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Goals of this talk

Conservation laws (CL)

Euler and Navier-Stokes (NS) equations of fluid flow: some results

Helical invariance: applications and formulas

Reduction of Euler and NS systems under helical invariance

General and additional CLs

New exact solutions of helically invariant NS
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Euler and Navier-Stokes equations
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Constant-density incompressible fluid flow equations

Equations of gas/fluid dynamics

ρt +∇(ρu) = 0,

ρ(ut + (u · ∇)u) = −∇p + µ∆u,

Closure / Equation of state.

Independent variables: t, x = (x , y , z).

Dependent variables: ρ(t, x), p(t, x), ui (t, x), i = 1, 2, 3.

Navier-Stokes equations when µ 6= 0.

Euler equations in the inviscid case µ = 0.
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Constant-density incompressible fluid flow equations

Navier-Stokes equations for a fluid with constant density

∇ · u = 0,

ut + (u · ∇)u +∇p − ν ∆u = 0.

Constant density (WLOG can assume ρ = 1). Conservation of mass

Inviscid case: ν = µρ = 0 (Euler equations).
Google Image Result for http://www.knowabouthealth.com/wp-content/up... http://www.google.ca/imgres?um=1&hl=en&client=firefox-a&rls=org.moz...

1 of 1 23/03/2013 10:00 AM
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Helical flows: examples
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Examples of Helical Flows in Nature

Wind turbine wakes in aerodynamics [Vermeer, Sorensen & Crespo, 2003]

the two blades at different pitch angles, the two tip

vortex spirals appear to have each their own path and

transport velocity. After a few revolutions, one tip

vortex catches up with the other and the two spirals

become entwined into one. Unluckily, there are no

recordings of this phenomena.

During the full scale experiment of NREL at the

NASA-Ames wind tunnel, also flow visualisation were

performed with smoke emanated from the tip (see

Fig. 7). With this kind of smoke trails, it is not clear

whether the smoke trail reveals the path of the tip vortex

or some streamline in the tip region. Also, these

experiments have been performed at very low thrust

values, so there is hardly any wake expansion.

A different set-up to visually reveal some properties of

the wake was utilised by Shimizu [12] with a tufts screen

(see Fig. 8).

Visualisation of the flow pattern over the blade is

mostly done with tufts. This is a well-known technique

and applied to both indoor and field experiments (see

[16–20,25–27]), however since blade aerodynamics is

ARTICLE IN PRESS

Fig. 3. Axial force coefficient as function of tip-speed ratio, l;
with tip pitch angle, Y; as a parameter (from [15]).

Fig. 4. Flow visualisation with smoke, revealing the tip vortices

(from [16]).

Fig. 5. Flow visualisation with smoke, revealing smoke trails

being ‘sucked’ into the vortex spirals (from [16]).

Fig. 6. Flow visualisation experiment at TUDelft, showing two

revolutions of tip vortices for a two-bladed rotor (from [24]).

Fig. 7. Flow visualisation with smoke grenade in tip, revealing

smoke trails for the NREL turbine in the NASA-Ames wind

tunnel (from Hand [13]).

L.J. Vermeer et al. / Progress in Aerospace Sciences 39 (2003) 467–510474
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Examples of Helical Flows in Nature

Helical instability of rotating viscous jets [Kubitschek & Weidman, 2007]

A. Shevyakov (UofS, Canada) Helical flows: conservation laws, reductions, solutions Fudan University, June 2019 9 / 62



Examples of Helical Flows in Nature

Helical water flow past a propeller
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Examples of Helical Flows in Nature

Wing tip vortices, in particular, on delta wings [Mitchell, Morton & Forsythe, 1997]
AIAA-2002-2968 

10 
 

a) b)

c) d)

e)

a)a) b)b)

c)c) d)d)

e)

 
Fig. 9: Detached Eddy Simulation results of the 70° delta wing at α = 27° and Rec = 1.56x106 for five different grids. Iso-
surfaces of vorticity colored by spanwise vorticity component are presented.  a) Coarse Grid-1.2M cells, b) Medium Grid-2.7M 
cells, c) Fine Grid-6.7M cells, d) Real Fine Grid-10.7M cells, e) Adavtive Mesh Refinement Grid-3.2M cells. 
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Examples of Helical Flows in Nature

Helical blood flow patterns in the aortic arch [Kilner et al, 1993]

2238 Circulation Vol 88, No 5, Part 1 November 1993

FIG 2. Temporal development of flow depicted by three different types of cine image. The four images in each line span
the systolic period in subject 4, the numbers representing the gating delay in milliseconds from the R wave. Upper row,
Cine images in which brightness is proportional to signal intensity. Brightest signal is seen where fresh blood moves into
the slice. There is only slight local signal loss in the region of inflow from the aortic root in early systole and after peak
systole in regions with steep velocity gradients in the upper and distal arch. Middle row, Velocity vector maps, which
display combined data from vertical and horizontal velocity maps. Highest axial flow velocities first appear close to the
inner curvature (left-hand frame), but they migrate outward through the course of systole, until at end systole, a
retrograde stream (labeled "R") arises from relatively slow blood close to the inner curvature. Right-handed rotational
flow can be identified in late systole in the right pulmonary artery. Bottom row, Through-plane velocity maps show that
helical flow in the upper arch begins after forward flow and persists after it has ceased. In the descending aorta, the third
(late systolic) frame shows a central region of flow away from the viewer (light) with darker regions on either side, toward
the viewer, indicating paired, counter-rotating helices. The inner helical movement must arise through blood curling
forward from the farther wall to fill the space left by separation of streamlines from the inner curvature. By the end of
systole, this inner helix has come to dominate, resulting in slight anticlockwise (from above) rotation in the descending
aorta.

Flow vector components in planes aligned with and
transecting the upper arch were mapped by magnetic
resonance, as described above. Both continuous flow
and pulsatile flow experiments were performed through
flat and twisted arrangements of the arch. For cine
imaging of the cycle of pulsatile flow, gating (equivalent
to cardiac gating) was achieved through an electric
circuit closed at each contact of the driving rotor arm
with a second conductor. Sixteen frames were acquired
per cycle.

Continuous flow was maintained at a rate of 12 L/min.
Pulsation was superimposed at a rate of 30 beats per
minute, adjusted to give a peak of forward flow rising to

28 L/min (flat arch experiment) and 22 L/min (twisted
arch experiment), with a slight reversal of net flow in the
diastolic phase. Peak axial velocities during the systolic
phase of pulsatile flow reached 0.5 m/s.

Results
The images in Figs 1 through 6 have been selected to

illustrate the principle in vivo flow findings, some of
which are schematically drawn in Fig 7. Before we
describe them, however, we will draw attention to
certain anatomic features and define the terms that we
use to describe arch anatomy and patterns of flow.

 at University of Oregon on March 20, 2013http://circ.ahajournals.org/Downloaded from 

Kilner et al Helical Aortic Flows Mapped by Magnetic Resonance 2241

FIG 6. Left ventricular outflow and ascending aorta, viewed from the front (subject 1). Through-plane velocities are
shown above (dark toward, light away; PT, pulmonary trunk). In-plane vectors are shown below, in three late to end-
systolic frames (numbers represent gating delays in milliseconds from R wave). Through-plane (helical) flow is not
obvious in the ventricular outflow tract but develops in the ascending aorta, with a light stream sweeping away from the
viewer along the inner curvature. This is also the location of a retrograde movement at end systole (labeled R). Local
recirculation can be identified in the left coronary cusp, with the retrograde stream extending down to this cusp in the final
frame.

The term skewed will be used to refer to an asym-
metric axial velocity profile in which the peak axial
velocity is located closer to one wall than the other.

Streamlines are imaginary lines through the flow field
at a given moment in time, aligned at all points with the
local velocity vector.

