1, \dots, M$?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a *totally nondegenerate* PDE system $G^{\sigma}[v] = 0$ if and only if it has the form, for all v,

 $Q[v] = \Lambda_{\sigma}[v]G^{\sigma}[v] + \Lambda_{\sigma}^{k}[v]D_{k}G^{\sigma}[v] + \dots$

• Off of solution set, for all v:

$$\mathbf{D}_{i} \Phi^{i}[\mathbf{v}] = \Lambda_{\sigma}[\mathbf{v}] G^{\sigma}[\mathbf{v}] + \Lambda_{\sigma}^{k}[\mathbf{v}] \mathbf{D}_{k} G^{\sigma}[\mathbf{v}] + \dots$$

• An equivalent CL:

$$\mathbf{D}_{i}\tilde{\boldsymbol{\Phi}}^{i}[\boldsymbol{v}] = \tilde{\boldsymbol{\Lambda}}_{\sigma}[\boldsymbol{v}]\boldsymbol{G}^{\sigma}[\boldsymbol{v}].$$

イロト イヨト イヨト イヨト

A characteristic form of a local CL:

$$D_i \Phi^i [v] = \Lambda_{\sigma} [v] G^{\sigma} [v].$$

- $\Phi^{i}[v]$: fluxes.
- $\Lambda_{\sigma}[v]$: multipliers.
- There is "usually" a 1:1 correspondence between sets of (nontrivial) multipliers and the respective (nontrivial) local CLs.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

How many local CLs?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• How many (linearly independent, nontrivial) local CLs does a given PDE system have?

・ロト ・回ト ・ヨト ・

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility I: a finite number. For example:

Theorem (Ibragimov, 1985)

For any (1+1)-dimensional even-order scalar evolution equation

$$u_t = F(x, t, u, \partial_x u, \ldots, \partial_x^{2k} u), \qquad u = u(x, t),$$

the flux and the density of local CLs

 $\mathbf{D}_t T[u] + \mathbf{D}_x \Psi[u] = \mathbf{0}$

(up to equivalence) depend only on x, t, u and derivatives of u with respect to x, and the maximal order of a derivative in the CL density T is k.

イロト イヨト イヨト イヨト

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility I: a finite number. For example:

A nonlinear diffusion equation

$$u_t = (u^2 u_x)_x, \qquad u = u(x, t).$$

Two local CLs only:

$$D_t(u) - D_x(u^2u_x) = 0,$$
$$D_t(xu) + D_x\left(\frac{u^3}{3} - xu^2u_x\right) = 0.$$

・ロン ・回 と ・ ヨン・

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- **Possibility II:** an infinite countable set. E.g., CLs of an S-integrable equation.

Example: the KdV

$$u_t + uu_x + u_{xxx} = 0,$$
 $u = u(x, t).$

A hierarchy of local CLs:

$$\begin{split} \Lambda(x,t) &= 1, \qquad \mathrm{D}_t(u) + \mathrm{D}_x \left(\frac{1}{2}u^2 + u_{xx} \right) = 0, \\ \Lambda(x,t) &= u, \qquad \mathrm{D}_t \left(\frac{1}{2}u^2 \right) + \mathrm{D}_x \left(\frac{1}{3}u^3 + uu_{xx} - \frac{1}{2}u_x^2 \right) = 0, \\ \Lambda(x,t) &= \frac{1}{2}u^2, \quad \mathrm{D}_t \left(\frac{1}{6}u^3 - \frac{1}{2}u_x^2 \right) + \mathrm{D}_x \left(\frac{1}{8}u^4 - uu_x^2 + \frac{1}{2}(u^2u_{xx} + u_{xx}^2) - u_xu_{xxx} \right) = 0, \end{split}$$

・ロト ・回ト ・ヨト ・

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- **Possibility III:** an infinite CL family. E.g., CLs involving a free function.

Constant-density Navier-Stokes equations

$$\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p} + \nu \Delta \mathbf{u}.$$

CLs [Gusyatnikova & Yumaguzhin, 1989]:

- Continuity (generalized): $\nabla \cdot (k(t)\mathbf{u}) = 0$.
- Momentum (generalized): $D_t(f(t)u^1) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.
- Angular momentum: $D_t(zu^2 yu^3) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.

イロト イポト イヨト イヨ

- How many (linearly independent, nontrivial) local CLs does a given PDE system have?
- Possibility III: an infinite CL family.

E.g., C-integrable equations, with CLs involving arbitrary solutions of linear PDEs.

Example:

- A linear heat equation $u_t = a^2 u_{xx}$, u = u(x, t).
- Local CLs: $\Lambda(x, t)(u_t u_{xx}) = D_t T + D_x \Psi = 0.$
- The multiplier $\Lambda(x, t)$ is any solution of the adjoint linear PDE $\Lambda_t = -a^2 \Lambda_{xx}$.

• E.g.,
$$\Lambda(x,t) = e^{a^2 t} \sin x$$
, then $D_t \left(e^{a^2 t} u \sin x \right) + D_x \left(a^2 e^{a^2 t} [u \cos x - u_x \sin x] \right) = 0$.

