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Goals of this talk

o Conservation laws (CL)

Euler and Navier-Stokes (NS) equations of fluid flow: some results
@ Helical invariance: applications and formulas

@ Reduction of Euler and NS systems under helical invariance

General and additional CLs

o New exact solutions of helically invariant NS
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Euler and Navier-Stokes equations
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Constant-density incompressible fluid flow equations

Equations of gas/fluid dynamics

pe + V(pu) =0,
plue + (u-V)u) = —=Vp + 1 Au,

Closure / Equation of state.

Independent variables: t,x = (x, y, z).
o Dependent variables: p(t,x), p(t,x), v'(t,x), i =1,2,3.
o Navier-Stokes equations when p # 0.

@ Euler equations in the inviscid case y = 0.
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Constant-density incompressible fluid flow equations

Navier-Stokes equations for a fluid with constant density

V-u=0,
u:+ (u-Vju+Vp—vAu=0.

e Constant density (WLOG can assume p = 1). Conservation of mass

o Inviscid case: v = pup = 0 (Euler equations).
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Helical flows: examples
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Examples of Helical Flows in Nature

@ Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003
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Examples of Helical Flows in Nature

@ Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]
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Examples of Helical Flows in Nature

@ Helical water flow past a propeller
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Examples of Helical Flows in Nature

e Wing tip vortices, in particular, on delta wings [Mitchell, Morton & Forsythe, 1997)

a) b)

c) d)

e)

A. Shevyakov (UofS, Canada) Helical flows: conservation laws, reductions, solutions Fudan University, June 2019 9/62



Examples of Helical Flows in Nature

@ Helical blood flow patterns in the aortic arch [Kilner et al, 1993]
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Examples of Helical Flows in Nature

@ Helical plasma flows in tokamaks

WERTIGAL FIELD ToRoIDAL
coiLs FIELD ©oIL

FLASMA GURRENT PLASMA MAGNETIC FIELD LINE
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Examples of Helical Flows in Nature

@ Helical plasma structures in astrophysics
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Examples of Helical Flows in Nature

@ Collimated helical plasma jet formation in a plasma discharge
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Results overview: two papers
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Paper 1: Conservation laws of NS and Euler equations under helical

symmetry

@ O. Kelbin, A. Cheviakov, and M. Oberlack (2013)
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and
inviscid flows. JFM 721, 340-366.

Helically-invariant fluid dynamics equations

o Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

@ Two-component reductions: zero velocity component in symmetric direction.

Additional conservation laws — systematic construction (multiplier method)

@ Three-component Euler:

o Generalized momenta. Generalized helicity. Additional vorticity CLs.
@ Three-component Navier-Stokes:

o Additional CLs in primitive and vorticity formulation.
@ Two-component flows:

o Infinite set of enstrophy-related vorticity CLs (inviscid case).
o Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Paper 2: Conservation laws of NS and Euler equations under helical

symmetry

@ D. Dierkes, A. Cheviakov, and M. Oberlack (2019, JFM, submitted)
New similarity reductions and exact solutions for helically symmetric viscous flows.

ion for Galilei-invariant helical flows

o Full helically-invariant Navier-Stokes equations, invariant with respect to the Galilei

group
G': r—r, t—ot, E=E4et, p—p,

ut =, ut = U +eB(r), u"—u"— aa—er(r).

@ Such solutions satisfy the new v-equation

Vrt+<vvr) _2£_V|:Vrrr+%_ﬁi| =0.
r r r r

Exact solutions of helically invariant Navier-Stokes equations

@ The v-equation: exact Galilei-invariant solutions.

@ Beltrami flow ansatz: exact linearization, families of separated solutions.
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Conservation laws of dynamic PDEs
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o Independent variables: (x,t), or (t,x,y,z), or z = (2%, ..., 2").

@ Dependent variables: u(x, t), or generally v = (v!(z2), ..., v"(2)).

@ Derivatives:
d . 0 o O pin_ p
oA w(t) = w'(t); p u(x,t) = ux; Errad (z2) =v,

o All derivatives of order p: 9Pv.

A differential function:

H[v] = H(z,v,dv,...,d"V)

A total derivative of a differential function: the chain rule

OH | OH o OH o
Jve V; v vjj

J

DH[]—

A. Shevyakov (UofS, Canada) Helical flows: conservation laws, reductions, solutions Fudan University, June 2019



Local and global conservation laws

@ A system of differential equations (PDE or ODE) G[v] = 0:

G°(z,v,0v,...,0%v)=0, o=1,...,M.

@ The basic notion:

A local conservation law:

A divergence expression

vanishing on solutions of G[v] = 0. Here ® = (¢'[v], ..., ®"[v]) is the flux vector.
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Local and global conservation laws — PDEs

@ For time-dependent PDEs, the meaning of a local conservation law is that the rate
of change of some “total amount” is balanced by a boundary flux.

@ (141)-dimensional PDEs: v = v(x, t), only one CL type.

Local form:

‘DtT[v] +D,V[v] = 0. ‘

Global form:

% /ab T[v] dx = Au[v][.
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Local and global conservation laws — PDE example

(14+1)-dimensional linear wave equation:

Un = Cle, u=u(x,t), c=7/p, a<x<b or —0co<x< 0.