FIG 7. Schematic drawings to illustrate typical aortic arch flow development. a, Early systole. During acceleration,
highest axial velocities begin along the shortest flow path, close to the inner curvature (cylindrical arrows). Axially directed
flows through the remainder of the arch and its branches have not been drawn. b, Mid to late systole. The highest velocity
stream migrates outward, and secondary helical flows develop. Where streamlines separate from the inner wall of the
distal arch, the separation zone is filled by oblique retrograde streamlines, curling back toward the viewer from the further
wall. c, End systole. Combinations of rotational and recirculating secondary flows persist after aortic valve closure. The
drawing is intended to indicate averaged streamlines, although instability of flow and beat-to-beat variation is likely at end
systole.

 at University of Oregon on March 20, 2013http://circ.ahajournals.org/Downloaded from 
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Examples of Helical Flows in Nature

Helical plasma flows in tokamaks
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Examples of Helical Flows in Nature

Helical plasma structures in astrophysics

UW, 22 Nov.2005 6

Astrophysical and terrestrial applications of plasma

Astrophysical / geophysical applications

 Star formation, accretion disks, jets

 Astrophysical jets

 Solar flares; solar wind

 Earth magnetosheath

M87 Energetic Jet 

Length: 5,000 light-years

Star accretion disk & jet 

Earth magnetosphere 
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Examples of Helical Flows in Nature

Collimated helical plasma jet formation in a plasma discharge

UW, 22 Nov.2005 5

Astrophysical and terrestrial applications of plasma

Laboratory plasmas

 E.g.: Collimated jet formation 

S. You et al, PRL 95, 045002 (2005)
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Results overview: two papers
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Paper 1: Conservation laws of NS and Euler equations under helical
symmetry

O. Kelbin, A. Cheviakov, and M. Oberlack (2013)
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and
inviscid flows. JFM 721, 340-366.

Helically-invariant fluid dynamics equations

Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

Two-component reductions: zero velocity component in symmetric direction.

Additional conservation laws – systematic construction (multiplier method)

Three-component Euler:
Generalized momenta. Generalized helicity. Additional vorticity CLs.

Three-component Navier-Stokes:
Additional CLs in primitive and vorticity formulation.

Two-component flows:
Infinite set of enstrophy-related vorticity CLs (inviscid case).
Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Paper 2: Conservation laws of NS and Euler equations under helical
symmetry

D. Dierkes, A. Cheviakov, and M. Oberlack (2019, JFM, submitted)
New similarity reductions and exact solutions for helically symmetric viscous flows.

The new v -equation for Galilei-invariant helical flows

Full helically-invariant Navier-Stokes equations, invariant with respect to the Galilei
group

G 4 : r → r , t → t, ξ → ξ + εt, p → p,

ur → ur , uξ → uξ + εB(r), uη → uη − ε b

ar
B(r).

Such solutions satisfy the new v -equation

vrt +
(v vr

r

)
r
− 2

v 2
r

r
− ν

[
vrrr +

vr

r 2
− vrr

r

]
= 0.

Exact solutions of helically invariant Navier-Stokes equations

The v -equation: exact Galilei-invariant solutions.

Beltrami flow ansatz: exact linearization, families of separated solutions.
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Conservation laws of dynamic PDEs
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Notation

Independent variables: (x , t), or (t, x , y , z), or z = (z1, ..., zn).

Dependent variables: u(x , t), or generally v = (v 1(z), ..., v m(z)).

Derivatives:

d

dt
w(t) = w ′(t);

∂

∂x
u(x , t) = ux ;

∂

∂zk
v p(z) = v p

k .

All derivatives of order p: ∂pv .

A differential function:
H[v ] = H(z , v , ∂v , . . . , ∂k v)

A total derivative of a differential function: the chain rule

Di H[v ] =
∂H

∂z i
+

∂H

∂vα
vαi +

∂H

∂vαj
vαij + ....
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Local and global conservation laws

A system of differential equations (PDE or ODE) G [v ] = 0:

Gσ(z , v , ∂v , . . . , ∂qσ v) = 0, σ = 1, . . . ,M.

The basic notion:

A local conservation law:

A divergence expression

Di Φ
i [v ] = 0

vanishing on solutions of G [v ] = 0. Here Φ = (Φ1[v ], . . . ,Φn[v ]) is the flux vector.
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Local and global conservation laws – PDEs

For time-dependent PDEs, the meaning of a local conservation law is that the rate
of change of some “total amount” is balanced by a boundary flux.

(1+1)-dimensional PDEs: v = v(x , t), only one CL type.

Local form:
DtT [v ] + Dx Ψ[v ] = 0.

Global form:

d

dt

∫ b

a

T [v ] dx = −Ψ[v ]
∣∣∣b

a
.
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Local and global conservation laws – PDE example

(1+1)-dimensional linear wave equation:

utt = c2uxx , u = u(x , t), c2 = τ/ρ, a < x < b or −∞ < x <∞.

x 

u(x,t) 

a b
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Local and global conservation laws – PDE example

(1+1)-dimensional linear wave equation:

utt = c2uxx , u = u(x , t), c2 = τ/ρ, a < x < b or −∞ < x <∞.

x 

u(x,t) 

a b

A local CL – momentum conservation: Dt(ρut)−Dx (τux ) = 0.

Global form:
d

dt
m =

d

dt

∫ b

a

ρut dx = τux

∣∣∣b
a
.

dm/dt = 0 for zero Neumann BCs → the momentum is conserved, m = const.

(E.g., a finite perturbation of an infinite string.)
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Local and global conservation laws – PDE example

(1+1)-dimensional linear wave equation:

utt = c2uxx , u = u(x , t), c2 = τ/ρ, a < x < b or −∞ < x <∞.

x 

u(x,t) 

a b

A local CL – energy conservation: Dt

(
ρu2

t

2
+
τu2

x

2

)
−Dx (τutux ) = 0.

Global form:
d

dt
E =

d

dt

∫ (
ρu2

t

2
+
τu2

x

2

)
dx = τutux

∣∣∣b
a
.

For which BCs is E = const?
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Local and global conservation laws – PDE exampls

(3+1)-dimensional PDEs: R[v ] = 0, v = v(t, x , y , z).

Local form: DtT [v ] + DivΨ[v ] = 0 ⇔ Di Φ
i [v ] = 0

Global form:
d

dt

∫
V

T dV = −
∮
∂V

Ψ · dS

Holds for all solutions v(t, x , y , z), in some physical domain V.

 

n 

 

T 
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Local and global conservation laws – PDE examples

Example: conservation of mass, gas/fluid dynamics.

Local form: ρt + div(ρu) = 0 (A).

Global form:
d

dt
M =

d

dt

∫
V
ρ dV = −

∮
∂V
ρu · dS.

 

n 

 

T 

Note: conservation laws are coordinate-independent (i.e., the divergence form (A) is
invariant).
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Local and global conservation laws – Material CLs

Material conservation laws

For incompressible flows with velocity field u, divu = 0:

d

dt
T ≡ DtT + u · ∇T = DtT + div

x,y,...

(
Tu
)

= 0.

T is conserved in a domain V(t) moving with the flow:

d

dt

∫
V(t)

T dV = 0.

Example: conservation of mass in an incompressible flow:

ρt + div(ρu) = Dtρ+ u · ∇ρ = 0;

d

dt
M(t) =

d

dt

∫
V(t)

ρ dV = 0.
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Applications of Conservation Laws

Applications to ODEs

Constants of motion:
DtT [v ] = 0 ⇒ T [v ] = const.

Reduction of order / integration.
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Applications of Conservation Laws

Applications to PDEs

DtT [v ] + DivΨ[v ] = 0

Rates of change of physical variables; constants of motion.

Differential constraints (divergence-free or irrotational fields, etc.).

Divergence forms of PDEs for analysis: existence, uniqueness, stability, Fokas
method.

Weak solutions.

Potentials, stream functions, etc.

An infinite number of CLs may indicate integrability/linearization.

Numerical methods: divergence forms of PDEs (finite-element, finite volume);
constants of motion.
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Applications of Conservation Laws

 

A COMSOL example 
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Coordinate invariance of CLs
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Coordinate invariance of CLs

Given PDE system:

Variables: v = (v 1(z), ..., v m(z)), z = (z1, ..., zn)

PDEs: G [v ] = 0

Local CL: Dz i Φi [v ] = 0

Point transformation:

y i = y i (z , v), i = 1, . . . , n,
uµ = uµ(z , v), µ = 1, . . . ,m,

,
Du

Dv
6= 0.

