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Goals of this talk

Discuss a common framework for thinking about conservation laws (CL)
o Different CL types, different applications, examples

@ lllustrate “what can happen”

o Discuss systematic CL computation

@ The CL ideas are simple, general, and useful in various research areas
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Outline

@ Local and global conservation laws
@ Definitions

Applications of CLs

Trivial and equivalent CLs

Characteristic form of a CL

How many local CLs?

e Systematic computation of conservation laws
@ The direct CL construction method
o Computational examples

© Conservation laws in three spatial dimensions
@ Conservation laws on moving domains in 3D

© Talk summary
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o Independent variables: (x,t), or (t,x,y,z), or z = (2%, ..., 2").

@ Dependent variables: u(x, t), or generally v = (v!(2), ..., v"(2)).

Derivatives:
d . 0 o O pi v p
oA w(t) = w'(t); Ix u(x, t) = ux; Gyl (z2) =v.

o All derivatives of order p: 9Pv.

A differential function:

H[v] = H(z,v,dv,...,d"V)

@ A total derivative of a differential function: the chain rule
8H oH OH
D;H[v] = v i
[ ] Ove Vi + ove Vij +

J
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o A PDE Example: the KdV (Korteweg-de Vries) equation

ou v, Pu
ot ox = 0x3

for the dimensionless fluid depth u = u(x, t) of long surface waves on shallow water:

=0

Glu] = ut + uux + U = 0.
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o A PDE Example: the KdV (Korteweg-de Vries) equation

ou v, Pu
ot ox = 0x3

for the dimensionless fluid depth u = u(x, t) of long surface waves on shallow water:

=0

Glu] = ut + uux + U = 0.

o J*(x, t|u): the k-th order jet space with coordinates x, t, u, du, ..., d*u.

o The solution manifold &£ in J*(x, t|u) is defined by the DE(s)-+differential
consequences to order k:

G[u] =0, D«G[u]=0, D:G[u]=0,...

o Statements are often formulated for differential functions defined in J*(x, t|u).
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Local and global conservation laws
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Local and global conservation laws

@ System of differential equations (PDE or ODE) G[v] = 0:
G°(z,v,0v,...,0%v)=0, o=1,...,M.

@ The basic notion —

A local (divergence-type) conservation law:

A divergence expression

D;®[v] =0

vanishing on solutions of G[v]. Here & = (®[v],...,®"[v]) is the flux vector.
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Local and global conservation laws — ODE examples

ODE: A constant of motion (conserved quantity):

v = v(t), D:T[v]=0 = T[v] = const.
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Local and global conservation laws — ODE examples

@ Example 1: uniform rectilinear motion,

D P(t) =0, P(t) = mx(t) = const.
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Local and global conservation laws — ODE examples
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@ Example 2: the Lotka-Volterra model of a predator-prey interaction

X'(t) = ax(t) = Bx(t)y(t),  y'(t) = ox(t)y(t) — yy(t).
o Here x(t)=number of prey, (for example, baboons), y(t)=number of predator
(e.g., cheetah), and «, 3,7, = const.

@ A constant of motion: D; V/(t) =0,
V(t) = ox(t) — vInx(t) + By(t) — alny(t) = const.
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Vol. 107, No. 957 The American Naturalist September—-October 1973

LETTER TO THE EDITORS

DO HARES EAT LYNX?

To test a recently developed predator-prey model against reality, I chose
the well-known Canadian hare-lynx system. A measure of the state of this
system for the last 200-odd years is available in the fur catch records of
the Hudson Bay Company (MacLulich 1937 ; Elton and Nicholson 1942).
Although the accuracy of these data is questionable (see Elton and Nichol-
son 1942 for a full discussion), they represent the only long-term popula-
tion record available to ecologists.

The model T tested is

dAH/dt = H (ry 4 CurL 4 SpH -+ 1,H?), (1a)
AL/dt = L(rg 4 CogH -+ S;L - 1,L2), (1b)
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T1a. 1.—Yearly states of the Canadian lynx-hare system from 1875 to 1906.
The numbers on the axes represent the numbers of the respective animals in
thousands.
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Local and global conservation laws — PDE examples

@ For PDEs, the meaning of a local conservation law is different: the total amount of
“density” is “conserved” in another sense.

@ (141)-dimensional PDEs: v = v(x, t), only one CL type.

Local form:

‘DtT[v] + D, V[v] = 0. ‘

Global form:

% /ab T[v] dx = Au[v][.
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Local and global conservation laws — PDE examples

Conservation principles to derive model DEs.

o Continuity equation — gas/fluid flow:

pt+ (pv), =0, p = p(x,t), v = v(x, t).