- u(xt)
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Local and global conservation laws — PDE example

(14+1)-dimensional linear wave equation:

Un = Cle, u=u(x,t), c=7/p, a<x<b or —0co<x< 0.

- u(xt)

@ A local CL — momentum conservation: D¢(pu;) — Dy(7ux) = 0.

o Global form:

d d [* b

Em: E/a puUy dx = Tuy R
o dm/dt = 0 for zero Neumann BCs — the momentum is conserved, m = const.
o (E.g., a finite perturbation of an infinite string.)
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Local and global conservation laws — PDE example

(14+1)-dimensional linear wave equation:

Un = Cle, u=u(x,t), c=7/p, a<x<b or —0co<x< 0.

__-u(x,t)

2
pu? U

@ A local CL — energy conservation: D, ( 3 + 3 ) — Dyx(Turuy) = 0.

@ Global form:
b

dt— " dt

@ For which BCs is E = const?

a

d E = d <put + TUX> dx = Tusuy
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Local and global conservation laws — PDE exampls

@ (3+1)-dimensional PDEs: R[v] =0, v =v(t,x,y,z).

@ Local form: ’ D: T[v]+ Div¥®[v] =0 ‘ & D;®'[v] =0

@ Global form: i TdV = — v . dS

dt J, av

@ Holds for all solutions v(t, x, y, z), in some physical domain V.
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Local and global conservation laws — PDE examples

e Example: conservation of mass, gas/fluid dynamics.

@ Local form: p; +div(pu) =0 (A).

o Global form: iM d /pde 77{ pu - dS.
dt dt oy

@ Note: conservation laws are coordinate-independent (i.e., the divergence form (A) is
invariant).
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Local and global conservation laws — Material CLs

Material conservation laws

@ For incompressible flows with velocity field u, divu = 0:

d —_— p— H —
aT:D:T—FU'VT—DtT'i‘Xg/"\./” (Tu) =0.

e T is conserved in a domain V(t) moving with the flow:

i/ TdV =0.
dt V(t)

o Example: conservation of mass in an incompressible flow:

pt +div(pu) = Dp+u-Vp =0;

d d
M) =< dv =0.
ar M) dt/v(t)p 0
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Applications of Conservation Laws

Applications to ODEs

@ Constants of motion:
D:T[v]=0 = T[v] = const.

o Reduction of order / integration.
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Applications of Conservation Laws

Applications to PDEs

D: T[v] + Div¥®[v] =0

Rates of change of physical variables; constants of motion.

o Differential constraints (divergence-free or irrotational fields, etc.).

Divergence forms of PDEs for analysis: existence, uniqueness, stability, Fokas
method.

o Weak solutions.
o Potentials, stream functions, etc.
@ An infinite number of CLs may indicate integrability/linearization.

@ Numerical methods: divergence forms of PDEs (finite-element, finite volume);
constants of motion.
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Applications of Conservation Laws

A COMSOL example
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Coordinate invariance of ClLs
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Coordinate invariance of ClLs

Given PDE system:
o Variables: v = (v(2),...,v"(2)), z = (z%,...,2")
e PDEs: G[v]=0
o Local CL: D,i®/[v] =0

.yl - yl(z7v)’ i:1""’n7 &#0
ut = u(z,v), p=1,...,m, "’ Dv ’

Transformed PDE system:

e PDEs: S[u(y)]=0

_ D(y*,...,y"

o Divergence expressions: D,i®'[v] =J- D, W[u], J= D, .27

e Local CL: D, W[u] =0
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Systematic computation of conservation
laws: the direct (multiplier) method
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The idea of the direct (multiplier) CL construction method

Independent and dependent variables of the problem:
z=(z4.,2"), v=v(z)= (v}, ..,v").

Definition

The Euler operator with respect to an arbitrary function v/:

0 5} 5 5} .
Ew—W—Diafv{+“'+(—1)Dq---Dlsm'F , J=1....m

Theorem

| A\

The equations
E,Flvl=0, j=1,...,m

hold for arbitrary v(z) if and only if F is a divergence:
Flv] = D;®’

for some functions ®' = ®'[v].

\
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The direct (multiplier) method

Given:
o A system of M DEs G’[v]=0, o=1,...,M.

o Variables: z = (Z',...,2"), v = (v'(2),...,v"(2)).
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The direct (multiplier) method

Given:
o A system of M DEs G’[v]=0, o=1,...,M.

o Variables: z = (Z',...,2"), v = (v'(2),...,v"(2)).

The direct (multiplier) method

© Specify the dependence of multipliers: A [v] = Ay (z, v, dv,...).

@ Solve the set of determining equations E ;(A;[v]G?[v]) =0, j=1,..., m, for
arbitrary v(z), to find all sets of multipliers.

@ Find the corresponding fluxes ®'[v] satisfying the identity
As[v]G?[v] = D;d'[v].
@ For each set of fluxes, on solutions, get a local conservation law

D;®'[v] = 0.