Transformed PDE system:

PDEs: S [u(y)] = 0

Divergence expressions: Dz i Φi [v ] = J · Dy j Ψj [u], J =
D(y 1, . . . , y n)

D(z1, . . . , zn)
.

Local CL: Dy j Ψj [u] = 0
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Systematic computation of conservation
laws: the direct (multiplier) method
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The idea of the direct (multiplier) CL construction method

Independent and dependent variables of the problem:
z = (z1, ..., zn), v = v(z) = (v 1, ..., v m).

Definition

The Euler operator with respect to an arbitrary function v j :

Ev j =
∂

∂v j
−Di

∂

∂v j
i

+ · · ·+ (−1)sDi1 . . .Dis

∂

∂v j
i1...is

+ · · · , j = 1, . . . ,m.

Theorem

The equations
Ev j F [v ] ≡ 0, j = 1, . . . ,m

hold for arbitrary v(z) if and only if F is a divergence:

F [v ] ≡ Di Φ
i

for some functions Φi = Φi [v ].
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The direct (multiplier) method

Given:

A system of M DEs Gσ[v ] = 0, σ = 1, . . . ,M.

Variables: z = (z1, ..., zn), v = (v 1(z), ..., v m(z)).

The direct (multiplier) method

1 Specify the dependence of multipliers: Λσ[v ] = Λσ(z , v , ∂v , ...).

2 Solve the set of determining equations Ev j (Λσ[v ]Gσ[v ]) ≡ 0, j = 1, . . . ,m, for
arbitrary v(z), to find all sets of multipliers.

3 Find the corresponding fluxes Φi [v ] satisfying the identity

Λσ[v ]Gσ[v ] ≡ Di Φ
i [v ].

4 For each set of fluxes, on solutions, get a local conservation law

Di Φ
i [v ] = 0.

5 Implemented in GeM module for Maple (A.C. – see my web page)
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Completeness of the multiplier method

Extended Kovalevskaya form

A PDE system G [v ] = 0 is in extended Kovalevskaya form with respect to an
independent variable z j , if the system is solved for the highest derivative of each
dependent variable with respect to z j , i.e.,

∂sσ

∂(z j )sσ
vσ = Gσ(z , v , ∂v , . . . , ∂k v), 1 ≤ sσ ≤ k, σ = 1, . . . ,m,

where all derivatives with respect to z j appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.
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Completeness of the multiplier method

Extended Kovalevskaya form

A PDE system G [v ] = 0 is in extended Kovalevskaya form with respect to an
independent variable z j , if the system is solved for the highest derivative of each
dependent variable with respect to z j , i.e.,

∂sσ

∂(z j )sσ
vσ = Gσ(z , v , ∂v , . . . , ∂k v), 1 ≤ sσ ≤ k, σ = 1, . . . ,m,

where all derivatives with respect to z j appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.

Theorem [M. Alonso (1979)]

Let G [v ] = 0 be a PDE system in the extended Kovalevskaya form. Then every its local
CL equivalence class has a representative in the characteristic form,

Λσ[v ]Gσ[v ] ≡ Di Φ
i [v ] = 0,

such that {Λσ[v ]} do not involve the leading derivatives or their differential consequences.

[Hence one can safely use nonsingular multipliers!]
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Completeness of the multiplier method

Extended Kovalevskaya form

A PDE system G [v ] = 0 is in extended Kovalevskaya form with respect to an
independent variable z j , if the system is solved for the highest derivative of each
dependent variable with respect to z j , i.e.,

∂sσ

∂(z j )sσ
vσ = Gσ(z , v , ∂v , . . . , ∂k v), 1 ≤ sσ ≤ k, σ = 1, . . . ,m,

where all derivatives with respect to z j appearing in the right-hand side of each PDE
above are of lower order than those appearing on the left-hand side.

Example

The KdV equation
R[u] = ut + uux + uxxx = 0

has the extended Kovalevskaya form with respect to t (ut = . . .) or x (uxxx = . . .).
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Completeness of the multiplier method

For systems in the extended Kovalevskaya form, the multiplier method is complete
(to any fixed order of derivatives).

The multiplier method does not predict maximum CL order.

For systems in a solved form but not in the extended Kovalevskaya form, multipliers
may involve leading derivatives/their differential consequences.

In practice, even if the extended Kovalevskaya form exists for a given system, it may
be too complex to work with.

One may use the multiplier method on non-Kovalevskaya systems to get partial CL
results.
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Conservation laws of Euler and NS
equations in 3+1 dimensions
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Conservation laws of NS equations in 3+1 dimensions

Navier-Stokes equations for a constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p − ν ∆u = 0. (A)

No higher-order CLs [Gusyatnikova & Yumaguzhin (1989)].

The complete list of local CLs of (A) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Generalized continuity equation: ∇ · (k(t) u) = 0
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Conservation laws of NS equations in 3+1 dimensions

Navier-Stokes equations for a constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p − ν ∆u = 0. (A)

No higher-order CLs [Gusyatnikova & Yumaguzhin (1989)].

The complete list of local CLs of (A) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Generalized momentum in x−direction (same for y , z):

∂

∂t
(f (t)u1) +

∂

∂x

(
(u1f (t)− xf ′(t))u1 + f (t)(p − νu1

x )
)

+
∂

∂y

(
(u1f (t)− xf ′(t))u2 − νf (t)u1

y

)
+
∂

∂z

(
(u1f (t)− xf ′(t))u3 − νf (t)u1

z

)
= 0
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Conservation laws of NS equations in 3+1 dimensions

Navier-Stokes equations for a constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p − ν ∆u = 0. (A)

No higher-order CLs [Gusyatnikova & Yumaguzhin (1989)].

The complete list of local CLs of (A) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Angular momentum in x−direction (same for y , z):

∂

∂t
(zu2 − yu3) +

∂

∂x

(
(zu2 − yu3)u1 + ν(yu3

x − zu2
x )
)

+
∂

∂y

(
(zu2 − yu3)u2 + zp + ν(yu3

y − zu2
y − u3)

)
+
∂

∂z

(
(zu2 − yu3)u3 − yp + ν(yu3

z − zu2
z + u2)

)
= 0

(Angular momentum vector: P = r× u.)
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p = 0. (B)

Classical local CLs (below) known for a long time.

No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Generalized continuity equation: ∇ · (k(t) u) = 0.

Generalized momentum in x , y , z (same as NS with ν = 0).

Angular momentum in x , y , z (same as NS with ν = 0).
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p = 0. (B)

Classical local CLs (below) known for a long time.

No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Conservation of kinetic energy:

∂

∂t
K +∇ ·

(
(K + p) u

)
= 0, K =

1

2
|u|2.
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p = 0. (B)

Classical local CLs (below) known for a long time.

No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Conservation of helicity:
h = u · ω;

∂

∂t
h +∇ · (u×∇E + (ω × u)× u) = 0,

where E = 1
2
|u|2 + p is total energy density,

and ω = curl u is vorticity.
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Conservation laws of Euler equations in 3+1 dimensions

Euler equations, constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p = 0. (B)

Classical local CLs (below) known for a long time.

No upper limit for the CL order has been established to date.

Local CLs of Euler equations (B) (e.g., [Batchelor (2000); A.C. and M. Oberlack
(2014)]):

Euler equations in vorticity formulation: ∇ · u = 0, ω = ∇× u, hence

∇ · ω = 0, ωt +∇× (ω × u) = 0.

Three components of vorticity ω are conserved.
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Euler equations in 2+1 dimensions; conservation of enstrophy

Euler classical two-component plane flow:

Two-component, Cartesian 2D Euler equations:

(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ,
uz = 0.

Scalar vorticity equation: ωx = ωy = 0, ωz = −(ux )y + (uy ),

(ωz )t + ux (ωz )x + uy (ωz )y = 0.From Wikipedia, the free encyclopedia

No higher resolution available.
Vorticity_Figure_03_c.png (200 × 200 pixels, file size: 10 KB, MIME type: image/png)

This is a file from the Wikimedia Commons. Information from its description page there is
shown below.

Commons is a freely licensed media file repository. You can help.