• Existence of a "large" CL family is a necessary condition of invertible linearization (e.g., Bluman, Anco & Wolf, 2008).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How to compute CLs?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The idea of the direct construction method

Independent and dependent variables of the problem: $z = (z^1, ..., z^n), v = v(z) = (v^1, ..., v^m).$

Definition

The Euler operator with respect to an arbitrary function v^j :

$$\mathbf{E}_{\mathsf{v}^j} = \frac{\partial}{\partial \mathsf{v}^j} - \mathbf{D}_i \frac{\partial}{\partial \mathsf{v}^j_i} + \dots + (-1)^s \mathbf{D}_{i_1} \dots \mathbf{D}_{i_s} \frac{\partial}{\partial \mathsf{v}^j_{i_1 \dots i_s}} + \dots, \quad j = 1, \dots, m.$$

Theorem

The equations

$$\mathbb{E}_{v^j}F[v] \equiv 0, \quad j = 1, \dots, m$$

hold for arbitrary v(z) if and only if

$$F[v] \equiv D_i \Phi^i$$

for some functions $\Phi^i = \Phi^i[v]$.

イロト イヨト イヨト イヨ

Given:

- A system of M DEs $G^{\sigma}[v] = 0$, $\sigma = 1, \dots, M$.
- Variables: $z = (z^1, ..., z^n), \quad v = (v^1(z), ..., v^m(z)).$

イロト イヨト イヨト イヨト

Given:

- A system of M DEs $G^{\sigma}[v] = 0$, $\sigma = 1, \dots, M$.
- Variables: $z = (z^1, ..., z^n)$, $v = (v^1(z), ..., v^m(z))$.

The Direct CL Construction Method

- **()** Specify the dependence of multipliers: $\Lambda_{\sigma} = \Lambda_{\sigma}[z, v, \partial v, ...].$
- Solve the set of determining equations E_{νi}(Λ_σ[ν]G^σ[ν]) ≡ 0, j = 1,..., m, for arbitrary ν(z), to find all sets of multipliers.
- Find the corresponding fluxes $\Phi^i[V]$ satisfying the identity

$$\Lambda_{\sigma}[\mathbf{v}]G^{\sigma}[\mathbf{v}] \equiv \mathrm{D}_{i}\Phi^{i}[\mathbf{v}].$$

Solutions, get a local conservation law

$$\mathrm{D}_i \Phi^i [v] = 0.$$

<ロ> (日) (日) (日) (日) (日)

Computational examples

イロン イヨン イヨン イヨン

Constant-density Navier-Stokes equations

 $\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \mathbf{p} + \nu \Delta \mathbf{u}.$

CLs [Gusyatnikova & Yumaguzhin, 1989]: CL order is bounded.

- Continuity (generalized): $\nabla \cdot (k(t)\mathbf{u}) = 0$.
- Momentum (generalized): $D_t(f(t)u^1) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.

• Angular momentum: $D_t(zu^2 - yu^3) + D_x(...) + D_y(...) + D_z(...) = 0$; same for y, z.

- No such result for Euler equations ($\nu = 0$).
- Also unknown for symmetry-reduced models (axial, helical...)

イロト イヨト イヨト イヨ

 $\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p}.$

A. Cheviakov and M. Oberlack (2014)

Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and NavierStokes equations. *JFM* 760: 368-386.

• seek CLs to second-order multipliers, depending on up to 45 variables,

 $\begin{array}{l} t, x, y, z, \quad u^1, u^2, u^3, p, \quad u^1_y, u^1_z, \quad u^2_x, u^2_y, u^2_z, \quad u^3_x, u^3_y, u^3_z, \quad p_t, p_x, p_y, p_z, \\ u^1_{yy}, u^1_{yz}, u^1_{zz}, \quad u^2_{xx}, u^2_{xy}, u^2_{xz}, u^2_{yy}, u^2_{yz}, u^2_{zz}, \quad u^3_{xx}, u^3_{xy}, u^3_{xz}, u^3_{yy}, u^3_{yz}, u^3_{zz}, \\ p_{tt}, p_{tx}, p_{ty}, p_{tz}, p_{xx}, p_{xy}, p_{xz}, p_{yy}, p_{yz}, p_{zz}. \end{array}$

イロト イ団ト イヨト イヨト

$$\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p}.$$

1. Conservation of generalized momentum.

$$\Lambda_1 = f(t)u^1 - xf'(t), \quad \Lambda_2 = f(t), \quad \Lambda_3 = \Lambda_4 = 0;$$

$$\begin{split} &\frac{\partial}{\partial t}(f(t)u^{1}) + \frac{\partial}{\partial x}\Big((u^{1}f(t) - xf'(t))u^{1} + f(t)p\Big) \\ &+ \frac{\partial}{\partial y}\Big((u^{1}f(t) - xf'(t))u^{2}\Big) + \frac{\partial}{\partial z}\Big((u^{1}f(t) - xf'(t))u^{3}\Big) = 0. \end{split}$$

with analogous expressions holding for y- and the z-directions.

・ロト ・日下・ ・ ヨト・

$$\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p}.$$

2. Conservation of the angular momentum.

$$\Lambda_1 = u_z^2 - u_y^3, \quad \Lambda_2 = 0, \quad \Lambda_3 = z, \quad \Lambda_4 = -y;$$

$$\begin{aligned} &\frac{\partial}{\partial t}(zu^2 - yu^3) + \frac{\partial}{\partial x}\left((zu^2 - yu^3)u^1\right) \\ &+ \frac{\partial}{\partial y}\left((zu^2 - yu^3)u^2 + zp\right) + \frac{\partial}{\partial z}\left((zu^2 - yu^3)u^3 - yp\right) = 0. \end{aligned}$$

with cyclic permutations for y- and the z-directions.