@ Implemented in GeM module for Maple (A.C. — see my web page)
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Completeness of the multiplier method

Extended Kovalevskaya form

A PDE system G[v] = 0 is in extended Kovalevskaya form with respect to an
independent variable z’, if the system is solved for the highest derivative of each
dependent variable with respect to 2/, i.e.,

o

o _ o k _
WV =G (z,v,0v,...,0"v), 1<s, <k, o=1,...,m,

where all derivatives with respect to z/ appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.
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Completeness of the multiplier method

Extended Kovalevskaya form

A PDE system G[v] = 0 is in extended Kovalevskaya form with respect to an
independent variable z’, if the system is solved for the highest derivative of each
dependent variable with respect to 2/, i.e.,

0%

o _ o k _
WV =G (z,v,0v,...,0"v), 1<s, <k, o=1,...,m,

where all derivatives with respect to z/ appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.

Theorem [M. Alonso (1979)]

Let G[v] = 0 be a PDE system in the extended Kovalevskaya form. Then every its local
CL equivalence class has a representative in the characteristic form,

| A\

Ao[v]G°[v] = D;<|>i[v] =0,

such that {A,[v]} do not involve the leading derivatives or their differential consequences.

[Hence one can safely use nonsingular multipliers!]
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Completeness of the multiplier method

Extended Kovalevskaya form

A PDE system G[v] = 0 is in extended Kovalevskaya form with respect to an
independent variable z’, if the system is solved for the highest derivative of each
dependent variable with respect to 2/, i.e.,

o

o _ o k _
WV =G (z,v,0v,...,0"v), 1<s, <k, o=1,...,m,

where all derivatives with respect to z/ appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.

The KdV equation

R[U] = Ut + UlUx + Upx = 0

has the extended Kovalevskaya form with respect to t (uz = ...) or x (Ugx = . ..).
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Completeness of the multiplier method

For systems in the extended Kovalevskaya form, the multiplier method is complete
(to any fixed order of derivatives).

@ The multiplier method does not predict maximum CL order.

@ For systems in a solved form but not in the extended Kovalevskaya form, multipliers
may involve leading derivatives/their differential consequences.
@ In practice, even if the extended Kovalevskaya form exists for a given system, it may

be too complex to work with.

@ One may use the multiplier method on non-Kovalevskaya systems to get partial CL
results.
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Conservation laws of Euler and NS
equations in 341 dimensions
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Conservation laws of NS equations in 341 dimensions

Navier-Stokes equations for a constant-density fluid

V-u=0, u:+ (u-V)u+ Vp—vAu=0. (A)

@ No higher-order CLs [Gusyatnikova & Yumaguzhin (1989)].

The complete list of local CLs of (A) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

@ Generalized continuity equation: V - (k(t)u) =0
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Conservation laws of NS equations in 341 dimensions

Navier-Stokes equations for a constant-density fluid

V-u=0, u:+ (u-V)u+ Vp—vAu=0. (A)

@ No higher-order CLs [Gusyatnikova & Yumaguzhin (1989)].

The complete list of local CLs of (A) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

@ Generalized momentum in x—direction (same for y, z):
Q 1 Q 1 Y 1 o
S (PO + o (W) = xF () + F(£)(p — vu))
9 1 / 2 1
+5((u F(£) = xF/(£)® — v (t)u})

+% (0 (8) — (D) — vF(e)ul) = 0
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Conservation laws of NS equations in 341 dimensions

Navier-Stokes equations for a constant-density fluid

V-u=0, u:+ (u-V)u+ Vp—vAu=0. (A)

@ No higher-order CLs [Gusyatnikova & Yumaguzhin (1989)].

The complete list of local CLs of (A) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

@ Angular momentum in x—direction (same for y, z):
9, 3 9 2 3y,1 3 2
a(zu —yu’) + a((zu —yu)u +v(yu; — zux))
7]
—l—@ ((Zu2 —y®)? + zp + v(yu} — zul — u3))

9 2 3y,3 3 2, ,2y)
+6z((zu — yu)u —yp—|—1/(yuz—zuz—|—u))—0

(Angular momentum vector: P =r x u.)
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

V-u=0, u: + (u- V)u+ Vp=0. (B)
o Classical local CLs (below) known for a long time.

@ No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

o Generalized continuity equation: V - (k(t)u) = 0.
o Generalized momentum in x, y, z (same as NS with v = 0).

@ Angular momentum in x,y, z (same as NS with v = 0).

Fudan University, June 2019 31 /62
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

V-u=0, u: + (u- V)u+ Vp=0. (B)
o Classical local CLs (below) known for a long time.

@ No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

@ Conservation of kinetic energy:

P
aK—i—V-((K—i—p)u)_Q K=l
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

V-u=0, u: + (u- V)u+ Vp=0. (B)
o Classical local CLs (below) known for a long time.

@ No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

@ Conservation of helicity:
h=u-w,
0

athV-(uxVEJr(wxu)xu):O,

where E = %\u|2 + p is total energy density,

and w = curlu is vorticity.
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

V-u=0, u: + (u- V)u+ Vp=0. (B)
o Classical local CLs (below) known for a long time.

@ No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

o Euler equations in vorticity formulation: V-u =0, w =V X u, hence

V-w=0, wi+V x (wxu)=0.