Description English: Relative velocities around a point in File:Vorticity Figure 03 a-m

Date 2 October 2012, 10:52:42

Source Own work

Author Jorge Stolfi

I, the copyright holder of this work, hereby publish it under the following license:

This file is licensed under the Creative Commons Attribution-Share Alike
3.0 Unported (//creativecommons.org/licenses/by-sa/3.0/deed.en) license.

You are free:
to share – to copy, distribute and transmit the work
to remix – to adapt the work

Under the following conditions:
attribution – You must attribute the work in the manner
specified by the author or licensor (but not in any way that
suggests that they endorse you or your use of the work).
share alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

File:Vorticity Figure 03 c.png - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/File:Vorticity_Figure_03_c.png

1 of 2 23/03/2013 3:57 PM
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Euler equations in 2+1 dimensions; conservation of enstrophy

Euler classical two-component plane flow:

Two-component, Cartesian 2D Euler equations:

(ux )x + (uy )y = 0,
(ux )t + ux (ux )x + uy (ux )y = −px ,
(uy )t + ux (uy )x + uy (uy )y = −py ,
uz = 0.

Scalar vorticity equation: ωx = ωy = 0, ωz = −(ux )y + (uy ),

(ωz )t + ux (ωz )x + uy (ωz )y = 0.

Enstrophy Conservation

Enstrophy: E = |ω|2 = (ωz )2.

Material conservation law:
d

dt
E = Dt E + Dx (uxE) + Dy (uyE) = 0.

Was commonly known to hold for plane flows, (2 + 1)-dimensions.
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Helical invariance and helical reduction of
Euler and NS equations
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Some symmetries and the reduction idea

Navier-Stokes equations for a constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p − ν ∆u = 0. (A)

A symmetry – translations in z : z → z + z0 (similarly in x and y , as well as t).

Symmetry reduction: p, pi (t, x , y , z) → p, ui (t, x , y).

In case of additional time independence, for Euler equations (ν = 0), get a single
PDE

ξxx + ξyy = −I (ξ)I ′(ξ)− P ′(ξ),

where ξ = ξ(x , y) is the stream function,

u = −ξy ex + ξxey + I (ξ)ez , p = p(ξ),

and I (ξ) and p(ξ) are arbitrary functions.
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Some symmetries and the reduction idea

Navier-Stokes equations for a constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p − ν ∆u = 0. (A)

A symmetry – rotations around the z-axis (translations in cylindrical angle ϕ):
ϕ→ ϕ+ ϕ0.

Symmetry reduction: p, ui (t, x , y , z) → p, ui (t, r , z).

In case of additional time independence, for Euler equations (ν = 0), get a single
PDE – Grad-Safranov (Bragg-Hawthorne) equation

ψrr − 1

r
ψr + ψzz + I (ψ)I ′(ψ) = −r 2P ′(ψ),

where ψ = ψ(r , z) is the stream function,

u =
ψz

r
er +

I (ψ)

r
eϕ − ψr

r
ez , p = p(ψ),

and I (ψ) and p(ψ) are arbitrary functions.
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Some symmetries and the reduction idea

Navier-Stokes equations for a constant-density fluid

∇ · u = 0, ut + (u · ∇)u +∇p − ν ∆u = 0. (A)

A symmetry – combination of rotations in x − y plane and translations in z .

Cylindrical coordinates: (r , ϕ, z). Helical coordinates: (r , η, ξ):

ξ = az + bϕ, η = aϕ− b
z

r 2
, a, b = const, a2 + b2 > 0.

Symmetry reduction: p, ui (t, x , y , z) → p, ui (t, r , ξ).

In case of additional time independence, for Euler equations (ν = 0), get a single
PDE – JFKO equation (similar to Bragg-Hawthorne).
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Additional CLs for helically symmetric Euler
and NS equations
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Helical coordinates
New conservation laws for helical flows 5

z

x

y

r

h

er

e ´

e»

Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Helical Coordinates

Cylindrical coordinates: (r , ϕ, z). Helical coordinates: (r , η, ξ)

ξ = az + bϕ, η = aϕ− b
z

r 2
, a, b = const, a2 + b2 > 0.
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Orthogonal Basis

er =
∇r

|∇r | , eξ =
∇ξ
|∇ξ| , e⊥η =

∇⊥η
|∇⊥η|

= eξ × er .

Scaling factors: Hr = 1,Hη = r ,Hξ = B(r), B(r) =
r√

a2r 2 + b2
.

A. Shevyakov (UofS, Canada) Helical flows: conservation laws, reductions, solutions Fudan University, June 2019 36 / 62



Helical coordinates
New conservation laws for helical flows 5

z

x

y

r

h

er

e ´

e»

Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Vector expansion

u = ur er + uϕeϕ + uz ez = ur er + uηe⊥η + uξeξ.

uη = u · e⊥η = B

(
auϕ − b

r
uz

)
, uξ = u · eξ = B

(
b

r
uϕ + auz

)
.
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Helical invariance: generalizes axal and translational invariance

Helical coordinates: r , ξ = az + bϕ, η = aϕ− bz/r 2.

General helical symmetry: f = f (r , ξ), a, b 6= 0.

Axial: a = 1, b = 0. z-Translational: a = 0, b = 1.
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Figure 1. An illustration of the helix ξ = const for a = 1, b = −h/2π, where h is the z−step
over one helical turn. Basis unit vectors in the helical coordinates.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it can
be shown that though the coordinates r, ξ are orthogonal, there exists no third coordinate
orthogonal to both r and ξ that can be consistently introduced in any open ball B ∈ R3.
However, an orthogonal basis is readily constructed at any point except for the origin,
as follows (see Figure 1):

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η
|∇⊥η|

= eξ × er.

The scaling (Lamé) factors for helical coordinates are given by Hr = 1,Hη = r,Hξ =
B(r), where we denoted

B(r) =
r√

a2r2 + b2
. (2.1)

In the sequel, for brevity, we will write B(r) = B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function independent

of η, and has the form F (t, r, ξ). Since our goal is to examine helically symmetric flows,
the physical variables will be assumed η−independent. It is worth noting that the limiting
case a = 1, b = 0, the helical symmetry reduces to the axial symmetry; in the opposite case
a = 0, b = 1, the helical symmetry corresponds to the planar symmetry, i.e., symmetry
with respect to translations in the z-direction.

Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡ ∂

∂ξ
uη(t, r, ξ).

We also assume summation in all repeated indices.

2.2. The Navier-Stokes equations in primitive variables

The Navier-Stokes equations of incompressible viscous fluid flow without external forces
in three dimensions are given by

∇ · u = 0, (2.2a)

ut + (u · ∇)u+∇p− ν∇2u = 0. (2.2b)

Details:

O. Kelbin, A. Cheviakov, and M. Oberlack (2013)
New conservation laws of helically symmetric, plane and rotationally symmetric viscous and
inviscid flows. JFM 721, 340-366.
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

Continuity:

1

r
ur + (ur )r +

1

B
(uξ)ξ = 0
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

r -momentum:

(ur )t + ur (ur )r +
1

B
uξ(ur )ξ − B2

r

(
b

r
uξ + auη

)2

= −pr

+ ν

[
1

r
(r(ur )r )r +

1

B2
(ur )ξξ − 1

r 2
ur − 2bB

r 2

(
a(uη)ξ +

b

r
(uξ)ξ

)]
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

η-momentum:

(uη)t + ur (uη)r +
1

B
uξ(uη)ξ +

a2B2

r
ur uη

= ν

[
1

r
(r(uη)r )r +

1

B2
(uη)ξξ +

a2B2(a2B2 − 2)

r 2
uη +

2abB

r 2

(
(ur )ξ −

(
Buξ

)
r

)]
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Helically invariant Navier-Stokes equations

Navier-Stokes Equations:

∇ · u = 0,

ut + (u · ∇)u +∇p − ν∇2u = 0.