-,.| ."‘

o Q(x,r)n n oG+ Ay !

i '
A I
X

direction

o Global form:
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Local and global conservation laws — PDE examples

(14+1)-dimensional linear wave equation:

Un = Cle, u=u(x,t), c=7/p, a<x<b or —oco<x< 0.

- u(xt)
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Local and global conservation laws — PDE examples

(14+1)-dimensional linear wave equation:

Un = Cle, u=u(x,t), c=7/p, a<x<b or —oco<x< 0.

- u(xt)

@ A local CL — momentum conservation: D¢(pu;) — Dy(7ux) = 0.

o Global form: .

d d b

EM: E/a puy dx = Tuy E
o dM/dt = 0 for zero Neumann BCs — the momentum is conserved, M = const.
o (E.g., a finite perturbation of an infinite string.)
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Local and global conservation laws — PDE examples

(14+1)-dimensional linear wave equation:

Un = Cle, u=u(x,t), c=7/p, a<x<b or —oco<x< 0.

_-u(x,t)

2
pu? Ul

@ A local CL — energy conservation: Dy ( 5 T ) — Dy(Turuy) = 0.

@ Global form:
b

dt—  dt

@ For which BCs is E = const?

a

d E = d <put + TUX> dx = Turuy
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Local and global conservation laws — PDE examples

@ (3+1)-dimensional PDEs: R[v] =0, v = v(t,x,y,z).

@ Local form: ’ D: T[v] + Div¥®[v] =0 ‘ & D;®'[v] =0

@ Global form: i TdV = — v . dS

dt J, av

@ Holds for all solutions v(t, x,y, z) € £, in some physical domain V.

@ In 3D, CLs of other types on static and moving domains can exist.
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Applications
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Applications of Conservation Laws

Applications to ODEs

@ Constants of motion:
D:T[v]=0 = T[v] = const.

o Reduction of order / integration.
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Applications of Conservation Laws

Applications to PDEs

D:T[v] + Div¥[v] =0

Rates of change of physical variables; constants of motion.

Differential constraints (divergence-free or irrotational fields, etc.).
@ Analysis of solution behaviour: existence, uniqueness, stability.
@ Potentials, stream functions, etc.

@ An infinite number of CLs may indicate integrability/linearization.

Conserved PDEs forms and constants of motion for numerical methods.
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CLs with no physical content?
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Trivial and equivalent local conservation laws

Example: (1+1)-dimensional linear wave equation

Uy = c2uXX, u = u(x,t).

| A\

Trivial conservation laws:

o Density/flux vanishes on solutions (Type |, vanishing density/flux).
For example,
Dt(utt - CZUxx) aF DX (2U [uttx — Czuxxx]) = 0

@ Holds as an identity for any u(x, t) (Type Il, null divergence).

For example,
D¢(x + ux) + Dx(2t — u:) = 0.

@ A combination thereof. )

May 18, 2018 20 / 64

A. Cheviakov (UofS, Canada) Conservation laws in static and moving domains



Trivial and equivalent local conservation laws

Example: (1+1)-dimensional linear wave equation

Uy = c2uXX, u = u(x,t).

| A

Equivalent conservation laws
o Differ by a trivial one. For example,
De(ue) — Du(c’ux) =0

and
Di(ut + x) — Dy(Puy — 1) =0

describe the same physical quantity.

@ Natural to seek all different equivalence classes of CLs.

@ Same ideas for multi-dimensional models.

A. Cheviakov (UofS, Canada) Conservation laws in static and moving domains May 18, 2018 20 / 64



Al fields

Search or Article ID

arXiv.org > math-ph > arXiv:1803.08859

(Hel | Advanced search}

Mathematical Physics

On the different types of global and local conservation laws for partial
differential equations in three spatial dimensions

Stephen C. Anco, Alexei F. Cheviakov

(Submitted on 23 Mar 2018)

For systems of partial differential equations in three spatial dimensions, dynamical conservation laws holding on volumes,

surfaces, and curves, as well as topological conservation laws holding on surfaces and curves, are studied in a unified framework.

Both global and local formulations of these different conservation laws are discussed, including the forms of global constants of
motion. The main results consist of providing an explicit characterization for when two conservation laws are locally or globally
equivalent, and for when a conservation law is locally or globally trivial, as well as deriving relationships among the different types
of conservation laws. In particular, the notion of a "trivial” conservation law is clarified for all of the types of conservation laws.
Moreover, as further new results, conditions under which a trivial local conservation law on a domain can yield a non-trivial global
conservation law on the domain boundary are determined and shown fo be related to differential identities that hold for PDE
systems containing both evolution equations and spatial consiraint equations. Numerous physical examples from fluid flow, gas
dynamics, electromagnetism, and magnetohydrodynamics are used as lllustrations.