・ロン ・回 と ・ ヨン・

$$\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p}.$$

3. Conservation of the kinetic energy.

$$\Lambda_1 = K + p, \quad [\Lambda_2, \Lambda_3, \Lambda_4] = \mathbf{u};$$

$$\frac{\partial}{\partial t}K + \nabla \cdot \left((K + p) \mathbf{u} \right) = 0, \qquad K = \frac{1}{2} |\mathbf{u}|^2.$$

・ロト ・ 日 ・ ・ ヨ ト

$$\rho = \text{const}, \quad \text{div } \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p}.$$

4. Generalized continuity equation.

$$\Lambda_1 = k(t), \quad \Lambda_2 = \Lambda_3 = \Lambda_4 = 0;$$

$$\nabla \cdot (k(t)\mathbf{u}) = \mathbf{0}.$$

・ロト ・日下・ ・ ヨト・

$$\rho = \text{const}, \quad \text{div} \, \mathbf{u} = \mathbf{0}, \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = - \text{grad } \boldsymbol{p}.$$

5. Conservation of helicity.

$$\Lambda_1 = 0$$
, $[\Lambda_2, \Lambda_3, \Lambda_4] = \boldsymbol{\omega} = \operatorname{curl} \mathbf{u}$;

$$h = \mathbf{u} \cdot \boldsymbol{\omega}; \quad E = K + p, \quad K = \frac{1}{2} |\mathbf{u}|^2;$$
$$\frac{\partial}{\partial t} h + \nabla \cdot (\mathbf{u} \times \nabla E + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = 0.$$

・ロト ・日下・ ・ ヨト・

Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013)

New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. *JFM* 721, 340-366.

Helically-invariant equations

- Full three-component Euler and Navier-Stokes equations written in helically-invariant form.
- Two-component reductions.

Additional conservation laws - through direct construction

- Three-component Euler:
 - Generalized momenta. Generalized helicity. Additional vorticity CLs.
- Three-component Navier-Stokes:
 - Additional CLs in primitive and vorticity formulation.
- Two-component flows:
 - Infinite set of enstrophy-related vorticity CLs (inviscid case).
 - Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.

<ロト </p>

Example: CLs of NS and Euler equations under helical symmetry

• Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

Image: A math a math

Example: CLs of NS and Euler equations under helical symmetry

• Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]

Image: A math a math

• Helical water flow past a propeller

< □ > < ^[] >

Example: CLs of NS and Euler equations under helical symmetry

Helical Coordinates

• Helical coordinates: (r, η, ξ) ;

$$\xi = az + b\varphi, \quad \eta = a\varphi - brac{z}{r^2}, \qquad a, b = ext{const}, \quad a^2 + b^2 > 0$$

- Helical invariance: $f = f(r, \xi)$, $a, b \neq 0$.
- Axial: a = 1, b = 0. z-Translational: a = 0, b = 1.

Divergence-type conservation laws – summary

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Divergence-type conservation laws – summary

For a DE system G[v] = 0:

- The solution manifold \mathcal{E} is a geometric object.
- CLs reflect its properties, and are coordinate-independent. In particular,

$$\mathrm{D}_{(z^*)^i}(\Phi^*)^i[v^*] = J \mathrm{D}_i \Phi^i[v] = 0$$

after a change of variables

$$(z^*)^i = f^i(z, v), \qquad i = 1, \dots, n,$$

 $(v^*)^k = g^k(z, v), \qquad k = 1, \dots, m.$

- CLs have a characteristic form: $D_i \Phi^i[v] = \Lambda_{\sigma}[v] G^{\sigma}[v]$.
- CLs can be systematically computed (the direct method and Maple/GeM implementations).
- The direct method is complete, within the chosen multiplier ansatz.

イロト イヨト イヨト イヨ

Different types of CLs in 3D

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

General classical physical systems in 3D:

- Independent variables: coordinates $x = (x^1, x^2, x^3) \in \Omega$, and possibly time t.
- Dependent variables: $v = v(t, \mathbf{x})$ or v(x); $m \ge 1$ scalars.
- PDEs: $G^{\sigma}[v] = 0, \sigma = 1, ..., M.$

Typical applications:

- Nonlinear mechanics, elasticity, viscoelasticity, plasticity
- Fluid mechanics
- Electromagnetism
- Wave propagation
- Thermodynamics, diffusion, ...

イロト イヨト イヨト イヨ

PDE models in three spatial dimensions: examples

Example: Microscopic Maxwell's equations in Gaussian units

div
$$\mathbf{B} = 0$$
, $\mathbf{B}_t + c \operatorname{curl} \mathbf{E} = 0$,
div $\mathbf{E} = 4\pi\rho$, $\mathbf{E}_t - c \operatorname{curl} \mathbf{B} = -4\pi \mathbf{J}$.

・ロト ・回ト ・ヨト ・

PDE models in three spatial dimensions: examples

Example: Navier-Stokes/Euler gas and fluid dynamics equations

 $\rho_t + \operatorname{div} \rho \mathbf{u} = \mathbf{0},$ $\rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) = -\operatorname{grad} \, \boldsymbol{p} + \mu \, \Delta \mathbf{u}.$

・ロト ・回ト ・ ヨト

PDE models in three spatial dimensions: examples

Example: Ideal magnetohydrodynamics (MHD) equations

$$\rho_t + \operatorname{div} \rho \mathbf{u} = \mathbf{0}, \qquad \rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} \boldsymbol{\rho},$$
$$\mathbf{B}_t = \operatorname{curl}(\mathbf{u} \times \mathbf{B}), \qquad \operatorname{div} \mathbf{B} = \mathbf{0}.$$

1. Time-independent/topological CLs

Applications:

- Time-independent models.
- \bullet Differential constraints, e.g., ${\rm div}~{\bf B}=0,~{\rm curl}~{\bf u}=0...$

・ロト ・回ト ・ヨト ・

1. Time-independent/topological CLs

1A. Spatial divergence/topological flux conservation laws

• Local form: $\operatorname{Div} \Psi[v] = 0.$

• Global form in \mathcal{V} , $\partial \mathcal{V} = \mathcal{S}$:

$$\oint_{\mathcal{S}} \Psi[v] \cdot d\mathbf{S} \big|_{\mathcal{E}} = 0 \quad \text{(Gauss' theorem.)}$$

• Global form when $\partial \mathcal{V} = \mathcal{S}_1 \cup \mathcal{S}_2$:

$$\oint_{\mathcal{S}_1} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S} = \oint_{\mathcal{S}_2} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S}.$$

1. Time-independent/topological CLs

1A. Spatial divergence/topological flux conservation laws

• Local form: $\operatorname{Div} \Psi[v] = 0$.

• Global form in \mathcal{V} , $\partial \mathcal{V} = \mathcal{S}$:

$$\oint_{\mathcal{S}} \mathbf{\Psi}[\mathbf{v}] \cdot d\mathbf{S}\big|_{\mathcal{E}} = \mathbf{0} \quad (\mathsf{Gauss' theorem.})$$

• Global form when $\partial \mathcal{V} = \mathcal{S}_1 \cup \mathcal{S}_2$:

$$\oint_{\mathcal{S}_1} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S} = \oint_{\mathcal{S}_2} \Psi[v]|_{\mathcal{E}} \cdot d\mathbf{S}.$$

Examples:

- Incompressible flow: $\operatorname{div} \mathbf{u} = \mathbf{0}$.
- Absence of magnetic sources: $\operatorname{div} \mathbf{B} = \mathbf{0}$.

<ロト </p>
1. Time-independent/topological CLs

1B. Spatial curl/topological circulation conservation laws

• Local form: $|\operatorname{Curl} \Psi[v]|_{\mathcal{E}} = 0.$

• Global form in S, $\partial S = C$:

$$\int_{\mathcal{C}} \Psi[v] \cdot d\ell = 0.$$

• Global form, $\partial S = C_1 \cup C_2$:

$$\oint_{\mathcal{C}_1} \Psi[v]|_{\mathcal{E}} \cdot d\ell = \oint_{\mathcal{C}_2} \Psi[v]|_{\mathcal{E}} \cdot d\ell.$$

イロト イヨト イヨト イ

1. Time-independent/topological CLs

1B. Spatial curl/topological circulation conservation laws

• Local form: $|\operatorname{Curl} \Psi[v]|_{\mathcal{E}} = 0.$

• Global form in
$$\mathcal{S}$$
, $\partial \mathcal{S} = \mathcal{C}$

$$\int_{\mathcal{C}} \Psi[v] \cdot d\ell = 0.$$

• Global form, $\partial \mathcal{S} = \mathcal{C}_1 \cup \mathcal{C}_2$:

$$\oint_{\mathcal{C}_1} \Psi[v]|_{\mathcal{E}} \cdot d\ell = \oint_{\mathcal{C}_2} \Psi[v]|_{\mathcal{E}} \cdot d\ell.$$

Examples:

- Irrotational flow: $\operatorname{curl} \mathbf{u} = \mathbf{0}$.
- Equilibrium MHD–magnetic equation: $\operatorname{curl}\left(\mathbf{u}\times\mathbf{B}\right)=0$
 - \Rightarrow circulation condition:

$$orall \mathcal{S} \subset \Omega, \quad \int_{\partial \mathcal{S}} (\mathbf{u} \times \mathbf{B}) \cdot d\boldsymbol{\ell} = 0.$$

2A. Volumetric conservation laws:

• A global volumetric conservation law of a given 3D PDE model, for $\mathcal{V} \subset \Omega$:

$$\frac{d}{dt}\int_{\mathcal{V}} T\,dV = -\oint_{\partial\mathcal{V}} \Psi \cdot d\mathbf{S},$$

holding for all solutions $v(t, \mathbf{x}) \in \mathcal{E}$.

• Local formulation: a continuity equation

$$D_t T[v] + \operatorname{Div} \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

• Scalar conserved density: T = T[v], vector spatial flux: $\Psi = \Psi[v]$.

A B A B A B A

2A. Volumetric conservation laws:

• A global volumetric conservation law of a given 3D PDE model, for $\mathcal{V}\subset \Omega$:

$$\frac{d}{dt}\int_{\mathcal{V}} T\,dV = -\oint_{\partial\mathcal{V}} \Psi \cdot d\mathbf{S},$$

holding for all solutions $v(t, \mathbf{x}) \in \mathcal{E}$.

• Physical meaning: the rate of change of the volume quantity

$$\int_{V} T[v] dV$$

is balanced by the surface flux

$$\oint_{\partial \mathcal{V}} \Psi[v] \cdot d\mathbf{S}.$$

Image: A math a math

Example: Microscopic Maxwell's equations in Gaussian units

$$\operatorname{div} \mathbf{B} = \mathbf{0}, \qquad \mathbf{B}_t + c \operatorname{curl} \mathbf{E} = \mathbf{0},$$

div
$$\mathbf{E} = 4\pi\rho$$
, $\mathbf{E}_t - c \operatorname{curl} \mathbf{B} = -4\pi \mathbf{J}$.