ξ-momentum:

(uξ)t + ur (uξ)r +
1

B
uξ(uξ)ξ +

2abB2

r 2
ur uη +

b2B2

r 3
ur uξ = − 1

B
pξ

+ ν

[
1

r
(r(uξ)r )r +

1

B2
(uξ)ξξ +

a4B4 − 1

r 2
uξ +

2bB

r

(
b

r 2
(ur )ξ +

(
aB

r
uη
)

r

)]
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

Vorticity definition:

ωr = − 1

B
(uη)ξ,

ωη =
1

B
(ur )ξ − 1

r

(
ruξ
)

r
− 2abB2

r 2
uη +

a2B2

r
uξ,

ωξ = (uη)r +
a2B2

r
uη
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

r -vorticity:

(ωr )t + ur (ωr )r +
1

B
uξ(ωr )ξ = ωr (ur )r +

1

B
ωξ(ur )ξ

+ ν

[
1

r
(r(ωr )r )r +

1

B2
(ωr )ξξ − 1

r 2
ωr − 2bB

r 2

(
a(ωη)ξ +

b

r
(ωξ)ξ

)]
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

η-vorticity:

(ωη)t + ur (ωη)r +
1

B
uξ(ωη)ξ

− a2B2

r
(urωη − uηωr ) +

2abB2

r 2
(uξωr − urωξ) = ωr (uη)r +

1

B
ωξ(uη)ξ

+ ν

[
1

r
(r(ωη)r )r +

1

B2
(ωη)ξξ +

a2B2(a2B2 − 2)

r 2
ωη +

2abB

r 2

(
(ωr )ξ −

(
Bωξ

)
r

)]
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Helically invariant vorticity formulation

Navier-Stokes equations, vorticity formulation:

∇ · u = 0,

∇× u =: ω = ωr er + ωηe⊥η + ωξeξ,

ωt +∇× (ω × u)− ν∇2ω = 0.

ξ-vorticity:

(ωξ)t + ur (ωξ)r +
1

B
uξ(ωξ)ξ

+
1− a2B2

r
(uξωr − urωξ) = ωr (uξ)r +

1

B
ωξ(uξ)ξ

+ ν

[
1

r
(r(ωξ)r )r +

1

B2
(ωξ)ξξ +

a4B4 − 1

r 2
ωξ +

2bB

r

(
b

r 2
(ωr )ξ +

(
aB

r
ωη
)

r

)]
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Conservation laws for helically symmetric flows

For helically symmetric flows:

Seek local conservation laws

∂T

∂t
+∇ ·Φ ≡ ∂T

∂t
+

1

r

∂

∂r
(rΦr ) +

1

B

∂Φξ

∂ξ
= 0

using divergence expressions

∂Γ1

∂t
+
∂Γ2

∂r
+
∂Γ3

∂ξ
= r

[
∂

∂t

(
Γ1

r

)
+

1

r

∂

∂r

(
r

Γ2

r

)
+

1

B

∂

∂ξ

(
B

r
Γ3

)]
= 0,

i.e.,

T ≡ Γ1

r
, Φr ≡ Γ2

r
, Φξ ≡ B

r
Γ3.

1st-order multipliers in primitive variables.

0th-order multipliers in vorticity formulation.
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Conservation laws for helically symmetric Euler flows: ν = 0

Primitive variables - EP1 - kinetic energy

T = K , Φr = ur (K + p), Φξ = uξ(K + p), K =
1

2
|u|2.

Primitive variables - EP2 - z-momentum

T = B

(
−b

r
uη + auξ

)
= uz , Φr = ur uz , Φξ = uξuz + aBp.

Primitive variables - EP3 - z-angular momentum

T = rB

(
auη +

b

r
uξ
)

= ruϕ, Φr = rur uϕ, Φξ = ruξuϕ + bBp.

Primitive variables - EP4 - generalized momenta/angular momenta (NEW)

T = F
( r

B
uη
)
, Φr = ur F

( r

B
uη
)
, Φξ = uξF

( r

B
uη
)
,

where F (·) is an arbitrary function.
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Conservation laws for helically symmetric Euler flows: ν = 0

Vorticity formulation - EV1 - conservation of helicity

Helicity:
h = u · ω = urωr + uηωη + uξωξ.

The conservation law:

T = h,

Φr = ωr

(
E − (uη)2 −

(
uξ
)2
)

+ ur (h − urωr ) ,

Φξ = ωξ
(

E − (ur )2 − (uη)2
)

+ uξ
(

h − uξωξ
)
,

where

E =
1

2
|u|2 + p =

1

2

(
(ur )2 + (uη)2 +

(
uξ
)2
)

+ p

is the total energy density. In vector notation:

∂

∂t
h +∇ · (u×∇E + (ω × u)× u) = 0.
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Conservation laws for helically symmetric Euler flows: ν = 0

Vorticity formulation - EV2 - generalized helicity (NEW)

Helicity:
h = u · ω = urωr + uηωη + uξωξ.

∂

∂t

(
h H

( r

B
uη
))

+∇·
[
H
( r

B
uη
)

[u×∇E + (ω × u)× u] + Euηe⊥η ×∇H
( r

B
uη
)]

= 0

for an arbitrary function H = H (·).
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Conservation laws for helically symmetric Euler flows: ν = 0

Vorticity formulation - EV3 - vorticity conservation laws (NEW)

T =
Q(t)

r
ωϕ,

Φr =
1

r

(
Q(t)[urωϕ − ωr uϕ] + Q ′(t)uz) ,

Φξ = −aB

r

(
Q(t)

[
uηωξ − uξωη

]
+ Q ′(t)ur

)
,

where Q(t) is an arbitrary function.

Vorticity formulation - EV4 - vorticity conservation law (NEW)

T = −rB

(
a3ωη − b3

r 3
ωξ
)
,

Φr = −2a2ur uz − a3Br (urωη − uηωr ) +
Bb3

r 2

(
urωξ − uξωr

)
,

Φξ = a3B
[
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

)]
+

2a2bB

r
uηuξ.
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Conservation laws for helically symmetric Euler flows: ν = 0

Vorticity formulation - EV5 - vorticity conservation law (NEW)

T =− B

r 2

(
b2r 2

B2
ωξ + a3r 4

(
−b

r
ωη + aωξ

))
= −B

r 2

(
b2r 2

B2
ωξ +

a3r 4

B
ωz

)
,

Φr =a3rB

(
2ur

(
auη +

b

r
uξ
)

+ b (urωη − uηωr )

)
− a4r 4 + a2r 2b2 + b4

r
√

a2r 2 + b2

(
urωξ − uξωr

)
,

Φξ =− a3bB
(

(ur )2 + (uη)2 − (uξ)2 + r
(

uηωξ − uξωη
))

+ 2a4rBuηuξ.

Vorticity formulation - EV6 - vorticity conservation law (NEW)

∇ ·Φ = 0, Φr = Nωr − 1

B
Nξuη, Φξ = Nωξ,

for an arbitrary N(t, ξ).

Generalization of the obvious divergence expression ∇ · (G(t)ω) = 0.
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Conservation laws for helically symmetric viscous (NS) flows

Primitive variables - NSP1 - z-momentum.

T = uz , Φr = ur uz − ν(uz )r , Φξ = uξuz + aBp − ν

B
(uz )ξ.

Primitive variables - NSP2 - generalized momentum (NEW)

T =
r

B
uη,

Φr =
r

B
ur uη − ν

[
−2aB

(
auη + 2

b

r
uξ
)

+
( r

B
uη
)

r

]
=

r

B
ur uη − ν

[
−2auϕ +

( r

B
uη
)

r

]
,

Φξ =
r

B
uηuξ − ν 1

B

[
2abB2

r
ur +

( r

B
uη
)
ξ

]
.
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Conservation laws for helically symmetric viscous (NS) flows

Vorticity formulation - NSV1 - family of vorticity conservation laws (NEW)

T =
Q(t)

r
B

(
aωη +

b

r
ωξ
)

=
Q(t)

r
ωϕ,

Φr =
1

r

{
Q(t)

[
ur B

(
aωη +

b

r
ωξ
)
− ωr B

(
auη +

b

r
uξ
)]

+ Q ′(t)B

(
−b

r
uη + auξ

)
−Q(t)ν

[
aB

r
ωη +

b2B

r (a2r 2 + b2)

(
aωη +

b

r
ωξ
)

+ B

(
aωηr +

b

r
ωξr

)]}
,

Φξ = −B

r

{
aQ(t)

[
uηωξ − uξωη

]
+ aQ ′(t)ur

+
Q(t)

r 3
ν

[
r 3

B

(
aωηξ +

b

r
ωξξ

)
+ 2brωr

]}
,

for an arbitrary function Q(t).