Comments: 55 pages
Subjects:  Mathematical Physics (math-ph); Fluid Dynamics (physics flu-dyn)
Cite as:  arXiv:1803.08859 [math-ph]
(or arXiv:1803.08859v1 [math-ph] for this version)
firefox
17/05/2018 , 11:58:57 AM

Download:
« PDF
« PostScript

« Other formats
(ioanss)
Current browse context:
math-ph
< prev | next >
new | recent | 1803
Change to browse by:
math
physics

physics flu-dyn

References & Citations

+ NASA ADS

Bookmark gt is this7)

B Ra"

[1803.08859] On the different types of global and local conservation laws for partial differential equations in three spatial dimensions - Mozilla Firefox

Conservation laws in static and moving domains

A. Cheviakov (UofS, Canada)




Characteristic form of a CL
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Characteristic form of a CL

@ What is an “algebraic handle” to compute divergence-type CLs
D;®'[v] =0

of a DE system G°[v]=0,0=1,...,M?
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Characteristic form of a CL

@ What is an “algebraic handle” to compute divergence-type CLs
D;®'[v] =0

of a DE system G°[v]=0,0=1,...,M?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a totally nondegenerate PDE
system G?[v] = 0 if and only if it has the form, for all v,

Q[v] = A, [V]G[v] + AS[vV] DG V] + ...
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Characteristic form of a CL

@ What is an “algebraic handle” to compute divergence-type CLs
D;®'[v] =0

of a DE system G°[v]=0,0=1,...,M?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a totally nondegenerate PDE
system G?[v] = 0 if and only if it has the form, for all v,

Q[v] = A, [V]G[v] + AS[vV] DG V] + ...

o Off of solution set, for all v:

Di®'[v] = Ag[VIG7[v] + A5 [V] DkG V] + ...
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Characteristic form of a CL

@ What is an “algebraic handle” to compute divergence-type CLs
D;®'[v] =0

of a DE system G°[v]=0,0=1,...,M?

Hadamard lemma for differential functions

A smooth differential function Q[v] vanishes on solutions of a totally nondegenerate PDE
system G?[v] = 0 if and only if it has the form, for all v,

Q[v] = A, [V]G[v] + AS[vV] DG V] + ...

o Off of solution set, for all v:

Di®'[v] = Ag[VIG7[v] + A5 [V] DkG V] + ...

@ An equivalent CL: B B
D;®'[v] = A, [v]G7[v].
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Characteristic form of a CL

A characteristic form of a local CL:

Do/ [v] = A, [v]G°[] ]

o ®'[v]: fluxes.
o Ao [v]: multipliers.

@ There is “usually” a 1:1 correspondence between sets of (nontrivial) multipliers and
the respective (nontrivial) local CLs.
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How many local CLs?

A. Cheviakov (UofS, Canada) Conservation laws in static and moving domains May 18, 2018 25 / 64



How many local CLs?

@ How many (linearly independent, nontrivial) local CLs does a given PDE system
have?
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How many local CLs?

@ How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

@ Possibility I: a finite number. For example:

Theorem (lbragimov, 1985)

For any (1 + 1)-dimensional even-order scalar evolution equation
us = F(x, t, u,@xu,...,afku), u = u(x,t),
the flux and the density of local CLs
D¢ T[u] + DxW¥W[u] =0

(up to equivalence) depend only on x, t, u and derivatives of u with respect to x, and the
maximal order of a derivative in the CL density T is k.

v
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How many local CLs?

@ How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

@ Possibility I: a finite number. For example:

A nonlinear diffusion equation

e = (U Ux)x, u = u(x,t).

Two local CLs only:
De(u) — Da(s0) =0,

0
U3 2
D¢(xu) + Dy (— — XU ux) =0.
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How many local CLs?

@ How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

o Possibility Il: an infinite countable set.
E.g., CLs of an S-integrable equation.

Example: the KdV

Ut + Ulx + U = 0, u = u(x,t).
A hierarchy of local CLs:
A(x,t) =1, Di(u) + Dx (%uz + uxx) =0,
ANx,t)=u, Dy (%u2) + D« (%u3 + Ul — %uf) =0,

2 3 2 4 2 2 2
/\(X7 t) = %U 9 Dt (éu — %UX) +Dx (%U - UUX“F %(U uxx+uxx) - uxuxxx) :07
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How many local CLs?

@ How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

o Possibility Ill: an infinite CL family.
E.g., CLs involving a free function.

Constant-density Navier-Stokes equations

p=const, divu=0, u:+u-Vu=—grad p+vAu.
CLs [Gusyatnikova & Yumaguzhin, 1989]:

o Continuity (generalized): V - (k(t)u) = 0.