Conservation of electromagnetic energy:

 $\frac{1}{2}\partial_t \left(|\mathbf{E}|^2 + |\mathbf{B}|^2 \right) + c \operatorname{div} \left(\mathbf{E} \times \mathbf{B} \right) = 0.$

・ロト ・日下・ ・ ヨト・

2B. Surface-flux conservation laws:

• A global surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}}\mathbf{T}\cdot d\mathbf{S}=-\oint_{\partial\mathcal{S}}\boldsymbol{\Psi}\cdot d\boldsymbol{\ell},\qquad \boldsymbol{\nu}\in\mathcal{E}.$$

Local formulation: a vector PDE

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Curl} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

- $\mathcal{S} \subseteq \Omega$ is a fixed bounded surface.
- Vector conserved flux density: $\mathbf{T} = \mathbf{T}[v]$; vector spatial circulation flux: $\Psi = \Psi[v]$.
- Local form: three related scalar divergence-type CLs.

2B. Surface-flux conservation laws:

• A global surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}}\mathbf{T}\cdot d\mathbf{S}=-\oint_{\partial\mathcal{S}}\boldsymbol{\Psi}\cdot d\boldsymbol{\ell}, \qquad \boldsymbol{\nu}\in\mathcal{E}.$$

• Local formulation: a vector PDE

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Curl} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

• Physical meaning: rate of change of the surface quantity

$$\int_{\mathcal{S}} \mathbf{T}[v] \cdot d\mathbf{S}$$

is balanced by the circulation

$$\oint_{\partial S} \Psi[v] \cdot d\ell.$$

Example: microscopic Maxwell's equations in Gaussian units

div
$$\mathbf{B} = 0$$
, $\mathbf{B}_t + c \operatorname{curl} \mathbf{E} = 0$,
div $\mathbf{E} = 4\pi\rho$, $\mathbf{E}_t - c \operatorname{curl} \mathbf{B} = -4\pi \mathbf{J}$.

Magnetic flux conservation: a global surface-flux conservation law (Faraday's law)

$$\frac{d}{dt}\int_{\mathcal{S}}\mathbf{B}\cdot d\mathbf{S} = -c\oint_{\partial\mathcal{S}}\mathbf{E}\cdot d\boldsymbol{\ell}.$$

Example: ideal magnetohydrodynamics (MHD) equations

$$\rho_t + \operatorname{div} \rho \mathbf{u} = \mathbf{0},$$

$$\rho(\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\frac{1}{\mu} \mathbf{B} \times \operatorname{curl} \mathbf{B} - \operatorname{grad} \boldsymbol{\rho},$$

$$\operatorname{div} \mathbf{B} = \mathbf{0},$$

$$\mathbf{B}_t = \operatorname{curl} (\mathbf{u} \times \mathbf{B}).$$

Conserved flux density, spatial circulation flux:

$$T = B, \qquad \Psi = B \times u.$$

The global form of the surface-flux conservation law

$$\frac{d}{dt}\int_{\mathcal{S}} \mathbf{B} \cdot d\mathbf{S} = -\oint_{\partial \mathcal{S}} (\mathbf{B} \times \mathbf{u}) \cdot d\boldsymbol{\ell}$$

describes the time evolution of the total magnetic flux through a given fixed surface \mathcal{S} .

• A similar CL holds for non-ideal (resistive, viscous) plasmas.

2C. Circulatory conservation laws:

• A global circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}}\mathbf{T}\cdot d\boldsymbol{\ell} = -\Psi\big|_{\partial\mathcal{C}}, \qquad \boldsymbol{v}\in\mathcal{E}.$$

• Local local circulatory conservation law:

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Grad} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

- $\mathcal{C} \subseteq \Omega$ is a fixed simple curve.
- Vector conserved circulation density: T = T[ν]; vector spatial boundary flow: Ψ = Ψ[ν].
- Local form: three related scalar divergence-type CLs.

2C. Circulatory conservation laws:

• A global circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}}\mathbf{T}\cdot d\boldsymbol{\ell} = -\Psi\big|_{\partial\mathcal{C}}, \qquad \boldsymbol{v}\in\mathcal{E}.$$

• Local local circulatory conservation law:

$$D_t \operatorname{\mathbf{T}}[v] + \operatorname{Grad} \, \Psi[v] = 0, \qquad v \in \mathcal{E}.$$

• Physical meaning: rate of change of the line integral quantity

$$\int_{\mathcal{C}} \mathbf{T} \cdot d\boldsymbol{\ell}$$

is balanced by the flow through the ends of the curve.

(日) (同) (三) (三) (三)

Example: irrotational barotropic gas flow.

$$\begin{split} \rho_t + \operatorname{div}(\rho \mathbf{u}) &= \mathbf{0}, \\ \mathbf{u}_t + (\operatorname{curl} \mathbf{u}) \times \mathbf{u} + \operatorname{grad} \, f = \mathbf{0}, \qquad f = f_{\operatorname{bar}} = \frac{|\mathbf{u}|^2}{2} + \int \frac{p'(\rho)}{\rho} \, d\rho. \end{split}$$

- Irrotational: $\operatorname{curl} \mathbf{u} = \mathbf{0}$.
- Barotropic: $p = p(\rho)$, \Rightarrow $\mathbf{u}_t + \text{grad } f = 0$.
- Circulatory conservation law over an arbitrary static curve \mathcal{C} :

$$\frac{d}{dt}\int_{\mathcal{C}}\mathbf{u}\cdot d\boldsymbol{\ell}=-f|_{\partial\mathcal{C}}.$$

• For closed curves, $\partial C = \emptyset$:

$$\frac{d}{dt}\oint_{\mathcal{C}}\mathbf{u}\cdot d\boldsymbol{\ell}=0,$$

conservation of a global velocity circulation around a static closed path.