A. Shevyakov (UofS, Canada) Helical flows: conservation laws, reductions, solutions Fudan University, June 2019 41 / 62



Conservation laws for helically symmetric viscous (NS) flows

Vorticity formulation - NSV2 - vorticity conservation law (NEW)

T = −rB

(
a3ωη − b3

r 3
ωξ
)
,

Φr = −B

r 2

(
a3r 3 (urωη − uηωr )− b3

(
urωξ − uξωr

))
− 2a2Bur

(
−b

r
uη + auξ

)
−B

r 2
ν

[
r 2

B2

(
aωη +

b

r
ωξ
)
− r 3

(
a3ωηr −

b3

r 3
ωξr

)
+ abB2r

(
b3

r 3
ωη + a3ωξ

)]
,

Φξ = a3B
(
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

))
+

2a2bB

r
uηuξ

+
2a2bB

r
ν

[(
1− b2

a2r 2

)
ωr +

r 2

2a2bB

(
a3ωηξ −

b3

r 3
ωξξ

)]
.
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Conservation laws for helically symmetric viscous (NS) flows

Vorticity formulation - NSV3 - vorticity conservation law (NEW)

T = −B

r 2

(
b2r 2

B2
ωξ + a3r 4

(
−b

r
ωη + aωξ

))
= −B

r 2

(
b2r 2

B2
ωξ +

a3r 4

B
ωz

)
,

Φr = a3rB

(
2ur

(
auη +

b

r
uξ
)

+ b (urωη − uηωr )

)
−a4r 4 + a2r 2b2 + b4

r
√

a2r 2 + b2

(
urωξ − uξωr

)
+ν

[
4a3B

(
auη +

b

r
uξ
)
− a3brB(ωη)r +

B

r 3

(
b4 − a4r 4 − a6r 6

a2r 2 + b2

)
ωξ

+
B

r 2

(
a4r 4 + a2r 2b2 + b4

)
(ωξ)r +

ab

B

(
2 +

a4r 4

(a2r 2 + b2)2

)
ωη
]
,

Φξ = −a3bB
(
(ur )2 + (uη)2 − (uξ)2 + r

(
uηωξ − uξωη

))
+ 2a4rBuηuξ

+ν

[
1

r 2

(
a4r 4 + a2r 2b2 + b4

)
(ωξ)ξ − a3br(ωη)ξ − 4a3bB

r
ur +

2b4B

r 3
ωr

]
.
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Some conservation laws for two-component flows

Generalized enstrophy for inviscid plane flow (known)

T = N(ωz ), Φx = ux N(ωz ), Φy = uy N(ωz ),

for an arbitrary N(·), equivalent to a material conservation law

d

dt
N(ωz ) = 0.

Generalized enstrophy for inviscid axisymmetric flow (NEW)

T = S

(
1

r
ωϕ
)
, Φr = ur S

(
1

r
ωϕ
)
, Φz = uz S

(
1

r
ωϕ
)

for arbitrary S(·).

Several additional new conservation laws for plane and axisymmetric, inviscid and
viscous flows (details in paper).
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Some conservation laws for two-component flows

18 O. Kelbin, A.F. Cheviakov, M. Oberlack,

z

x

y

r

u»

ur

» = const

´!

Figure 2. A schematic of a two-component helically invariant flow, with zero velocity component
in the invariant η-direction: uη = 0. Conversely, the vorticity has only one nonzero component
ωη 6= 0.

Note that the equation (6.2c) vanishes when νab = 0, i.e., for inviscid flows, and
for viscous flows with axial or planar symmetry. For other cases when the equation
(6.2c) does not vanish, it imposes an additional differential constraint on the velocity
components ur, uξ. Such a restriction may lead to lack of solution existence for boundary
value problems, and hence below we only consider the inviscid case with a, b 6= 0 and
both viscous and inviscid cases when a = 0 or b = 0.

6.1. Additional conservation laws for general inviscid two-component helically invariant
flows

We now consider two-component helically invariant Euler flows satisfying (6.1). The
three governing equations in primitive variables are given by (6.2a), (6.2b), and (6.2d),
with ν = 0. Employing first-order conservation law multipliers, we find that the energy
conservation law EP1 (4.1) is carried over without change; the conservation laws EP2
(4.2) and EP3 (4.3) collapse to one, given by

Θ = Buξ, Φr = Buruξ, Φξ = B((uξ)2 + p);

the conservation law EP4 (4.4) vanishes. No additional conservation laws arise in the
above multiplier ansatz.

In the vorticity formulation, equations in primitive variables are appended with the
definition of vorticity and the vorticity transport equations. For the two-component case,
from (6.1), it follows that ωξ = ωr = 0 (cf. Figure 2). The remaining vorticity component
ωη is given by

ωη =
1

B
(ur)ξ −

1

r

∂

∂r
(ruξ) +

a2B2

r
uξ. (6.3)

The vorticity transport equations in r− and ξ−directions vanish identically, and the
remaining equation reads

(ωη)t +
1

r

∂

∂r
(rurωη) +

1

B

∂

∂ξ
(uξωη)− a2B2

r
urωη = 0. (6.4)

Physically it is important to note that the reduction due to (6.1) gives rise to the elim-
ination of the vortex stretching term in equation (2.13e). Hence, similar to the plane
two-component case, (6.4) corresponds to pure helical vorticity convection. This vanish-

Generalized enstrophy for general inviscid helical 2-component flow (NEW)

T = T

(
B

r
ωη
)
, Φr = ur T

(
B

r
ωη
)
, Φξ = uξT

(
B

r
ωη
)
,

for an arbitrary T (·), equivalent to a material conservation law

d

dt
T

(
B

r
ωη
)

= 0.
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Helical CLs: results and open problems

Helically-invariant equations

Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

Two-component reductions.

New conservation laws

Three-component Euler:
Generalized momenta. Generalized helicity. Additional vorticity CLs.

Three-component Navier-Stokes:
New CLs in primitive and vorticity formulation.

Two-component flows:
Infinite set of enstrophy-related vorticity CLs (inviscid case).
New CLs in viscous and inviscid case, for plane and axisymmetric flows.

Open problems

Understand the nature of the new CLs.

Explore the usefulness of the new CLs for numerical simulation and analysis (e.g.,
computing stability conditions for equilibria).
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Exact solutions for helically invariant NS
equations: Galilei symmetry
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Paper 2: Conservation laws of NS and Euler equations under helical
symmetry

D. Dierkes, A. Cheviakov, and M. Oberlack (2019, JFM, submitted)
New similarity reductions and exact solutions for helically symmetric viscous flows.

Few exact closed-form solutions to Navier-Stokes equations are available, only for
special settings.

Helical flows: important in nature and applications.

Time-dependent numerical solvers:
Discontinuous Galerkin [F. Kummer, M. Oberlack et al] with helical symmetry
capability.

Need any sample exact helically symmetric solutions to test numerics, for local
physical understanding etc.