@ Momentum (generalized): D.(f(t)u') + Dx(...) +Dy(...) +D.(...) =0;
same for y, z.

o Angular momentum: Dy(zv® — yu®) + Dx(...) + Dy(...) + Dz(...) = 0;
same for y, z.
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How many local CLs?

@ How many (linearly independent, nontrivial) local CLs does a given PDE system
have?

o Possibility Ill: an infinite CL family.
E.g., C-integrable equations, with CLs involving arbitrary solutions of linear PDEs.

@ A linear heat equation u; = a’ux, u = u(x,t).
o Local CLs: A(x, t)(u: — ux) = D: T + DV = 0.

@ The multiplier A(x, t) is any solution of the adjoint linear PDE A; = —a*Ax.

o E.g., A(x,t) = e” tsinx, then D; (e""2t u sin x) + Dy, (azeazt[ucosx — uysin x]) =0.

v

o Existence of a “large” CL family is a necessary condition of invertible linearization
(e.g., Bluman, Anco & Wolf, 2008).
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How to compute CLs?
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The idea of the direct construction method

Independent and dependent variables of the problem:
z=(z4.,2"), v=v(z)= (v}, .., v").

Definition

The Euler operator with respect to an arbitrary function v/:

b d 5 9
EVJ_W I.avj_|_...+( 1)D,1...D,58V!.

i...is

b, j=1,...,m.

Theorem

| |
)
td
|

The equations
E,Flvl=0, j=1,....,m

hold for arbitrary v(z) if and only if
Flv] = D;®’

for some functions ®' = ®'[v].
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The direct construction method

Given:
o A system of M DEs G’[v]=0, o=1,...,M.

o Variables: z = (Z',...,2"), v = (v'(2),...,v"(2)).
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The direct construction method

Given:
o A system of M DEs G’[v]=0, o=1,...,M.

o Variables: z = (Z',...,2"), v = (v'(2),...,v"(2)).

The Direct CL Construction Method
@ Specify the dependence of multipliers: Ax = As[z, v, v, ...].

@ Solve the set of determining equations E ;(A-[v]G°[v]) =0, j=1,...,m, for
arbitrary v(z), to find all sets of multipliers.

O Find the corresponding fluxes ®'[V/] satisfying the identity
As[v]G?[v] = D;d[v].

@ For each set of fluxes, on solutions, get a local conservation law

D;®'[v] = 0.
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Computational examples
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Example: CLs of Euler equations

Constant-density Navier-Stokes equations

CLs

p=const, divu=0, u;+u-Vu=—grad p+ v Au.

[Gusyatnikova & Yumaguzhin, 1989]: CL order is bounded.
Continuity (generalized): V - (k(t)u) = 0.

Momentum (generalized): D¢(f(t)u’) + Dx(...) + Dy(...) +D,(...) = 0;
same for y, z.

Angular momentum: D¢(zu? — yu®) + Dy(...) +Dy(...) + D,(...) =0;
same for y, z.

No such result for Euler equations (v = 0).

Also unknown for symmetry-reduced models (axial, helical...)
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

[@ A. Cheviakov and M. Oberlack (2014)
Generalized Ertel's theorem and infinite hierarchies of conserved quantities for
three-dimensional time-dependent Euler and NavierStokes equations. JFM 760: 368-386.

o seek CLs to second-order multipliers, depending on up to 45 variables,
1,2 3 11 2 2 2 3.3 .3
t7X7y727 u ,U ,U 7p7 uyyuz7 uxvuyyuz7 uxzuyyuzv ptapX7p)/7pla
2 12
uyy7 Uy27 Uzz, Uxx, uxy: Uz, uyya uyza Uzzy,  Uxx, uxy: Uxz,s uyy: Uyz: Uzz,

Ptt; Ptx, Pty Ptzs Pxxs Pxy s Pxzy Pyys Pyz Pzz-

A. Cheviakov (UofS, Canada) Conservation laws in static and moving domains May 18, 2018



Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

1. Conservation of generalized momentum.

A = f(t)u' — xF'(t), Aa=Ff(t), As=NA=0;

%( (t)u 1)—|— ((u f(t) — Xf/(t))u1+f(t)p)
%((”lm) s (O)) + 5L (W)~ ()) =0

with analogous expressions holding for y- and the z-directions.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

2. Conservation of the angular momentum.

/\1:u§—u}3,, N=0, N3s=2z, N=-—y;

O 2 3, O 2 3y 1
8t(zu yu’) + o ((zu yu)u )
0 2 3y 2 0 2 3y 3 _
+3y ((zu yui)u —|—zp) + e ((zu yu)u yp) =0.

with cyclic permutations for y- and the z-directions.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

v
3. Conservation of the kinetic energy.