@ Three components of vorticity w are conserved.
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Euler equations in 2+1 dimensions; conservation of enstrophy

Euler classical two-component plane flow:

@ Two-component, Cartesian 2D Euler equations:

(). + (), =0,
(e (1) + 0 (), = =i,
() o) (), = =

@ Scalar vorticity equation: w* = w” =0, w* = —(v), + (),

(@)t + v (W)x + v’ (w7)y = 0.
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Euler equations in 2+1 dimensions; conservation of enstrophy

Euler classical two-component plane flow:
@ Two-component, Cartesian 2D Euler equations:
(u)x + (v")y =0,
() + 0™ (U7)x + 07 (07)y = —px;
(") + ()« + ' (v)y = —py,
u®* =0.
@ Scalar vorticity equation: w* = w” =0, w* = —(v), + (),

(@)t + v (W)x + v’ (w7)y = 0.

v
Enstrophy Conservation

o Enstrophy: € = |w|* = (w*)%.

@ Material conservation law: %6 =D:E+Dx (vE)+ D, (vWE)=0.

@ Was commonly known to hold for plane flows, (2 + 1)-dimensions.
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Helical invariance and helical reduction of
Euler and NS equations
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Some symmetries and the reduction idea

Navier-Stokes equations for a constant-density fluid

V-u=0, u:+ (u-V)u+ Vp—vAu=0. (A)

o A symmetry — translations in z: z — z + z (similarly in x and y, as well as t).
e Symmetry reduction: p, p'(t,x,y,z) — p,u'(t,x,y).

o In case of additional time independence, for Euler equations (v = 0), get a single
PDE

Eox + &y = —I(f)l'(f) - Pl(f):

where £ = £(x, y) is the stream function,

u=—§ex+&e +1(€)e:, p=p(§),

and /(&) and p(&) are arbitrary functions.
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Some symmetries and the reduction idea

Navier-Stokes equations for a constant-density fluid

V-u=0, u:+ (u-V)u+ Vp—vAu=0. (A)

@ A symmetry — rotations around the z-axis (translations in cylindrical angle ¢):
© = ¢+ o.

o Symmetry reduction: p,u'(t,x,y,z) — p,u'(t,r,z).

@ In case of additional time independence, for Euler equations (v = 0), get a single
PDE — Grad-Safranov (Bragg-Hawthorne) equation

Y = Ty e + ) () = =P (),
where ¢ = 1)(r, z) is the stream function,

u = r er + I(w) %ez, P = p(¢)7

and /(¢) and p(v) are arbitrary functions.
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Some symmetries and the reduction idea

Navier-Stokes equations for a constant-density fluid

V-u=0, u:+ (u-V)u+ Vp—vAu=0. (A)

@ A symmetry — combination of rotations in x — y plane and translations in z.

@ Cylindrical coordinates: (r,y,z). Helical coordinates: (r,n,&):
& =az+ by, n:ago—b%, a,b=const, a’+b°>>0.
r
e Symmetry reduction: p,u'(t,x,y,z) — p,u'(t,r,£).
@ In case of additional time independence, for Euler equations (v = 0), get a single

PDE — JFKO equation (similar to Bragg-Hawthorne).
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Additional CLs for helically symmetric Euler
and NS equations
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Helical coordinates

)

Helical Coordinates

o Cylindrical coordinates: (r,p,z). Helical coordinates: (r,n,¢)

& =az+ by, n:agp—b%, a,b=const, a’+b>>0.
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Helical coordinates

1

\z

Orthogonal Basis

Vr

_ _ V¢
el

e - bl
¢ Vel

r

@ Scaling factors: H, =1, H, =r, He =

e, = VJJ] = € X er.
[Vin]|
r
B(r), B(r)=

NETa=
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Helical coordinates

Vector expansion

u = ue +ufe,+u'e, = ue +u'el,+ue..

u”:u-eLn:B(au“"—guZ), u5:u~e§:B(€u“’—|—auz>.
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Helical coordinates

\z

Helical invariance: generalizes axal and translational invariance

o Helical coordinates: r, & =az+ by, 7 =ap— bz/r.
o General helical symmetry: f = f(r,€), a,b#0.

o Axial: a=1, b=0. z-Translational: a=0, b= 1.

Fudan University, June 2019
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Helical coordinates

)

Details:

@ O. Kelbin, A. Cheviakov, and M. Oberlack (2013)
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and
inviscid flows. JFM 721, 340-366.
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

V- -u= s
ur+ (u-V)u+Vp—vVu=0.
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

V- -u= s
ur+ (u-V)u+Vp—vVu=0.

I
o

1, .. 1
U +(u )r+§(U§)£
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

V- -u= s
ur+ (u-V)u+Vp—vVu=0.

2 2
(e u (W), + g (e — 2 (éuf + ) -

. [%(r(uf),), + (e e = o = 22 (a(u")g 5 4@)}
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

V-u=0,
ur+ (u-V)u+Vp—vVu=0.

r 1 ’B?
(U")t +u (U")r 4 Eug(u")g + a p uu”
1 1 a’B*(a®B? — 2) 2abB ¢, , ¢
= v (W) + g5 (u)ee + e (GO T ),ﬂ
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

V.-u=0,
ur+ (u-V)u+Vp—vVu=0.