Local or global regularity in space and time is acceptable.
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Helically invariant NS; their point symmetries

New exact solutions for helical flows 5

∂/∂η ≡ 0 for all velocity components and the pressure, one obtains the continuity equa-
tion and the three components of the vector momentum equation, which represent the
helically invariant Navier-Stokes system in primitive variables:

1

r
ur + ur

r +
1

B
uξ

ξ = 0, (2.7a)

ur
t + urur

r +
1

B
uξur

ξ − B2

r

(
b

r
uξ + auη

)2

= −pr

+ ν

[
1

r
(rur

r)r +
1

B2
ur

ξξ − 1

r2
ur − 2bB

r2

(
auη

ξ +
b

r
uξ

ξ

)]
, (2.7b)

uη
t + uruη

r +
1

B
uξuη

ξ +
a2B2

r
uruη

= ν

[
1

r
(ruη

r)r +
1

B2
uη

ξξ +
a2B2(a2B2 − 2)

r2
uη +

2abB

r2
(
ur

ξ −
(
Buξ

)
r

)]
, (2.7c)

uξ
t + uruξ

r +
1

B
uξuξ

ξ +
2abB2

r2
uruη +

b2B2

r3
uruξ = − 1

B
pξ

+ ν

[
1

r
(ruξ

r)r +
1

B2
uξ

ξξ +
a4B4 − 1

r2
uξ +

2bB

r

(
b

r2
ur

ξ +

(
aB

r
uη

)

r

)]
, (2.7d)

where the velocity components ur, uη, uξ and the pressure p are functions of r, ξ and t
and the geometric factor B is given by (2.6). Due to the 2π-periodicity of the cylindrical
polar angle φ, in order to be globally defined, every component of a helically invariant
solution must be periodic in ξ with the period

τξ = 2πb. (2.8)

The helically invariant reduction (2.7) of the Navier-Stokes equations has been ex-
tensively investigated in Kelbin et al., where various new conservation laws, including
families of conservation laws, have been found for the viscous (ν ̸= 0) and the inviscid
(ν = 0) case. As an example, for the inviscid case, conservation laws of kinetic energy
and z-projections of momentum and angular momentum have been found to hold, as well
as a new infinite families of generalized momenta/angular momenta conservation laws
and the conservation of helicity. For the viscous case, a z-projection of momentum and
an additional momentum-like quantity (r/B)uη are conserved.

The vorticity formulation of the Navier-Stokes equations (2.2) consists of the continuity
equation, the definition of vorticity, and the vorticity dynamics equation obtained by
taking the curl of the momentum equation (2.2b). It has the form

∇ · u = 0, (2.9a)

ω = ∇ × u, (2.9b)

ωt + ∇ × (ω × u) − ν∇2ω = 0. (2.9c)

In the helical basis, the vorticity vector ω is given by

ω = ωrer + ωηe⊥η + ωξeξ. (2.10)

Under the assumption of helical invariance, the respective components of ω are given by

Point symmetries:

X1 =
∂

∂t
, X2 =

∂

∂ξ
,X3 = f (t)

∂

∂p
, X4 = t

∂

∂ξ
− b

ar
B

∂

∂uη
+ B

∂

∂uξ
.
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Helically invariant NS; their point symmetries

New exact solutions for helical flows 5

∂/∂η ≡ 0 for all velocity components and the pressure, one obtains the continuity equa-
tion and the three components of the vector momentum equation, which represent the
helically invariant Navier-Stokes system in primitive variables:

1

r
ur + ur

r +
1

B
uξ

ξ = 0, (2.7a)

ur
t + urur
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B
uξur
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auη
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, (2.7b)

uη
t + uruη
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uξuη

ξ +
a2B2

r
uruη
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(ruη
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uη +
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r

)]
, (2.7c)
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uruξ = − 1

B
pξ

+ ν

[
1

r
(ruξ

r)r +
1

B2
uξ

ξξ +
a4B4 − 1

r2
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(
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(
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, (2.7d)

where the velocity components ur, uη, uξ and the pressure p are functions of r, ξ and t
and the geometric factor B is given by (2.6). Due to the 2π-periodicity of the cylindrical
polar angle φ, in order to be globally defined, every component of a helically invariant
solution must be periodic in ξ with the period

τξ = 2πb. (2.8)

The helically invariant reduction (2.7) of the Navier-Stokes equations has been ex-
tensively investigated in Kelbin et al., where various new conservation laws, including
families of conservation laws, have been found for the viscous (ν ̸= 0) and the inviscid
(ν = 0) case. As an example, for the inviscid case, conservation laws of kinetic energy
and z-projections of momentum and angular momentum have been found to hold, as well
as a new infinite families of generalized momenta/angular momenta conservation laws
and the conservation of helicity. For the viscous case, a z-projection of momentum and
an additional momentum-like quantity (r/B)uη are conserved.

The vorticity formulation of the Navier-Stokes equations (2.2) consists of the continuity
equation, the definition of vorticity, and the vorticity dynamics equation obtained by
taking the curl of the momentum equation (2.2b). It has the form

∇ · u = 0, (2.9a)

ω = ∇ × u, (2.9b)

ωt + ∇ × (ω × u) − ν∇2ω = 0. (2.9c)

In the helical basis, the vorticity vector ω is given by

ω = ωrer + ωηe⊥η + ωξeξ. (2.10)

Under the assumption of helical invariance, the respective components of ω are given by

Solutions invariant with respect to Galilei symmetry X4:

ur = ur (r , t), uξ = F ξ(r , t)ξ + G ξ(r , t), uη = F η(r , t)ξ + Gη(r , t), p = p(r , t).
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Helically invariant NS; their point symmetries
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where the velocity components ur, uη, uξ and the pressure p are functions of r, ξ and t
and the geometric factor B is given by (2.6). Due to the 2π-periodicity of the cylindrical
polar angle φ, in order to be globally defined, every component of a helically invariant
solution must be periodic in ξ with the period

τξ = 2πb. (2.8)

The helically invariant reduction (2.7) of the Navier-Stokes equations has been ex-
tensively investigated in Kelbin et al., where various new conservation laws, including
families of conservation laws, have been found for the viscous (ν ̸= 0) and the inviscid
(ν = 0) case. As an example, for the inviscid case, conservation laws of kinetic energy
and z-projections of momentum and angular momentum have been found to hold, as well
as a new infinite families of generalized momenta/angular momenta conservation laws
and the conservation of helicity. For the viscous case, a z-projection of momentum and
an additional momentum-like quantity (r/B)uη are conserved.

The vorticity formulation of the Navier-Stokes equations (2.2) consists of the continuity
equation, the definition of vorticity, and the vorticity dynamics equation obtained by
taking the curl of the momentum equation (2.2b). It has the form

∇ · u = 0, (2.9a)

ω = ∇ × u, (2.9b)

ωt + ∇ × (ω × u) − ν∇2ω = 0. (2.9c)

In the helical basis, the vorticity vector ω is given by

ω = ωrer + ωηe⊥η + ωξeξ. (2.10)

Under the assumption of helical invariance, the respective components of ω are given by

Using this ansatz, and denoting v(r , t) = r ur (r , t), arrive at the v -equation

vrt +
(v vr

r

)
r
− 2

v 2
r

r
− ν

[
vrrr +

vr

r 2
− vrr

r

]
= 0.
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Solutions of the v -equation

The v -equation

vrt +
(v vr

r

)
r
− 2

v 2
r

r
− ν

[
vrrr +

vr

r 2
− vrr

r

]
= 0.

Solve using it symmetries: scaling and translation Y1 = r
∂

∂r
+ 2t

∂

∂t
, Y2 =

∂

∂t
.

Similarity variable: s =
r√

4ν (t + t0)
.

Symmetry ansatz: v = v(s).

ODE: s3v ′′ + 2s (v ′)
2

+ s2v ′ − 2svv ′′ + 2vv ′ + ν
[
2s2v ′′′ − 2sv ′′ + 2v ′

]
= 0.

Solution family 1: v(r , t) = Ae
− r2

4ν(t+t0) , with free constant parameters A and t0.

Solution family 2: v(r , t) = g(t)− r 2

2 (t + t0)
, where g(t) is an arbitrary

time-dependent function.
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Solution family 1: details

Solution family 1

v(r , t) = Ae
− r2

4ν(t+t0)

In physical variables:

ur =
A

r
e
− r2

4ν(t+t0) , uη = − AbBξ

2νar (t + t0)
e
− r2

4ν(t+t0) ,

uξ =
ABξ

2ν (t + t0)
e
− r2

4ν(t+t0) , p = − A2

2r 2
e
− r2

2ν(t+t0) + f (t),

where f (t) is an arbitrary function of time.

Singular on the axis r = 0, regular elsewhere.