イロト イヨト イヨト イヨ

Conservation laws on moving domains in 3D

Time-dependent CLs on moving domains

- Suppose the model involves a velocity field $\mathbf{u}(t, \mathbf{x})$.
- X(t, x): material (Lagrangian) coordinates, macroscopic particle labels.
- Streamlines:

$$\frac{\mathrm{d}\mathbf{X}(t,\mathbf{x})}{\mathrm{d}t} = \mathbf{0}, \qquad \frac{\mathrm{d}}{\mathrm{d}t} \equiv \partial_t + \mathbf{u} \cdot \nabla.$$

• A moving material domain: consists of the same material points.

$$\mathbf{X}(t,\mathbf{x}(t))= ext{const},\qquad rac{d\mathbf{x}(t)}{dt}=\mathbf{u}(t,\mathbf{x}(t)).$$

Image: A match the second s

Moving volume conservation laws:

• A moving volume conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}\mathcal{T}[\mathbf{u},v]\,dV=-\oint_{\partial\mathcal{V}(t)}\boldsymbol{\Upsilon}[\mathbf{u},v]\cdot d\mathbf{S},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a volume $\mathcal{V}(t) \in \Omega$ transported by the flow.

Local formulation:

• Leibniz's rule for moving domains:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}T[\mathbf{u},v]\,dV = \int_{\mathcal{V}(t)}D_t\,T[\mathbf{u},v]\,dV + \oint_{\partial\mathcal{V}(t)}T[\mathbf{u},v]\,\mathbf{u}\cdot d\mathbf{S}$$

• Local form:

$$D_t T[\mathbf{u}, v] + \text{Div} (\Upsilon[\mathbf{u}, v] + T[\mathbf{u}, v]\mathbf{u}) = 0.$$

<ロト </p>

Conservation of helicity in a moving volume

• Constant-density fluid flow:

div
$$\mathbf{u} = \mathbf{0}$$
,
 $\mathbf{u}_t + (\operatorname{curl} \mathbf{u}) \times \mathbf{u} + \operatorname{grad} f = \mathbf{0}$, $f = \frac{|\mathbf{u}|^2}{2} + \frac{p}{q}$

- The fluid helicity: $h \equiv \mathbf{u} \cdot \boldsymbol{\omega}$.
- Helicity dynamics equation: $h_t + \operatorname{div} (\boldsymbol{\omega} \cdot \operatorname{grad} f + (\boldsymbol{\omega} \times \mathbf{u}) \times \mathbf{u}) = 0.$
- Moving volumetric CL, local form:

$$D_t T[\mathbf{u}, v] + \operatorname{Div} \left(\boldsymbol{\Upsilon}[\mathbf{u}, v] + T[\mathbf{u}, v] \mathbf{u} \right) = 0, \qquad v \in \mathcal{E}.$$

$$T = h = \mathbf{u} \cdot \boldsymbol{\omega}, \qquad \Upsilon = (f - |\mathbf{u}|^2) \boldsymbol{\omega}.$$

• Global form:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}h\,dV=-\oint_{\partial\mathcal{V}(t)}(f-|\mathbf{u}|^2)\,\boldsymbol{\omega}\cdot d\mathbf{S}.$$

・ロト ・回ト ・ヨト ・

Material conservation laws

Important special case: a material CL

• A material conservation law: a moving volume CL with a vanishing spatial flux, $\Upsilon[\mathbf{u}, \mathbf{v}]|_{\mathcal{E}} = 0$. of a given 3D PDE model, for $\mathcal{V} \subset \Omega$:

$$\frac{d}{dt}\int_{\mathcal{V}(t)}T[\mathbf{u},\mathbf{v}]\,dV=-\oint_{\partial\mathcal{V}(t)}\Upsilon[\mathbf{u},\mathbf{v}]\cdot d\mathbf{S}=0.$$

• Local formulation:

$$D_t T[\mathbf{u}, v] + \operatorname{Div}(T[\mathbf{u}, v]\mathbf{u}) = 0.$$

• A well-known expression for incompressible flows $\operatorname{div} \mathbf{u} = 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t}T[\mathbf{u},\mathbf{v}] = \mathbf{0}, \qquad \frac{\mathrm{d}}{\mathrm{d}t} \equiv D_t + \mathbf{u} \cdot \mathrm{Grad}$$

Material conservation laws: example

The continuity equation in gas/fluid dynamics:

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0},$$

$$\rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) + \nabla \rho = \mu \Delta \mathbf{u} + \rho \mathbf{g}$$

Conservation of mass in a moving material domain :

$$\frac{d}{dt}\int_{\mathcal{V}(t)}\rho\,dV=0.$$

・ロト ・回ト ・ ヨト

Moving surface-flux CLs:

• A moving surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}(t)}\mathbf{T}[\mathbf{u},v]\cdot d\mathbf{S} = -\oint_{\partial\mathcal{S}(t)}\mathbf{\Upsilon}[\mathbf{u},v]\cdot d\boldsymbol{\ell},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a surface $\mathcal{S}(t) \in \Omega$ transported by the flow.

Physical meaning

The rate of change of the total flux of the vector field $\mathbf{T}[\mathbf{u}, v]$ through the moving surface S(t) in terms of the net boundary circulation.