A=K+ P, [A27/\37A4] =u

a _ _ 1 2
aK+V~((K+p)u)_o, K =1l
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

4. Generalized continuity equation.

/\1:/((1')7 N=Ns =N =0;

V- (k(t)u) = 0.
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Example: CLs of Euler equations

Constant-density Euler equations

p=const, divu=0, u;+u-Vu= —grad p.

v
5. Conservation of helicity.

A =0, [A2,A3,A\s] =w = curlu;

h=u-w; E=K-+p, K:%\u|2;

%h—l—V-(uxVE—i—(wxu)xu):O.
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Example: CLs of NS and Euler equations under helical symmetry

@ Kelbin, O., Cheviakov, A.F., and Oberlack, M. (2013)
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and
inviscid flows. JFM 721, 340-366.

Helically-invariant equations

o Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

@ Two-component reductions.

Additional conservation laws — through direct construction

@ Three-component Euler:

o Generalized momenta. Generalized helicity. Additional vorticity CLs.
@ Three-component Navier-Stokes:

o Additional CLs in primitive and vorticity formulation.
@ Two-component flows:

o Infinite set of enstrophy-related vorticity CLs (inviscid case).
o Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Example: CLs of NS and Euler equations under helical symmetry

@ Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

ACUSIM ( 5“\5 Velocity Magnitude
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Example: CLs of NS and Euler equations under helical symmetry

@ Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]
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Example: CLs of NS and Euler equations under helical symmetry

@ Helical water flow past a propeller
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Example: CLs of NS and Euler equations under helical symmetry

Helical Coordinates

o Helical coordinates: (r,n,¢&);
z 2 2
& =az+ by, n:agp—bﬁ, a,b=const, a"+b" >0.

@ Helical invariance: f = f(r,&), a,b#0.

o Axial: a=1, b=0. z-Translational: a=0, b=1.
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Divergence-type conservation laws —
summary

A. Cheviakov (UofS, Canada) onservation laws in s oV ains May 18, 2018 34 / 64



Divergence-type conservation laws — summary

For a DE system G[v] = 0:
@ The solution manifold £ is a geometric object.
o CLs reflect its properties, and are coordinate-independent. In particular,
D,y (®*)[v*] = JDid'[v] = 0
after a change of variables

(z*) =fi(z,v), i=1,...,n,
(V*)k:gk(zav), k=1...,m.

o CLs have a characteristic form: | D;®'[v] = A, [v]G°[v].

@ CLs can be systematically computed (the direct method and Maple/GeM
implementations).

@ The direct method is complete, within the chosen multiplier ansatz.
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Different types of CLs in 3D
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PDE models in three spatial dimensions

General classical physical systems in 3D:

o Independent variables: coordinates x = (x!, x?,x®) € Q, and possibly time t.

o Dependent variables: v = v(t,x) or v(x); m > 1 scalars.

e PDEs: G’[v]=0,0=1,...,M.

v

Typical applications:

@ Nonlinear mechanics, elasticity, viscoelasticity, plasticity

@ Fluid mechanics
o Electromagnetism

@ Wave propagation

@ Thermodynamics, diffusion,
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PDE models in three spatial dimensions: examples

Example: Microscopic Maxwell's equations in Gaussian units

divB =0, B: + ccurlE = 0,
divE = 4mp, E: — ccurl B = —4xJ.
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PDE models in three spatial dimensions: examples

Example: Navier-Stokes/Euler gas and fluid dynamics equations

pt + div pu = 0,
p(u: +u-Vu) = —grad p+ pAu.

1,000,000~

100,000~

turbulent flow

reynolds nu

laminar flow
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PDE models in three spatial dimensions: examples

Example: ldeal magnetohydrodynamics (MHD) equations
1
pt +divpu =0, p(u: + (u-V)u) = —;B x curl B — grad p,

B: = curl(u x B), divB = 0.
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1. Time-independent/topological CLs

Applications:

@ Time-independent models.

o Differential constraints, e.g., div B =0, curl u=0...
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1. Time-independent/topological CLs

1A. Spatial divergence/topological flux conservation laws
@ Local form: | Div ¥[v] = 0.

@ Global form in V, 0V = S: ?{ Wv] - dS|£ = 0| (Gauss' theorem.)
s

@ Global form when 0V = S; U Sa:

) wiie a5 = fizxp[vng . dS.

n
N n < >
7
k4 b 4
e P ->
Sy
S
— ~—~ y's
S Sy
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1. Time-independent/topological CLs

1A. Spatial divergence/topological flux conservation laws
@ Local form: | Div ¥[v] = 0.

o Global form in V, 9V = S: 7{ Wwlv] - dS‘g = 0| (Gauss' theorem.)
s

@ Global form when 9V = &; U Sa:

filxp[v]\g.ds = iqu[vng - dS.

v
Examples:

@ Incompressible flow: divu = 0.