2abB? sz2 I 1

Ut =—=

r 1 r
(u®)e + u' (u), + Eug(ug)é + ~— a2 U u” + B Pe
1. 1 S8 -1 £ 26B (b (B,
L)) + (e + 225 2 (e (o)
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

V.-u=0,
Vxu = w = we +wlei, +wies,

Wi+ V X (wxu)—vVw=0.
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

V.-u=0,
Vxu = w = we +wlei, +wies,

Wi+ V X (wxu)—vVw=0.

Vorticity definition:
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

V.-u=0,
Vxu = w = we +wlei, +wies,

Wi+ V X (wxu)—vVw=0.

1

(@) + unl)e + g (@) = () + 5t (0)e

4 [H0@)) + e = T = 22 (atwme+ 2 )|
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

V.-u=0,
Vxu = w = we +wlei, +wies,

Wi+ V X (wxu)—vVw=0.

n-vorticity:

(w )r+U(w")+ u (")

2 2
. a rB (u’w” 7, ,) 42295 23bB ( wr _ urwg) _ wr(un)r + %wg(un)g
1 a BQ(aQBQ —2) 2abB /, , p
4 [N, + e + TR B2 () - () )

i
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

V.-u=0,
Vxu = w = we +wlei, +wies,

Wi+ V X (wxu)—vVw=0.

&-vorticity:

(e o (@), + gt (w)e

+51§5?fw—uw%=w%f»+gwﬂfk
o s B2 (s ()
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Conservation laws for helically symmetric flows

For helically symmetric flows:

@ Seek local conservation laws

oT _ 0T 190 1 08
+ V. ro =

ot or & ot \ r ar r
e, 1 2
T = r—, ¢r5r—, ¢§EE|—3.
r r r

@ 1st-order multipliers in primitive variables.

o Oth-order multipliers in vorticity formulation.
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Conservation laws for helically symmetric Euler flows: v = 0

Primitive variables - EP1 - kinetic energy

T=K, o =u(K+p), o =u(K+p), K=:[uf

W
Primitive variables - EP2 - z-momentum

T=1rB (au" + %uf) =rn®, & =nu?, o =rcu® + bBp.

Primitive variables - EP4 - generalized momenta/angular momenta (NEW)

T=F (éu") , O =u'F (éu") . o = u5F (éun) ,

where F (-) is an arbitrary function.
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Conservation laws for helically symmetric Euler flows: v = 0

Vorticity formulation - EV1 - conservation of helicity

Helicity:
h=u-w=uw + "W+ utub.

The conservation law:

T = h,
o = (E —(u")? - (uf)Q) +u (h—u'W),
¢ = ot (E — () - (u")z) gt (h - ugwg) ,
where
E=ghi+p=3 (@F+ W)+ (o)) +5
is the total energy density. In vector notation:

%h—kV-(uxVE—k(wXu)xu):O.
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Conservation laws for helically symmetric

Vorticity formulation - EV2 - generalized helicity (NEW)
Helicity:

h=u -w=uw + u"w” + vsws.

% (hH (éu"))—i—V-[H (éu") [ux VE + (w x u) x u] + Eu"e,, x VH (éun)] ~0

for an arbitrary function H = H (-).
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Conservation laws for helically symmetric Euler flows: v = 0

Vorticity formulation - EV3 - vorticity conservation laws (NEW)

ro 90,
r

<bl’

L @e® — o u] + Q1))
®f — _? (Q(t) [u"wg — ugw"} + Ql(f)ur) s

where Q(t) is an arbitrary function.

Vorticity formulation - EV4 - vorticity conservation law (NEW)

b3
T =-rB <a3w"——3w§),
r
(oY __22rz_3B rom o m,,r Bb3 r,. & _ & r
= —2a"u"u* — a°Br(v'w uw)—l—r—z(uw utw',
2a°bB
®¢ =2B[(u")?+ (u") — (u°) + r (vw® — uw)] + %u"uf.
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Conservation laws for helically symmetric Euler flows: v = 0

Vorticity formulation - EV5 - vorticity conservation law (NEW)

T*fE ﬁw el féw"+aw§ *fE i +a—rz
- B2 r a B ¥ B ’
" =a’rB <2ur <au77 + 9u§> +b(uw" — u”w'))

a*r* + a’r’b* + b* ( ¢ ¢ )

- u'wt —utw
rvatr? + b?

®¢ = 2°bB ((u')2 + (W) = (B +r (u ) — u%}”)) +2a*rBu" .

Vorticity formulation - EV6 - vorticity conservation law (NEW)

1
V-®=0, <D’:Nw'—EN§u", & = Nuw®,

for an arbitrary N(t,¢&).

@ Generalization of the obvious divergence expression V - (G(t)w) = 0.
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Conservation laws for helically symmetric

Primitive variables - NSP1 - z-momentum.

T=u*, & =uv —v(),

®° = u*u” + aBp — L

B

(U )e.