• • • • • • • • • • • • •

Moving surface-flux CLs:

• A moving surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}(t)}\mathbf{T}[\mathbf{u},v]\cdot d\mathbf{S} = -\oint_{\partial\mathcal{S}(t)}\mathbf{\Upsilon}[\mathbf{u},v]\cdot d\boldsymbol{\ell},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a surface $\mathcal{S}(t) \in \Omega$ transported by the flow.

A D F A A F F

Moving surface-flux CLs:

• A moving surface-flux conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{S}(t)}\mathbf{T}[\mathbf{u},v]\cdot d\mathbf{S} = -\oint_{\partial\mathcal{S}(t)}\mathbf{\Upsilon}[\mathbf{u},v]\cdot d\boldsymbol{\ell},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a surface $\mathcal{S}(t) \in \Omega$ transported by the flow.

Local formulation:

• Leibniz's rule for moving surfaces:

$$\begin{split} \frac{d}{dt} \int_{\mathcal{S}(t)} \mathbf{T}[\mathbf{u}, v] \cdot d\mathbf{S} \\ &= \int_{\mathcal{S}(t)} D_t \, \mathbf{T}[\mathbf{u}, v] \cdot d\mathbf{S} + \int_{\mathcal{S}(t)} (\text{Div} \, \mathbf{T}[\mathbf{u}, v]) \, \mathbf{u} \cdot d\mathbf{S} + \oint_{\partial \mathcal{S}(t)} (\mathbf{T}[\mathbf{u}, v] \times \mathbf{u}) \cdot d\ell. \end{split}$$

• Local form:

 $D_t \operatorname{\mathbf{T}}[\mathbf{u}, v] + (\operatorname{Div} \operatorname{\mathbf{T}}[\mathbf{u}, v]) \operatorname{\mathbf{u}} + \operatorname{Curl} (\operatorname{\mathbf{T}}[\mathbf{u}, v] \times \operatorname{\mathbf{u}} + \Upsilon[\mathbf{u}, v]) = 0, \qquad v \in \mathcal{E}.$

Moving surface-flux CL example: MHD

• Non-ideal (finite conductivity) MHD:

$$ho_t + \operatorname{div}
ho \mathbf{u} = \mathbf{0}, \qquad
ho (\mathbf{u}_t + (\mathbf{u} \cdot
abla) \mathbf{u}) = -\frac{1}{\mu} \mathbf{B} imes \operatorname{curl} \mathbf{B} - \operatorname{grad} \, oldsymbol{p},$$

$$\mathbf{B}_t = \operatorname{curl} \left(\mathbf{u} \times \mathbf{B} + \frac{1}{\sigma} \mathbf{J} \right), \qquad \operatorname{div} \mathbf{B} = \mathbf{0}.$$

- Plasma electric current density: $J = (1/\mu) \operatorname{curl} B$.
- Moving surface-flux conservation law on a material surface S(t):

$$rac{d}{dt}\int_{\mathcal{S}(t)} \mathbf{B}\cdot d\mathbf{S} = -rac{1}{\sigma}\oint_{\partial\mathcal{S}(t)} \mathbf{J}\cdot dm{\ell}.$$

- Describes yields a rate of change of the magnetic flux through S(t) in terms of the circulation of the electric current density.
- A material CL: for a closed $\mathcal{S}(t)$, or in the case of ideal plasma $(\sigma \to \infty)$:

$$\frac{d}{dt}\int_{\mathcal{S}(t)}\mathbf{B}\cdot d\mathbf{S}=0.$$

Moving circulatory CLs

• A moving circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}(t)}\mathbf{T}[\mathbf{u},\mathbf{v}]\cdot d\boldsymbol{\ell} = -\Upsilon[\mathbf{u},\mathbf{v}]|_{\partial\mathcal{C}(t)},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a curve $\mathcal{C}(t) \in \Omega$ transported by the flow.

Physical meaning

The rate of change of the total flux of the moving line integral quantity in terms of the net flow out of the two ends.

• • • • • • • • • • • •

Moving circulatory CLs

• A moving circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}(t)}\mathbf{T}[\mathbf{u},\mathbf{v}]\cdot d\boldsymbol{\ell} = -\Upsilon[\mathbf{u},\mathbf{v}]|_{\partial\mathcal{C}(t)},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a curve $\mathcal{C}(t) \in \Omega$ transported by the flow.

A D F A A F F

Moving circulatory CLs

• A moving circulatory conservation law of a given 3D PDE model:

$$\frac{d}{dt}\int_{\mathcal{C}(t)}\mathbf{T}[\mathbf{u},\mathbf{v}]\cdot d\boldsymbol{\ell} = -\Upsilon[\mathbf{u},\mathbf{v}]|_{\partial\mathcal{C}(t)},$$

holding for all solutions $v = v(t, \mathbf{x}) \in \mathcal{E}$, for a curve $\mathcal{C}(t) \in \Omega$ transported by the flow.