@ Absence of magnetic sources: divB = 0.
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1. Time-independent/topological CLs

1B. Spatial curl/topological circulation conservation laws

@ Local form: ‘ Curl ¥[v]|e = 0. ‘

o Global form in S, 9§ = C: /\Il[v] -de=0.
@

@ Global form, 98§ = C; U Ca:

W[ - de:f({ W[v]e - de.

C1

de de¢
C c,
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1. Time-independent/topological CLs

1B. Spatial curl/topological circulation conservation laws

o Local form: ‘ Curl ®[v]|e = 0. ‘

@ Global form in S, 9§ = C: /\Il[v] -d€=0.
@

@ Global form, 9§ = C; U Ca:

?il T[] - de = }iql[vng . de.

v

@ lrrotational flow: curlu = 0.

e Equilibrium MHD-magnetic equation: curl (u x B) =0
= circulation condition:

VS CQ, (uxB)-de=0.
a8
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2. Time-dependent CLs on fixed domains

2A. Volumetric conservation laws:

o A global volumetric conservation law of a given 3D PDE model, for V C Q:

d

—/TdV:— W . dS,
dt Jy oV

holding for all solutions v(t,x) € £.

o Local formulation: a continuity equation

|D:TIvV] +Div®[v] =0, veE]

@ Scalar conserved density: T = T|[v], vector spatial flux: ¥ = ¥[v].
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2. Time-dependent CLs on fixed domains

2A. Volumetric conservation laws:

o A global volumetric conservation law of a given 3D PDE model, for V C Q:

i/TdV:— W . dS,
dt Jy oV

holding for all solutions v(t,x) € £.

o Physical meaning: the rate of change of the

volume quantity
f P ¥
/T[v]dV .
v

is balanced by the surface flux

T[v] - dS.
oV
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2. Time-dependent CLs on fixed domains

Example: Microscopic Maxwell's equations in Gaussian units

divB =0, B: + ccurl E =0,
divE = 47p, E: — ccurl B = —4~rJ.

Conservation of electromagnetic energy:

10: (|EP” + |BJ*) + cdiv(E x B) = 0.
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2. Time-dependent CLs on fixed domains

2B. Surface-flux conservation laws:

@ A global surface-flux conservation law of a given 3D PDE model:

i/T-dS:— v .- de, vee.
dt Js as

@ Local formulation: a vector PDE

| D T[v] + Curl ¥[v] =0, vee,

o S C Qs a fixed bounded surface.

Vector conserved flux density: T = T[v]; vector spatial circulation flux: ¥ = ¥[v].

@ Local form: three related scalar divergence-type CLs.
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2. Time-dependent CLs on fixed domains

2B. Surface-flux conservation laws:

@ A global surface-flux conservation law of a given 3D PDE model:

i/T-dsz— U.de,  veE.
dt Js as

@ Local formulation: a vector PDE

| D T[v] + Curl ¥[v] =0, vee,

@ Physical meaning: rate of change of the

surface quantity
T

ds
di /ST[V] -dS

is balanced by the circulation

%as Ww[v] - de.
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2. Time-dependent CLs on fixed domains

Example: microscopic Maxwell's equations in Gaussian units

divB =0, ‘Bt—i—ccurlE:O,

divE = 47p, E: — ccurl B = —4xJ.

Magnetic flux conservation: a global surface-flux conservation law (Faraday’s law)

i/B~dS:—C?{ E - de.
dt Js 85
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2. Time-dependent CLs on fixed domains

Example: ideal magnetohydrodynamics (MHD) equations
pt + div pu = 0,
p(u: + (u-V)u) = —%B x curl B — grad p,

divB =0,

‘Bt = curl (u x B). ‘

Conserved flux density, spatial circulation flux:
T =B, ¥ =B xu.

The global form of the surface-flux conservation law

i/B~dS:—% (B x u) - de
dt Js a5

describes the time evolution of the total magnetic flux through a given fixed surface S.

@ A similar CL holds for non-ideal (resistive, viscous) plasmas.
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2. Time-dependent CLs on fixed domains

2C. Circulatory conservation laws:

@ A global circulatory conservation law of a given 3D PDE model:

d
E/CT-dZ:—\IJLaC, veE.

@ Local local circulatory conservation law:

| D T[v] + Grad W[v] =0, vee,

o C C Qs a fixed simple curve.

o Vector conserved circulation density. T = T[v]; vector spatial boundary flow:
v = V[v].