Primitive variables - NSP2 - generalized momentum (NEW)

T = éu",
o = éu'u" —v {7238 (au" + 2€u§) + (éu”)r]
= éu'u" —v [—2au"’ + (éu")r] ,

A. Shevyakov (UofS, Canada)
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Conservation laws for helically symmetric

Vorticity formulation - NSV1 - family of vorticity conservation laws (NEW)

T = @B (aw” aF éwg) = @w‘ﬂ

Hotloo (2 o (ar- 2)] «at0s (o)
aB b*B b b
Qe | T+ g (a7 7 ) 48 (s 2t |

ot = —— {aQ ) [u"w® — W] + aQ'(t)u"

00 [y (w10 54) o]

for an arbitrary function Q(t).

¢r
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Conservation laws for helically symmetric

Vorticity formulation - NSV2 - vorticity conservation law (NEW)

b3
T= -—-rB (a w' — —3w5> ,
I
r B P n n, ,r 3 3 3 n
o= _r2( (v'w” — u"W") — b (u'w® — u'w")) — 2a°Bu” u+au
2 3
—B r au.;"—i—bo.;5 - aw — b + abB?r 43wt )|,
B2 r r3

o¢ = I°B ((u’)2 + (u")? = (u¥)> +r (u"w'g — ugw")) + 728 bB u"ut

7
2a°bB b? . r? 3 g b ¢
A p V{(l—ﬁ>w —l—%(awg—?wg)}
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Conservation laws for helically symmetric

Vorticity formulation - NSV3 - vorticity conservation law (NEW)

_ B (pr b B (b*r art
— _Z.m 13 =—— 3 z
T <82 +ar(rw+aw)> (BQw—i—Bw),
r b £ r
"= a’rB au"—i—?u +b(uw" — u"w")
atrt 4+ 2rPp? + bt ¢ g 5
— (v'w* — u*w')
rvatr? + b?
+v |4a°B au"Jréu5 — a*brB(w") +§ b‘lfa“r“fi w
r = a2r2 + b2
B 44 22,2 4 13 ab a*rt
= P > SR L An— iy
—|—r2(ar+arb—|—b)(w)+B +(azr2+b2)2 w
ot = —2°bB ((u")* + (u")* — (u*)* + r (u"w® — u'w")) + 23" rBu"u*

1 42°bB 2b*B
+v [72 (a*r* + b + b*) (w®)e — a*br(w)e — %u' S w’} .
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Some conservation laws for two-component flows

Generalized enstrophy for inviscid plane flow (known)

T = N(w?®), @ =uv'N(w*), ¢ = Nw),
for an arbitrary N(:), equivalent to a material conservation law

d
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Some conservation laws for two-component flows

Generalized enstrophy for inviscid plane flow (known)

T = N(w?®), @ =uv'N(w*), ¢ = Nw),
for an arbitrary N(:), equivalent to a material conservation law

d

Generalized enstrophy for inviscid axisymmetric flow (NEW)

T=S <1w"’) , " =u'S (Lu“") , ®* =u°S (Lu“")
r r r

for arbitrary S(-).
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Some conservation laws for two-component flows

Generalized enstrophy for inviscid plane flow (known)

T = N(w?®), @ =uv'N(w*), ¢ = Nw),
for an arbitrary N(:), equivalent to a material conservation law

d

Generalized enstrophy for inviscid axisymmetric flow (NEW)

T=S <1w"’) , " =u'S (Lu“") , ®* =u°S (Lu“")
r r r

for arbitrary S(-).

@ Several additional new conservation laws for plane and axisymmetric, and
viscous flows (details in paper).
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Some conservation laws for two-component flows

Generalized enstrophy for general inviscid helical 2-component flow (NEW)

T=T (gw"> 5 O =u'T (gw") 5 ¢§ = UéT (5“-’77) )

for an arbitrary T(-), equivalent to a material conservation law

d B ,\ _
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Helical CLs: results and open problems

Helically-invariant equations

@ Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

@ Two-component reductions.
v
New conservation laws
@ Three-component Euler:
o Generalized momenta. Generalized helicity. Additional vorticity CLs.

@ Three-component Navier-Stokes:
o New CLs in primitive and vorticity formulation.

@ Two-component flows:

o Infinite set of enstrophy-related vorticity CLs (inviscid case).

o New CLs in viscous and inviscid case, for plane and axisymmetric flows.
v

Open problems

@ Understand the nature of the new CLs.

o Explore the usefulness of the new CLs for numerical simulation and analysis (e.g.,
computing stability conditions for equilibria).
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Exact solutions for helically invariant NS
equations: Galilei symmetry
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Paper 2: Conservation laws of NS and Euler equations under helical

symmetry

@ D. Dierkes, A. Cheviakov, and M. Oberlack (2019, JFM, submitted)
New similarity reductions and exact solutions for helically symmetric viscous flows.

o Few exact closed-form solutions to Navier-Stokes equations are available, only for
special settings.

o Helical flows: important in nature and applications.

@ Time-dependent numerical solvers:
Discontinuous Galerkin [F. Kummer, M. Oberlack et al] with helical symmetry
capability.

o Need any sample exact helically symmetric solutions to test numerics, for local
physical understanding etc.