Local formulation:

• Chain/Leibniz's rule for moving curves:

$$\begin{split} \frac{d}{dt} C[v; \mathcal{C}(t)] &= \frac{d}{dt} \int_{\mathcal{C}(t)} \mathbf{T}[\mathbf{u}, v] \cdot d\ell \\ &= \int_{\mathcal{C}(t)} (D_t \, \mathbf{T}[\mathbf{u}, v]) \cdot d\ell + \int_{\mathcal{C}(t)} \left((\operatorname{Curl} \, \mathbf{T}[\mathbf{u}, v]) \times \mathbf{u} \right) \cdot d\ell + \left(\mathbf{T}[\mathbf{u}, v] \cdot \mathbf{u} \right) \Big|_{\partial \mathcal{C}(t)} \end{split}$$

• Local form:

 $D_t \operatorname{\mathbf{T}}[\mathbf{u}, v] + (\operatorname{Curl} \operatorname{\mathbf{T}}[\mathbf{u}, v]) \times \operatorname{\mathbf{u}} + \operatorname{Grad} \left(\Upsilon[\mathbf{u}, v] + \operatorname{\mathbf{T}}[\mathbf{u}, v] \cdot \operatorname{\mathbf{u}} \right) = \mathbf{0}.$

Moving circulatory CL example: Euler model, velocity circulation

• Constant-density fluid flow:

div
$$\mathbf{u} = \mathbf{0}$$
,
 $\mathbf{u}_t + (\operatorname{curl} \mathbf{u}) \times \mathbf{u} + \operatorname{grad} f = \mathbf{0}$, $f = \frac{|\mathbf{u}|^2}{2} + \frac{p}{\rho}$

Local circulatory CL form:

 $D_t \mathbf{T}[\mathbf{u}, \mathbf{v}] + (\operatorname{Curl} \mathbf{T}[\mathbf{u}, \mathbf{v}]) \times \mathbf{u} + \operatorname{Grad} (\Upsilon[\mathbf{u}, \mathbf{v}] + \mathbf{T}[\mathbf{u}, \mathbf{v}] \cdot \mathbf{u}) = 0.$

- Velocity line integral: $\mathbf{T} = \mathbf{u}, \ \Upsilon = f |\mathbf{u}|^2$.
- Global form:

$$rac{d}{dt}\int_{\mathcal{C}(t)} \mathbf{u}\cdot doldsymbol{\ell} = -(f-|\mathbf{u}|^2)|_{\partial\mathcal{C}(t)}.$$

Moving material closed curve – vanishing velocity circulation:

$$\frac{d}{dt}\oint_{\mathcal{C}(t)}\mathbf{u}\cdot d\boldsymbol{\ell}=0.$$

CLs in 3D: overview

メロト メタト メヨト メヨト

• PDE systems in (3+1) dimensions can have 8 different kinds of CLs:

・ロン ・回 と ・ ヨン・

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.

・ロト ・日下・ ・ ヨト・

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).

・ロト ・ 日 ・ ・ ヨ ト

Conservation laws in 3D: overview

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).

Conservation laws in 3D: overview

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).
- Each has a local and a global form.

Conservation laws in 3D: overview

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).
- Each has a local and a global form.
- Common framework, clear physical meaning.

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).
- Each has a local and a global form.
- Common framework, clear physical meaning.
- Each kind is locally given by divergence expression(s) \Rightarrow systematic computation.

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).
- Each has a local and a global form.
- Common framework, clear physical meaning.
- Each kind is locally given by divergence expression(s) \Rightarrow systematic computation.
- Trivial and nontrivial CLs of every kind may arise.

- PDE systems in (3+1) dimensions can have 8 different kinds of CLs:
 - 2 time-independent/topological.
 - 3 time-dependent (fixed domains).
 - 3 time-dependent (moving domains) (also material CLs).
- Each has a local and a global form.
- Common framework, clear physical meaning.
- Each kind is locally given by divergence expression(s) \Rightarrow systematic computation.
- Trivial and nontrivial CLs of every kind may arise.
- Physical examples are readily available.

ADEA
Talk summary

イロン イヨン イヨン イヨン

• CLs are useful in physics, analysis, and numerical simulations.

イロト イヨト イヨト イヨ

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms.

・ロト ・回ト ・ヨト ・

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms.
- CLs are coordinate-independent.

・ロン ・回 と ・ ヨン・

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms.
- CLs are coordinate-independent.
- More than one kind of CLs exist, with different physical meaning. All are (locally) given in terms of divergence expressions.

- CLs are useful in physics, analysis, and numerical simulations.
- CLs have local and global forms.
- CLs are coordinate-independent.
- More than one kind of CLs exist, with different physical meaning. All are (locally) given in terms of divergence expressions.
- Theoretical methods and powerful symbolic software for systematic CL computations exists.

A D > A P > A B > A

Keywords related to what we did not discuss:

- CL computational aspects: how to avoid trivial/equivalent CLs, singular multipliers, and yet retain completeness.
- Relationships with symmetries, Lagrangians, variational systems, 1st and 2nd Noether's theorems, integrability...
- Useful techniques to get CLs "cheaply".
- Nonlocal and approximate CLs.

A D > A P > A B > A

Some references

Olver, P. (1993)

Applications of Lie Groups to Differential Equations. Springer-Verlag.

Cheviakov, A. (2004-now)

GeM for Maple: a symmetry & conservation law symbolic computation package. http://math.usask.ca/~shevyakov/gem/

Bluman, G., Anco, S., & Wolf, T. (2008).

Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws. *Acta App. Math.* 101 (1-3), 21-38.

Bluman, G., Cheviakov, A., and Anco, S. (2010)

Applications of Symmetry Methods to Partial Differential Equations. Springer.

Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013)

New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. *JFM* 721, 340-366.

A. Cheviakov and M. Oberlack (2014)

Generalized Ertel's theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and NavierStokes equations. *JFM* 760: 368-386.

Anco, S. and Cheviakov, A. (2017)

On the different types of global and local conservation laws for partial differential equations in three spatial dimensions. arXiv:1803.08859.

イロト 不得下 イヨト イヨト

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