@ Local form: three related scalar divergence-type CLs.
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2. Time-dependent CLs on fixed domains

2C. Circulatory conservation laws:

@ A global circulatory conservation law of a given 3D PDE model:

d
E/CT-dZ:—\IJLaC, veE.

@ Local local circulatory conservation law:

| D T[v] + Grad W[v] =0, vee,

@ Physical meaning: rate of change of the
line integral quantity

a /T-d£
C c

is balanced by the flow through the ends of
the curve.
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2. Time-dependent CLs on fixed domains

Example: irrotational barotropic gas flow.

pt + div(pu) =0,

2 /
u; + (curlu) x u+ grad f =0, f:fbar:%Jr/mdp.
P

@ Irrotational: curlu = 0.

@ Barotropic: p = p(p), ‘ u; + grad f = 0. ‘

o Circulatory conservation law over an arbitrary static curve C:

d
=
dt/u de loc-

For closed curves, 9C = :

d
dt

conservation of a global velocity C|rculat|on around a static closed path.

u de =0,
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Conservation laws on moving domains in
3D
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Time-dependent CLs on moving domains

@ Suppose the model involves a velocity field u(t, x).
o X(t,x): material (Lagrangian) coordinates, macroscopic particle labels.
@ Streamlines:

dX(t,x)
dt

d

=0, dt

@ A moving material domain: consists of the same material points.

X(t,x(t)) = const, dx(t)

u(t, x(t)).
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A. Moving volume conservation laws

Moving volume conservation laws:

@ A moving volume conservation law of a given 3D PDE model:

d

— T[u,v]dV = —j{ Y[u,v]-dsS,
dt Sy V()

holding for all solutions v = v(t,x) € £, for a volume V(t) € € transported by the
flow.

v
Local formulation:

@ Leibniz's rule for moving domains:

d Tlu,v]dV = D: T[u,v]dV + T[u,v]u-dS
d
t Jyv) V(t) aVv(t)

@ Local form:

| D: Tlu, v] + Div (Y[u,v] + T[u, v]u) = 0. |

A. Cheviakov (UofS, Canada) Conservation laws in static and moving domains May 18, 2018 51 / 64



Moving volume CL example: helicity

Conservation of helicity in a moving volume

o Constant-density fluid flow:

divu =0,

2
u; + (curlu) X u+ grad f =0, f:%—i—

SRR

The fluid helicity: h=u - w.

@ Helicity dynamics equation: h; + div (w - grad f + (w x u) x u) = 0.

Moving volumetric CL, local form:

‘ D; T[u,v] + Div(X[u, v] + T[u, v]u) =0, veCE. ‘

T=h=uw, Y= (f - u)w.
Global form:

i/ hdvz—f (f — [uf)w - dS.
dt Sy aVv(t)
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Material conservation laws

Important special case: a material CL

@ A material conservation law: a moving volume CL with a vanishing spatial flux,
Y[u, v]|e = 0. of a given 3D PDE model, for V C Q:

kel
dt V(t)

Tlu,v]dV = — ‘7{

aV(t

Y[u,v] - dS =0.
)

@ Local formulation:

‘ D; T[u, v] + Div(T[u, vlu) = 0. ‘

@ A well-known expression for incompressible flows divu = 0:

d d
aT[u7\/] =0, P = D: 4+ u- Grad

~
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Material conservation laws

Material conservation laws: example

The continuity equation in gas/fluid dynamics:

\ pt + div(pu) = 0,

p(us+u-Vu) + Vp = pAu + pg.
Conservation of mass in a moving material domain :

d

pdV =0.
dt Jye
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B. Moving surface-flux conservation laws

Moving surface-flux CLs:

@ A moving surface-flux conservation law of a given 3D PDE model:

4 Tlu,v]-dS=— Y[u,v] - de,
d
t /s AS(t)

holding for all solutions v = v(t,x) € &, for a surface S(t) € Q transported by the
flow.

| A

Physical meaning

The rate of change of the total flux of the vector field T[u, v] through the moving
surface S(t) in terms of the net boundary circulation.
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B. Moving surface-flux conservation laws

Moving surface-flux CLs:

@ A moving surface-flux conservation law of a given 3D PDE model:

4 Tlu,v]-dS=— Y[u,v] - de,
d
t /s AS(t)

holding for all solutions v = v(t,x) € &, for a surface S(t) € Q transported by the
flow.