@ Local or global regularity in space and time is acceptable.
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Helically invariant NS; their point symmetries

1. r L e
= —ut =0
ru +UT+Bu5 s

1 B% (b 2
up +u'ul 4+ —utug — - <;u5 + au") = —p,

B
1 1, 1 2bB b
+v [ (ruy), + ﬁw& - T—zuT - (au? + ;ug)} ,

1 a’B?
u +uul + Eu‘suz = uu”

1 1 a®B2(a?B® —2) 2abB
=v [;(ruZ)T tgpuet 5 W+ (ug — (Bug)r)} ,
- 1 2abB? | sz2 . 1
ub +uub + Eusug + %u’u" + uub = L

oo 1 aB471£ WB (b, (aB
+v ;(ru,,)r+B2 §£+7 +T T—2u5+ )

@ Point symmetries:

S x=2 =l x=t2-2p 0l 180

X = ap’ ¢ ar  Oun oué
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Helically invariant NS; their point symmetries

1 s, 1 oe
- —ut =0
ru +UT+Bu5 s

! B2 (b :
uy 4 u"uy + 7u5ug - <;u5 + au”) =-pr

B
1 1, 1 2bB b
+v [ (ruy), + ﬁw& - T—zuT - (au? + ;ug)} ,

1 a’B?
u +uul + Eu‘suz = uu”

1 1 a®B2(a?B® —2) 2abB
=v [;(ruZ)T tgpuet 5 W+ (ug — (Bug)r)} ,
- 1 2abB? | sz2 . 1
ub +uub + Eusug + %u’u" + uub = L

1o 1 aB471£ 2B (b, (aB ,
+v ;(ru,,),+B2 §£+7 +T T—2u5+ U NIk

@ Solutions invariant with respect to Galilei symmetry Xj:

U =u'(r,t), uf=F(r,t)+ G(r,t), u"=F"(r,t)¢+G"(r,t), p=p(r,t).
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Helically invariant NS; their point symmetries

1. r L e
= —ut =0
ru +UT+Bu5 s

! B2 (b :
uy 4 u"uy + Euéug - <;u5 + au”) =-pr

1 1 . 1 2bB b
+v [;(ru:% + ﬁw& — T—zuT - (au? + ;ug)} ,

1 a’B?
u +uul + Eu‘suz = uu”

1 1 a®B2(a?B® —2) 2abB
=v [;(ruZ)T tgpuet 5 W+ (ug — (Bug)r)} ,
- 1 2abB? | b2B? | 1
ub +uub + Eusug + %u’u" + 3 uub = L

1, o 1. &'B'-1,., 2B (b, (aB
+v ;(ru,,)r+§u&+7u +T T—2u5+ )
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Solutions of the v-equation

The v-equation

Vit + <er) *2‘/477/ |:Vrrr+ig7 ﬁ:| =0.
r/Jr r 7 r
0 0 0
@ Solve using it symmetries: scaling and translation Y; = r— + 2t—, Yo = —.
or ot’ ot
o Similarity variable: s = !

Vav (t+ 1)

Symmetry ansatz: v = v(s).

o ODE: s3v" +2s (v')2 + 82V —2sw! + 2w + v [252v”/ —2sv” + 2v/] =0.

2
—__r
Solution family 1: v(r,t) = Ae *(t+%) with free constant parameters A and tp.

2

o Solution family 2: v(r,t) = g(t) — ﬁ
0

where g(t) is an arbitrary
time-dependent function.
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Solution family 1: details

Solution family 1

2
v(r,t) = Ae ()

@ In physical variables:

r2 ’2
o= A e e o= APBE  —aiy,
2uar (t+ tp)

3 ABé‘ — 2 2 r

A2 __ 2
— 4v(t+tg) - 2u(t+1tg) f(t
2l/(t+ tO) € 0 b p 2,,2 € 0 Jr ( )7

where f(t) is an arbitrary function of time.

@ Singular on the axis r = 0, regular elsewhere.
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Solution family 1

(a) The streamlines emanating from the circle z =0, r = 1.

(b) The velocity magnitude isosurface |u| = 10, plotted for 0 < ¢ < 4x, £ > 0.

(c) The vorticity magnitude isosurface |w| = 2, plotted for 0 < ¢ < 4, £ > 0.

(d) the helical coordinate rectangle n = —6, 0.5 < r < 2, 0 < £ < 27 in the physical space, with velocity

vectors and pressure p color map.
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NS exact solutions |l: exact linearization,
Beltrami-type solutions
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Exact linearization of helical NS and Beltrami-type solutions

@ The momentum equation in the NS model is often written in the form

u; + (curlu) x u+ VP — v V?u = 0,
- . 1
where the modified pressure is given by P = p + §|u|2.
@ Beltrami flow ansatz of vorticity and velocity collinearity: w = curlu = Ju.

@ Remaining linear PDEs: curlu = #u, plus the NS equations

L )+ g (e =
(W) = =Pt )+ e — 50" = 258 (aw)e + 206)e) |

W= [+ e+ ZEEE=D 0 208 (1) (ma) ).