A. Shevyakov (UofS, Canada) Helical flows: conservation laws, reductions, solutions Fudan University, June 2019 49 / 62



Solution family 1 plots

New exact solutions for helical flows 11
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Figure 2: Dimensionless flow parameters and the helical surface for the exact helically
invariant solution (3.21) with t̂ = 1, t̂0 = 0, Â = f̂ = 1. (a) The streamlines emanating
from the circle ẑ = 0, r̂ = 1. (b) The velocity magnitude isosurface |û| = 10, plotted
for 0 6 ϕ 6 4π, ξ > 0. (c) The vorticity magnitude isosurface |ω̂| = 2, plotted for

0 6 ϕ 6 4π, ξ > 0. (d) the helical coordinate rectangle η̂ = −6, 0.5 6 r̂ 6 2, 0 6 ξ̂ 6 2π
in the physical space, with velocity vectors and pressure p̂ color map.

|ω̂| =
1

ar̂(t̂+ t̂0)
, (3.25b)

ĥ =
ĝ

ar̂2(t̂+ t̂0)
− 1

2a(t̂+ t̂0)2
. (3.25c)

In particular, in (3.25), for a fixed time t, the vorticity magnitude |ω̂| and the helicity

density ĥ are constant on circular cylinders r = const. We do not provide plots for this
rather simple solution family because they are somewhat less physically appealing, and
can be obtained in a straightforward way.

(a) The streamlines emanating from the circle z = 0, r = 1.
(b) The velocity magnitude isosurface |u| = 10, plotted for 0 ≤ φ ≤ 4π, ξ ≥ 0.
(c) The vorticity magnitude isosurface |ω| = 2, plotted for 0 ≤ φ ≤ 4π, ξ ≥ 0.
(d) the helical coordinate rectangle η = −6, 0.5 ≤ r ≤ 2, 0 ≤ ξ ≤ 2π in the physical space, with velocity
vectors and pressure p color map.
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NS exact solutions II: exact linearization,
Beltrami-type solutions
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Exact linearization of helical NS and Beltrami-type solutions

The momentum equation in the NS model is often written in the form

ut + (curl u)× u +∇P − ν∇2u = 0,

where the modified pressure is given by P = p +
1

2
|u|2.

Beltrami flow ansatz of vorticity and velocity collinearity: ω ≡ curl u = ϑu.

Remaining linear PDEs: curl u = ϑu, plus the NS equations

1

r
ur + (ur )r +

1

B
(uξ)ξ = 0,

(ur )t = −Pr + ν

[
1

r
(r(ur )r )r +
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r 2
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b

r
(uξ)ξ
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,
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(
Buξ

)
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,
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a4B4 − 1

r 2
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.
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Exact linearization of helical NS and Beltrami-type solutions

Separation of variables ansatz: f (t, r , ξ) = T (t) R(r) Ξ(ξ).

Separated solutions:

ur = e−νQ2t(K1 cosλξ + K2 sinλξ)R1(r),

uξ = e−νQ2t(K3 cosλξ + K4 sinλξ)R2(r),

uη = e−νQ2t(K5 cosλξ + K6 sinλξ)R3(r),

ϑ = Q = const,

P = e−νQ2t(K7 cosλξ + K8 sinλξ)Rp(r)

Helical variable ξ-periodicity requirement: λ = λn = n/b, n = 0, 1, 2, . . ..

Derive ODE on R1(r):

d2R1

dr 2
+

B2

r

(
3b2

r 2
+ a2

)
dR1

dr
−
(
λ2

B2
+

2a2B2 − 1

r 2
− ϑ2 − 2abϑB2

r 2

)
R1 = 0.
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Exact linearization of helical NS and Beltrami-type solutions

ODE on R1(r):

d2R1

dr 2
+

B2

r

(
3b2

r 2
+ a2

)
dR1

dr
−
(
λ2

B2
+

2a2B2 − 1

r 2
− ϑ2 − 2abϑB2

r 2

)
R1 = 0.

confluent Heun ODE:

Y ′′(z) +
αz2 + (β − α + γ + 2)z + β + 1

z(z − 1)
Y ′(z)

+
((β + γ + 2)α + 2δ)z − (β + 1)α + (γ + 1)β + 2η + γ

2z(z − 1)
Y (z) = 0,

ODE on R1(r) solution: R1(r) = R1 n(r) = C1r n−1HC + + C2r−n−1HC− , where

HC + = HC

(
α, β, γ, δ, η,−a2r 2/b2

)
, HC− = HC

(
α,−β, γ, δ, η,−a2r 2/b2

)
are confluent Heun functions with parameters

α = 0, β = bλn = n, γ = −2, δ =
a2n2 − ϑ2b2

4a2
,

η =
a2(4− n2) + ϑb(2a + ϑb)

4a2
.
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Exact linearization of helical NS and Beltrami-type solutions

Dimensionless solutions:

ũr
n = e−t̃

(
C̃1 n r̃ n−1HC + + C̃2 n r̃−n−1HC−

)
sin(nξ̃ + ψn),

ũξn = e−t̃ B̃

[
C̃1 n

(
r̃ n−2HC + − 2

n
r̃ nH ′C +

)
−C̃2 n

(
r̃−n−2HC− +

2

n
r̃−nH ′C−

)]
cos(nξ̃ + ψn),

ũηn = e−t̃ γB̃

n

(
C̃1 n r̃ n−1HC + + C̃2 n r̃−n−1HC−

)
cos(nξ̃ + ψn),

p̃n = p0 n − 1

2

(
|ũr

n|2 + |ũξn |2 + |ũηn |2
)
.
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Exact linearization of helical NS and Beltrami-type solutions
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An illustration of the radial part R1 n(r̃) of the velocity component ũr
n of the Beltrami solution for

n = 1, 2, 3, C̃1 n = 1, C̃2 n = 0, γ = −3.
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Beltrami-type solutions: illustration for n = 1
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Level surfaces |ũ|2 = const (equivalently, p̃ = const, |ω̃|2 = const, or h̃ = const) for the exact
dimensionless Beltrami solution for n = 1, C1 = 1, C2 = 0, ψ = −π/2.

(a) A cross-section of level surfaces plot |ũ|2 = const, for one period 0 ≤ ξ̃ ≤ 2π.

(b) A connected component of the level surface |ũ|2 = 0.4.

(c) A connected component of the level surface |ũ|2 = 2.6.
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Beltrami-type solutions: illustration for n = 2
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Level surfaces |ũ|2 = const (equivalently, p̃ = const, |ω̃|2 = const, or h̃ = const) for the exact
dimensionless Beltrami solution for n = 2, C1 = 1, C2 = 0, ψ = −π/2.

(a) A cross-section of level surfaces plot |ũ|2 = const, for one period 0 ≤ ξ̃ ≤ 2π.

(b) A connected component of the level surface |ũ|2 = 3.54.

(c) A connected component of the level surface |ũ|2 = 0.97.
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Beltrami-type solutions: streamline illustrations
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Four sample streamlines for the exact dimensionless Beltrami solution for n = 2, C1 = 1,
C2 = 0, emanating from various points in the plane z = 1.

(a) Side view. (b) Top view.
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Conclusions
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Part 1: Conservation laws of NS and Euler equations under helical
symmetry

Helically-invariant fluid dynamics equations

Full three-component Euler and Navier-Stokes equations written in
helically-invariant form.

Two-component reductions: zero velocity component in symmetric direction.

Additional conservation laws – systematic construction (multiplier method)

Three-component Euler:
Generalized momenta. Generalized helicity. Additional vorticity CLs.

Three-component Navier-Stokes:
Additional CLs in primitive and vorticity formulation.

Two-component flows:
Infinite set of enstrophy-related vorticity CLs (inviscid case).
Additional CLs in viscous and inviscid case, for plane and axisymmetric flows.
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Part 2: Conservation laws of NS and Euler equations under helical
symmetry

The new v -equation for Galilei-invariant helical flows

Full helically-invariant Navier-Stokes equations, invariant with respect to the Galilei
group

G 4 : r → r , t → t, ξ → ξ + εt, p → p,

ur → ur , uξ → uξ + εB(r), uη → uη − ε b

ar
B(r).

Such solutions satisfy the new v -equation

vrt +
(v vr

r

)
r
− 2

v 2
r

r
− ν

[
vrrr +

vr

r 2
− vrr

r

]
= 0.

Exact solutions of helically invariant Navier-Stokes equations

The v -equation: exact Galilei-invariant solutions.

Beltrami flow ansatz: exact linearization, families of separated solutions, regular,
with interesting geometry.
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