-5  —
——  ——
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B. Moving surface-flux conservation laws

Moving surface-flux CLs:

@ A moving surface-flux conservation law of a given 3D PDE model:

q T[u,v]-dS =— Y[u,v] - de,
dt
S(t) 9S(t)

holding for all solutions v = v(t,x) € &, for a surface S(t) € Q transported by the
flow.

v
Local formulation:

@ Leibniz's rule for moving surfaces:

da
dt S(t

:/ D: Tlu, v]-dS+/ (Div Tu, v])u-ds+7f (T[u,v] x u) - d.
S(t) S(t) aS(t)

T[u,v]-dS
)

@ Local form:

‘ D; T[u, v] + (Div T[u, v]) u 4+ Curl (T[u, v] x u+ Y[u,v]) =0, veE. ‘

v

A. Cheviakov (UofS, Canada) Conservation laws in static and moving domains May 18, 2018 54 / 64



Moving surface-flux CL: an example

Moving surface-flux CL example: MHD

o Non-ideal (finite conductivity) MHD:

pt +divpu =0, p(us+ (u-Vu) = —lB x curl B — grad p,
u

B: = curl (u><B—|—lJ), divB = 0.
o

@ Plasma electric current density: J = (1/u) curl B.

@ Moving surface-flux conservation law on a material surface S(t):

i/ B'dS:—ly{ J - d¢.
dt Js( o Jas

o Describes yields a rate of change of the magnetic flux through S(t) in terms of the
circulation of the electric current density.

o A material CL: for a closed S(t), or in the case of ideal plasma (o — c0):
qd B.dS=0.
dt S(t)
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C. Moving circulatory conservation laws

Moving circulatory CLs

@ A moving circulatory conservation law of a given 3D PDE model:

d
— [ T[u,v] d=—T[u,v]|oce),
dt C(t)

holding for all solutions v = v(t,x) € &, for a curve C(t) € Q2 transported by the
flow.

Physical meaning

The rate of change of the total flux of the moving line integral quantity in terms of the
net flow out of the two ends.
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C. Moving circulatory conservation laws

Moving circulatory CLs
@ A moving circulatory conservation law of a given 3D PDE model:

d
T[u,v] - df = —T[u, v]|oc),

dt c(t)

holding for all solutions v = v(t,x) € &, for a curve C(t) € Q2 transported by the
v

—_— —_—
de
—_— —

flow.

May 18, 2018 56 / 64
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C. Moving circulatory conservation laws
Moving circulatory CLs

@ A moving circulatory conservation law of a given 3D PDE model

d
T[u,v] - df = —T[u, v]|ac),

dt c(t)

holding for all solutions v = v(t,x) € &, for a curve C(t) € Q transported by the

flow

| |
N,

Local formulation
o Chain/Leibniz's rule for moving curves

9 e / Tlu, v] - de

= /C(t)(Dt T[u,v]) - dé + /C(t) ((Curl T[u,v]) x u) - d€ + (T[u, v] - u) ‘ac(t).

o Local form:
‘ D; T[u, v] + (Curl T[u, v]) x u+ Grad (T[u, v] + T[u,v]-u) =0 ‘
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Moving circulatory CL example

Moving circulatory CL example: Euler model, velocity circulation

o Constant-density fluid flow:
divu =0,

u; + (curlu) X u+ grad f =0, =

Local circulatory CL form:

‘ D; T[u, v] + (Curl T[u, v]) X u+ Grad (T[u, v] + T[u, v] - u) = 0. ‘

Velocity line integral: T=u, T = f — |u|>.

Global form:

d 2
a de=—(f — :
p C(t)u (f = [a)lacq

@ Moving material closed curve — vanishing velocity circulation:

17{ u-df=0.
dt c(t)
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CLs in 3D: overview
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Conservation laws in 3D: overview

e PDE systems in (341) dimensions can have 8 different kinds of CLs:
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Conservation laws in 3D: overview

e PDE systems in (341) dimensions can have 8 different kinds of CLs:

e 2 time-independent/topological.
o 3 time-dependent (fixed domains).

o 3 time-dependent (moving domains) (also material CLs).
@ Each has a local and a global form.

o Common framework, clear physical meaning.

Each kind is locally given by divergence expression(s) = systematic computation.

@ Trivial and nontrivial CLs of every kind may arise.

Physical examples are readily available.
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Talk summary

@ CLs are useful in physics, analysis, and numerical simulations.
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Talk summary

@ CLs are useful in physics, analysis, and numerical simulations.

@ CLs have local and global forms.

CLs are coordinate-independent.

More than one kind of CLs exist, with different physical meaning. All are (locally)
given in terms of divergence expressions.

Theoretical methods and powerful symbolic software for systematic CL computations
exists.
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What was left out...

Keywords related to what we did not discuss:

o CL computational aspects: how to avoid trivial/equivalent CLs, singular multipliers,
and yet retain completeness.

@ Relationships with symmetries, Lagrangians, variational systems, 1st and 2nd
Noether’s theorems, integrability...

@ Useful techniques to get CLs “cheaply”.

@ Nonlocal and approximate CLs.
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