0,

r2 r2

W)= =5 Petv |20+ grleec +

+ 22 (i(u')g 4 (?m)r)} .

aB—1§
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Exact linearization of helical NS and Beltrami-type solutions

o Separation of variables ansatz: f(t,r,&) = T(t) R(r)=(&).
o Separated solutions:
U = e V@t(Ky cos AE + Ka sin AE)Ry(r),
Ut = e VDt (Ks cos A + K sin M) Ra(r),
u" = e Ky cos A& + Ko sin AE)Rs(r),
¥ = Q = const,
P = e "9t (K; cos A + Kg sin A&)Ry(r)
o Helical variable &-periodicity requirement: A = X, =n/b, n=0,1,2,....
@ Derive ODE on Ry(r):

2 2 2 2 2p2 2
&Ry B(3b z)dR1_<>\ 24°B 1_ﬁ2_2abﬁB)R1:0'

dr? r

dr

r2 B2 r2 r2
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Exact linearization of helical NS and Beltrami-type solutions

o ODE on Ry(r):

d?Ry B2 /32 L\ dR: A2 2a2B% -1 , 2abyB?
drz+7(7“)W*(§ e Vg )RI*O
@ confluent Heun ODE:
2
i az+(ﬁ70‘+7+2)z+ﬁ+l ’
Y'(z) + 2z-1) Y'(2)
+((5+W+2)a+26)z;2((,82t11))a+('y+1)ﬂ+2n+’yy(z):0,

@ ODE on Ry(r) solution: Ri(r) = Rin(r) = Cir" YHes + Cgr_"_chf7 where

Hc+ = HC (O{, ﬁ? Y 55 7, _azrz/bz) ) HC* = HC (Oé, _57 Y 63 7, —32I’2/b2)
are confluent Heun functions with parameters
32n2 _ '192b2

= = n=n, :—27 =,
a=0, [=>bA n, 7y 1 ype

a*(4 — n?) 4 9b(2a + 9b)
= 432 '
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Exact linearization of helical NS and Beltrami-type solutions

@ Dimensionless solutions:

i =e " (C‘lnF"’lHﬁ T Qn?*”*lHC,) sin(n€ + ),
~E —i 5| on—2 2
iy =e "B|Ca,|F Hc+ffr HC+

—Gs ( - ZHC + f"_"HC )} cos(nf—&-l/)n),

i =et ’YT (61,,?"_ch+ + &2,,?_"_1HC7) cos(n€ + ),

(1an? + 151 + [a71°)

N =

Pn = Pon —
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Exact linearization of helical NS and Beltrami-type solutions

3

Ry (7)

0 2 4 6 8 10

il

An illustration of the radial part Ry ,(F) of the velocity component &}, of the Beltrami solution for

n=1,23 Cn,=1 Cp,=0 v=-3.
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Beltrami-type solutions: illustration for n =1

Level surfaces |ii|2 = const (equivalently, p = const, |@|? = const, or h = const) for the exact
dimensionless Beltrami solution for n=1, G; =1, G =0, ¢ = —7/2.

(a) A cross-section of level surfaces plot |ii|2 = const, for one period 0 < £ < 2r
(b) A connected component of the level surface |ii|? = 0.4.

(c) A connected component of the level surface |ii|]> = 2.6.
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Beltrami-type solutions: illustration for n = 2
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const, |@[2 = const, or h = const) for the exact
LY =—m/2.

Level surfaces |ii|? = const (equivalently, p =
dimensionless Beltrami solution for n =2, ¢; =1, & =

(a) A cross-section of level surfaces plot |ii|2 = const, for one period 0 < £ < 2.

(b) A connected component of the level surface |ii|*> = 3.54.

=0.97.

(c) A connected component of the level surface |ii

Helical flows: conservation laws, reductions, solutions

akov (UofS, Canada)



Beltrami-type solutions: streamline illustrations

Four sample streamlines for the exact dimensionless Beltrami solution for n =2, G =1,
G, = 0, emanating from various points in the plane z = 1.

(a) Side view. (b) Top view.
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Conclusions
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Part 1: Conservation laws of NS and Euler equations under helical
symmetry

Helically-invariant fluid dynamics equations

o Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

@ Two-component reductions: zero velocity component in symmetric direction.

Additional conservation laws — systematic construction (multiplier method)

@ Three-component Euler:

o Generalized momenta. Generalized helicity. Additional vorticity CLs.
@ Three-component Navier-Stokes:

o Additional CLs in primitive and vorticity formulation.
@ Two-component flows:

o Infinite set of enstrophy-related vorticity CLs (inviscid case).
o Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Part 2: Conservation laws of NS and Euler equations under helical
symmetry

nt helical flows

o Full helically-invariant Navier-Stokes equations, invariant with respect to the Galilei
group
G*: r—r, t—t E—E&+et, p—p,
b
=, ut = et 4 eB(r), u" —u" — s;B(r).
@ Such solutions satisfy the new v-equation
vV, V2 Vi Vi
Vrt+( ) _2*_V|:Vrrr+*2_7i|:0-
r r r

"
r

Exact solutions of helically invariant Navier-Stokes equations

@ The v-equation: exact Galilei-invariant solutions.

@ Beltrami flow ansatz: exact linearization, families of separated solutions, regular,
with interesting geometry.
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